

Using Constraint Satisfaction for Learning Hypotheses

in Inductive Logic Programming

 Roman Barták Ond�ej Kuželka, Filip Železný

 Charles University, Faculty of Mathematics and Physics Czech Technical University, Faculty of Electrical Engineering
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic Technická 2, 166 27 Praha 6, Czech Republic

 roman.bartak@mff.cuni.cz {kuzelon2, zelezny}@fel.cvut.cz

Introduction
Inductive logic programming (ILP) is a subfield of
machine learning which uses first-order logic as a uniform
representation for examples, background knowledge and
hypotheses (Muggleton and De Raedt, 1994). In this paper
we deal with a so called template consistency problem,
which is one of essential tasks in ILP (Gottlob et al 1999).
In particular, given learning examples and template T, we
are looking for a substitution ��making T� consistent with
the examples. Such T� is called a consistent hypothesis
meaning that it entails all positive examples and no
negative example. Writing variables (constants) in upper
(lower) cases, we assume examples expressed as sets of
ground function-free atoms, e.g. E+ = {arc(a,b), arc(b,c),
arc(c,a)}. A hypothesis is a set of atoms where all terms are
variables, e.g. H = {arc(X,Y), arc(Y,Z), arc(Z,X)}. The set
represents a disjunction of atoms, negation is not allowed
though a negative literal can be modeled using a special
atom. The hypothesis is obtained from a template by
applying substitution � which is basically unification of
certain variables in the template. In this paper we propose a
constraint model describing which variables in the
template are unified to obtain consistent hypothesis. To
check the entailment we use a form of �-subsumption
(Plotkin 1970) which is a decidable restriction of logical
entailment. Hypothesis H subsumes example E, if there
exists a substitution � of variables such that H� � E. In the
above example, substitution � = {X/a, Y/b, Z/c} implies
that H subsumes E+. The requirement that a negative
example E- is not subsumed by hypothesis H means that
there may not exist any substitution � such that H� � E-.
 Constraint satisfaction techniques have been previously
used in ILP, though only for subsumption checking
(Maloberti, Sebag, 2004). Constraint satisfaction (CS) is
basically a technology for solving combinatorial problems

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

modeled by a set of variables, each of which has a finite set
of possible values (domain), and a set of constraints
defining allowed combinations of values for the variables.
The task is to find an instantiation of variables satisfying
all the constraints. The mainstream constraint satisfaction
technology combines search with inference (constraint
propagation). We describe here the constraint models for
finding unification of variables in template and for
checking consistency of the obtained hypothesis and
corresponding search strategies.

Constraint Model for Unification
Assume that template T is described by a set of atoms with
fresh variables, that is, each variable occurs exactly once in
the template and the variables are ordered, for example T =
{arc(X1,X2), arc(X3,X4), arc(X5,X6)}. The templates can be
incrementally generated from predicates in positive
examples (from smaller to larger templates). Recall that we
are looking for substitution (unification) � such that T� is
a consistent hypothesis. Our model is based on the
observation that if a set of variables is unified then we can
take the variable with the smallest index to represent this
set and all other variables in the set are mapped to this
variable. For example, unification X2 = X3 can be
represented by mapping X3 to X2. The proposed constraint
model uses index variable Ij for each variable Xi in the
template to describe the mapping. The domain of Ii is
{1,…,i}. To ensure that each variable is mapped to the first
variable in the set of unified variables we use a constraint
�i=1,…,n element(Ii, [I1,.., In], Ii), where n is the total
count of variables. The semantics of element(X,List,Y) is
as follows: Y equals to the X-th element of List. For
example, [1,1,2] is not a valid list of indexes (it represents
X1 = X2 and X2 = X3) as it violates element(2,[1,1,2],2).
The correct representation of this unification should be
[1,1,1]. The element constraints thus ensure that each set of
unifications is represented by exactly one list of indexes.

440

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

 As we assume the template structure given, we should
ensure that no atom will disappear after unifying the
variables. For example, index list [1,2,1,2,5,6] satisfies the
element constraints and represents hypothesis {arc(X1,X2),
arc(X1,X2), arc(X5,X6)}. However, it is actually hypothesis
{arc(X1,X2), arc(X5,X6)} because the first two atoms are
identical. To remove this ambiguity we suggest the
following constraint. We collect the tuples of index
variables belonging to variables in atoms with the same
name, in our example, we obtain pairs (I1,I2), (I3,I4), (I5,I6).
For each atom and a corresponding list of variable tuples
L, we post a constraint lex(L). This constraint ensures that
variable tuples in list L must be lexicographically ordered.
In our example, it means (I1,I2) < (I3,I4) < (I5,I6) which
ensures that no atom arc is unified with another atom arc
in the template (and hence no atom will disappear from T).

Constraint Model for Subsumption Checks
We realize the subsumption check using the idea proposed
in (Maloberti, Sebag, 2004). The main difference of our
approach is in using n-ary constraints and standard
constraint satisfaction techniques instead of binary
constraints and ad-hoc implementation. For a given
predicate symbol p with arity k we collect all k-tuples of
values from atoms of this predicate. Let {arc(a,b), arc(b,c),
arc(c,a)} be the example then the set of tuples for predicate
symbol arc/2 is {(a,b), (b,c), (c,a)}. These tuples of values
define the k-ary tabular constraint. We post this constraint
over all k-tuples of variables from the set {X1,… Xn} that
correspond to predicate symbol p. The constraint for
hypothesis {arc(X1,X2), arc(X3,X4), arc(X5,X6)} is posted
over the pairs of variables (X1,X2), (X3,X4), (X5,X6). Any
solution of this constraint satisfaction problem defines a
substitution � such that H� � E.
 The remaining question is how to connect the index
variables describing unification of variables in the template
with the subsumption model. For each example Ej, we plug
a set Xj,1,…, Xj,n of fresh variables into H, where n is the
number of variables in the template and H has identical
structure to template T. Note that each example requires a
separate set of variables X as substitution � can be different
for each example (standardization apart). We unify these
variables according to the index list I1,…, In via the
constraint �i=1,…,n element(Ii, [Xj,1,.., Xj,n], Xj,i).

Search Strategies
To find a hypothesis subsuming all positive examples, we
can post the above described element and lex constraints
for the index variables and for each positive example we
post the tabular constraints over the set of fresh variables
connected to the index variables via the element
constraints. Instantiation of all the variables describes
which variables in the hypothesis are unified and validates
the subsumption check. Clearly, if we instantiate first the
index variables, the subsumption checks for individual

examples become independent (the models for positive
examples share the index variables only). Moreover, the
easiest way to instantiate the index variables is to assign
value j to variable Ij. This is always possible if there are no
additional restrictions and it will produce the most general
hypothesis. However, there are also negative examples
which may force unification of some variables.
 We include the negative examples in the following way.
First, we post all above mentioned constraints for index
variables and for positive examples. Then we take a
negative example E- and perform the subsumption check
using the constraint model from the previous section.
Assume that for hypothesis H containing variables X1,…,
Xn, H� � E- turns out to hold. As the negative example is
required not to be subsumed by H, we need to break the
substitution �. This can be done by selecting a pair of
variables Xi and Xj such that Xi� � Xj� and forcing
unification of these variables by adding a constraint Ii = Ij.
Frequently, there are several such pairs. If the selected pair
is found wrong (that is, unifying the pair makes it
impossible to subsume some positive example), we try
another one. We repeat the above process while some
negative example is subsumed. After this step, we obtain a
set of unifications ensuring that no negative example is
subsumed. Finally, we instantiate the index variables and
the variables from the positive examples to validate that all
positive examples are subsumed. In case of failure, we
backtrack to the negative examples and try a different set
of unifications. During this process, the information is
propagated through the constraints, which helps in early
detection of wrong decisions.

Summary
The paper suggests using constraint satisfaction techniques
to solve the template consistency problem, i.e., to find
suitable unifications of variables in template in ILP and to
perform the incurred subsumption checks.

Acknowledgement. The research is supported by the
Czech Science Foundation under the project 201/08/0509.

References
Gottlob, G., Leone, N., and Scarcello, F. 1999. On the
complexity of some inductive logic programming
problems. New Generation Computing, 17, 53-75, Omsha.
Maloberti, J. and Sebag, M. 2004. Fast Theta-Subsumption
with Constraint Satisfaction Algorithms. Machine
Learning, 55, 137–174. Kluwer Academic Publishers.
Muggleton, S. and De Raedt, L. 1994. Inductive logic
programming: Theory and methods. Journal of Logic
Programming, 19, 629–679.
Plotkin, G., 1970. A note on inductive generalization. In B.
Meltzer, & D. Michie (Eds.), Machine Intelligence, 5, 153–
163. Edinburgh University Press.

441

