
Reasoning with Conditional Time-Intervals
Part II: An Algebraical Model for Resources

Philippe Laborie and Jérôme Rogerie and Paul Shaw and Petr Vilı́m
ILOG, an IBM Company

9 rue de Verdun
94253 Gentilly Cedex, France

Abstract

In version 2.0, IBM ILOG CP Optimizer has been extended
by the introduction of scheduling support based on the con-
cept of optional interval variables. This paper formally de-
scribes the new modeling language features available to the
users of CP Optimizer for resource-based scheduling. We
show that the new language is flexible enough to model prob-
lems never before addressed by CP scheduling engines, as
well as naturally describing classical scheduling problems
found in the literature. This modeling power is based on
a small number of general concepts such as intervals, se-
quences and functions. This makes the modeling language
simple, clear and easy to learn, while maintaining the high-
level structural aspects of the scheduling model.

Introduction

So far, two approaches have been developed for integrating
scheduling in Constraint Programming (CP). The first ap-
proach extends classical constraint programming on integer
variables with a set of global constraints useful for modeling
scheduling problems such as the cumulative constraints in
CHIP (Aggoun and Beldiceanu 1993), Choco (Choco 2008)
or Gecode (Gecode 2008). On one hand this approach bene-
fits from the simplicity of the CP paradigm that introduces a
very limited number of concepts such as integer variables,
expressions and constraints. On the other hand, it does
not explicitly capture the temporal dimension of schedul-
ing problems and makes it difficult, if not impossible, to ex-
press some complex scheduling constraints. For instance,
consider the cumulative constraint. This constraint actually
does two things: (1) it implicitly defines a function that cor-
responds to the resource usage over time and (2) it constrains
the value of this function with a maximal level represent-
ing the resource capacity. One problem is that a user may
wish to impose additional or more complex constraints on
the function values but the function is not explicitly avail-
able as an object of the model.

The second approach, Constraint-Based Scheduling, pro-
vides a modeling layer on top of a traditional constraint pro-
gramming system with classical scheduling concepts such as

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

activities and a typology of resources (ILOG 2008). This re-
sults in a more natural but also a much more complex model
in terms of number of concepts. Furthermore, some impor-
tant aspects of scheduling problems such as optional activ-
ities or alternative recipes or modes are hard to model with
existing Constraint-Based Scheduling tools.

The new-generation scheduling support in IBM ILOG CP
Optimizer is based on our considerable experience in ap-
plying Constraint-Based Scheduling to industrial schedul-
ing applications. We designed the scheduling aspects of the
modeling language with the following requirements in mind:

• It should be accessible to software engineers and to people
used to mathematical programming;

• It should be simple, non-redundant and use a minimal
number of concepts in order to reduce the learning curve
for new users;

• It should fit naturally into a CP paradigm with clearly
identified variables, expressions and constraints;

• It should be expressive enough to handle complex
industrial scheduling applications, which often are
over-constrained, involve optional activities, alternative
recipes, non-regular objective functions, etc.

• It should be supported by a robust and efficient automatic
search algorithm.

This paper is a companion paper to (Laborie and Rogerie
2008). It complements the original model that was focused
on interval variables to give a full picture of the scheduling
model of IBM ILOG CP Optimizer. The idea is to introduce
with parsimony additional mathematical concepts (such as
intervals, sequences, functions) as new variables or expres-
sions to capture the temporal aspects of scheduling. The
previous paper introduced the notion of a conditional inter-
val variable as a new type of decision variable in the CP
paradigm and provided a small set of constraints that are
powerful enough to capture the structure of a large set of
scheduling problems. These concepts are recapped in next
section. The present paper builds on this model by propos-
ing a few additional types of variables, constraints and ex-
pressions for representing different aspects of resources in
scheduling: namely interval sequencing, cumulative and
state aspects. The corresponding notions are introduced in
three different sections of the paper. The search algorithm is

201

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

out of the scope of this paper, it has been described in (La-
borie and Godard 2007). Its main principles are summarized
in the final section. A more detailed description of the mod-
eling elements introduced in this paper (as well as additional
examples) is available in (Laborie et al. 2008). The expres-
sivity of the modeling language as well as the robustness of
the automatic search is illustrated in (Laborie 2009) on three
recently studied scheduling problems.

Conditional Intervals
This section recaps the concepts introduced in (Laborie and
Rogerie 2008). The framework extends classical constraint
programming by introducing the notion of a conditional in-
terval variable as a new type of decision variable.

An interval variable a is a decision variable whose do-
main dom(a) is a subset of {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}.
An interval variable is said to be fixed if its domain is re-
duced to a singleton, i.e., if a denotes a fixed interval variable
then:
• either interval is not executed: a = ⊥;
• or interval is executed: a = [s, e). In this case, s and

e are respectively the start and end of the interval and
d = e − s its duration.
Interval variables provide a powerful concept for effi-

ciently reasoning with optional or alternative activities. The
following constraints on interval variables are introduced to
model the structure of a scheduling problem. Let a, ai and b
denote interval variables and z an integer variable:
• Execution constraint exec(a) states that interval a is ex-

ecuted, that is a �= ⊥. These unary constraints can be
composed, for instance exec(a) ⇒ exec(b) means that
the execution of a implies the execution of b.

• Precedence constraints (e.g. endBeforeStart(a, b, z))
specify a temporal constraint between interval end-points
provided both intervals a and b are executed.

• A span constraint span (a, {a1, ..., an}) states that if a is
executed, it starts together with the first executed interval
in {a1, ..., an} and ends together with the last one. a is
not executed if and only if none of the ai is executed.

• An alternative constraint alternative (a, {a1, ..., an})
models an exclusive alternative between {a1, ..., an}:
if interval a is executed then exactly one of intervals
{a1, ..., an} is executed and a starts and ends together
with this chosen one. a is not executed if and only if none
of the ai is executed.
These constraints make it easy to capture the structure

of complex scheduling problems (hierarchical description of
the work-breakdown structure of a project, representation of
optional activities, alternative modes/recipes/processes, etc.)
in a well-defined CP paradigm.

Integer expressions are provided to constrain the different
components of an interval variable (start, end, duration). For
instance the expression startOf(a, dv) returns the start of
interval variable a when it is executed and integer value dv if
it is not executed. Those expressions make it possible to mix
interval variables with integer variables, global constraints
and expressions.

Sequence Variables

Usage and Rationale

Many scheduling problems involve disjunctive resources
which can only perform one activity at a time (typical ex-
amples are workers, machines or vehicules). From the point
of view of the resource, a solution is a sequence of activi-
ties to be processed. Besides the fact that activities in the
sequence do not overlap in time, common additional con-
straints on such resources are setup times or constraints on
the relative position of activities in the sequence.

To capture this idea we introduce the notion of sequence
variable, a new type of decision variable whose value is a
permutation of a set of interval variables. Constraints on
interval variables are provided for ruling out illegal permu-
tations (sequencing constraints) or for stating a particular re-
lation between the order of intervals in the permutation and
the relative position of their start and end values (no-overlap
constraint).

Formal semantics

Sequence Variable. A sequence variable p is defined on
a set of interval variables A. Informally speaking, a value
of p is a permutation of all executed intervals of A. Let
n = |A| and A be an instantiation of the intervals of A. A
permutation π of A is a function π : A → [0, n] such that,
if we denote length(π) = |{a ∈ A, x(a)}| the number of
executed intervals:

1. ∀a ∈ A, (a = ⊥) ⇔ (π(a) = 0)
2. ∀a ∈ A, π(a) ≤ length(π)
3. ∀a, b ∈ A, π(a) = π(b) ⇒ (a = ⊥) ∨ (b = ⊥) ∨ (a = b)

For instance, if A = {a, b} is a set of two interval vari-
ables with a being executed and b optional, the domain of
the sequence p defined on A consists of 3 values: {(a →
1, b → 0), (a → 1, b → 2), (a → 2, b → 1)} or in short
{(a), (a, b), (b, a)}.

Sequencing Constraints. The sequencing constraints be-
low are available:

• first(p, a) states that if interval a is executed then, it will
be the first interval of the sequence p: (a �= ⊥) ⇒
(π (a) = 1).

• last(p, a) states that if interval a is executed then, it will
be the last interval of the sequence p: (a �= ⊥) ⇒
(π (a) = length (π)).

• before(p, a, b) states that if both intervals a and b are
executed then a will appear before b in the sequence p:
(a �= ⊥) ∧ (b �= ⊥) ⇒ (π (a) < π (b)).

• prev(p, a, b) states that if both intervals a and b are exe-
cuted then a will be just before b in the sequence p, that
is, it will appear before b and no other interval will be se-
quenced between a and b in the sequence p:
(a �= ⊥) ∧ (b �= ⊥) ⇒ (π (a) + 1 = π (b)).

In the previous example, a constraint prev(p, a, b) would
rule out value (b, a) as an illegal value of sequence variable
p.

202

Transition Distance. Let m ∈ Z
+, a transition distance

is a function M : [1, m] × [1, m] → Z
+. Transition dis-

tances are typically used to express a minimal delay that
must elapse between two successive non-overlapping inter-
vals.

No-overlap Constraint. Note that the sequencing con-
straints presented above do not have any impact on the start
and end values of intervals, they only constrain the possi-
ble values of the sequence variable. The no-overlap con-
straint on an interval sequence variable p states that the se-
quence defines a chain of non-overlapping intervals, any in-
terval in the chain being constrained to end before the start
of the next interval in the chain. A set of non-negative in-
teger types T (p, a) can be associated to each interval of a
sequence variable. If a transition distance M is specified,
it defines the minimal non-negative distance that must sepa-
rate every two intervals in the sequence. More formally, let
p be a sequence and let T (p, a) be the type of interval a in
sequence variable p, the condition for a permutation value
π to satisfy the no-overlap constraint on p with transition
distance M is defined as:

noOverlap (π, M) ⇔ ∀a, b ∈ A,

0 < π (a) < π (b) ⇔ e (a)+M [T (p, a) , T (p, b)] ≤ s (b)
Figure 1 illustrates the value of a sequence variable with

a set of constraints it satisfies.

p: sequence on { ai }i∈[1,8]
a2

a8

a5

a3 a6 a4 a7 a1

Non-
executed
intervals

noOverlap(p)

a3 a6 a4 a7 a1

first(p, a3)
prev(p, a4 ,a7)
prev(p, a2 ,a3)
before(p, a6 , a1)

Figure 1: Example of sequence variables and constraints

Comparison with Existing Frameworks

In Constraint-Based Scheduling, disjunctive or unary re-
sources are usually considered as a special case of discrete
resources of unit capacity (ILOG 2008). As such, null-
duration activities do not require any capacity of the re-
source and are systematically ignored. The notion of op-
tional intervals in our framework allows a clear separation
between the notions of ignored interval (non-executed) and
zero-duration interval. All executed intervals, even zero-
duration ones, are sequenced. This is for instance useful for
modeling problems like the Traveling Salesman Problem for
which the visit of a city can be modeled by a zero-duration
interval variable.

Due to the fact that the concept of sequence is isolated
and identified as a decision variable of the model, the design
is very flexible and can be extended to support expressions
or constraints over sequence variables such as the transition
constraints presented in (Barták 2007) or constraints that en-
force other temporal relation than no-overlap.

Cumul Function Expressions

Usage and Rationale

In scheduling problems involving cumulative resources, the
cumulated usage of the resource by the activities is usually
represented by a function of time. An activity increases the
cumulated resource usage function at its start time and de-
creases it when it releases the resource at its end time. For
resources that can be produced and consumed by activities
(for instance the content of an inventory or a tank), the re-
source level can also be described as a function of time: pro-
duction activities will increase the resource level whereas
consuming activities will decrease it. In these problem
classes, constraints are imposed on the evolution of these
functions of time, for instance a maximal capacity or a min-
imum safety level. CP Optimizer introduces the notion of
a cumul function expression which is a constrained expres-
sion that represents the sum of individual contributions of
intervals.1 A set of elementary cumul functions is available
to describe the individual contribution of an interval variable
or a fixed interval of time. These elementary functions cover
the use-cases mentioned above: pulse for usage of a cumula-
tive resource, and step for resource production/consumption.
When the elementary cumul functions that define a cumul
function are fixed (and thus, so are their related intervals),
the cumul function itself is fixed and its value is a stepwise
integer function. Several constraints are provided over cu-
mul functions. These constraints allow restricting the possi-
ble values of the function over the complete horizon or over
some fixed or variable interval.

Formal semantics

Let F+ denote the set of all functions from Z to Z
+. A

cumul function expression f is an expression whose value
is a function of F+. Let u, v ∈ Z and h, hmin, hmax ∈
Z

+ and a be an interval variable, we consider elementary
cumul functions illustrated in Figure 2.

u

pulse(u,v,h)

0
v

h

u

step(u,h)
h

pulse(a,h)

0

h

a

pulse(a,hmin,hmax)hmax

a

hmin

stepAtStart(a,h)

0

h

a

stepAtStart(a,hmin,hmax)hmax

a

hmin

stepAtEnd(a,h)

0

h

a

stepAtEnd(a,hmin,hmax)
hmax

a

hmin

Figure 2: Elementary cumul function expressions

Whenever the interval variable of an elementary cumul
function is not executed, the function is the zero function. A

1In the rest of the paper, we often drop “expression” from “cu-
mul function expression” to increase readability.

203

cumul function f is an expression built as the algebraic sum
of the elementary functions of Figure 2 or their negations.
More formally, it is a construct of the form f =

∑
i εi · fi

where εi ∈ {−1,+1} and fi is an elementary cumul func-
tion.

The following constraints can be expressed on a cumul
function f to restrict its possible values:

• alwaysIn(f, u, v, hmin, hmax) means that the values of
function f must remain in the range [hmin, hmax] every-
where on the interval [u, v).

• alwaysIn(f, a, hmin, hmax) means that if interval a is ex-
ecuted, the values of function f must remain in the range
[hmin, hmax] between the start and the end of interval
variable a.

• f ≤ h: function f cannot take values greater than h.

• f ≥ h: function f cannot take values lower than h.

An integer expression is introduced to get the total con-
tribution of an interval variable a to a cumul function f at
its start: heightAtStart(a, f, dh) with a default value dh
in case a is not executed. A similar expression exists for
the end point. These expressions are useful to constrain the
variable height of an elementary cumul function specified as
a range [hmin, hmax] using classical constraints on integer
expressions.

Example

The constraints below model (1) a set of n activities {ai}
such that no more than 3 activities in the set can overlap and
(2) a chain of optional interval variables wj that represent
the distinct time-windows during which at least one activity
ai must execute. The constraints on interval variable status
ensure that only the first intervals in the chain are executed
and the two alwaysIn constraints state the synchronization
relation between intervals ai and intervals wj . A solution is
illustrated on Figure 3.

fa =
nX

i=1

pulse(ai, 1); fw =
nX

j=1

pulse(wj , 1);

fa ≤ 3;

∀j ∈ [1, n − 1]

j
exec(wj+1) ⇒ exec(wj);
endBeforeStart(wj , wj+1);

∀i ∈ [1, n]

j
alwaysIn(fa, wi, 1, n);
alwaysIn(fw, ai, 1, 1);

a1

a3

a5

a6

a2

a7

a4

fa

w1 w2 w3
fw

Figure 3: Covering chain

Comparison with Existing Frameworks

Cumul functions subsume the classical discrete cumula-
tive resources in Constraint-Based scheduling (discrete or
reusable resources and discrete reservoirs) such as the ones
used in IBM ILOG Scheduler (ILOG 2008) or predefined in
EUROPA2 (Frank and Jónsson 2003). In particular, minimal
and maximal capacity profiles can be expressed by alwaysIn
constraints on fixed intervals.

Cumul functions and their constraints are close to the
Resource Temporal Network formalism proposed in (La-
borie 2003). Elementary cumul functions represent relative
changes whereas alwaysIn constraints cover both lower-
than and greater-than conditions. It is possible to model ab-
solute change – setting the current value of the function to v
– by a combination of a stepAtStart(a, 0,∞) with variable
height and a constraint alwaysIn(a, v, v) stating that the tar-
get value is v. This can be used for instance to model an
activity that empties a tank (v = 0). This bridge between
the two formalisms shows the additional expressive power
of the alwaysIn constraint: as this constraint can hold on
variable intervals, it introduces the AI Planning notion of
condition in the constrained-based scheduling world. Note
that this type of alwaysIn constraint is easy to express in our
formalism because the notion of cumul function is isolated
as an expression. It would be much harder to express in a
formalism based solely on integer variables.

State Function Variables

Usage and Rationale

In the same way as the value of an integer variable may
represent an ordinal integer, functions over ordinal integers
are useful in scheduling to describe the time evolution of a
state variable. Typical examples are the time evolution of an
oven’s temperature, of the type of raw material present in a
tank or of the tool installed on a machine. To that end, we
introduce the notion of a state function variable and a set
of constraints similar to the alwaysIn constraints on cumul
functions to constrain the values of the state function.

A state function is a set of non-overlapping intervals over
which the function maintains a constant non-negative integer
state. In between those intervals, the state of the function is
not defined. For instance for an oven with 3 possible tem-
perature levels identified by indices 0, 1 and 2 we could have
the following time evolution (see also Figure 4):

[start = 0, end = 100): state = 0,
[start = 140, end = 300): state = 1,
[start = 320, end = 500): state = 2,
[start = 540, end = 600): state = 2, · · ·

Formal Semantics

State Function Variable. A state function variable f is
a variable whose value is a set of non-overlapping inter-
vals, each interval [si, ei) (with si < ei) is associated with
a non-negative integer value vi that represents the state of
the function over the interval. Let f be a fixed state func-
tion, we will denote f = ([si, ei) : vi)i∈[1,n]. We denote
D(f) = ∪i∈[1,n][si, ei) the definition domain of f , that is,

204

the set of points where the state function is associated a state.
For a fixed state function f and a point t ∈ D(f), we will
denote [s(f, t), e(f, t)) the unique interval of the function
that contains t and f(t) the value of this interval. For in-
stance, in the oven example we would have f(200) = 1,
s(f, 200) = 140 and e(f, 200) = 300.

A state function can be endowed with a transition dis-
tance. The transition distance defines the minimal dis-
tance that must separate two consecutive states in the state
function. More formally, if M [v, v′] is a transition dis-
tance matrix between state v and state v′, we have: ∀i ∈
[1, n − 1], ei + M [vi, vi+1] ≤ si+1.

100 200 300 400 5000

0
1
2

a1

a3

b0 b1 b23b21

alwaysEqual(f, a1, 1, true, false) alwaysEqual(f, a2, 2)

alwaysNoState(f, c)
a2

Transition Distance

b22

c

f

alwaysConstant(f, b1, true, true)

Figure 4: State function

Constraints on State Functions If f is a state function of
definition domain D(f), a an interval variable, v, vmin ≤
vmax non-negative integers and algns, algne two boolean
values:
• The constraint alwaysConstant(f, a, algns, algne) speci-

fies that whenever a is executed, the function takes a con-
stant value between the start and the end of a. Boolean
parameters algn allow specifying whether or not interval
variable a is synchronized with the start (resp. end) of the
state function interval:

(a) [s(a), e(a)) ⊂ [s(f, s(a)), e(f, s(a)))
(b) algns ⇒ s(a) = s(f, s(a))
(c) algne ⇒ e(a) = e(f, e(a))
(d) ∃v ∈ Z

+, ∀t ∈ [s(a), e(a)), f(t) = v

• The constraint alwaysEqual(f, a, v, algns, algne) speci-
fies that whenever a is executed the state function takes a
constant value v over interval a:

(a) alwaysConstant(f, a, algns, algne)
(b) v = f(s(a))

• The constraint alwaysNoState(f, a) specifies that if a is
executed, it must not intersect the definition domain of the
function, [s(a), e(a)) ∩ D(f) = ∅.

• The constraint alwaysIn(f, a, vmin, vmax) where 0 ≤
vmin ≤ vmax specifies that whenever a is executed,
∀t ∈ [s(a), e(a)) ∩ D(f), f(t) ∈ [vmin, vmax].
Those constraints are also available on a fixed interval

[start, end) as well as on an interval variable.

On Figure 4, interval variables b0 : [0, 100) and b1 :
[140, 300) are start and end aligned and thus, define two seg-
ments of the state function (of respective state 0 and 1). A
transition distance 40 applies in between those states. In-
terval variable b21 is start aligned and interval b22 is end
aligned both of state 2. As the transition distance 2 → 2
is greater than s(b22) − e(b21), the state function is aligned
on [s(b21), e(b22) = [320, 500). Interval variable c is con-
strained to be scheduled in an interval where the function
is not defined. Finally, interval variables a1, a2 and a3 re-
quire a particular state of the function, possibly with some
alignment constraint as for a1.

Example

The problem is to cook n items with an oven, each item
i ∈ [1, n] being cooked at a specific temperature vi and for
a specific range of duration. Items that are compatible both
in temperature and in duration can be batched together and
cooked simultaneously. Between two batches, a delay must
elapse for cooling, emptying, loading, and heating the oven.
For energy saving reasons the maximum reachable temper-
ature is limited by vsup over some time periods. The oven
can be modeled as state function with a transition distance
M . Each item is an interval variable ai, possibly optional
if the problem is over-constrained so that not all items can
be cooked, and states an alwaysEqual constraint with start
and end alignment. Each energy saving window is a fixed
interval [sj , ej)j∈[1,m] that states an alwaysIn constraint:

∀i ∈ [1, n], alwaysEqual(oven, ai, vi, true, true);
∀j ∈ [1, m], alwaysIn(oven, sj , ej , 0, vsup);

Comparison with Existing Frameworks

State function variables and related constraints subsume the
state resources and type timetable constraints on discrete re-
sources (ILOG 2008) available in some Constraint-Based
Scheduling systems. In practice, alignments, no state and
transition distance allow defining a sequence of states in the
schedule without knowing a priori the sequenced intervals
and their types. As a consequence, coupled with cumul func-
tions, state functions allow elegant models that permits the
generic expression of different types of temporal incompati-
bilities and synchronization between activities of a resource.

Constraint Propagation and Search

CP Optimizer implements a robust search algorithm to sup-
port the formalism described in this paper. This search was
tested on an extensive library of models. It is based on
the Self-Adapting Large Neighborhood Search described in
(Laborie and Godard 2007) that consists of an improvement
method that iteratively unfreezes and re-optimizes a selected
fragment of the current solution.

Unfreezing a fragment relies on the notion of Partial Or-
der Schedule (Policella et al. 2004). This notion has been
generalized to the modeling elements presented in this paper
(no-overlap constraint, cumul function expressions and state
variables).

205

The re-optimization of a partially unfrozen solution re-
lies on a tree search using constraint propagation tech-
niques. Classical constraint propagation algorithms have
been extended to be able to handle optional interval vari-
ables and additional constraints. These algorithms in-
clude: time-tabling, precedence graphs or disjunctive con-
straint (Baptiste, Le Pape, and Nuijten 2001) and edge-
finding variants (Vilı́m 2007). For instance, for cumul func-
tions, time-tabling algorithm has been extended to han-
dle alwaysIn constraints on interval variables. For state
functions, the time-tabling and disjunctive algorithms have
been extended to handle the alignment specifications and
the various types of incompatibilities between the alwaysIn,
alwaysConstant, alwaysEqual and alwaysNoState con-
straints.

By default, light propagation algorithms with an average
linear complexity are used. A set of inference level parame-
ters is available to the user to perform additional filtering as
summarized on Table 1.

Model element Inference level Filtering algorithms

Sequence Basic Light precedence graph
variable ≥ Medium Precedence graph
No-overlap Basic Timetable
constraint Medium + Disjunctive

Extended + EF variants
Cumul function Basic Timetable
expression Medium + Disjunctive

Extended + EF variants
State function Basic Timetable
variable ≥ Medium + Disjunctive

Table 1: Constraint propagation algorithms

Conclusion
The algebraic model presented in this paper has been im-
plemented in IBM ILOG CP Optimizer and is available in
C++, Java, C# as well as in the OPL Optimization Program-
ming Language (Laborie and Rogerie 2008). In complement
of the notion of optional interval variable that considerably
simplifies the modelling of complex scheduling structures
(optional activities, alternative modes or recipes), a set of
global variables and expressions has been introduced for
each aspect of a scheduling problem: sequence variables for
interval sequencing, cumul function expressions for cumu-
lative reasoning and state function variables for represent-
ing the time evolution of a state variable. A powerful set of
constraints on these variables and expressions is provided.
As all these constraints handle the optional status of interval
variables, they can be posted even on optional or alternative
parts of the schedule to effectively prune part of the search
space.

The clear separation between (1) the structure of schedul-
ing problems captured with composition constraints on op-
tional interval variables such as span and alternative and (2)
the resource constraints expressed as mathematical concepts
such as sequences or functions results in very simple, elegant
and concise models. For instance, the model for the clas-
sical Multi-Mode Resource-Constrained Project Scheduling

Problem with both renewable and non-renewable resources
is less than 50 lines long in OPL including data manipula-
tion.

The automatic search algorithm has shown to be robust
and efficient for solving a large panel of models as shown in
(Laborie and Godard 2007) in a preliminary study.

References

Aggoun, A., and Beldiceanu, N. 1993. Extending CHIP in
order to Solve Complex Scheduling and PlacementProb-
lems. Mathematical and Computer Modelling 17:57–73.
Baptiste, P.; Le Pape, C.; and Nuijten, W. 2001. Constraint-
Based Scheduling. Applying Constraint Programming to
Scheduling Problems. Kluwer Academics.
Barták, R. 2007. Constraint models for complex state
transitions. Computer Assisted Mechanics and Engineer-
ing Sciences (CAMES) 14:543–555.
Choco. 2008. Choco User Guide. http://choco-solver.net/.
Frank, J., and Jónsson, A. 2003. Constraint-Based At-
tribute and Interval Planning. Constraints 8(4):339–364.
Gecode. 2008. Gecode Reference Documentation.
http://www.gecode.org/.
ILOG. 2008. ILOG CP 1.4 Reference Manual.
Laborie, P., and Godard, D. 2007. Self-Adapting
Large Neighborhood Search: Application to single-mode
scheduling problems. In Proc. MISTA-07.
Laborie, P., and Rogerie, J. 2008. Reasoning with Condi-
tional Time-intervals. In Proc. FLAIRS-08.
Laborie, P.; Rogerie, J.; Shaw, P.; Vilı́m, P.; and Wagner,
F. 2008. ILOG CP Optimizer: Detailed Scheduling Model
and OPL Formulation. Technical Report 08-002, ILOG.
http://www2.ilog.com/techreports/.
Laborie, P. 2003. Resource Temporal Networks: Definition
and Complexity. In Proc. IJCAI-03.
Laborie, P. 2009. ILOG CP Optimizer for Detailed
Scheduling Illustrated on Three Problems. Technical Re-
port 09-002, ILOG. http://www2.ilog.com/techreports/.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2004.
Generating robust schedules through temporal flexibility.
In Proc. ICAPS 04.
Vilı́m, P. 2007. Global Constraints in Scheduling. Ph.D.
Dissertation, Charles University in Prague.

206

