
XTT Rules Design and Implementation with Object-Oriented Methods

Grzegorz J. Nalepa
Institute of Automatics,

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

gjn@agh.edu.pl

Abstract

In this paper certain knowledge and software engineering
methods integration issues are discussed. The principal idea
is to consider an effective design and implementation frame-
work for rule design with UML, and implementation with
Java. The solution proposed in the paper consists of using
a custom knowledge engineering design method for rules in
the design stage. The rule base is then transformed to UML
behavioral diagrams, which can be considered a visual en-
coding. The rule implementation involves the serialization to
Java language using classes representing the decision tables
grouping rules sharing the same attributes.

Introduction

In Artificial Intelligence (Russell and Norvig 2003) system
modeling consist in providing a practical knowledge repre-
sentation (van Harmelen, Lifschitz, and Porter 2007) about
the system. It is a generic approach, where some specific
concepts such as the structure of the system, or representa-
tion artifacts have not to be determined from the start. Mod-
eling in knowledge engineering is often a gradual process
that uses number of methods from ones close to the natural
language, to formalized representations such as rules.

In recent years there has been a continuous research on
integrating Knowledge Engineering (KE) methods in practi-
cal Software Engineering (Sommerville 2004) (SE). One of
the examples is the business rules approach (Ross 2003), an-
other one is the Semantic Web initiative. The fact is that KE
is being developed in parallel with SE, and both approaches
use different methods and tools to actually model and build
systems. Important semantical differences between these
two make the use of the KE methods in SE non-trivial,
whereas using SE methods to solve KE problems is often
of limited use. One of the issues in this integration is how
to align modeling methods used in these domains. While
in SE UML is a de facto standard modeling tool, in KE
number of methods exist (Brachman and Levesque 2004;
van Harmelen, Lifschitz, and Porter 2007).

In this paper certain knowledge and software engineering
methods integration issues are discussed. The principal idea
is to consider an effective design and implementation frame-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

work for the decision rule design with UML, and implemen-
tation with Java. The solution proposed in this paper consists
of using a custom knowledge engineering design method for
rules in the design stage. Extended Tabular Trees (XTT for
short) (Nalepa and Ligęza 2005a) is a structured knowledge
representation for rules, based on some classic KE notions
of decision tables and decision trees. Then the XTT rulebase
is transformed to UML behavioral diagrams, which can be
considered a visual encoding. Representing XTT with UML
artifacts encounters number of problems addressed in this
paper. A new algorithm for encoding an XTT diagram using
UML, introduced in (Nalepa and Kluza 2008), is discussed.
The rule implementation involves the serialization to Java or
other OO language using classes representing the decision
tables grouping rules.

The rest of the paper is organized as follows: The sec-
ond section presents the motivation for the research, includ-
ing the development of knowledge-based methods for soft-
ware design; a brief introduction to the challenges of using
Object-Oriented (OO) modeling with knowledge engineer-
ing methods are also outlined. Then, in the third section the
principles of the HeKatE methodology. In the next section
the UML representation details are given. The sixth section
is dedicated to the presentation of the OO serialization. The
next section discusses selected issues of an on-line model
verification in the given approach. The last section gives an
evaluation of the approach, and outlines the future work.

Motivation

Knowledge engineering and representation methods provide
transparent and declarative design methods that are a power-
ful tool for expressing the application logic. However, today
applications rely on complex and heterogeneous applica-
tions stacks and middlewares (e.g. the Java EE stack). More-
over, they require integration with number of high-level ser-
vices including transparent network communications. These
requirements are addressed by integrated design and proto-
typing environments, such as Eclipse. A low-level founda-
tion of such environments is the use of standard design tools
and implementation languages, such as UML, and OO lan-
guages, mainly Java. But when it comes to modeling the
core application logic in an implementation-agnostic fash-
ion, without even considering the object-oriented perspec-
tive, these tools have some persistent problems. These issues

390

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



are tackled with the attempts to introduce rule-based repre-
sentations to the UML-centric solutions family. Some of the
proposed standards include the Production Rule Represen-
tation (PRR) from OMG, where some ideas of extending
existing semantics of UML were contained. Another one is
the Unified Rule Modelling Language (URML), (see (Lu-
kichev and Wagner 2005)) from the REWERSE I1 research
project, where existing UML diagrams are used to model
different types of rules.

It can be observed, that integrating knowledge represen-
tation and engineering with software engineering approach
could be considered on two levels. So a complete integra-
tion solution should address these two perspectives. In both
cases it is not an easy task.

Firstly, on the modeling or design level, where KE uses
number of knowledge representation methods with decision
rules, tables and trees being some of the most important
ones, and SE exclusively uses UML, and other MOF-based
solutions (MetaObject Facility).

Secondly, on the implementation or runtime level, where
KE uses multiple solutions and languages (both AI ones,
such as Lisp or Prolog), including the so-called expert sys-
tems shells, or rule engines, with CLIPS, Jess or Drools,
being the best examples. In the case of practical SE, the im-
plementation is conducted in a OO language, usually Java,
on top of complex application stacks, e.g. Java EE.

So a complete integration solution should address these
two perspectives. In both cases it is not an easy task.

Applying UML as a Knowledge Engineering method is
not straight forward. Existing diagrams are not suitable for
rule modeling since they lack the rule semantics. Using an
UML profile, which is a redefinition of the semantics of cer-
tain diagrams, does not help much, and in some cases might
complicate the design. It forces the use of existing diagrams
for purposes they were not designed for i.e. representing
rule sets might be tricky and inefficient.

There are several possible approaches when it comes to
practical UML application for knowledge engineering. In
fact, they need to somehow explicitly tackle both of the in-
tegration levels. The first solution is the “classic” and def-
initely the easiest one. It consists in modelling the system
with a knowledge-based approach, that uses some classic
knowledge representation methods, such as decision trees,
then design the software implementation using UML, and
generate an object-oriented (OO) code. In this case, KE
methods are used in the “design” stage, while SE methods
provide “implementation” means. In the second approach
the rule-based knowledge is modelled with UML diagrams,
and then the corresponding OO code is generated. This ap-
proach relies on either extending, or redefining the original
semantics of UML (see PRR and URML).

In this paper another approach is proposed. It is a hybrid
approach, where the application logic is modeled with rules,
and remaining interfaces use classic SE solutions. This re-
lies on the rule-based knowledge representation with UML,
and knowledge implementation with OO languages.

More specifically, the idea is to model the application
logic with a custom KE method, based on decision tables,
grouping decision rules, with the rulebase explicitly struc-

tured in a tree-like fashion, then providing a UML represen-
tation for SE designers, and then possibly integrate the rule
interpreter with the OO application stack (as in the Model-
View-Controller design pattern (Burbeck 1992)), or generate
OO code serializing the designed rule knowledge.

This paper proposes a UML representation for rules that
preserves the semantics of the original rule representation
and provides an effective OO encoding for rules.

Heterogeneous Approach

The integration approach proposed in this paper is developed
within the HeKatE project (hekate.ia.agh.edu.pl).
In the following subsection main goals of the project are pre-
sented, and the outline of the approach is given

Rule Modeling in HeKatE

HeKatE aims at developing formalized knowledge represen-
tation methods based on rules, and providing an effective in-
tegration framework with software engineering tools. Main
concepts include an extended formal logical system descrip-
tion using the ALSV(FD) formalism (Attributive Logic with
Set Values over Finite Domains (Nalepa and Ligęza 2008),
a conceptual rule design method ARD+ (Attribute Relation-
ship Diagrams (Nalepa and Ligęza 2005b; Nalepa and Wo-
jnicki 2008)), that to some extent corresponds to require-
ments engineering in SE, logical system design with rules
in the XTT structure (Nalepa and Ligęza 2005a), with an
on-line formal verification, and finally an automated imple-
mentation with prototype generation in a meta representa-
tion, that can be executed by a meta-interpreter.

HeKatE methodology goals also include delivering rule-
based design methods for knowledge-based systems, that
could be effectively integrated into business applications,
and UML-based integration of these methods at the design
level, with OO interface at the runtime level, while provid-
ing a formal verification of application logic with continuous
quality control during the application development cycle.

The HeKatE design process begins with the conceptual
ARD model, which is the prototype for the logical XTT
model. The key underlying assumption in the ARD design
with knowledge specification in attributive logics is that,
similarly as in the case of Relational Databases (Connolly,
Begg, and Strechan 1999), the attributes are functionally de-
pendent. An ARD diagram is a conceptual system model at
a certain abstract level. Attributes are subsequently iden-
tified at more and more detailed levels. At the most de-
tailed level, XTT diagrams are added to define dependen-
cies among attributes and to describe how to calculate at-
tribute values. The ARD design process is similar, in terms
of its goals, to UML Structure Diagrams. However, while
the Structure Diagrams tend to describe what elements the
software consists of, ARD describes what is known about it.

The XTT (EXtended Tabular Trees) knowledge represen-
tation (Nalepa and Ligęza 2005a), has been proposed in or-
der to solve some common design, analysis and implementa-
tion problems present in rule-based systems. In this method
three important representation levels has been addressed: vi-
sual – the model is represented by a hierarchical structure of

391



thermostat_settings

season

operation

month

day today

hour

Figure 1: ARD prototype and XTT model

linked extended decision tables, logical – tables correspond
to sequences of extended decision rules, and implementa-
tion – rules are processed using a meta representation and a
custom interpreter. The table represents a set of rules, having
the same attributes. On the logical level, a table corresponds
to a number of rules, processed in a sequence. If a rule is
fired and it has a link, the inference engine processes a rule
in another table.

In Fig. 1 an ARD rule prototype and the corresponding
XTT structure for the Thermostat rule-based system (Neg-
nevitsky 2002) are shown. Using them the UML representa-
tion for both aspects will be introduced.

Outline of the Approach

In the proposed approach, the important phases of the clas-
sic SE process (Sommerville 2004) are matched by the cor-
responding phases of the HeKatE design process, in a way
similar to classic KE process or expert system design.

The requirements engineering in SE corresponds to the
conceptual design or rules prototyping in KE, which in
HeKatE is supported by the attribute formalization in
ALSV(FD) and ARD+ design. In this phase a corresponding
custom UML representation for ARD is provided.

The main design phase UML diagrams corresponds to the
logical design, which in the case of HeKatE is provided by
the XTT formally described with ALSV(FD), and visually
represented by the structured XTT rulebase. In this phase a
corresponding XTT representation for XTT is provided.

The implementation phase which in SE includes partial
and semi-automatic OO code generation from the UML
model, corresponds to the physical design of expert systems
or RDB systems (Connolly, Begg, and Strechan 1999). In
HeKatE two scenarios are considered in this phase:

• representing XTT in the textual algebraic Hekate Meta
Representation (HMR), and executing it using a meta in-
terpreter integrated with a OO Java runtime level,

• generating OO Java code for rules that logically corre-

sponds to the XTT, in the process called XTT serializa-
tion; the code can be easily integrated with other Java-
based parts of the application at the source code level.

In both cases the XTT-based logic is integrated with the ap-
plication in the Model-View-Controller paradigm, providing
a logical application model.

The focus of this paper is on the UML representation for
ARD and XTT, as well as the description of the serialization
procedure. These are described in the following sections.

ARD Representation in UML

The ARD method aims at capturing relations between at-
tributes describing system properties. Attribute relationships
are a certain structure in the attribute space. Therefore, the
proposed UML model uses static structure diagram to show
these relations. Elements in proposed UML model corre-
sponds one-to-one with the attributes and properties in ARD
(it is a bijective transformation) (Kluza 2008).

A UML dependency in structure diagrams “indicates a se-
mantic relationship between model elements. It relates the
model elements themselves and does not require a set of in-
stances for its meaning. It indicates a situation in which a
change to the target element may require a change to the
source element in the dependency” (OMG 1997).

The following UML dependencies where selected to spec-
ify the diagram semantics:
• derive specifies a derivation relationship among model el-

ements, where one of them can be computed from the an-
other.

• refine specifies a refinement relationship among model el-
ements at different levels of development. Refinement
can be used to model transformation from one to another
phase of a sequential model development.

• trace specifies a trace relationship among model elements
that represent the same concept in different models. It is
mainly used for tracking changes across models.
ARD is based on the concept of the functional depen-

dency among properties. A simple property is described by
a single attribute, while a complex property is described by
multiple attributes. ARD supports two kinds of attributes:
conceptual (describing some general, abstract aspect of the
system to be specified and refined) and physical (describ-
ing a well-defined, atomic aspect of the system). To show
the dependency relation among properties in ARD, the cor-
responding UML component diagram uses the UML derive
dependency. The UML representation of the ARD model
presented in Fig. 1 is shown in Fig. 2.

In the hierarchical ARD design process two types of trans-
formations are used: finalization and split. Finalization in-
troduces a more specific knowledge about the given property
through transforming a simple property described by a con-
ceptual attribute into a property described by one or more
conceptual or physical attributes. In Fig. 3 shows an exam-
ple of finalization (in ARD) and corresponding UML com-
ponent diagrams for this transformation. In the same figure
the complex property representation using a subsystem arti-
fact can be observed.

392



Figure 2: Representing ARD with component diagrams

Figure 3: Types of transformation in TPH diagrams

XTT Representation in UML

Finding an appropriate UML representation for XTT is not a
trivial task. Both the semantical aspect, as well as the visual
scalability needs to be considered. In contrast to the PRR
or URML, where a single rule is represented by number of
classes corresponding to elements of the rule vocabulary (in
a loose sense attributes in XTT), in the XTT representation
in UML behavior (activity) diagrams are used, where single
diagram corresponds to a single XTT table, that is a set of
rules working in the same context. The rationale for this is
that in XTT rules are considered to model the dynamics of
the system structure prototyped with ARD.

UML activity diagrams are related to flow diagrams and
can illustrate the activities taking place in the system, they
include artifacts such as: Action, Decision node, Merge
node, Fork node, Join node, Partitions (swimlanes), and Pa-
rameter of activity.

Several attempts to find an optimal representation where
evaluated. Finally an optimal translation has been proposed,
as presented below. For an in-depth discussion see (Nalepa
and Kluza 2008). The proposed transition algorithm from
XTT table to UML activity diagram is as follows:

1. All input attributes become input parameters and output
attribute becomes output parameter of an activity (for the
sake of transparency the diagram can be divided into the
partitions with a swimlane).

2. For each attribute (activity parameter), if there is more
than one unique value in the XTT, a decision node and for
every unique value of attribute needs to be added:

(a) the control flow with guard condition is introduced
(with that unique value in it),

(b) if the value occurs frequently, the flow is finished with
a fork node with number of outputs equal to the number
of occurrences of the value in the XTT table.

3. For each rule (a row in XTT) a join node with the number
of inputs equal to the number of input parameters is drawn
and another one for output. For each join node:

(a) inputs are connected using an adequate flow control (in
accordance with the values of attributes in the rule),

(b) outputs are connected using a flow control with the
action having a value corresponding to the output at-
tribute in the rule:

i. directly, if the value of attribute occurred in XTT only
once,

ii. otherwise through a merge node.
4. Outputs of all actions are merged in a merge node and a

control flow is lead to output parameter of activity.
The complete transformation of the Thermostat example

has been described in detail in (Nalepa and Kluza 2008).
Here only the diagram for the TH table (the second on the
right in Fig. 1) is presented in Fig. 4 and the complete model
in Fig. 5. In the second figure the activity diagrams for tables
are nested to provide a visual scalability.

It is worth noting, that in general a counter-wise transfor-
mation could be considered. This would allow for UML-
based XTT rule design in any standard-compliant UML ed-
itor. However, this is not possible without introducing some
kind of special annotations in the UML model. Ultimately,
an UML profile for XTT is considered as a solution.

Figure 4: Activity diagram corresponding to XTT TH table

XTT Serialization

In this phase the XTT rule base is automatically translated
into the corresponding Java code. This translation allows
for the source code level integration with other application
components.

In case of rule models designed with REWERSE URML,
or OMG PRR the number of classes may by much higher
than the number of rules, with possibly multiple classes be-
ing generated for a single rule. The goal of the XTT serial-

393



Figure 5: Activity diagram for the whole thermostat

ization was to optimize the translation process for simplic-
ity and transparency (less classes). The simple idea was, to
translate the XTT structure into classes on the table level.
The versions of the approach are currently considered.

In the basic case the translation is as follows:

• a class XTTtable is provided for XTT tables,

• one table is translated to one object of the class,

• XTT table attributes are translated as class fields,

• rules (table rows) are implemented as class methods,

• every method uses a simple if (or case) template for
rule condition checking.

In XTT rules different attribute types are used. On the
lower level they all correspond to two simple types called
numeric (with optional scale to model floats)and symbolic.
These are directly mapped to Java Integer, Float, and String.

In general, the XTT rulebase is composed of different
types of tables, including special tables with no decision part
(fact tables) and no condition parts (action tables). The deci-
sion part of the tables modifies attribute values, thus chang-
ing system state. In this part it is also possible to perform
calculation, or call external methods that interface with the
application View.

In order to simplify the implementation of this structure
the extended case the translation differs:

• separate classes for conditional and decision parts of the
XTT tables are considered,

• this separates the conditional part from state changing de-
cision part, and

• simplifies implementation of different XTT table types
(conditional, fact, etc.)

The serializer prototype is being implemented as a mod-
ule for the XTT meta interpreter written in Prolog. The
interpreter has a HMR parser, so it is easy to generate ad-
ditional symbolic representation on the fly. The resulting
code may be compiled with another classes providing the
View and Controller. A more complex deployment solution
with a Java based application server based on Tomcat is also
planned in the future.

Model Refinement and Verification

In the proposed approach the rule-based control logic is de-
signed with XTT2 rules. XTT has a formal description,

with formal verification framework, see (Ligęza and Nalepa
2005). Since the proposed OO XTT encoding does not in-
troduce any semantic gap in the hierarchical HeKatE design
process, the logic model can be refined using the ARD/XTT
representation. This includes formal analysis of the rule
base, including completeness and inconsistency checks.

Currently there are no plans to directly allow for the re-
finement of the UML representation. However, a full MOF
definition of the ARD/XTT UML representations is being
prepared. When these are ready, it should be possible to con-
trol the UML model refinement at the syntax level, possibly
with additional OCL constraints. Then, using the backward
translation from UML to XTT it would be possible to trans-
form the refined UML model to the rule-based one.

Evaluation and Future Work
The paper tackles problems of practical integration between
software and knowledge engineering. The integration is ad-
dressed on two levels: design with UML, and implementa-
tion with a OO language. An attempt for developing a hybrid
SE/KE methodology is presented. A custom, semantically
equivalent UML representation, for ARD/XTT rules was
discussed. The use of UML as possible knowledge represen-
tation for rule-based systems has been presented. The orig-
inal contribution of the paper includes a UML-based repre-
sentation of ARD diagrams that provide rule prototypes, and
XTT diagrams describing a rule-based system.

Since the rule-modeling in UML is not a new problem,
it is worth noting how the HeKatE approach compares to
the existing solutions. Currently, two most important repre-
sentations include OMG PRR and REWERSE URML (Lu-
kichev and Wagner 2005). The fact is, that both of these aim
at detailed modelling of single rules. On the other hand, by
definition, in the XTT approach the design is focused on the
tree like structure of decision tables. So the representation
introduced in this paper aims at translating the whole struc-
ture of extended decision tables into UML. Another differ-
ence is, that the HeKatE approach does not introduce new
UML artifacts. Neither it aims at redefining some of the
UML semantics by using a custom profile (such a profile
could be considered for the means of bidirectional transla-
tion though). Instead, it tries to explore and efficiently use
existing diagrams.

It also worth emphasizing, that while the XTT represen-
tation scales well in larger examples than the one presented
here, its UML representation is not as efficient. In general
from a modeling point of view, the XTT table provides a
more compact representation than the activity diagram. The
UML representation is considered in order to allow interop-
eration with UML modeling tools, as well as MOF-based
description of XTT.

A custom method of XTT rules serialization to Java was
also proposed. It allows to translate a rule-based logic de-
signed and analyzed with XTT to a OO code that can be
easily integrated on the source level with Java applications.

The design approach introduced in this paper, including
the UML representation for rules enables a selective use of
SE tools, e.g. UML editors, to design rules, so it simpli-
fies the communication with SE engineers on the conceptual

394



level. Simultaneously, the logic is designed with KE meth-
ods with possible formal verification of the model. These
are in fact the main reasons to provide such a UML-based
representation. On the other hand, this is a non-standard ap-
proach, and uses non-standard methods, that are not directly
compatible with the industry adopted OMG standards.

As for the related research it is worth noting that there
are many efforts to extend and formalize the UML and the
SE process. These include complex standards such as the
MDA (Miller and Mukerji 2003), as well as some semi-
formal process such as the Aspect-Oriented Programming,
which tries to insert more process-related information into
the UML model, e.g. (Suzuki and Yamamoto 1999).

The work presented in the paper is in progress. The pro-
posed transformation and serialization algorithms are being
implemented and tested. As for the UML representation sev-
eral methods are considered, including an XSLT translation
to the XMI format. In order to fully evaluate the algorithm a
formalized description will be ultimately provided. The cur-
rent UML transformation closely follows both syntax and
extended semantics of XTT, so it is not directly aimed at
other rule formalisms. However, the approach for providing
the transformation is a generic one, so in the future its ap-
plication to different rule formats may be considered. Ul-
timately, the logical rule-based model designed with this
method should be embedable into any business application
using the MVC pattern with interfaces (View) with a hybrid
Controller (Burbeck 1992). This would provide a bridging
methodology for the classic software and knowledge engi-
neering methods and tools.

Acknowledgements The paper is supported by the
HeKatE Project funded from 2007–2009 resources for sci-
ence as a research project.

References

Brachman, R., and Levesque, H. 2004. Knowledge Repre-
sentation and Reasoning. Morgan Kaufmann, 1st edition.
Burbeck, S. 1992. Applications programming in smalltalk-
80(tm): How to use model-view-controller (mvc). Techni-
cal report, Department of Computer Science, University of
Illinois, Urbana-Champaign.
Connolly, T.; Begg, C.; and Strechan, A. 1999. Database
Systems, A Practical Approach to Design, Implementation,
and Management. Addison-Wesley, 2nd edition.
Kluza, K. 2008. Metody inżynierii wiedzy – projekt: Uml
and ard/xtt. AGH UST. Supervised by G. J. Nalepa, Ph. D.
Ligęza, A., and Nalepa, G. J. 2005. Visual design and
on-line verification of tabular rule-based systems with xtt.
In Jantke, K. P.; Fähnrich, K.-P.; and Wittig, W. S., eds.,
Marktplatz Internet: Von e-Learning bis e-Payment : 13.
Leipziger Informatik-Tage, LIT 2005, Lecture Notes in In-
formatics (LNI), 303–312. Bonn: Gesellschaft fur Infor-
matik.
Lukichev, S., and Wagner, G. 2005. Visual rules modeling.
In Sixth International Andrei Ershov Memorial Conference

PERSPECTIVES OF SYSTEM INFORMATICS, Novosi-
birsk, Russia, June 2006, LNCS. Springer.
Miller, J., and Mukerji, J. 2003. MDA Guide Version 1.0.1.
OMG.
Nalepa, G. J., and Kluza, K. 2008. Uml representation
proposal for xtt rule design method. In Nalepa, G. J., and
Baumeister, J., eds., 4th Workshop on Knowledge Engi-
neering and Software Engineering (KESE2008) at the 32st
German conference on Artificial Intelligence: September
23, 2008, Kaiserslautern, Germany, 31–42.
Nalepa, G. J., and Ligęza, A. 2005a. A graphical tabular
model for rule-based logic programming and verification.
Systems Science 31(2):89–95.
Nalepa, G. J., and Ligęza, A. 2005b. Software engineer-
ing : evolution and emerging technologies, volume 130 of
Frontiers in Artificial Intelligence and Applications. Ams-
terdam: IOS Press. chapter Conceptual modelling and au-
tomated implementation of rule-based systems, 330–340.
Nalepa, G. J., and Ligęza, A. 2008. Xtt+ rule design using
the alsv(fd). In Giurca, A.; Analyti, A.; and Wagner, G.,
eds., ECAI 2008: 18th European Conference on Artificial
Intelligence: 2nd East European Workshop on Rule-based
applications, RuleApps2008: Patras, 22 July 2008, 11–15.
Patras: University of Patras.
Nalepa, G. J., and Wojnicki, I. 2008. Towards formaliza-
tion of ARD+ conceptual design and refinement method. In
Wilson, D. C., and Lane, H. C., eds., FLAIRS-21: Proceed-
ings of the twenty-first international Florida Artificial In-
telligence Research Society conference: 15–17 may 2008,
Coconut Grove, Florida, USA, 353–358. Menlo Park, Cal-
ifornia: AAAI Press.
Negnevitsky, M. 2002. Artificial Intelligence. A Guide to
Intelligent Systems. Harlow, England; London; New York:
Addison-Wesley. ISBN 0-201-71159-1.
OMG. 1997. Uml notation guide version 1.1. Technical
report, Object Management Group.
Ross, R. G. 2003. Principles of the Business Rule Ap-
proach. Addison-Wesley Professional, 1 edition.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 2nd edition.
Sommerville, I. 2004. Software Engineering. Interna-
tional Computer Science. Pearson Education Limited, 7th
edition.
Suzuki, J., and Yamamoto, Y. 1999. Extending uml with
aspects: Aspect support in the design phase. In Moreira,
A. M. D., and Demeyer, S., eds., ECOOP Workshops, vol-
ume 1743 of Lecture Notes in Computer Science, 299–300.
Springer.
van Harmelen, F.; Lifschitz, V.; and Porter, B., eds. 2007.
Handbook of Knowledge Representation. Elsevier Science.

395




