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Abstract 
LERAD is a rule learning algorithm used for anomaly 
detection, with the requirement that all training data has to 
be present before it can be used. We desire to create rules 
incrementally, without needing to wait for all training data 
and without sacrificing accuracy. The algorithm presented 
accomplishes these goals by carrying a small amount of data 
between days and pruning rules after the final day. 
Experiments show that both goals were accomplished, 
achieving similar accuracy with fewer rules. 

Introduction   
Intrusion detection is usually accomplished through either 
signature or anomaly detection. With signature detection, 
attacks are analyzed to generate unique descriptions. This 
allows for accurate detections of known attacks. However, 
attacks that have not been analyzed cannot be detected. 
This approach does not work well with new or unknown 
threats. With anomaly detection, a model is built to 
describe normal behavior. Significant deviations from the 
model are marked as anomalies, allowing for the detection 
of novel threats. Since not all anomalous activity is 
malicious, false alarms become a issue. 

An offline intrusion detection algorithm called LERAD 
creates rules to describe normal behavior and uses them to 
detect anomalies, comparing favorably against others on 
real-world data (Mahoney and Chan 2003b). However, 
keeping it up to date involves keeping previous data and re-
learning from an ever increasing training set, which is both 
time and space inefficient. 

We desire an algorithm that does not need to process all 
previous data again every time updated rules are needed. It 
should keep knowledge from previous runs and improve it 
with new data. Rules should be created more frequently 
(i.e. daily instead of weekly), without losing fidelity. 

Our contributions include an algorithm which learns 
rules for anomaly detection as data becomes available, with 
statistically insignificant difference in accuracy from the 
offline version and producing fewer rules, leading to less 
overhead during detection. 
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Related Work 
Given a training set of normal data instances (one class), 
LERAD learns a set of rules that describe said training data.   
During detection, data instances that deviate from the 
learned rules and generate a high anomaly score are 
identified as anomalies.  Similar to APRIORI (Agrawal & 
Srikant, 1994), LERAD does not assume a specific 
target/class attribute in the training data.  Instead, it aims to 
learn a minimal set of rules that covers the training data, 
while APRIORI identifies all rules that exceed a given 
confidence and support.  Furthermore, the consequent of a 
LERAD rule is a set of values, not a single value as in 
APRIORI.  

Learning anomaly detection rules is more challenging 
than learning classification rules with multiple classes 
specified in the training data, which provide information for 
locating class boundary. WSARE (Wong et al, 2005) 
generates a single rule for a target day. The goal is to 
describe as many anomalous training records as possible 
with a single output rule that is the best (most statistically 
significant) description of all relationships in the training 
data. Marginal Method (Das and Schneider, 2007) looks for 
anomalous instances in the training set by building a set of 
rules that look at attributes which are determined to be 
statistically dependent. The rules are used to classify 
training data as “normal” or “abnormal”. 

VtPath (Feng et al, 2003) analyzes system calls at the 
kernel level, looking at the call stack during system calls 
and building an execution path between subsequent calls. 
This approach examines overall computer usage, not any 
particular application. PAYL (Wang et al, 2005) examines 
anomalous packets coming into and then being sent out 
from the same host. The resulting signatures can detect 
similar activity and can be quickly shared between various 
sites to deal with zero-day threats. Kruegel and Vigna 
(2003) examine activity logs for web applications, looking 
at a specific subset of parameterized web requests.  

Original Offline LERAD (OFF) 
LEarning Rules for Anomaly Detection, or LERAD 
(Mahoney & Chan, 2003a), is an efficient, randomized 
algorithm that creates rules in order to model normal 
behavior. Rules describe what data should look like and are 
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used to generate alarms when it no longer looks as 
expected. They have the format: 

 
where  is attribute  in the dataset,  is the th value of  
and ,  and  are statistics used to calculate a score upon 
violation. 

 is number of unique values in the rule’s consequent,  
representing the likelihood of it being violated.  is records 
that matched the rule’s antecedent. Each time  is 
incremented,  can potentially be increased as well, if the 
consequent attribute value ( ) in the tuple is not already 
present in the rule.  is the rule’s validation set 
performance, calculated from mutual information (Tandon 
& Chan, 2007). 

LERAD is composed of four main steps shown in the 
pseudocode in Fig. 1. Rule generation (st. 1) picks 
antecedent and consequent attributes based on similarities 
of tuples randomly chosen from the sample set . After 
sufficient rules are generated, a coverage test is performed 
to minimize the number of rules (st. 2). Step 3 exposes 
rules to the training set, updating their  and  values based 
on how they apply to . Lastly the weight of evidence is 
calculated for each rule by applying it to  and seeing 
how many times it conforms or violates (st. 4). The output 
is a set of rules  that can generate alarms on unseen data. 

For each record , every rule  will either 
match or not match antecedent values. Only rules that 
match are used to compute the anomaly score. Let  be the 
set of rules whose antecedents match , then 

 

where  is time since  was last involved in an alarm. The 
goal is to find rule violations that are most surprising. A 
rule that has been violated recently is more likely to be 
violated again, as opposed to one that has been matching 
records for a long time. Scores above a certain threshold are 
then used to trigger actual alarms. 

Basic Incremental Algorithm (INCR) 
Each dataset fed to INCR is divided into three sets: 
training, validation and test. For day , let the sample set be 

, training set be  and validation set be . With OFF, 
training data consists of one dataset and testing data of 
another. For INCR, training data is split into roughly equal-
sized sets (days), with test data remaining in a single set. 

Regardless of being split up, in this paper the training 
data for INCR is exactly the same as for OFF. Sample set 

 is generated each day by randomly copying a few 
records from ;  consists of a small fraction (e.g. 10%) 
of all training set records, removed before training data is 
loaded. Training records that are moved into the validation 
set are chosen at random. 

INCR applies the same basic algorithm to training data 
as OFF. The main difference is that rules and sample set are 
carried between, and trained on, later days (Fig. 2). INCR 
mirrors OFF and creates a new sample set  for each day 

 of data, but shrunk proportionally to the total number of 

days in training data (m): . That way INCR 

won’t access many more sample records than OFF when 
creating rules, which would result in different rules. This 
may not be detrimental, but it does stray from the OFF 
algorithm. Furthermore, in addition to using , sample 
sets from previous days are carried over and joined together 
into the combined sample set , from which  (new 
rules for day ) are made.  and  are not carried over 
between days since they are huge compared to . For 
datasets that OFF can handle they could be, but INCR is 
designed to work with far more data. 

As before, a coverage test is performed after  is 
generated to ensure that rules keep their quality, but on  
instead of , since that is what the rules were created from 
(Step 2 in Fig. 2). After coverage test, remaining rules in 

 are compared with  (containing all previous days). 
Any rules in  that already exist in  are removed 
from  (Step 3 in Fig. 2). Removing duplicates from  is 
not a problem because at this point, rules in  have only 
been trained on , which contains mostly data that  
has been exposed to. The only thing lost by removing 
duplicates is what  gained from training on  (subset of 

). This is remedied by merging new rules with old 
 (Step 6 in Fig. 2) and training  on  

(superset of ). Before training, rules from  already 
have some statistics from previous days and rules from  
have statistics from being trained on . These are not 
reset for  training, statistics from  are simply added. 
That way, a rule trained (for example) on days  to  has 
the same information as a rule trained on  that consists 
of all records from days  to . After training,  is 
validated on  (Step 8 in Fig. 2). Again, the previous  is 
not reset but rather combined with the value from day . 

Collecting Appropriate Statistics 
Recall that LERAD generates rules strictly from the sample 
set, which is a comparatively small collection of records 

 
 

 
 

 
 

 
 

Fig. 1: Offline LERAD algorithm (OFF) 
[Adapted from Fig. 1 in Tandon & Chan, 2007] 
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meant to be representative of the entire dataset. Antecedent 
and consequent attributes are picked based on similarities 
of tuples randomly chosen from the sample set and never 
changed after they are picked. Therefore the sample set is 
solely responsible for the structure of all rules in LERAD. 

Using  instead of  allowed INCR to generate 
more rules with the same structure as OFF, but with 
different statistics. Comparing rules present in both INCR 
and OFF but only detecting in OFF, a number of 
deficiencies showed up in INCR rules: statistics were off, 
resulting in lower alarm scores and missed detections. 

To fix this, similar rules generated by both algorithms 
need to contain similar statistics. INCR rules generated 
towards the end had significantly smaller  values, as well 
as smaller  and  values, because they do not have access 
to data from days before they were generated. To 
completely eliminate this problem, all days would have to 
be kept around so that all rules can be trained on all days. 
With an incremental algorithm, this is not feasible. Instead, 
extra statistics are kept that are represent each . An 
additional piece of information is carried for each day : 

. 

By using tuples from  and repeating each one 
 times, a virtual training set  is created, 

representing the training set from that day. For each day , 
all previous virtual training sets (  to ) are joined 
together to create a combined virtual training set 

. 
New rules for day  are still generated on . 

However, now   is used for training instead of 

just , allowing rules to obtain consequent values that 
may have only been present in previous days and enabling 

 counts to reflect records not present in all days (Step 4 in 
Fig. 2). Note that the virtual set is purely an abstract notion; 
sample sets are simply used in a manner that is consistent 
with having a virtual training set. During training, when a 
rule matches a record, its  value is increased by 

 instead of just 1. Consequent values are 
simply appended, along with  being incremented, if they 
don’t yet exist in the rule. The weight of evidence 
calculation for new rules is also modified to collect 
statistics from   in addition to . Since rules from 
previous days were trained on actual training sets that  
attempting to approximate, they are not exposed to it, or 

.  only benefits , since it is directly 
affected by it (Step 4 in Fig. 2).While this yields results 
that parallel the OFF algorithm, it will have to be changed 
for a purely incremental implementation. Currently, the 
sample set grows without bound in order to match the OFF 
sample set. In the real world, there will need to be a 
limiting mechanism on its growth, such as not keeping 
sample sets older than a certain number of days. 

Pruning Rules 
Because INCR generates rules multiple times (one for each 
day/period), INCR generally creates more rules overall than 
OFF. By design, a lot are common between them. 
However, there are usually some extra rules unique to 
INCR. Some cause detections that would otherwise have 
been missed, others cause false alarms that drown out 
detections. An analysis yielded the number of generations 
(or birthdays) as the best predictor of inaccurate rules. Let 

 be the number of times a rule was generated (born). Most 
rules unique to INCR and only causing false alarms had 
low  values. 

This heuristic allowed for removal of inaccurate rules. 
INCR removes rules with s below a certain threshold 
from the final rule set as the very last step. This drops rules 
that were causing false alarms, increasing performance. For 
example, the LL/tcp dataset went from final INCR rule 
count of 250 to just 68 when B was set to 2, compared to 77 
rules in OFF. While the exact value of B depends on the 
dataset, experiments showed that  tends to provide 
closest AUC values to OFF. B is currently determined by 
sensitivity analysis across all possible values. Further work 
is needed to establish the ideal B value during training. 

Empirical Evaluation 
In this section, we evaluate the performance of incremental 
LERAD and compare it to offline. Evaluation was 
performed on five different datasets: DARPA / Lincoln 
Laboratory (LL TCP) contained 185 labeled instances of 58 
different attacks (full attack taxonomy in Kendell, 1999); 
UNIV comprised of over 600 hours of network traffic, 

 
 

 
 

 

 

 
 

 
 

 

 
 

Fig. 2: Incremental LERAD algorithm (INCR) 
[steps different from offline are in bold] 
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collected over 10 weeks from a university departmental 
server (Mahoney and Chan, 2003a), containing six attacks; 
DARPA BSM was an audit log of system calls from a 
Solaris host, with 33 attacks spread across 11 different 
applications (see Lippmann et al, 2000); Florida Tech and 
University of Tennessee at Knoxville (FIT/UTK) contained 
macro execution traces with 2 attacks (Mazeroff et al, 
2003); University of New Mexico (UNM) set included 
system calls from 3 applications (Forrest et al, 1996) with 8 
distinct attacks. 

Experimental Procedures 
For all datasets, training data was entirely separate from 
testing. LL training consisted of 7 days, ~4700 records 
each, with almost 180,000 records in testing. For UNIV, 
week 1 was split into 5 days of training, ~2700 records 
each, with weeks 2 through 10 used for testing (~143,000 
records). In BSM, week 3 was separated into 7 days or 
~26,000 records each, with weeks 4 and 5 used for testing 
(~350,000 records). FIT/UTK had 7 days of training, with 
~13,000 records each day and testing. UNM contained 7 
days of data with ~850 records each and ~7800 for testing. 

Several adjustable parameters were used. Size of  was 

set to , where 100 was the sample set in offline 

experiments and  was the number of training days (see pg 
2). This still resulted in tiny sample sets when compared to 
training. For example, for LL,  of , 
putting sample set size well below 1% of training. 
Validation set  was 10% of  and contained same 
random records for OFF and INCR. Candidate rule set size 

 was set to 1000 and the maximum number of attributes 
per rule was 4, all to mirror Tandon & Chan (2007) 
experiments. Rule pruning parameter  was 2, as this 
produced the closest performance curve to OFF. 

On every dataset, both INCR and OFF ran 10 times each 
with random seeds. For datasets with multiple applications, 
a model was created for each one and results averaged 
together, weighted by training records for that application. 
As applications had vastly different amounts of training 
records, their results could not be simply averaged together. 
LERAD is looking for anomalous activity, so apps with 
more training records (i.e. activity) have more alarms and 
are more relevant to performance on the whole dataset. 

For rule comparison, each INCR run is compared to all 
OFF runs and average counts of rules involved are taken. 
Then all INCR runs are averaged together for each dataset. 
For datasets with multiple applications, results for each one 
are averaged together for the whole dataset. 

Evaluation Criteria 
Because false alarm (FA) rates are an issue in anomaly 
detection, we focused on low FA rates of 0.1%. Alarm 
threshold was varied in small increments between 0 and a 
value that resulted in FA rate of 0.1%, with percentage of 

valid detections measured each time. This was plotted on a 
receiver operating characteristic (ROC) curve, where X axis 
was false alarm rate and Y axis was detection rate. Area 
under this curve, or AUC, is absolute algorithm 
performance. Higher AUC values indicate better 
performance. Since we concentrated on the first th of 

the ROC curve, highest performance possible in our tests 
was 0.001. 

To average together multiple applications from a single 
dataset, let  be the count of 
training records for an application. Then dataset  is: 

 

Sensitivity Analysis of Parameter B 
One way to compare performance is through s. Let 

 be the difference between INCR and OFF: 
 

A positive  value means INCR is more accurate than 
OFF.  is negative when INCR is less accurate, with 
lower values for worse performance. Our goal was for 
INCR to be close to OFF, s closest to 0 were desired. 

Pruning threshold  (pg. 3) has the largest effect on 
. Rules with  under a certain threshold are removed 

from INCR after training. There is no apparent way of 
picking , so we analyzed all of them. Maximum  value 
tested was 5 since most datasets did not produce any rules 
past that, either because they were only split into 5 days or 
because no rules were generated more than 5 times in a 
row. Lowest  value was 1 since any lower is meaningless. 

s and resulting s for all datasets are shown in 
Fig. 3 (0.1% FA rate). With BSM, LL TCP and UNIV 
datasets, INCR performance is similar to OFF, resulting in 

 values fairly close to zero. With UNM, there were 
no attacks detected by OFF below 0.1% false alarm rate, 
while INCR did detect some attacks, resulting large  
differences. The opposite situation occurred with FIT/UTK, 
with INCR detecting no attacks. Overall, there is no 
obvious relationship between  and  values across all 
datasets. 

To determine if s are statistically significant, and 

Fig. 3: s versus Bs (0.1% FA rate) 
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for which  values, we perform the two-sample T-test on 
data from Fig. 3. s from 10 INCR runs for each dataset 
are compared against s from 10 OFF runs. For multi-
application datasets, s are averaged, weighted by 
training records (see page 4).  had statistically 
insignificant s across most datasets (Table 1). For 
FIT/UTK, there was no statistically insignificant  due 
to very poor performance of INCR. 

Table 1 shows the absolute two-tail probabilities in 
Student’s t distribution (with degrees of freedom = 9), 
computed from experimental data. For each dataset and , 
Table 1 contains the probability that INCR and OFF are not 
significantly different. Because the goal is to have similar 
performance, we concentrate on results where INCR and 
OFF do not have a statistically significant difference. Cells 
with  show which instances are not significantly 
different. That is, they do not have a probability < 0.05 of 
being significantly different, which is required in order to 
be at least 95% confident. Note that some probabilities are 
0.0 – this happens when s are extreme. In UNM, OFF 
had tiny , very different from what INCR had with 
low s. However, as  increased and performance fell 
(Fig. 3), INCR became almost as bad as OFF, bad enough 
to no longer be statistically significant. In FIT/UTK, INCR 
had low scores, never getting near OFF. 

Table 1: P(T<=t) two-tail for two-sample T-test 
Dataset B=1 B=2 B=3 B=4 B=5 
BSM 0.27 0.18 0.02 0.66 0.01 
UNM 0.00 0.00 0.01 0.17 0.17 
LL TCP 0.01 0.57 0.37 0.08 0.10 
FIT/UTK 0.00 0.00 0.00 0.00 0.00 
UNIV 0.40 0.17 0.08 0.06 0.04 

 

To conclusively determine which s cause statistically 
insignificant s across all datasets, we apply the paired 
T-test. For each dataset, average  for each  was 
paired with average OFF  for that dataset. Again, as 
with Table 1, numbers in Table 2 represent the 
probabilities associated with Student’s T-test. In order to be 
at least 95% confident that INCR and OFF s are 
statistically different, values in Table 2 need to be under 
0.05. No  yielded statistically different performance 
between INCR and OFF. This is due mostly to the similar 
variations of s between all datasets, which were 
exhibited by both OFF and INCR. The two least different  
values were 2 and 3, and since  had insignificant 
performance difference on 3 of 5 datasets (see Table 1), the 
rest of our analysis is based on B=2. 

Table 2: P(T<=t) two-tail, paired two sample T-test 
B=1 B=2 B=3 B=4 B=5 
0.95 0.98 0.98 0.44 0.39 

 

Analysis of Rule Content 
There are 4 cases when comparing INCR and OFF rules. 
Let  be rules that have same antecedent attributes, same 
consequent attribute and same consequent values. They are 

structurally exactly alike.  consists of rules with same 
antecedent attributes and same consequent attribute, but 
different consequent values.  has rules with identical 
antecedent but different consequent attributes.  contains 
rules that have different antecedent attributes. Each INCR 
rule compared to OFF will be in either , ,  or , which 
are mutually exclusive and describe all possible outcomes.  

With  and FA rate at 0.1% (section 4.4), 
performance difference between INCR and OFF is 
insignificant but present. To understand why, we look at 
sizes of , ,  and  (Table 3). Datasets with high ,  
and  have smallest s. A large percentage of similar 
rules should naturally lead to similar performance, as with 
UNIV, LL TCP and BSM. UNM’s  is large due to 
OFF’s poor performance. FIT/UTK’s  is due to a 
very small number of INCR rules in general. 

Table 3: Size of , ,  and  as percent of total number of 
OFF rules (B=2) 

Dataset      
UNIV 17% 5% 19% 60% -0.00002 
FIT/UTK 2% 1% 3% 94% -0.00034 
LL TCP 24% 5% 22% 49%  0.00001 
UNM 27% 14% 21% 38%  0.00034 
BSM 17% 5% 11% 66% -0.00001 

Analysis of Rule Statistics 
To determine just how close INCR rules are to OFF, their 

,  and  are compared. For this to be accurate, rules have 
to be of the same type. Since  are only dependent on the 
antecedent attributes, ,  and  are used. Comparing  
only makes sense when checking the same consequent 
attribute, so only  and  are used. Since  describe the 
effectiveness of a rule as a whole, only  is relevant.  

Because we are now analyzing subsets of rules, we look 
at performance of individual rules. Alarms during attacks 
are called detections (DETs); those triggered during normal 
activity are false alarms (FAs). For each DET or FA 
triggered on record , the contribution of ach rule  is: 

 

Then for each rule , all contributions to detections across 
the whole dataset are added into  and all false 
alarm contributions added into . Performance of a 
rule is then gauged by the number of net detections, or : 

 
Having an exact number that represents how well a single 
rule is behaving allows us to directly examine the effect of 

,  and  on performance. Since we are interested in the 
difference in performance between INCR and OFF, 
discrepancy between values ( ) is used: 

 

438



where  is either , ,  or .  is normalized in order to 
bring the performance of all datasets onto a level playing 
field. 

Discrepancy in which rule statistic is more responsible 
for discrepancy in performance? Table 4 shows two avg. 

 for each statistic, one for underestimated statistic and 
one for overestimated, for each dataset (followed by 
st.dev). For example, the average performance error for 
rules with underestimated  is shown in the  
column. Some data is N/A because all rules with 
comparable  are overestimated in UNM and 
underestimated in FIT/UTK. Furthermore, it is impossible 
for INCR to overestimate . Overall,  is most responsible 
for  and  is least. This supports our choice of 

 to help statistics on pg. 3, since it mostly 
helped  values. Does over or under estimation in rule 
statistics cause more performance discrepancy? For , 
overestimation usually produces more error,  is opposite. 

Does INCR over or under estimate rule statistics? Table 
5 lists average  st.dev. for rule statistics, independent of 

. The left half (white) contains the average , which 
indicates if the rule statistic is over or underestimated 
(discrepancy direction). , ,  tend to be underestimated 
on average, except in two datasets,  tends to be 
overestimated on average. The right half (gray) shows the 
avg. of absolute , indicating the amount of 
over/underestimation (discrepancy magnitude). There is 
least error in , followed by  (except in UNM dataset) 
and  has the most error. This suggests that our 
improvements did help  and  and the next large 
performance gain lies in improving . 

Conclusions 
We introduced an incremental version of the LERAD 
algorithm, which generates rules before all of training data 
is available, improving them as more data is analyzed. The 
incremental nature of our algorithm does not affect 
performance. Experiments show that after processing the 
same amount of data, the difference in accuracy of 
incremental vs offline algorithms is statistically 

insignificant. The incremental algorithm also generates 
fewer rules, leading to lower detection overhead. Our 
algorithm can be applied to datasets that were previously 
out of reach for offline methods. 

Our approach to calculating statistics is most beneficial 
for , somewhat good for  and not relevant for . To 
improve , the distribution of consequent values would 
need to be modeled. Also, we currently do not have a 
method for setting the pruning threshold B; we plan to 
investigate the selection of B based on the performance of 
different B values on the validation sets. 
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