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Introduction   
Inductive logic programming (ILP) is a subfield of 
machine learning which uses first-order logic as a uniform 
representation for examples, background knowledge and 
hypotheses (Muggleton and De Raedt, 1994). In this paper 
we deal with a so called template consistency problem, 
which is one of essential tasks in ILP (Gottlob et al 1999). 
In particular, given learning examples and template T, we 
are looking for a substitution ��making T� consistent with 
the examples. Such T� is called a consistent hypothesis 
meaning that it entails all positive examples and no 
negative example. Writing variables (constants) in upper 
(lower) cases, we assume examples expressed as sets of 
ground function-free atoms, e.g. E+ = {arc(a,b), arc(b,c), 
arc(c,a)}. A hypothesis is a set of atoms where all terms are 
variables, e.g. H = {arc(X,Y), arc(Y,Z), arc(Z,X)}. The set 
represents a disjunction of atoms, negation is not allowed 
though a negative literal can be modeled using a special 
atom. The hypothesis is obtained from a template by 
applying substitution � which is basically unification of 
certain variables in the template. In this paper we propose a 
constraint model describing which variables in the 
template are unified to obtain consistent hypothesis. To 
check the entailment we use a form of �-subsumption 
(Plotkin 1970) which is a decidable restriction of logical 
entailment. Hypothesis H subsumes example E, if there 
exists a substitution � of variables such that H� � E. In the 
above example, substitution � = {X/a, Y/b, Z/c} implies 
that H subsumes E+. The requirement that a negative 
example E- is not subsumed by hypothesis H means that 
there may not exist any substitution � such that H� � E-. 
  Constraint satisfaction techniques have been previously 
used in ILP, though only for subsumption checking 
(Maloberti, Sebag, 2004). Constraint satisfaction (CS) is 
basically a technology for solving combinatorial problems 
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modeled by a set of variables, each of which has a finite set 
of possible values (domain), and a set of constraints 
defining allowed combinations of values for the variables. 
The task is to find an instantiation of variables satisfying 
all the constraints. The mainstream constraint satisfaction 
technology combines search with inference (constraint 
propagation). We describe here the constraint models for 
finding unification of variables in template and for 
checking consistency of the obtained hypothesis and 
corresponding search strategies. 

Constraint Model for Unification 
Assume that template T is described by a set of atoms with 
fresh variables, that is, each variable occurs exactly once in 
the template and the variables are ordered, for example T = 
{arc(X1,X2), arc(X3,X4), arc(X5,X6)}. The templates can be 
incrementally generated from predicates in positive 
examples (from smaller to larger templates). Recall that we 
are looking for substitution (unification) � such that T� is 
a consistent hypothesis. Our model is based on the 
observation that if a set of variables is unified then we can 
take the variable with the smallest index to represent this 
set and all other variables in the set are mapped to this 
variable. For example, unification X2 = X3 can be 
represented by mapping X3 to X2. The proposed constraint 
model uses index variable Ij for each variable Xi in the 
template to describe the mapping. The domain of Ii is 
{1,…,i}. To ensure that each variable is mapped to the first 
variable in the set of unified variables we use a constraint 
�i=1,…,n element(Ii, [I1,.., In], Ii), where n is the total 
count of variables. The semantics of element(X,List,Y) is 
as follows: Y equals to the X-th element of List. For 
example, [1,1,2] is not a valid list of indexes (it represents 
X1 = X2 and X2 = X3) as it violates element(2,[1,1,2],2). 
The correct representation of this unification should be 
[1,1,1]. The element constraints thus ensure that each set of 
unifications is represented by exactly one list of indexes. 
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 As we assume the template structure given, we should 
ensure that no atom will disappear after unifying the 
variables. For example, index list [1,2,1,2,5,6] satisfies the 
element constraints and represents hypothesis {arc(X1,X2), 
arc(X1,X2), arc(X5,X6)}. However, it is actually hypothesis 
{arc(X1,X2), arc(X5,X6)} because the first two atoms are 
identical. To remove this ambiguity we suggest the 
following constraint. We collect the tuples of index 
variables belonging to variables in atoms with the same 
name, in our example, we obtain pairs (I1,I2), (I3,I4), (I5,I6). 
For each atom and a corresponding list of variable tuples 
L, we post a constraint lex(L). This constraint ensures that 
variable tuples in list L must be lexicographically ordered. 
In our example, it means (I1,I2) < (I3,I4) < (I5,I6) which 
ensures that no atom arc is unified with another atom arc 
in the template (and hence no atom will disappear from T). 

Constraint Model for Subsumption Checks 
We realize the subsumption check using the idea proposed 
in (Maloberti, Sebag, 2004). The main difference of our 
approach is in using n-ary constraints and standard 
constraint satisfaction techniques instead of binary 
constraints and ad-hoc implementation. For a given 
predicate symbol p with arity k we collect all k-tuples of 
values from atoms of this predicate. Let {arc(a,b), arc(b,c), 
arc(c,a)} be the example then the set of tuples for predicate 
symbol arc/2 is {(a,b), (b,c), (c,a)}. These tuples of values 
define the k-ary tabular constraint. We post this constraint 
over all k-tuples of variables from the set {X1,… Xn} that 
correspond to predicate symbol p. The constraint for 
hypothesis {arc(X1,X2), arc(X3,X4), arc(X5,X6)} is posted 
over the pairs of variables (X1,X2), (X3,X4), (X5,X6). Any 
solution of this constraint satisfaction problem defines a 
substitution � such that H� � E. 
 The remaining question is how to connect the index 
variables describing unification of variables in the template 
with the subsumption model. For each example Ej, we plug 
a set Xj,1,…, Xj,n of fresh variables into H, where n is the 
number of variables in the template and H has identical 
structure to template T. Note that each example requires a 
separate set of variables X as substitution � can be different 
for each example (standardization apart). We unify these 
variables according to the index list I1,…, In via the 
constraint �i=1,…,n element(Ii, [Xj,1,.., Xj,n], Xj,i).  

Search Strategies 
To find a hypothesis subsuming all positive examples, we 
can post the above described element and lex constraints 
for the index variables and for each positive example we 
post the tabular constraints over the set of fresh variables 
connected to the index variables via the element 
constraints. Instantiation of all the variables describes 
which variables in the hypothesis are unified and validates 
the subsumption check. Clearly, if we instantiate first the 
index variables, the subsumption checks for individual 

examples become independent (the models for positive 
examples share the index variables only). Moreover, the 
easiest way to instantiate the index variables is to assign 
value j to variable Ij. This is always possible if there are no 
additional restrictions and it will produce the most general 
hypothesis. However, there are also negative examples 
which may force unification of some variables. 
 We include the negative examples in the following way. 
First, we post all above mentioned constraints for index 
variables and for positive examples. Then we take a 
negative example E- and perform the subsumption check 
using the constraint model from the previous section. 
Assume that for hypothesis H containing variables X1,…, 
Xn, H� � E- turns out to hold. As the negative example is 
required not to be subsumed by H, we need to break the 
substitution �. This can be done by selecting a pair of 
variables Xi and Xj such that Xi� � Xj� and forcing 
unification of these variables by adding a constraint Ii = Ij. 
Frequently, there are several such pairs. If the selected pair 
is found wrong (that is, unifying the pair makes it 
impossible to subsume some positive example), we try 
another one. We repeat the above process while some 
negative example is subsumed. After this step, we obtain a 
set of unifications ensuring that no negative example is 
subsumed. Finally, we instantiate the index variables and 
the variables from the positive examples to validate that all 
positive examples are subsumed. In case of failure, we 
backtrack to the negative examples and try a different set 
of unifications. During this process, the information is 
propagated through the constraints, which helps in early 
detection of wrong decisions. 

Summary 
The paper suggests using constraint satisfaction techniques 
to solve the template consistency problem, i.e., to find 
suitable unifications of variables in template in ILP and to 
perform the incurred subsumption checks. 
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