Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

Assumption-Based Reasoning for Multiagent Case-Based Recommender Systems

Fabiana Lorenzi
Instituto de Informatica, UFRGS
Caixa Postal 15064
Porto Alegre, RS, Brasil
and Universidade Luterana do Brasil
Canoas, RS, Brasil
lorenzi @ulbra.br

Abstract

Recommender systems (RSs) are popular tools dealing with
information overload problems in eCommerce Web sites.
RSs match user preferences with item representations and
recommend the items that better suit these preferences. How-
ever, sometimes, the required information may not be fully
available, and it could be beneficial to make conjectures about
these missing values in order to generate immediately a rec-
ommendation even if not optimal. This paper presents an
assumption-based multiagent RS making this type of assump-
tions about the user’s preferences. This approach was vali-
dated in a travel application analyzing the impact of various
assumption making strategies on the quality and efficiency
of the recommendation process. The agents are cooperative
when solving their tasks, i.e., finding the appropriate travel
services (e.g., hotel or flight) to be aggregated in the final rec-
ommendation (a complete travel).

Introduction

Several information search tasks are involved in a purchase
process on an eCommerce Web site: the search for infor-
mation about the products, including products’ reviews, the
search for different brands/suppliers, and the comparison
of the identified alternatives. This process requires sub-
stantial user effort, hence several information retrieval and
data mining techniques have been developed. In particu-
lar Recommender Systems (RSs) exploit intelligent tech-
niques that can actively filter irrelevant information or prod-
ucts and can help the users in these processes (Adomavicius
and Tuzhilin 2005). But in heterogeneous and dynamic in-
formation spaces, such as Internet, the relevant knowledge
is typically distributed and one single Web site or repository
cannot contain all the relevant data.

Due to this distributed nature of the information, agents
have been used for helping users to make decisions (Zam-
bonelli et al. 2001). They are able to jointly collect infor-
mation from different sources, filter and use that regarded
as relevant to the user. Although agents can cooperate and
could be able to expand their knowledge communicating
among them, during the decision-making process they still
can face situations where there is a lack of some useful
knowledge. When this happens, they should be able to make

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Francesco Ricci
Free University of Bozen-Bolzano
Bozen-Bolzano, Italy
fricci@unibz.it

342

Mara Abel and Ana L. C. Bazzan
Instituto de Informatica, UFRGS
Caixa Postal 15064
Porto Alegre, RS, Brasil
marabel, bazzan @inf.ufrgs.br

intelligent guesses, i.e., assumptions about what they do not
know.

This paper proposes an assumption-based multiagent ap-
proach that allows agents to independently, collect, assume
and exchange information useful to complete their tasks, i.e.,
helping users in their decision-making process. We show
that assumptions can allow agents to improve their perfor-
mance. Instead of waiting for information coming from
other agents, they can immediately start solving their tasks
without jeopardizing the system performance (quality and
efficiency).

We show that assumptions can help agents to solve prob-
lems even when there are dependencies amongst their tasks.
We have tested our experimental hypotheses in a tourism
scenario: agents must cooperatively build a travel plan for
a given user. In this paper we show how the assumption
making strategies and the cooperation rules impact on the
performance and quality of the recommendations.

In the following sections we present first some related
work, and then the main components of our assumption-
based multiagent approach and how they were modelled and
interrelated. Then we illustrate a case study where we have
applied the proposed approach to the tourism domain; we
present the experiments and simulations done in order to
validate the performance of the process (efficiency) and the
quality of the recommendations. Finally we present our con-
clusions and some future work we have planned.

Related Work

Recommender Systems (RSs) have been proposed to deal
with the information overload problems (Resnick et al.
1994; Adomavicius and Tuzhilin 2005), and more in gen-
eral to support the information selection and decision mak-
ing processes in eCommerce Web sites. Some RSs exploit
multi-agent technologies to make a better use of preexisting
knowledge; they build more accurate domain and user mod-
els, requiring less training data. For instance, in (Zhang et
al. 2008) agents exploit deep knowledge about the customer
profile to determine solutions that suit the wishes and needs
of a customer. They are able to aggregate information stored
in different repositories and better match the recommenda-
tions with the user’s needs.

More in general, multiagent approaches have been ap-
plied to retrieve, filter and use information relevant to the

recommendations (Wei et al. 2008). Multiagent RSs ex-
ploit a collection of interacting agents jointly executing the
recommendation generation process. Each agent may pro-
cess part of the recommendation and/or the interaction, and
the established cooperation among them (e.g., exchanging
information) helps in building the final recommendation.

Reasoning with assumptions was introduced by DeK-
leer with his Assumption-based Truth Maintenance System
(ATMS) (de Kleer 1986) and later by (Mason and Johnson
1989), with Distributed ATMS, where agents can commu-
nicate and see other agents’ assumptions. In DATMS, each
agent considers rules that are fired by facts and producing
one assumptions set for each fact. DATMS allow agents
to make assumptions and work with their consequents un-
til some contradictory information is found.

In (Bogaerts and Leake 2004), the authors investigated
strategies for retrieving appropriate cases while handling
missing information. In fact, the assumption making tech-
niques proposed in our work are similar to those introduced
in (Bogaerts and Leake 2004) for dealing with missing data;
but we applied them in a different context, i.e., a distributed
recommendation domain.

Finally we want to quote a related line of research, i.e.,
Distributed Case-Based Reasoning. In these systems, as in
our approach, the cases are distributed among the agents and
efficiency gains are achieved by distributing the workload
(Plaza and McGinty 2005; Ontanon and Plaza 2004).

This paper presents a multiagent RS where cooperative
and specialized agents perform their tasks using distributed
knowledge (cases), and make assumptions during the rec-
ommendation process when some information necessary to
complete their tasks is missing. We observe that differently
from DATMS, in our approach agents can assume informa-
tion, independently from each other, during the recommen-
dation process. They can also exchange these assumptions
when necessary.

The Assumption-Based Multiagent Approach

In this section we present the assumption-based multiagent
approach suited for helping users to find services (items)
satisfying their needs. Agents work in a cooperative way
to identify recommend items to their users, and are able to
make assumptions in the absence of some information.

Agent’s model

The agent community C' = {aq, as, ..., a, }, has the follow-
ing characteristics:

e Cooperation: agents cooperate when performing their
tasks in order to generate high quality recommendations;

o Knowledge: agents have their own knowledge bases
where they store the generated recommendations;

e Assumptions: agents can deliberately assume the valid-
ity of some missing information when performing their
tasks. The assumptions pertain to data, which are needed
to complete a task, and in principle should be acquired as
the outcome of another agent’s task;

343

e Truth maintenance: agents have a truth maintenance
reasoner that helps them to manage the potential incon-
sistencies in their knowledge bases;

e Specialization: agents can become expert in specific
types of tasks during their activity.

Preferences Model and Tasks

The user preferences are stored in the user model. This is
represented by a set of attributes A = {41, ..., } where
each i,,, takes values in a collection of possible options O; =
{01,002, ...,01, }.

Agents perform several types of tasks 7 = {t1,...,t,}
and each attribute of the preference model i, is associated
with a type of task. The tasks’ types may be interdepen-
dent, i.e., a task type ¢ may have a set of predecessor tasks,
Pred(t) (possibly empty), i.e., the set of task types that
should be performed before ¢.

Agent Specialization

An important feature of our approach is agent specializa-
tion, i.e., an agent can become expert in some type(s) of
tasks, when its knowledge base of solved problems contains
more computed recommendations for these tasks. Agents
will prefer to solve the tasks that they are specialized in.
The agent specialization is modelled as a confidence index
for each type of task as below:

Fa(t)

2 ret Fa(k)

where F,(t) is the number of tasks of type ¢ performed
by agent a; 7 is the set of all task types, and ((¢) is the user
cumulative evaluation of the recommendations for the tasks
of type t. Hence, the confidence index for a task type is cal-
culated as the multiplication of two factors: the proportion
of the tasks of that particular type performed by the agent,
over the total number of tasks executed, and the user eval-
uation of the agent performance on that type of tasks. The
cumulative evaluation ¢(¢) is simply the number of relevant,
i.e., correct recommendations provided to the user. An agent
will choose the next task to perform as one belonging to the
type with the largest confidence index.

confindg,(t) x ¢(t) (1)

Agent’s Knowledge Base

In our approach, each agent has its knowledge base that
stores all the recommendations performed by the agent.
Each case is composed of a problem description (the set of
preferences of the user) and the solution description (the in-
formation recommended for that user’s query). The agent’s
knowledge base is stored in XML format. Each task per-
formed by the agent generates a case in its knowledge base
with:

e The user’s query: provides the set of needs and prefer-
ences of the user (the problem), and includes those that
she cannot compromise, such as the destination city;

e The recommendation: the items (services) recom-
mended to the user that represent the solution of the user’s
query. The recommendation is decomposed according to

the tasks defined in the preference model. In the tourism
application the tasks are the flight, the hotel and the at-
tractions;

— source: the source of each recommended item. The
source can be the same agent that started initially the
task or another agent with whom the starting agent
communicated to obtain the solution;

— evaluation: the user’s evaluation for each attribute of
the received recommendation.

In additional to the knowledge base, each agent is de-
scribed by some attributes that are necessary for the rec-
ommendation process: the agent ID, the confidence indexes
(one for each type of task) and the current task that the agent
it is performing (ctask).

In order to perform a task, the agent may search for the in-
formation needed in two different ways: LocalSearch or/and
CommunitySearch. In LocalSearch, the agent searches for
the required information in its knowledge base. If the agent
does not find the required information in its knowledge base,
then it starts the CommunitySearch, i.e., it communicates
with other agents, asking for the information (see the next
section).

CommunitySearch

When the agent is searching for some information necessary
to perform a task, for example, a cheap hotel in Paris, and it
does not find any in its knowledge base, it may ask another
agent for this information. When an agent asks for some
information (cooperation) it stores the information received
and the originating agent in its knowledge base. This behav-
ior is accomplished by creating a help task, broadcasting it
to the agents in the community, and waiting for the first re-
sponse. The process of choosing a help task to solve is the
same used in the regular tasks. Agents, among the broad-
casted tasks, choose those that they are more confident with.

Assumptions

In dynamic domains, i.e., where the service features and
service availability can change with time, agents could not
solve their tasks in an independent way. For, instance if task
A depends on task B, then the solution of A should be com-
puted only after the agent knows how B has been solved.
However, this behavior introduces potential delays and can
jeopardize the agents performance. In many cases, e.g., in
online RSs, the time performance of the agents is very im-
portant since the user will not accept long response times.
Thus, in our model instead of imposing a strict task execu-
tion order the agents can make assumptions about the value
of some data when they are not immediately available.

Thus, when task ¢ has a predecessor set, the agent a
working on ¢ may generate a set of k assumptions given by
Sa = {Sj,,-..,5;, }, where each s;, represents a different
assumption that the agent can formulate during the recom-
mendation process for the attribute 7;,.

Assumption Making Algorithm The assumption algo-
rithm depends on the agent’s knowledge of the user. For
instance, if the active user is new to the system and he has

344

no profile yet, it is difficult for the agent to assume some
missing information for this user. We have investigated dif-
ferent methods for generating “good” assumptions’ sets for
new users.

e Method 1: The most popular option in the community
of users: for new users, the agent assumes as the cur-
rent value (option) for an attribute the most popular one
in other users’ cases, contained in the agent’s knowledge
base;

e Method 2: Similar cases: the agent searches for the most
similar case in its knowledge base, and for any missing at-
tribute value it uses the options found in this similar case.
This method may be applied to new or old users. We have
here used also a similarity threshold, that in our experi-
ments was set to 0.5. In order to get this ideal threshold,
during the validation stage we performed the same query
several times and the expert analyzed the results;

e Method 3: The most popular option to the user: for old
users, the agent assumes as the current value (option) for
an attribute the most popular one in this user’s cases, con-
tained in the agent’s knowledge base.

We suppose that these assumption making methods can
help the agent to complete its task in the recommendation
process: in an acceptable time for the user, and without jeop-
ardizing the performance of the system. This proposition
will be validated in the next section.

User Evaluation

In a real application of the proposed methods the user, after a
recommendation is produced, must be invited to evaluate it.
The opinion of the user about the received recommendation
is important because that helps validating the effectiveness
of each agent in the recommendation process. In this study
we have used the evaluation done by an expert (travel agent)
as an indicator of the quality of the recommendation.

The expert evaluated the solution by assigning to each
attribute in the original query recommended a 0/1 rate,
e(ij,r;) judging if the output r;, for attribute j determined
by the recommender is acceptable, given the input 4; pro-
vided by the user for the same attribute j in the query. The
expert rated the attributes individually, i.e., the rating is done
attribute by attribute of each travel service.

Case Study: Recommending Travel Packages

A case study for a tourism RS was chosen to validate the pro-
posed assumption-based multiagent approach. In this sce-
nario we have developed MATRES (Multiagent Travel Rec-
ommender System) and the next sections present its main
characteristics.

User Preferences and Tasks

Figure 1 shows the main screen of MATRES. Here the user
can enter the travel needs and preferences for each type of
task. A task represents a travel service request. We have
three types of services: 7 = {t1, t2,t3}, where ¢; represents
the flight service, t5 the accommodation service and t3 the
attraction service.

Considering the example shown in figure 1, assum-
ing that the user has chosen his preferred values for
the class of flight, type of flight and hotel category
attributes, then the preference model would be A =
{class_of _flight,type_of_flight, hotel category}, for
i1, i3 and i3 respectively, and the possible values for these
attributes are Oy = {economic, business, first}, Oy =
{daytime,night} and O3 = {touristic, luze, first}.

|5/ MATRES Recommender System =

Travel Services

¥ Fiight Depart Guarulhos) =
Q) search
estin Paris =l
[V Hatel

[Attraction

g

Flight Preferences

Class: [Economic L] Category: |Luxury j Type:
Tepei. (o = I museum I s
Type of fight: (7 Daytime " Hight = “
Wl Gino @hres I Theatt I Park
Sopu 0 e Pook (% Indoor (" Outdoor [oumert [Church
@ o O ves Pots: Mo Yes = Show
Ao s
e Tlp
\\ }
_— L
’ /\&

Figure 1: MATRES system - user’s preferences

Assumptions in MATRES

In MATRES the tasks are interdependent; ¢ (flight service)
should be finished before ¢5 (accommodation service) and ¢3
(attraction service) can be completed because both of them
are constrained by information contained in the result of ;.
In fact, when an agent searches the best hotel offer for a pas-
senger it should know at what time the passenger will check-
in in the hotel, which depends on the arrival time of the
flight. Hence, the agent dealing with the hotel recommen-
dation task could hypothesize a “reasonable” flight schedule
and complete its task, assuming the arrival time and arrival
date. This flight related assumptions also help the agents to
perform the attraction tasks, where it is necessary to know
when the customer will arrive in the city in order to schedule
the possible tour visits.

Knowledge Base and the Retrieval Algorithm

Table 1 shows an example of a case stored in one agent’s
knowledge base. Each task performed by an agent generates
a new case (a XML file). The set of XML files composes
the agent’s knowledge base. The user query contains the set
of needs and preferences of the user. The travel needs are
strict requirements, which the system must satisfy, and are
used as filters during the search process. They are the desti-
nation, the travel date, the return date and the number of pas-
sengers. Conversely, the preferences of the user represent
additional wishes of the user, such as the hotel category or
the flight class. The preferences, differently from the needs,
are negotiable. Hence, if the user prefers night flight than
day flight it is still possible to violate this requirement.

345

Table 1 shows an example of user query and how it is
stored as a case. The recommendation has not been deter-
mined yet. The items flightR, accommodationR and at-
tractionR elements will be filled as soon as the agents com-
plete the corresponding tasks. The evaluations of each task
attribute will be also stored after the user evaluates them.

Table 1: Example of a case

< travelneeds >
<departure> Rome </departure>
<destination > Paris </destination>
<departuredate > 01/01/2010 </departuredate >
<returndate > 01/10/2010 </returndate >
< passangers> 2 </passangers >
< /travelneeds >
< Preferences >
< flight >
<class> Economic </class>
<typeflight > Daytime </typeflight>
<stops> No </stops>

<attraction>

<type>Museum </type >

</attraction>
< [Preferences >
<recommendation>
<flightR>
</flightR>
<accommodationR >
</accommodationR >
<attractionR>
</attractionR >
</recommendation >

< connections> No </connections> < evaluation>

</flight> <flight>
<hotel > </flight>
< category > Touristic </category > <hotel >
<room> Double </room> </hotel >
<wifi> Yes </wifi> <attraction>

<pool > Indoor </pool>
<pets> No </pets>
</hotel >

</attraction>
</evaluation>

When an agent starts a task, it initially searches in its
knowledge base and selects the cases that match the user
needs (destination, travel date, return date and number of
passengers). Then, it tries to match the user’s preferences in
this set of cases. Since the knowledge is stored as a set of
cases, the goal is to search there for the most similar case
and to apply the solution (recommendation) of this old case
to the new user’s query. The agent should compare the user’s
query with all the cases stored in its knowledge base, i.e,
compare the user’s query with all the recommendations that
the agent has performed in the past. This comparison is done
using the distance function shown in equation 2.

ki e
2 =1 ;:(qj c5) @)

where ¢ is the user’s query, c is the case that is being
compared, j is an attribute, k£ is the number of attributes
and dis(g;,c;) is the local distance. We observe that all
the attributes are symbolic, and the local distance is 0 when
gy = cy and 1 otherwise.

Dist(q,c) =

Experimental Results

A community of 10 agents was created to run the experi-
ments. Then, 30 cases were acquired from a travel agency
and distributed randomly in the agents’ knowledge bases.
This distribution was not uniform, i.e., some agents received
more cases than others. This was done to mimic what could
happen fo real travel agents, where some of them may have
solved more cases than others. However, their confidence
indexes were set to a constant value (0.5), i.e., we assume
that initially they have performed the same number of tasks
and they were evaluated similarly. Thus, no agent is con-
sidered an expert in the initial stage. These 30 cases were
generated by four human travel agents. They were complete
travels, with flights, hotel and attraction travel services, and

the travel agents also provided the passengers evaluations
for each case.

Besides the cases that populated the agents knowledge
bases, the travel agents provided 27 additional recently
solved cases (we call them “test cases”) to be used as queries
in the simulations. These cases also were completed with the
evaluations provided by the travel agents. This is important
because for validating our multiagent RS we could compare
the system results (recommendations) with the experts’ re-
sults. The advantage of using real cases as new queries is
that we can measure the output of our approach on realistic
problems and we can use the solutions as correct evaluations
of the recommendations.

Simulations

To evaluate our approach we ran some simulations where
the agents solved some queries that were also solved by the
travel agents, so that we could compare the two solutions.
The simulations were carried out in two steps: 1) we have
defined three different recommendation scenarios to evalu-
ate how the assumption making feature impacts on the rec-
ommendation performance; 2) we have run new queries (se-
lected from the 27 test cases) with two different assumption
making methods and then compared their results with the
solution in the test cases.
The three scenarios defined are:

e Scenario 1: the agents perform their tasks independently
from the other tasks, ignoring the dependencies among
tasks and without making assumptions;

e Scenario 2: when an agent must perform a task that de-
pends on another task it waits for the information pro-
duced by the preceding task solution;

e Scenario 3: when an agent must perform a task that de-
pends on another task it will make the most likely assump-
tions on the solutions of the preceding tasks instead of
waiting for the true information.

We observe that since these recommendation techniques
must be included in an eCommerce Web site the waiting
time and the quality of the recommendations must be taken
into account. In fact, users do not like to wait too long for
an answer, so the system should return an acceptable solu-
tion in a short time. Moreover, users want to receive reason-
ably good recommendations and they will not like sugges-
tions that differentiate considerably from their requirements.
Therefore, in the simulations we analyzed the results with
respect to the performance of the system (efficiency) and the
quality of the recommendations, as it is defined later.

Performance In the first simulation, we considered the
time required by the agents to complete the tasks in the three
defined scenarios. Table 2 shows the average time required
for processing the 27 queries. The simulation was run in a
“Core2Duo” - 1.83GHz computer, with 2GB RAM.

Table 2: Average time of processing 27 queries (in minutes)
[Queries | Scenario 1 | Scenario2 | Scenario 3 (method2) |
[127 | 131 | 23 | 154 |

346

As table 2 shows, when the agents solve the tasks inde-
pendently (scenario 1), or when they do not wait for the out-
comes from other agents, i.e., they make assumptions (sce-
nario 3), then they can complete their own task quicker. This
is not surprising because an agent searches only locally for
the information in its knowledge base and this does not re-
quire a major effort.

As expected, in scenario 2 the time required to generated
a full travel plan increases when agents wait for information
coming from other agents. In scenario 3 the agents had on
average better performance than in scenario 2 because they
made some assumptions instead of waiting for information
from other agents. In scenario 3 we choose method 2 to
make assumptions (see Section).

Quality of the Recommendations We also verified the ef-
fectiveness of the agents, i.e., the quality of the recommen-
dations presented to the users, using method 1 and method 2
for making assumptions. In this simulation, from the origi-
nal 27 test cases, we selected the 20 queries from new users.
The quality of the recommendations obtained in the scenar-
ios were then compared with those generated by a human
expert (travel agent). Table 3 shows some examples of the
used queries.

Table 3: Examples of cases used as new queries in the sim-
ulations

Cases Destination Paxs Class Type Categ. Room Attraction
1 Lisbon 2 econ. day tourist double monument
2 Paris 2 econ. night tourist double museum
3 Madrid 2 econ. night luxe double show

Table 4 shows the average quality of the recommenda-
tions for each travel service and for each scenario defined.
The higher the value, the better the result. In the evalua-
tion each input attribute in the query was compared with the
final value of the attribute in the agents’ and expert’s solu-
tions. We note that the expert solution correspond to what
the traveller bought.

Moreover, note that the maximum evaluation corresponds
to the maximum number of possible input preferences (at-
tributes) selected by the user: (flight=4, hotel=5 and attrac-
tion=1, as we considered just one attraction option chosen
by the user in the query.

As we expected, when the agents do not consider the de-
pendencies among the travel services (scenario 1), they had
the worst results. In scenario 2 the results are a little bet-
ter than the expert solution. However, we expected better
results, considering that agents shared information.

Table 4: Effectiveness of recommendations for each travel
service in Scenario 3

Average Rating
Hotel Attraction

Flight

Expert Solution
Agents (Scenario 1)
Agents (Scenario 2)

Method 1 (Scenario 3)
Method 2 (Scenario 3)

The average users’ evaluation for the hotel services pro-
duced by method 2, which is an assumption-based method,

is 4.7. This is a good result considering that the best possi-
ble result is 5, i.e., when all the 5 input preferences in all the
queries are satisfied in the solutions. In fact, the produced
recommendations were presented to the human travel agent
who evaluated them as excellent and liked the idea of using
similar cases.

We can see that method 2, i.e., using similar cases, pro-
duces better results for the Hotel tasks, compared with
method 1, i.e., using the most popular value for a missing
information. method 2 is also better than the expert solution.
method 2 is significantly better than the expert and method 1
; t-test probabilities are p=0.002, and p=0.0003 respectively.
It means that using similar cases is a good strategy to make
assumptions when necessary.

The performance of the two assumption-based methods
on the Attraction and Flight tasks were not very different
from those obtained by the expert. In the Attractions this
also depends on the fact that in this prototype just one at-
traction is recommended. Anyway, it is not surprising that
on these two types of tasks the performances are very sim-
ilar, since in these cases no assumptions are made as their
solutions are not dependent from other tasks (as it was for
the hotel task).

An important issue identified in these simulations is that
the assumption-based multiagent approach is able to bal-
ance performance and quality. In fact, it is not important
for a system to produce quickly its recommendations if their
quality is poor. Users want high performance but acceptable
quality as well. Thus we cannot compromise too much the
quality by optimizing the performance. The current solution
seems to achieve a good balance, in this particular simple
combination of tasks.

Conclusions and Future Work

This paper presented an assumption-based multiagent RS
that allows agents to cooperate in solving their tasks, and
let them make assumptions regarding missing information
during the problem-solving process. We have shown that
these assumptions can help to improve the quality of the
recommendations compared to the case where agents do not
wait for the missing data to be available and do not make
assumptions. In this last case the solution is found quicker
but it is often incorrect. Moreover we have shown that the
agents that make assumptions can still obtain good quality
results, when they have to deal with interdependent tasks. A
case study in the tourism domain has been presented and we
validated the proposed approach in a real application. We
have introduced two methods for generating assumptions,
one based on the most often observed value for an attribute
and another based on the examination of similar recommen-
dation cases. In our case study, both approaches worked
well.

As future work we intend to develop a mechanism that
helps in identifying when agents make wrong assumptions.
This mechanism will be helpful to correct the preference
model. We also want to extend the assumption mechanism
and validate results when the agents share their assumptions.
We imagine that this would improve the agents performance

347

because they would be able to use other agents assumptions
rather than compute them by themselves.

Moreover, a trust mechanism is being developed in order
to let the agents to select their tasks and also to improve
the communication among agents. Agents will use a trust
degree to select a task and instead of using help tasks to
exchange information, agents will communicate only with
agents they trust. This will avoid unnecessary communica-
tion and thus improve the recommendation process.

This work was challenged by the features of the tourism
domain. The prototype was simplified and a restricted num-
ber of assumptions were explored. However, we intend to
consider other applications where a larger set of assumptions
and dependencies must be managed.

References

Adomavicius, G., and Tuzhilin, A. 2005. Toward the next
generation of recommender systems: A survey of the state-
of-the-art and possible extensions. [EEE Transactions on
Knowledge and Data Engineering 17(6):734-749.

Bogaerts, S., and Leake, D. 2004. Facilitating cbr for
incompletely-described cases: Distance metrics for partial
problem descriptions. In Funk, P., and Calero, P. A. G,
eds., Proceedings of the 7th European Conference on Case
Based Reasoning, Advances in Case-Based Reasoning, Lec-
ture Notes in Artificial Intelligence, 62-76.

de Kleer, J. 1986. An assumption-based tms, extending the
atms, and problem solving with the atms. Artificial Intelli-
gence 28(2):127-224.

Mason, C. L., and Johnson, R. R. 1989. Datms: A
framework for distributed assumption based reasoning. Dis-
tributed Artificial Intelligence 2:293-317.

Ontanon, S., and Plaza, E. 2004. Recycling data for multi-
agent learning. In de Raed, L., and Wrobel, S., eds., Pro-
ceedings 22nd International Conference on Machine Learn-
ing ICML-2005, ACM Press, 633-640.

Plaza, E., and McGinty, L. 2005. Distributed case-based
reasoning. The Knowledge Engineering Review 20(3):261—
265.

Resnick, P.; Tacovou, N.; Suchak, M.; Bergstrom, P.; and
Riedl, J. 1994. Grouplens: An open architecture for collabo-
rative filtering of netnews. In Proceedings ACM Conference
on Computer-Supported Cooperative Work, 175-186.

Wei, Y. Z.; Jennings, N. R.; Moreau, L.; and Hall, W. 2008.
User evaluation of a market-based recommender system.
Autonomous Agents and Multi-Agent Systems 17(2):251-
269.

Zambonelli, F.; Jennings, N. R.; Omicini, A.; and
Wooldridge, M. 2001. Agent-oriented software engineer-
ing for internet applications. In Omicini, A.; Zambonelli, F.;
Klusch, M.; and Tolksdorf, R., eds., Coordination of Inter-
net Agents, 326-346. Springer-Verlag.

Zhang, D.; Simoff, S.; Aciar, S.; and Debenham, J. 2008.
A multi agent recommender system that utilises consumer
reviews in its recommendations. [International Journal of
Intelligent Information and Database Systems 2(1):69-81.

