
An Evaluation of Sampling on Filter-Based Feature Selection Methods

Kehan Gao
Eastern Connecticut State University

83 Windham St., Willimantic, CT 06226
gaok@easternct.edu

Taghi Khoshgoftaar & Jason Van Hulse
Florida Atlantic University

777 Glades Rd., Boca Raton, FL 33431
taghi@cse.fau.edu; jason@gmail.com

Abstract

Feature selection and data sampling are two of the most
important data preprocessing activities in the practice
of data mining. Feature selection is used to remove
less important features from the training data set, while
data sampling is an effective means for dealing with
the class imbalance problem. While the impacts of fea-
ture selection and class imbalance have been frequently
investigated in isolation, their combined impacts have
not received enough attention in research. This paper
presents an empirical investigation of feature selection
on imbalanced data. Six feature selection techniques
and three data sampling methods are studied. Our ef-
forts are focused on two different data preprocessing
scenarios: data sampling used before feature selection
and data sampling used after feature selection. The ex-
perimental results demonstrate that the after case gen-
erally performs better than the before case.

Introduction

Data preprocessing, a critical initial step in data mining and
machine learning projects, is often used to improve the qual-
ity of training data set. Data collection methods are often
loosely controlled, resulting in many data quality problems
such as feature redundancy and irrelevance, data instance
conflict and abnormality, and missing values. In this paper,
we focus on feature selection in the context of software qual-
ity prediction. In software quality assurance practice, prac-
titioners often use software metrics (attributes or features)
gathered during the software development process and var-
ious data mining techniques to build classification models
for predicting whether a given program module (instance or
example) is in the fault-prone (fp) or not fault-prone (nfp)
class. However, not all collected software metrics are use-
ful or have the same contributions to classification results.
The goal of feature selection is to choose the most relevant
and important attributes from the raw data set that can sig-
nificantly contribute to the modeling process. In this paper,
we investigate six filter-based feature ranking techniques to
select subsets of attributes.

In addition, for binary classification problems, class im-
balance is frequently encountered. In software quality en-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gineering practice, this refers to the overabundance of nfp
class examples vis-à-vis fp class examples. Similar prob-
lems have also emerged in other application domains (Ka-
mal et al. 2009; Zhao et al. 2007; Engen, Vincent, & Phalp
2008). Traditional classification algorithms attempt to max-
imize classification accuracy without regard to the signifi-
cance of the different classes, resulting in a large number of
misclassifications from fp to nfp. This type of misclassifica-
tion is extremely severe in software quality assurance, im-
plying a missed opportunity to correct a faulty module prior
to operation. A variety of techniques have been proposed to
alleviate the problems associated with class imbalance (Van
Hulse, Khoshgoftaar, & Napolitano 2007). This paper em-
ploys data sampling to solve the problem. Data sampling
attempts to improve classification performance by balanc-
ing the class distribution of training data sets. This can be
implemented in one of two ways: oversampling and under-
sampling. Oversampling creates a more balanced data set
by increasing the number of examples in the minority class.
Undersampling, on the other hand, reduces the number of
examples belonging to the majority class. Both under and
oversampling can be done randomly, or using more “intelli-
gent” algorithms. In this work, we examine the performance
of three different data sampling techniques, including both
random and intelligent over and under sampling.

Although a great deal of work has been done for feature
selection and data sampling separately, limited research has
been done on both together, particularly in the software en-
gineering field. Chen et al. have studied data row pruning
(data sampling) and data column pruning (feature selection)
in the context of software cost/effort estimation (Chen et al.
2005). However, the data sampling in their study was not to
deal with the class imbalance problem, and the study was not
about the two-group classification issue. Also, their research
focused only on the case in which data sampling is used prior
to feature selection. In contrast, we present a comprehensive
empirical investigation of feature selection on imbalanced
data using various sampling techniques. In our study, two
different data preprocessing scenarios are considered: data
sampling used prior to feature selection and data sampling
used after feature selection. We would like to compare both
cases and see which one is more appropriate for the given
data sets in software quality prediction. To our knowledge,
no such studies have ever been done in this field or the data

416

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

mining and machine learning community.

The experiments are carried out on four data sets from a
very large legacy telecommunications software system. The
distributions of the two classes (fp and nfp) for the four data
sets are significantly different; between 1% and 7% of the
data instances are in the minority (fp) class. In the experi-
ments, six feature selection techniques and three data sam-
pling methods are considered together for data preprocess-
ing. Two different scenarios, before (data sampling used
prior to feature selection) and after (data sampling used fol-
lowing feature selection), are studied for each combination
of the sampling and feature ranking technique. The clas-
sifier employed in this work is SVM (support vector ma-
chine), one of the most popular learners in data mining and
machine learning. Our results show that data sampling used
after feature selection generally performs better than the re-
verse case, but this is associated with the sampling method
and feature selection technique involved in the data prepro-
cessing.

Related Work

Feature selection, as an important activity in data prepro-
cessing, has been extensively studied for many years in data
ming and machine learning. A comprehensive survey of fea-
ture selection algorithms is presented in (Liu & Yu 2005).
Hall and Holmes (Hall & Holmes 2003) investigated six
attribute selection techniques that produce ranked lists of
attributes and applied them to 15 data sets from the UCI
collection. The comparison results showed no single best
approach for all situations. However, a wrapper-based ap-
proach was the best overall attribute selection scheme in
terms of accuracy if speed of execution was not considered.
Saeys et al. (Saeys, Abeel, & Peer 2008) investigated the
use of ensemble feature selection techniques, where multiple
feature selection methods were combined to yield results.
They showed that the ensemble approach presented great
promise for high-dimensional domains with small sample
sizes and provided more robust feature subsets than a single
feature selection technique. Many applications of feature
selection in various fields have been reported. Jong et al. ap-
plied feature selection to proteomic pattern data based on
support vector machines (Jong et al. 2004). Ilczuk et al.
highlighted the importance of attribute selection in judging
the qualification of patients for cardiac pacemaker implanta-
tion (Ilczuk et al. 2007). In the context of text mining, where
attributes are binary in value, Forman investigated multiple
filter-based feature ranking techniques (Forman 2003).

Feature selection has been studied extensively, but it is
not the only problem facing many data sets; frequently they
are plagued by imbalanced data as well. To overcome the
difficulties associated with learning from imbalanced data,
various techniques have been developed. A natural solution
is to modify the data set to balance it. These approaches are
collectively known as sampling. Numerous variants of un-
dersampling and oversampling have been investigated and
applied to a variety of domain data sets (Chawla et al. 2002;
Cieslak, Chawla, & Striegel 2006). Imbalanced data can
also be dealt with directly when creating the classifier. This

is easier with some classifiers than with others. Some classi-
fiers, such as Naı̈ve Bayes, can produce a probability that an
instance is in a given class. One can just adjust the thresh-
old at which an instance is put into a certain class and solve
the problem of attempting to classify everything as being in
the majority class to improve accuracy. A related approach
is cost-sensitive classification (Elkan 2001). However, one
of the problems related to cost-sensitive learning is that the
costs of different types of errors or misclassifications are not
easy to obtain or estimate, especially during the modeling
process. Therefore, in this study, we focus on applying data
sampling to improve the performance of classifiers for im-
balanced data.

While the impacts of attribute selection and data sam-
pling have been frequently investigated in isolation, their
combined impacts have not gained enough attention in re-
search. In one of the few studies, Liu et al. (Liu, Motoda, &
Yu 2004) introduced the concept of active feature selection,
and investigated a selective sampling approach to active fea-
ture selection in a filter model setting. But the purpose of
sampling in their research was to deal with data sets with
a large number of instances instead of class imbalance. In
this paper, we use both feature selection and data sampling
together to process our training data sets. The objective of
this research is to address the following simple but important
question: “In what order should feature selection and data
sampling be applied for classifier development?” In other
words, should feature selection be performed before or af-
ter data sampling? We investigate both cases in our study.
To our knowledge, no similar study has ever been done or
reported in related literatures.

Filter-Based Ranking Techniques
Feature selection (also known as attribute selection) is the
process of choosing some subset of the features and building
a classifier based solely on those. Feature selection meth-
ods can be categorized as either wrappers or filters based
on whether a learning algorithm is involved in the selection
process. In addition, feature selection techniques can also be
categorized into feature subset selection and feature rank-
ing. Feature subset selection approaches select subsets of
attributes that collectively have good predictive capability,
while feature ranking just evaluates attributes individually
and ranks attributes according to their individual predictive
power. The advantage of feature ranking is that it requires
only the computation and sorting of the scores of each fea-
ture individually.

In this study, we use filter-based feature ranking tech-
niques (i.e., ranking features independently without involv-
ing any learning algorithm). The procedure of feature rank-
ing is to score each feature according to a particular method,
allowing the selection of the best set of features. The six
filter-based feature ranking techniques used in this work in-
clude: chi-square (CS), information gain (IG), gain ratio
(GR), two types of ReliefF (RF and RFW), and symmetri-
cal uncertainty (SU). The chi-square (CS) test (Cameron &
Trivedi 1998) is used to examine whether the two variables
are independent. CS is more likely to find significance to
the extent that (1) the relationship is strong, (2) the sample

417

size is large, and/or (3) the number of values of the two as-
sociated features is large. Information gain, gain ratio, and
symmetrical uncertainty are measures based on the concept
of entropy from information theory (Witten & Frank 2005).
Information gain (IG) is the information provided about the
target class attribute Y, given the value of another attribute
X. IG measures the decrease of the weighted average im-
purity of the partitions, compared with the impurity of the
complete set of data. A drawback of IG is that it tends to
prefer attributes with a larger number of possible values,
i.e., if one attribute has a larger number of values, it will
appear to gain more information than those with fewer val-
ues, even if it is actually no more informative. One strat-
egy to counter this problem is to use the gain ratio (GR),
which penalizes multiple-valued attributes. Symmetrical un-
certainty (SU) is another way to overcome the problem of
IG’s bias toward attributes with more values, doing so by
dividing by the sum of the entropies of X and Y. Relief is
an instance-based feature ranking technique introduced by
Kira and Rendell (Kira & Rendell 1992). ReliefF is an ex-
tension of the Relief algorithm that can handle noise and
multiclass data sets, and is implemented in the WEKA tool
(Witten & Frank 2005). When the WeightByDistance
(weight nearest neighbors by their distance) parameter is set
as default (false), the algorithm is referred to as RF; when
the parameter is set to true, the algorithm is referred to as
RFW.

Sampling Techniques

This work considers three different data sampling tech-
niques. Random oversampling (ROS) and random under-
sampling (RUS) achieve more balanced data sets by ran-
domly duplicating examples of the minority class (ROS)
or randomly removing examples from the majority class
(RUS). Synthetic Minority Oversampling Technique, or
SMOTE (SMO) (Chawla et al. 2002) creates new minority
class examples by interpolating between existing minority
class examples.

Experimental Data Sets

For this study, we conduct our experiments on four data sets
from a very large legacy telecommunications software sys-
tem (denoted as LLTS). The LLTS software system was de-
veloped in a large organization by professional programmers
using PROTEL, a proprietary high level procedural language
(similar to C). The system consists of four successive re-
leases of new versions of the system, and each release was
comprised of several million lines of code. The data collec-
tion effort used the Enhanced Measurement for Early Risk
Assessment of Latent Defect (EMERALD) system (Hudepohl
et al. 1996). A decision support system for software mea-
surements and software quality modeling, EMERALD peri-
odically measures the static attributes of the most recent ver-
sion of the software code. We refer to these four releases as
Rel.1, Rel.2, Rel.3 and Rel.4. Each set of associated source
code files is considered as a program module. The LLTS
data sets consist of 42 software metrics, including 24 prod-
uct metrics, 14 process metrics and 4 execution metrics. The

Table 1: Data Set Summary

Data Set nfp fp Total

% # %

Rel.1 3420 93.7 229 6.3 3649

Rel.2 3792 95.3 189 4.7 3981

Rel.3 3494 98.7 47 1.3 3541

Rel.4 3886 97.7 92 2.3 3978

dependent variable is the class of the software module, fp or
nfp. The fault-proneness is based on a selected threshold,
i.e., modules with one or more faults are considered as fp,
nfp otherwise. Table 1 summarizes the numbers of the fp
and nfp modules and their percentages in each data set.

Experimental Design

As previously mentioned, the main goal of the paper is to in-
vestigate the learning impact of the two data preprocessing
activities (feature selection and data sampling) working si-
multaneously on the given software engineering data sets.
Six filter-based feature ranking techniques and three data
sampling methods are used in the experiments. Two dif-
ferent scenarios are taken into account for each given paired
ranker and sampler: (1) data sampling used before feature
selection, and (2) data sampling used after feature selection.

For feature ranking, we select the top �log
2
n� attributes

from each of the ranked lists as the subsets of attributes,
where n is the number of independent attributes in the origi-
nal data set. The reasons why we choose the top �log

2
n� at-

tributes (i.e., six metrics in this study) include (1) related lit-
erature lacks guidance on the number of features that should
be selected when using a feature ranking technique; (2) our
preliminary study shows that it is appropriate to use �log

2
n�

features when applying SVM learner to binary classification
in general and imbalanced data sets in particular; and (3) a
software engineering expert with more than 20 years expe-
rience recommended selecting �log

2
n� number of metrics

for software system such as our case study. In addition, the
ratio between the nfp examples and fp examples in the post
sampling data set is set to 65-to-35 and 50-to-50. We only
present the results with the 65-to-35 case for space limita-
tions. Similar results were also obtained from the 50-to-50
case. This work uses SVM (support vector machine) as the
classifier and AUC (the area under the ROC curve) as the
evaluation metric.

Support vector machines (SVMs) are a category of gen-
eralized linear classifiers (Shawe-Taylor & Cristianini 2000)
that map input vectors to a higher dimensional space where a
maximal margin hyperplane is constructed. The sequential
minimal optimization algorithm (SMO) provides an effec-
tive method to train support vector machines (Platt 1999). In
our study, the complexity parameter, c, is set to ‘5.0’, while
the buildLogisticModels parameter is set to ‘true’ to
produce proper probability estimates. Other classifiers such
as naı̈ve Bayes, multilayer perceptrons, logistic regression
and k nearest neighbors were also performed in the experi-
ments. However, due to the space limitation we only present

418

Table 2: Performance of SVM models measured using AUC

Release 1

RUS ROS SMO

BEF AFT p BEF AFT p BEF AFT p

CS .7923 .8012� .01 .7586 .8010� .00 .7629 .8014� .00

GR .7873� .7720 .00 .7640 .7695 .29 .7507 .7671� .00

IG .7910 .7993� .01 .7545 .7998� .00 .7676 .7993� .00

RF .8148 .8110 .06 .8136 .8131 .67 .8128 .8126 .89

RFW .8091 .8111 .45 .8130 .8130 .99 .8114 .8114 .99

SU .7879 .8004� .00 .7557 .8009� .00 .7459 .7998� .00

Release 2

RUS ROS SMO

BEF AFT p BEF AFT p BEF AFT p

CS .8190 .8263� .00 .7964 .8245� .00 .8036 .8218� .00

GR .7952 .7949 .94 .8131� .7956 .00 .7659 .7933� .00

IG .8187 .8203 .34 .7972 .8199� .00 .8024 .8178� .00

RF .8298� .8194 .00 .8282� .8224 .00 .8272� .8208 .00

RFW .8146 .8210� .03 .8268 .8239 .11 .8246 .8223 .08

SU .8003 .8017 .73 .7958 .8030� .03 .8083 .8025 .11

Release 3

RUS ROS SMO

BEF AFT p BEF AFT p BEF AFT p

CS .8212 .8257 .56 .7241 .8272� .00 .8021 .8257� .04

GR .8124� .7882 .01 .7154 .7877� .00 .7319 .7847� .00

IG .8203 .8221 .83 .7188 .8251� .00 .8094 .8239 .14

RF .8254 .8306 .41 .8421 .8352 .10 .8368 .8335 .52

RFW .8175 .8274 .13 .8433 .8369 .17 .8368 .8342 .64

SU .8207� .8025 .02 .7175 .8037� .00 .7328 .7994� .00

Release 4

RUS ROS SMO

BEF AFT p BEF AFT p BEF AFT p

CS .7913 .8051 .07 .7586 .8212� .00 .8216 .8217 .99

GR .7869 .7776 .25 .7578 .7767� .04 .7831 .7763 .29

IG .7926 .8190� .00 .7585 .8266� .00 .8217 .8262 .25

RF .8105 .8140 .49 .8224 .8191 .50 .8172 .8168 .93

RFW .8064 .8163 .12 .8203 .8222 .66 .8167 .8193 .56

SU .7835 .7826 .91 .7606 .7788� .01 .7902 .7783 .06

value� represents significantly better case between the paired t-test (p≤ 0.05)

value represents better case between the paired t-test (0.05<p<0.95)

value represents equal case between the paired t-test (p≥ 0.95)

the results obtained from SVM.

In this study, we use the Area Under the ROC (receiver
operating characteristic) curve (i.e., AUC) to evaluate clas-
sification models. The ROC curve graphs true positive rates
versus the false positive rates (Fawcett 2006) (the positive
class is synonymous with the minority class). Traditional
performance metrics for classifier evaluation consider only
the default decision threshold of 0.5 (Seliya, Khoshgoftaar,
& Van Hulse 2009). ROC curves illustrate the performance
across all decision thresholds. A classifier that provides a
large area under the curve is preferable over a classifier with
a smaller area under the curve. A perfect classifier pro-
vides an AUC that equals 1. AUC is one of the most widely
used single numeric measures that provides a general idea
of the predictive potential of the classifier. It has also been
shown that AUC is of lower variance and more reliable than
other performance metrics such as precision, recall, and F-
measure (Jiang et al. 2009).

In the experiments, we use ten runs of five-fold cross-
validation to build and test our classification models. That
is, the data sets are partitioned into five folds, where four
folds are used to train the model, and the remaining (hold
out) fold is used to validate the model. This is repeated five
times so that each fold is used as hold out data once. In
addition, we perform ten independent repetitions (runs) of
each experiment to remove any biasing that may occur dur-
ing the random selection process. A total of 7,200 models

are trained and evaluated during the course of our experi-
ments. Note that all data preprocessing activities (sampling
and feature selection) are performed solely on the training
data sets but not on the validation (test) data sets.

Results and Analysis
The classification results using the SVM learner for the
two data preprocessing scenarios are reported in Table 2.
For each given ranking technique and sampling method, we
compare the before (denoted BEF) and after (denoted AFT)
situations. A total of 18 paired outcomes are reported in
each of the four data sets (Rel.1 to 4). Note that each result
represents the average over the ten runs of five-fold cross-
validation outcomes. An unpaired two tailed t-test is used
for each paired comparison. The unpaired t method tests
the null hypothesis that the population means related to two
independent group samples are equal against the alternative
hypothesis that the population means are different. p-values
are provided for each pair of comparisons in the table. The
significance level is set to 0.05; when the p-value is less than
0.05, the two group means (in our case between the BEF and
AFT scenarios) are significantly different from one another.
For example, for Rel.1, when using CS to select features and
RUS to sample the data, the result demonstrates that using
RUS after CS significantly outperformed using RUS prior to
CS, because the p-value (0.01) is less than the specified cut-
off 0.05. For the RFW ranker and RUS sampler, the AFT
case is better than the BEF case, but the difference is not
statistically significant. As another example, for the RFW
ranker and ROS sampler, the classification performance in
terms of AUC for the two scenarios BEF and AFT are equal
or almost equal. This can also be confirmed by the p-value,
which is 0.99. In this study, we categorize the two means
as equal when p ≥ 0.95. In Table 2, for each paired com-
parison between BEF and AFT, one can always find which
one performs better (marked with bold) or significantly bet-
ter (marked with bold�) than the other or whether they have
the same performance (marked with underline).

Table 3 shows the summary of the comparisons between
BEF and AFT over all the 18 cases for each data set (re-
lease). ‘SB’ means significantly better, i.e., p ≤ 0.05, ‘B’
means insignificantly better, i.e., 0.05 < p < 0.95, while
‘E’ represents the case that two group means are the same,
where p ≥ 0.95. For 2 out of 18 cases for Rel.1, the clas-
sification models display the same performance for two sce-
narios, while for the other 16 cases, AFT performs better or
significantly better than BEF for 12 cases and worse or sig-
nificantly worse for the remaining four. For Rel. 2-4, sim-
ilar results were obtained — the situations where AFT out-
performs BEF dominate. In summary, AFT performs better
than BEF for 63% of cases (AFT is significantly better for
42% of cases), worse than BEF for 34% of cases (AFT is
significantly worse than BEF for only 10% of cases) and
equal to BEF for the remainder.

In addition, we performed a three-way ANOVA test for
the results. The three factors include Factor A, which rep-
resents the two orders of the data preprocessing activities
(BEF and AFT), Factor B, which represents the six filter-
based feature rankers (CS, GR, IG, RF, RFW and SU), and

419

Table 3: Performance Comparison between BEF and AFT

Difference (p < .95) Equal

BEF AFT Total (p ≥ .95)

SB B SB B

Rel.1
1 3 10 2 16 2

6% 17% 56% 11% 89%∗ 11%

Rel.2
4 4 8 2 18 0

22% 22% 44% 11% 100%∗ 0%

Rel.3
2 4 7 5 18 0

11% 22% 39% 28% 100% 0%

Rel.4
0 6 5 6 17 1

0% 33% 28% 33% 94% 6%

Total 7 17 30 15 69 3

10% 24% 42% 21% 96%∗ 4%

B: better at 0.05 < p < 0.95

SB: significantly better at p ≤ 0.05

∗: The sum of SB% and B% for BEF and AFT differs from

the Total% in 1% due to rounding error.

Factor C, which represents the three sampler (RUS, ROS and
SMO). The ANOVA model can be used to test the hypoth-
esis that the group means for each of the main factors are
equal against the alternative hypothesis that at least one pair
of group means are different. If the alternative hypothesis
is accepted, numerous procedures can be used to determine
which of the means are significantly different from the oth-
ers. This involves the comparison of two means with the
null hypothesis that the means are equal. In this study, we
use Tukey’s multiple comparison test. The significance level
for all tests is set to 0.05.

The ANOVA results, as shown in Table 4, indicate that
for all three main factors the alternate hypotheses are ac-
cepted, since the p-values are less than 0.05. In addition,
the two-way and three-way interaction terms are also sta-
tistically significant. For example, the significance of in-
teraction A×B implies that changing the value of Factor A
significantly impacts the mean values of Factor B. Multi-
ple comparison tests are also carried out for the three main
factors and the interaction terms A×B and A×C, since this
study is more interested in the two different data preprocess-
ing scenarios (Factor A) as well as their association with
other factors such as feature selection technique (Factor B)
and sampling method (Factor C). The comparison results are
presented in Figure 1. Each figure displays graphs with each
group mean represented by a symbol (◦) and the 95% con-
fidence interval around the symbol. Two means are signifi-
cantly different (α = 0.05) if their intervals are disjoint, and
are not significantly different if their intervals overlap. From
the figures, we can see the following points. (1) For Fac-
tor A, between the two different data processing scenarios,
AFT performs significantly better than BEF; (2) For Fac-
tor B, among the six filter-based feature ranking techniques,
RF and RFW perform best followed by CS and IG, then
SU and GR; (3) For Factor C, all three sampling methods
perform significantly differently from one another. Among
them, RUS performs best, ROS performs worst, and SMO is
in-between; (4) For interaction A×B, Figure 1(d) presents

Table 4: Three-way ANOVA for LLTS Data sets
Source Sum Sq. d.f. Mean Sq. F p-value

A 0.0777 1 0.0777 215.73 0

B 0.3964 5 0.0793 220.13 0

C 0.0299 2 0.0150 41.57 0

A×B 0.0571 5 0.0114 31.73 0

A×C 0.0442 2 0.0221 61.32 0

B×C 0.0592 10 0.0059 16.43 0

A×B×C 0.0474 10 0.0047 13.15 0

Error 0.5057 1404 0.0004

Total 1.2176 1439

0 79 0 795 0 8 0 805 0 81 0 815

AFT

BEF

(a) Factor A

0 77 0 78 0 79 0 8 0 81 0 82 0 83 0 84

SU

RFW

RF

IG

GR

CS

(b) Factor B

0 79 0 795 0 8 0 805 0 81

SMO

ROS

RUS

(c) Factor C

0 76 0 77 0 78 0 79 0 8 0 81 0 82 0 83 0 84

AFT SU

BEF SU

AFT RFW

BEF RFW

AFT RF

BEF RF

AFT G

BEF G

AFT GR

BEF GR

AFT CS

BEF CS

(d) Factor A×B

0 775 0 78 0 785 0 79 0 795 0 8 0 805 0 81 0 815 0 82

AFT SMO

BEF SMO

AFT ROS

BEF ROS

AFT RUS

BEF RUS

(e) Factor A×C

Figure 1: LLTS-Multiple Comparison

the paired performances between BEF and AFT for each of
the given filter-based rankers, where the BEF interval is rep-
resented by a thin line and the AFT interval is represented
by a thick line. The figure demonstrates that AFT performs
much better than BEF when the CS, GR, IG and SU rankers
are used, but very similar to BEF when the RF and RFW
rankers are employed. In other words, the choice of filter
does have a significant impact on the differences between
the mean AUC values of BEF and AFT; (5) For interaction
A×C, Figure 1(e) presents the paired performance between
BEF and AFT for each of the given samplers. The graph
indicates that AFT significantly outperforms BEF for ROS
and SMO, but the two scenarios demonstrate very similar
performance when RUS is used. In addition, AFT presents
more consistent (stable) performance than BEF with respect
to different sampling techniques employed.

420

Conclusion

This study investigates feature selection on imbalanced data
sets. Data sampling methods are used to counteract the nega-
tive effect of class imbalance while filter-based feature rank-
ing techniques are used to select the most relevant features
for classification. Six filter-based feature selection tech-
niques and three data sampling methods are implemented.
When both data sampling and feature selection are consid-
ered simultaneously for data processing, an interesting ques-
tion is raised — “should data sampling be performed be-
fore or after feature selection?” Two different scenarios (be-
fore and after) are studied for each pair of feature selection
technique and data sampling method. The experiments are
conducted on four highly imbalanced software quality data
sets and the results demonstrate that data sampling done af-
ter feature selection generally outperforms the reverse case,
i.e., data sampling done before feature selection. In addi-
tion, the after scenario demonstrated more stable perfor-
mance than the before scenario with respect to the various
sampling techniques. Future work will conduct additional
empirical studies with data from other application domains.

References

Cameron, A. C., and Trivedi, P. K. 1998. Regression Analy-
sis of Count Data. Cambridge University Press.

Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
P. W. 2002. SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research
16:321–357.

Chen, Z.; Boehm, B.; Menzies, T.; and Port, D. 2005. Find-
ing the right data for software cost modeling. IEEE Software
22(6):38–46.

Cieslak, D. A.; Chawla, N. V.; and Striegel, A. 2006. Com-
bating imbalance in network intrusion datasets. In Proceed-
ings of 2006 IEEE International Conference on Granular
Computing, 732– 737.

Elkan, C. 2001. The foundations of cost-sensitive learning.
In Proceedings of the Seventeenth International Conference
on Machine Learning, 239246.

Engen, V.; Vincent, J.; and Phalp, K. 2008. Enhancing
network based intrusion detection for imbalanced data. In-
ternational Journal of Knowledge-Based and Intelligent En-
gineering Systems 12(5-6):357–367.

Fawcett, T. 2006. An introduction to ROC analysis. Pattern
Recognition Letters 27(8):861–874.

Forman, G. 2003. An extensive empirical study of feature
selection metrics for text classification. Journal of Machine
Learning Research 3:1289–1305.

Hall, M. A., and Holmes, G. 2003. Benchmarking at-
tribute selection techniques for discrete class data mining.
IEEE Transactions on Knowledge and Data Engineering
15(6):1437 – 1447.

Hudepohl, J. P.; Aud, S. J.; Khoshgoftaar, T. M.; Allen,
E. B.; and Mayrand, J. 1996. EMERALD: Software metrics
and models on the desktop. IEEE Software 13(5):56–60.

Ilczuk, G.; Mlynarski, R.; Kargul, W.; and Wakulicz-Deja,
A. 2007. New feature selection methods for qualification of
the patients for cardiac pacemaker implantation. In Comput-
ers in Cardiology, 2007, 423–426.

Jiang, Y.; Lin, J.; Cukic, B.; and Menzies., T. 2009. Variance
analysis in software fault prediction models. In Proceedings
of the 20th IEEE International Symposium on Software Re-
liability Engineering, 99–108.

Jong, K.; Marchiori, E.; Sebag, M.; and van der Vaart, A.
2004. Feature selection in proteomic pattern data with sup-
port vector machines. In Proceedings of the 2004 IEEE
Symposium on Computational Intelligence in Bioinformat-
ics and Computational Biology.

Kamal, A. H.; Zhu, X.; Pandya, A. S.; Hsu, S.; and Shoaib,
M. 2009. The impact of gene selection on imbalanced mi-
croarray expression data. In Proceedings of the 1st Inter-
national Conference on Bioinformatics and Computational
Biology; Lecture Notes in Bioinformatics; Vol. 5462, 259–
269.

Kira, K., and Rendell, L. A. 1992. A practical approach to
feature selection. In Proceedings of 9th International Work-
shop on Machine Learning, 249–256.

Liu, H., and Yu, L. 2005. Toward integrating fea-
ture selection algorithms for classification and clustering.
IEEE Transactions on Knowledge and Data Engineering
17(4):491–502.

Liu, H.; Motoda, H.; and Yu, L. 2004. A selective sampling
approach to active feature selection. Artificial Intelligence
159(1-2):49–74.

Platt, J. C. 1999. Advances in kernel methods - support
vector learning. In Fast Training of Support Vector Ma-
chines using Sequential Minimal Optimization, 185–208.
MIT Press.

Saeys, Y.; Abeel, T.; and Peer, Y. 2008. Robust feature
selection using ensemble feature selection techniques. In
Proceedings of the European conference on Machine Learn-
ing and Knowledge Discovery in Databases - Part II (2008),
313–325.

Seliya, N.; Khoshgoftaar, T. M.; and Van Hulse, J. 2009.
Aggregating performance metrics for classifier evaluation.
In Proceedings of the IEEE International Conference on In-
formation Reuse and Integration (IRI 2009), 35–40.

Shawe-Taylor, J., and Cristianini, N. 2000. Support Vector
Machines. Cambridge University Press, 2 edition.

Van Hulse, J.; Khoshgoftaar, T. M.; and Napolitano, A.
2007. Experimental perspectives on learning from imbal-
anced data. In Proceedings of the 24th International Con-
ference on Machine Learning, 935–942.

Witten, I. H., and Frank, E. 2005. Data Mining: Practi-
cal Machine Learning Tools and Techniques. Morgan Kauf-
mann, 2 edition.

Zhao, X.-M.; Li, X.; Chen, L.; and Aihara, K. 2007. Pro-
tein classification with imbalanced data. Proteins: Structure,
Function, and Bioinformatics 70(4):1125 – 1132.

421

