

Incrementally Learning Rules for Anomaly Detection

Denis Petrussenko, Philip K. Chan

Microsoft, Florida Institute of Technology

denipet@microsoft.com, pkc@cs.fit.edu

Abstract
LERAD is a rule learning algorithm used for anomaly
detection, with the requirement that all training data has to
be present before it can be used. We desire to create rules
incrementally, without needing to wait for all training data
and without sacrificing accuracy. The algorithm presented
accomplishes these goals by carrying a small amount of data
between days and pruning rules after the final day.
Experiments show that both goals were accomplished,
achieving similar accuracy with fewer rules.

Introduction
Intrusion detection is usually accomplished through either
signature or anomaly detection. With signature detection,
attacks are analyzed to generate unique descriptions. This
allows for accurate detections of known attacks. However,
attacks that have not been analyzed cannot be detected.
This approach does not work well with new or unknown
threats. With anomaly detection, a model is built to
describe normal behavior. Significant deviations from the
model are marked as anomalies, allowing for the detection
of novel threats. Since not all anomalous activity is
malicious, false alarms become a issue.

An offline intrusion detection algorithm called LERAD
creates rules to describe normal behavior and uses them to
detect anomalies, comparing favorably against others on
real-world data (Mahoney and Chan 2003b). However,
keeping it up to date involves keeping previous data and re-
learning from an ever increasing training set, which is both
time and space inefficient.

We desire an algorithm that does not need to process all
previous data again every time updated rules are needed. It
should keep knowledge from previous runs and improve it
with new data. Rules should be created more frequently
(i.e. daily instead of weekly), without losing fidelity.

Our contributions include an algorithm which learns
rules for anomaly detection as data becomes available, with
statistically insignificant difference in accuracy from the
offline version and producing fewer rules, leading to less
overhead during detection.

Copyright © 20 , Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Related Work
Given a training set of normal data instances (one class),
LERAD learns a set of rules that describe said training data.
During detection, data instances that deviate from the
learned rules and generate a high anomaly score are
identified as anomalies. Similar to APRIORI (Agrawal &
Srikant, 1994), LERAD does not assume a specific
target/class attribute in the training data. Instead, it aims to
learn a minimal set of rules that covers the training data,
while APRIORI identifies all rules that exceed a given
confidence and support. Furthermore, the consequent of a
LERAD rule is a set of values, not a single value as in
APRIORI.

Learning anomaly detection rules is more challenging
than learning classification rules with multiple classes
specified in the training data, which provide information for
locating class boundary. WSARE (Wong et al, 2005)
generates a single rule for a target day. The goal is to
describe as many anomalous training records as possible
with a single output rule that is the best (most statistically
significant) description of all relationships in the training
data. Marginal Method (Das and Schneider, 2007) looks for
anomalous instances in the training set by building a set of
rules that look at attributes which are determined to be
statistically dependent. The rules are used to classify
training data as “normal” or “abnormal”.

VtPath (Feng et al, 2003) analyzes system calls at the
kernel level, looking at the call stack during system calls
and building an execution path between subsequent calls.
This approach examines overall computer usage, not any
particular application. PAYL (Wang et al, 2005) examines
anomalous packets coming into and then being sent out
from the same host. The resulting signatures can detect
similar activity and can be quickly shared between various
sites to deal with zero-day threats. Kruegel and Vigna
(2003) examine activity logs for web applications, looking
at a specific subset of parameterized web requests.

Original Offline LERAD (OFF)
LEarning Rules for Anomaly Detection, or LERAD
(Mahoney & Chan, 2003a), is an efficient, randomized
algorithm that creates rules in order to model normal
behavior. Rules describe what data should look like and are

10

434

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

used to generate alarms when it no longer looks as
expected. They have the format:

where is attribute in the dataset, is the th value of
and , and are statistics used to calculate a score upon
violation.

 is number of unique values in the rule’s consequent,
representing the likelihood of it being violated. is records
that matched the rule’s antecedent. Each time is
incremented, can potentially be increased as well, if the
consequent attribute value () in the tuple is not already
present in the rule. is the rule’s validation set
performance, calculated from mutual information (Tandon
& Chan, 2007).

LERAD is composed of four main steps shown in the
pseudocode in Fig. 1. Rule generation (st. 1) picks
antecedent and consequent attributes based on similarities
of tuples randomly chosen from the sample set . After
sufficient rules are generated, a coverage test is performed
to minimize the number of rules (st. 2). Step 3 exposes
rules to the training set, updating their and values based
on how they apply to . Lastly the weight of evidence is
calculated for each rule by applying it to and seeing
how many times it conforms or violates (st. 4). The output
is a set of rules that can generate alarms on unseen data.

For each record , every rule will either
match or not match antecedent values. Only rules that
match are used to compute the anomaly score. Let be the
set of rules whose antecedents match , then

where is time since was last involved in an alarm. The
goal is to find rule violations that are most surprising. A
rule that has been violated recently is more likely to be
violated again, as opposed to one that has been matching
records for a long time. Scores above a certain threshold are
then used to trigger actual alarms.

Basic Incremental Algorithm (INCR)
Each dataset fed to INCR is divided into three sets:
training, validation and test. For day , let the sample set be

, training set be and validation set be . With OFF,
training data consists of one dataset and testing data of
another. For INCR, training data is split into roughly equal-
sized sets (days), with test data remaining in a single set.

Regardless of being split up, in this paper the training
data for INCR is exactly the same as for OFF. Sample set

 is generated each day by randomly copying a few
records from ; consists of a small fraction (e.g. 10%)
of all training set records, removed before training data is
loaded. Training records that are moved into the validation
set are chosen at random.

INCR applies the same basic algorithm to training data
as OFF. The main difference is that rules and sample set are
carried between, and trained on, later days (Fig. 2). INCR
mirrors OFF and creates a new sample set for each day

 of data, but shrunk proportionally to the total number of

days in training data (m): . That way INCR

won’t access many more sample records than OFF when
creating rules, which would result in different rules. This
may not be detrimental, but it does stray from the OFF
algorithm. Furthermore, in addition to using , sample
sets from previous days are carried over and joined together
into the combined sample set , from which (new
rules for day) are made. and are not carried over
between days since they are huge compared to . For
datasets that OFF can handle they could be, but INCR is
designed to work with far more data.

As before, a coverage test is performed after is
generated to ensure that rules keep their quality, but on
instead of , since that is what the rules were created from
(Step 2 in Fig. 2). After coverage test, remaining rules in

 are compared with (containing all previous days).
Any rules in that already exist in are removed
from (Step 3 in Fig. 2). Removing duplicates from is
not a problem because at this point, rules in have only
been trained on , which contains mostly data that
has been exposed to. The only thing lost by removing
duplicates is what gained from training on (subset of

). This is remedied by merging new rules with old
 (Step 6 in Fig. 2) and training on

(superset of). Before training, rules from already
have some statistics from previous days and rules from
have statistics from being trained on . These are not
reset for training, statistics from are simply added.
That way, a rule trained (for example) on days to has
the same information as a rule trained on that consists
of all records from days to . After training, is
validated on (Step 8 in Fig. 2). Again, the previous is
not reset but rather combined with the value from day .

Collecting Appropriate Statistics
Recall that LERAD generates rules strictly from the sample
set, which is a comparatively small collection of records

Fig. 1: Offline LERAD algorithm (OFF)
[Adapted from Fig. 1 in Tandon & Chan, 2007]

435

meant to be representative of the entire dataset. Antecedent
and consequent attributes are picked based on similarities
of tuples randomly chosen from the sample set and never
changed after they are picked. Therefore the sample set is
solely responsible for the structure of all rules in LERAD.

Using instead of allowed INCR to generate
more rules with the same structure as OFF, but with
different statistics. Comparing rules present in both INCR
and OFF but only detecting in OFF, a number of
deficiencies showed up in INCR rules: statistics were off,
resulting in lower alarm scores and missed detections.

To fix this, similar rules generated by both algorithms
need to contain similar statistics. INCR rules generated
towards the end had significantly smaller values, as well
as smaller and values, because they do not have access
to data from days before they were generated. To
completely eliminate this problem, all days would have to
be kept around so that all rules can be trained on all days.
With an incremental algorithm, this is not feasible. Instead,
extra statistics are kept that are represent each . An
additional piece of information is carried for each day :

.

By using tuples from and repeating each one
 times, a virtual training set is created,

representing the training set from that day. For each day ,
all previous virtual training sets (to) are joined
together to create a combined virtual training set

.
New rules for day are still generated on .

However, now is used for training instead of

just , allowing rules to obtain consequent values that
may have only been present in previous days and enabling

 counts to reflect records not present in all days (Step 4 in
Fig. 2). Note that the virtual set is purely an abstract notion;
sample sets are simply used in a manner that is consistent
with having a virtual training set. During training, when a
rule matches a record, its value is increased by

 instead of just 1. Consequent values are
simply appended, along with being incremented, if they
don’t yet exist in the rule. The weight of evidence
calculation for new rules is also modified to collect
statistics from in addition to . Since rules from
previous days were trained on actual training sets that
attempting to approximate, they are not exposed to it, or

. only benefits , since it is directly
affected by it (Step 4 in Fig. 2).While this yields results
that parallel the OFF algorithm, it will have to be changed
for a purely incremental implementation. Currently, the
sample set grows without bound in order to match the OFF
sample set. In the real world, there will need to be a
limiting mechanism on its growth, such as not keeping
sample sets older than a certain number of days.

Pruning Rules
Because INCR generates rules multiple times (one for each
day/period), INCR generally creates more rules overall than
OFF. By design, a lot are common between them.
However, there are usually some extra rules unique to
INCR. Some cause detections that would otherwise have
been missed, others cause false alarms that drown out
detections. An analysis yielded the number of generations
(or birthdays) as the best predictor of inaccurate rules. Let

 be the number of times a rule was generated (born). Most
rules unique to INCR and only causing false alarms had
low values.

This heuristic allowed for removal of inaccurate rules.
INCR removes rules with s below a certain threshold
from the final rule set as the very last step. This drops rules
that were causing false alarms, increasing performance. For
example, the LL/tcp dataset went from final INCR rule
count of 250 to just 68 when B was set to 2, compared to 77
rules in OFF. While the exact value of B depends on the
dataset, experiments showed that tends to provide
closest AUC values to OFF. B is currently determined by
sensitivity analysis across all possible values. Further work
is needed to establish the ideal B value during training.

Empirical Evaluation
In this section, we evaluate the performance of incremental
LERAD and compare it to offline. Evaluation was
performed on five different datasets: DARPA / Lincoln
Laboratory (LL TCP) contained 185 labeled instances of 58
different attacks (full attack taxonomy in Kendell, 1999);
UNIV comprised of over 600 hours of network traffic,

Fig. 2: Incremental LERAD algorithm (INCR)
[steps different from offline are in bold]

436

collected over 10 weeks from a university departmental
server (Mahoney and Chan, 2003a), containing six attacks;
DARPA BSM was an audit log of system calls from a
Solaris host, with 33 attacks spread across 11 different
applications (see Lippmann et al, 2000); Florida Tech and
University of Tennessee at Knoxville (FIT/UTK) contained
macro execution traces with 2 attacks (Mazeroff et al,
2003); University of New Mexico (UNM) set included
system calls from 3 applications (Forrest et al, 1996) with 8
distinct attacks.

Experimental Procedures
For all datasets, training data was entirely separate from
testing. LL training consisted of 7 days, ~4700 records
each, with almost 180,000 records in testing. For UNIV,
week 1 was split into 5 days of training, ~2700 records
each, with weeks 2 through 10 used for testing (~143,000
records). In BSM, week 3 was separated into 7 days or
~26,000 records each, with weeks 4 and 5 used for testing
(~350,000 records). FIT/UTK had 7 days of training, with
~13,000 records each day and testing. UNM contained 7
days of data with ~850 records each and ~7800 for testing.

Several adjustable parameters were used. Size of was

set to , where 100 was the sample set in offline

experiments and was the number of training days (see pg
2). This still resulted in tiny sample sets when compared to
training. For example, for LL, of ,
putting sample set size well below 1% of training.
Validation set was 10% of and contained same
random records for OFF and INCR. Candidate rule set size

 was set to 1000 and the maximum number of attributes
per rule was 4, all to mirror Tandon & Chan (2007)
experiments. Rule pruning parameter was 2, as this
produced the closest performance curve to OFF.

On every dataset, both INCR and OFF ran 10 times each
with random seeds. For datasets with multiple applications,
a model was created for each one and results averaged
together, weighted by training records for that application.
As applications had vastly different amounts of training
records, their results could not be simply averaged together.
LERAD is looking for anomalous activity, so apps with
more training records (i.e. activity) have more alarms and
are more relevant to performance on the whole dataset.

For rule comparison, each INCR run is compared to all
OFF runs and average counts of rules involved are taken.
Then all INCR runs are averaged together for each dataset.
For datasets with multiple applications, results for each one
are averaged together for the whole dataset.

Evaluation Criteria
Because false alarm (FA) rates are an issue in anomaly
detection, we focused on low FA rates of 0.1%. Alarm
threshold was varied in small increments between 0 and a
value that resulted in FA rate of 0.1%, with percentage of

valid detections measured each time. This was plotted on a
receiver operating characteristic (ROC) curve, where X axis
was false alarm rate and Y axis was detection rate. Area
under this curve, or AUC, is absolute algorithm
performance. Higher AUC values indicate better
performance. Since we concentrated on the first th of

the ROC curve, highest performance possible in our tests
was 0.001.

To average together multiple applications from a single
dataset, let be the count of
training records for an application. Then dataset is:

Sensitivity Analysis of Parameter B
One way to compare performance is through s. Let

 be the difference between INCR and OFF:

A positive value means INCR is more accurate than
OFF. is negative when INCR is less accurate, with
lower values for worse performance. Our goal was for
INCR to be close to OFF, s closest to 0 were desired.

Pruning threshold (pg. 3) has the largest effect on
. Rules with under a certain threshold are removed

from INCR after training. There is no apparent way of
picking , so we analyzed all of them. Maximum value
tested was 5 since most datasets did not produce any rules
past that, either because they were only split into 5 days or
because no rules were generated more than 5 times in a
row. Lowest value was 1 since any lower is meaningless.

s and resulting s for all datasets are shown in
Fig. 3 (0.1% FA rate). With BSM, LL TCP and UNIV
datasets, INCR performance is similar to OFF, resulting in

 values fairly close to zero. With UNM, there were
no attacks detected by OFF below 0.1% false alarm rate,
while INCR did detect some attacks, resulting large
differences. The opposite situation occurred with FIT/UTK,
with INCR detecting no attacks. Overall, there is no
obvious relationship between and values across all
datasets.

To determine if s are statistically significant, and

Fig. 3: s versus Bs (0.1% FA rate)

437

for which values, we perform the two-sample T-test on
data from Fig. 3. s from 10 INCR runs for each dataset
are compared against s from 10 OFF runs. For multi-
application datasets, s are averaged, weighted by
training records (see page 4). had statistically
insignificant s across most datasets (Table 1). For
FIT/UTK, there was no statistically insignificant due
to very poor performance of INCR.

Table 1 shows the absolute two-tail probabilities in
Student’s t distribution (with degrees of freedom = 9),
computed from experimental data. For each dataset and ,
Table 1 contains the probability that INCR and OFF are not
significantly different. Because the goal is to have similar
performance, we concentrate on results where INCR and
OFF do not have a statistically significant difference. Cells
with show which instances are not significantly
different. That is, they do not have a probability < 0.05 of
being significantly different, which is required in order to
be at least 95% confident. Note that some probabilities are
0.0 – this happens when s are extreme. In UNM, OFF
had tiny , very different from what INCR had with
low s. However, as increased and performance fell
(Fig. 3), INCR became almost as bad as OFF, bad enough
to no longer be statistically significant. In FIT/UTK, INCR
had low scores, never getting near OFF.

Table 1: P(T<=t) two-tail for two-sample T-test
Dataset B=1 B=2 B=3 B=4 B=5
BSM 0.27 0.18 0.02 0.66 0.01
UNM 0.00 0.00 0.01 0.17 0.17
LL TCP 0.01 0.57 0.37 0.08 0.10
FIT/UTK 0.00 0.00 0.00 0.00 0.00
UNIV 0.40 0.17 0.08 0.06 0.04

To conclusively determine which s cause statistically
insignificant s across all datasets, we apply the paired
T-test. For each dataset, average for each was
paired with average OFF for that dataset. Again, as
with Table 1, numbers in Table 2 represent the
probabilities associated with Student’s T-test. In order to be
at least 95% confident that INCR and OFF s are
statistically different, values in Table 2 need to be under
0.05. No yielded statistically different performance
between INCR and OFF. This is due mostly to the similar
variations of s between all datasets, which were
exhibited by both OFF and INCR. The two least different
values were 2 and 3, and since had insignificant
performance difference on 3 of 5 datasets (see Table 1), the
rest of our analysis is based on B=2.

Table 2: P(T<=t) two-tail, paired two sample T-test
B=1 B=2 B=3 B=4 B=5
0.95 0.98 0.98 0.44 0.39

Analysis of Rule Content
There are 4 cases when comparing INCR and OFF rules.
Let be rules that have same antecedent attributes, same
consequent attribute and same consequent values. They are

structurally exactly alike. consists of rules with same
antecedent attributes and same consequent attribute, but
different consequent values. has rules with identical
antecedent but different consequent attributes. contains
rules that have different antecedent attributes. Each INCR
rule compared to OFF will be in either , , or , which
are mutually exclusive and describe all possible outcomes.

With and FA rate at 0.1% (section 4.4),
performance difference between INCR and OFF is
insignificant but present. To understand why, we look at
sizes of , , and (Table 3). Datasets with high ,
and have smallest s. A large percentage of similar
rules should naturally lead to similar performance, as with
UNIV, LL TCP and BSM. UNM’s is large due to
OFF’s poor performance. FIT/UTK’s is due to a
very small number of INCR rules in general.

Table 3: Size of , , and as percent of total number of
OFF rules (B=2)

Dataset
UNIV 17% 5% 19% 60% -0.00002
FIT/UTK 2% 1% 3% 94% -0.00034
LL TCP 24% 5% 22% 49% 0.00001
UNM 27% 14% 21% 38% 0.00034
BSM 17% 5% 11% 66% -0.00001

Analysis of Rule Statistics
To determine just how close INCR rules are to OFF, their

, and are compared. For this to be accurate, rules have
to be of the same type. Since are only dependent on the
antecedent attributes, , and are used. Comparing
only makes sense when checking the same consequent
attribute, so only and are used. Since describe the
effectiveness of a rule as a whole, only is relevant.

Because we are now analyzing subsets of rules, we look
at performance of individual rules. Alarms during attacks
are called detections (DETs); those triggered during normal
activity are false alarms (FAs). For each DET or FA
triggered on record , the contribution of ach rule is:

Then for each rule , all contributions to detections across
the whole dataset are added into and all false
alarm contributions added into . Performance of a
rule is then gauged by the number of net detections, or :

Having an exact number that represents how well a single
rule is behaving allows us to directly examine the effect of

, and on performance. Since we are interested in the
difference in performance between INCR and OFF,
discrepancy between values () is used:

438

where is either , , or . is normalized in order to
bring the performance of all datasets onto a level playing
field.

Discrepancy in which rule statistic is more responsible
for discrepancy in performance? Table 4 shows two avg.

 for each statistic, one for underestimated statistic and
one for overestimated, for each dataset (followed by
st.dev). For example, the average performance error for
rules with underestimated is shown in the
column. Some data is N/A because all rules with
comparable are overestimated in UNM and
underestimated in FIT/UTK. Furthermore, it is impossible
for INCR to overestimate . Overall, is most responsible
for and is least. This supports our choice of

 to help statistics on pg. 3, since it mostly
helped values. Does over or under estimation in rule
statistics cause more performance discrepancy? For ,
overestimation usually produces more error, is opposite.

Does INCR over or under estimate rule statistics? Table
5 lists average st.dev. for rule statistics, independent of

. The left half (white) contains the average , which
indicates if the rule statistic is over or underestimated
(discrepancy direction). , , tend to be underestimated
on average, except in two datasets, tends to be
overestimated on average. The right half (gray) shows the
avg. of absolute , indicating the amount of
over/underestimation (discrepancy magnitude). There is
least error in , followed by (except in UNM dataset)
and has the most error. This suggests that our
improvements did help and and the next large
performance gain lies in improving .

Conclusions
We introduced an incremental version of the LERAD
algorithm, which generates rules before all of training data
is available, improving them as more data is analyzed. The
incremental nature of our algorithm does not affect
performance. Experiments show that after processing the
same amount of data, the difference in accuracy of
incremental vs offline algorithms is statistically

insignificant. The incremental algorithm also generates
fewer rules, leading to lower detection overhead. Our
algorithm can be applied to datasets that were previously
out of reach for offline methods.

Our approach to calculating statistics is most beneficial
for , somewhat good for and not relevant for . To
improve , the distribution of consequent values would
need to be modeled. Also, we currently do not have a
method for setting the pruning threshold B; we plan to
investigate the selection of B based on the performance of
different B values on the validation sets.

References
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining
association rules. In Proc. 20th Int. Conf. very Large Data Bases,
(VLDB), 487-499.

Das, K., & Schneider, J. (2007). Detecting anomalous records in
categorical datasets. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 220-229.

Feng, H., Kolesnikov, O., Fogla, P., Lee, W., & Gong, W. (2003).
Anomaly detection using call stack information. In Proceedings of
Symposium on Security and Privacy. 62-75.

Forrest, S., Hofmeyr, S., Somayaji, A., & Longstaff, T. (1996). A
sense of self for unix processes. In Proceedings of 1996 IEEE
Symposium on Security and Privacy. 120-128.

Kruegel, C., & Vigna, G. (2003). Anomaly detection of web-
based attacks. In Proceedings of the 10th ACM Conference on
Computer and Communications Security, 251-261.

Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K.
(2000). The 1999 DARPA off-line intrusion detection evaluation.
Computer Networks, 34(4), 579-595.

Mahoney, M. V., & Chan, P. K. (2003a). Learning rules for
anomaly detection of hostile network traffic. In Proc. of
International Conference on Data Mining (ICDM), 601-604.

Mahoney, M. V., & Chan, P. K. (2003b). Learning Rules for
Anomaly Detection of Hostile Network Traffic. Technical Report
CS-2003-16, Florida Tech.

Mazeroff, G., De Cerqueira, V., Gregor, J., & Thomason, M. G.
(2003). Probabilistic trees and automata for application behavior
modeling. Paper presented at the 41st ACM Southeast Regional
Conference Proceedings, 435-440.

Tandon, G. & Chan, P. (2007). Weighting versus Pruning in Rule
Validation for Detecting Network and Host Anomalies. In Proc.
ACM Intl. Conf. on Knowledge Discovery and Data Mining
(KDD). 697-706.

Wang, K., Cretu, G., & Stolfo, S. J. (2005). Anomalous payload-
based worm detection and signature generation. In Proceedings of
RAID, Lecture Notes in Computer Science, 3858, 227-246.

Wong, W. K., Moore, A., Cooper, G., & Wagner, M. (2005).
What's strange about recent events (WSARE): An algorithm for
the early detection of disease outbreaks. Journal of Machine
Learning Research, Vol 6, 1961-1998.

Table 4: Average for

Table 5: Average (discrepancies) in
Discrepancy Direction Discrepancy Magnitude

439

