
Inference with Relational Theories over Infinite Domains

Nicholas L. Cassimatis and Arthi Murugesan and Perrin G. Bignoli
Rensselaer Polytechnic Institute

Troy, NY 12180

Abstract

Many important tasks can be cast as weighted rela-
tional satisfiability problems. Propositionalizing rela-
tional theories and making inferences with them us-
ing SAT algorithms has proven effective in many cases.
However, these approaches require that all objects in a
domain be known in advance. Many domains, from lan-
guage understanding to machine vision, involve reason-
ing about objects that are not known beforehand. The-
ories with unknown objects can require models with in-
finite objects in their domain and thus lead to proposi-
tionalized SAT theories that existing algorithms cannot
deal with. To address these problems, we characterize a
class of relational generative weighted satisfiability the-
ories (GenSAT) over potentially infinite domains and
propose an algorithm, GenDPLL, for finding models of
these theories. We introduce the notion of a relevant
model and an increasing cost theory to identify condi-
tions under which GenDPLL is complete, even when a
theory has infinite models.

Introduction

Propositionalizing first-order theories and making infer-
ences using satisfiability algorithms has proven an effective
means of solving problems in many domains (Domingos and
Richardson, 2006; Jackson, 2000; Singla and Domingos,
2006). These methods generally assume that all the objects
in a domain are known in advance and begin by translat-
ing first-order clauses into propositional clauses. However,
many problems involve objects that are not known before in-
ference begins. For example, visual inference must deal with
objects that are initially unknown because they are occluded
and parsing a sentence using context-free grammars involves
reasoning about constraints on (potentially infinitely many)
phrases that were not known in advance of parsing.

Unknown objects pose two difficulties for using satisfi-
ability methods to reason over relational theories. First,
theories of finite size that express relations over un-
known objects often require infinite models. For exam-
ple, the formula, Mammal(a) ∧ ∀x(Mammal(x) →
Mammal(mother(x)) (together with formulae stating that
a mammal cannot be its own ancestor) require an infinite

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model because a’s mother must also have a mother who must
also have a mother, ad infinitum. Likewise, some context-
free grammars with finite numbers of rules and terminals can
generate an infinite number of sentences. Since an algorithm
cannot enumerate an infinite model in finite time, we must
find a way of finitely characterizing solutions to problems
that have infinite models.

A second problem associated with unknown objects is
that even if all models of a theory can be finitely character-
ized, there may nevertheless be infinitely many such mod-
els. Complete satisfiability algorithms (e.g., those based on
DPLL (Davis et al., 1962)) over finite domains are guaran-
teed to halt because they perform exhaustive search through
the space of possible models. Thus, developing model find-
ing algorithms when there are infinitely many possible mod-
els poses additional difficulties over standard complete sat-
isfiability algorithms.

Some approaches (Singla and Domingos, 2006) deal with
the problem of large propositional translations by lazily
grounding first-order clauses. However, their algorithm is
not complete and their approach requires that all objects are
known in advance. They thus do not deal with problems that
have infinitely large and/or infinitely many models. Several
approaches to probabilistic inference involve unknown ob-
jects and infinite domains. Infinite Markov Logic Networks
(Domingos and Richardson, 2007) have been extended to
infinite domains, but, to our knowledge, an algorithm has
not been proposed for inference over these networks. Sev-
eral other approaches (Kersting and De Raedt, 2001; Milch,
Marthi, Sontag, Russell, and Ong, 2005; Muggleton, 1996)
do not enable exact inference and/or involve graphical mod-
els that impose stronger restrictions on these networks (e.g.
regarding the existence of directed cycles) than are imposed
by satisfiability theories.

This paper describes an approach that addresses issues
raised by unknown objects and enables in many cases infer-
ence over problems with infinite models. First, we propose
the GenSAT language for expressing relational, weighted
constraints over unknown objects. Even in many cases
where GenSAT theories have infinite models, it is possible to
identify finite partial models of interest to specific inference
problems. We introduce the notion of a relevant model of
a GenSAT theory to define such models. Next, we describe
GenDPLL, an algorithm for finding models of GenSAT the-

21

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



ories. GenDPLL is a DPLL-like branch-and-bound algo-
rithm that lazily posits new objects and instantiates clauses
involving them. Finally, we prove that GenDPLL is guaran-
teed to find finite relevant models of certain classes of Gen-
SAT theories with infinite models, which we call increasing
cost models.

Generative Satisfiability Theories

We propose a language for generative satisfiability (Gen-
SAT) theories that express constraints over relations among
objects and licenses the ”generation” of new objects dur-
ing inference. The following simple example illustrates the
main aspects of the language. It involves clauses that state
that a telephone receiving a call and the striking of a bell
both lead to a ringing sound and that a phone ringer is only
on when the phone’s battery is not empty.

BellStrike(?x, ?t) → (10)Ring(?t), ?x

GetCall(?p, ?t) ∧ RingerOn(?p, ?t) → (7)Ring(?t), ?p

RingerOn(?p, ?t) → ¬EmptyBattery(?p, ?t)

The numbers ”10” and ”7” are the weights on the con-
straints represented by the clauses. Terms beginning with
’?’ are variables. Variables listed after the right-most literal
are called posited variables and indicate the potential of an
object to be generated. For example, ?x in the second clause
indicates that if a ringing sound occurs, then a bell (unknown
prior to inference) being stuck may have caused it. This will
be made more precise below. Non-posited variables are im-
plicitly quantified.

It is often the case that if an event occurs or a relation
obtains, then it must have been caused. For example, in
many planning problems, everything not true in the initial
state must have been made true by the execution of an oper-
ator. This is often encoded with what we here call a manda-
tory support constraint stating that either one of the possi-
ble causes of an effect holds or the effect does not hold:
cause1 ∨ ... ∨ causen ∨ ¬effect.

When unknown objects are potentially relevant, it is of-
ten not possible to create such a clause in advance because
all possible causes are not known. For example, if the num-
ber of bells is not known in advance of reasoning, then the
number of possible causes of a ring cannot be known.

It is thus impossible to explicitly state these mandatory
support constraints in many GenSAT theories. We infor-
mally describe how a GenSAT theory deals with these con-
straints and in the next section provide more detail. In
GenSAT, the possible supports of a literal are indicated by
clauses with numbers after the arrow. These are called
causal1 clauses. The first two clauses above are causal. The
weight associated with a causal clause, is the cost of a fully
grounded instance of that constraint being violated. Thus,
if two bells strike and do not cause ringing sounds, then
a cost of 20 accrues. When a literal (e.g. Ring(?t)) oc-
curs on the right hand side of a causal clause, it is called a

1Note the term ”causal” here is used merely to indicate that
some literals imply other literals via causal clauses. It is not the
aim of this paper to describe a framework for causal reasoning.

causal literal. Causal literals, when true, must must be im-
plied by at least one causal clause. Non-causal literals do
not require support. Non-causal clauses, which we will call
logical clauses, are always interpreted to be hard constraints
with infinite cost. They are syntactically distinguished from
causal clauses in not having an explicit weight.

If not all possible supports for a literal are encoded by
a theory, then one can neutralize mandatory causation with
a clause for an unknown support. For example, mandatory
support for Ring literals can be neutralized with the clause
UnknownCauseOfRinging(?t) → (∞)Ring(?t). This
encodes the fact that ringing can have a support that is not
listed among those enumerated in the theory.

More formally, a GenSAT theory is a set of causal and
logical clauses. Causal clauses are of the form:

C1 ∧ ... ∧ Cl → (w), E1, ..., Em, ?p1, ..., ?pn

where w is a positive scalar or ∞ and the C’s and E’s are
each either literals or negations of literals. Literals are of the
form: P (a1, , an), where each argument is a term. Terms
that are not variables are called objects. Logical clauses are
of the form:

A1 ∧ ... ∧ Al → B1 ∧ ... ∧ Bm, ?p1, ..., ?pn

where the A’s and B’s are each either literals or negations
of literals. Logical clauses can have zero literals in the
antecedent and one in the consequent, in which case they
can be called facts. The fact → P can be abbreviated as
P . Clauses with no posited variables can be abbreviated by
omitting the comma.

Translation to Propositional Form

In this section, we specify a translation from a GenSAT the-
ory into a (potentially infinite) set of propositional clauses.
The translation facilities defining models of GenSAT theo-
ries and is important in characterizing a procedure we pro-
pose for making inferences over GenSAT theories.

The translation of a GenSAT theory is the union of: 1.
A set of propositional clauses formed by grounding clauses
in the theory and 2. A set of clauses that capture manda-
tory support constraints implied by the other clauses in the
theory.

We illustrate translation with the GenSAT theory with the
following four clauses:

Hammer(?h)∧Bell(?b)∧Hit(?h, ?b) → (56)Ring(?b), ?b,

Hammer(h), Bell(b), Hit(h, b)

The translation of this theory grounds variables with ob-
jects occurring as arguments of literals in the theory and
splits causal clauses into two clauses, one logical and one
causal. Reasons for this split will be discussed below.

Hammer(h)∧Bell(b)∧Hit(h, b) → (56)CauseRing(h, b)

CauseRing(h, b) → Ring(b)

Hammer(b)∧Bell(h)∧Hit(b, h) → (56)CauseRing(b, h)

CauseRing(b, h) → Ring(h)

22



Hit(h, b), Hammer(h), Bell(b)

Note that the second pair of clauses above are in some
sense spurious since Hammer(b) should intuitively be false
given that Bell(b) and that bells are not hammers. A clause
indicating that hammers are not bells could prevent models
with Hammer(b) from being true2.

The translation also includes clauses representing the con-
straint that ringing events must be caused by a hitting event:

¬CauseRing(h, b) → ¬Ring(b)

¬CauseRing(b, h) → ¬Ring(h)

This relatively simple expression of mandatory support
constraints is enabled by splitting or ”bifurcating” ground
GenSAT clauses with the CauseRing literals. This is the
purpose of splitting causal literals in the translation.

To illustrate a theory over unknown objects, consider
adding a clause to the effect that ringing bells generates
sounds:

Ring(?b) → GenerateSound(?b, ?s), ?s

Adding this clause to the GenSAT theory above would
add the following two clauses to its translation:

Ring(b) → GenerateSound(b, bSound)

Ring(h) → GenerateSound(h, hSound)

These clauses include terms bSound and hSound which,
informally, are the sound generated by the ringing of b and
of h.

We now describe the translation more precisely in terms
of a function that maps a GenSAT theory onto a set of
grounded propositional clauses.

The definition of the grounding of a GenSAT theory de-
pends on a skolem function s that uniquely maps posited
variables to objects not in P . The purpose of this function is
to produce objects that are inferred during inference and that
thus do not occur in P . For example, in the theory above,
s(b) = bSound.

The translation of a GenSAT theory P is the union of
groundings of clauses in P to propositional clauses and the
set of clauses representing mandatory support constraints for
the theory.

T ranslation(P, s) = Grounding(P, s) ∪
MCClauses(Grounding(P, s))

A clause is in Grounding(P, s) if it can be generated by
successive steps of grounding.

Grounding(P, s) =

OneStep(P, Objects(P ), s)∪

OneStep(P, Objects(Grounding(P, s)), s)

A clause is produced in a step of grounding if it can be
produced by assigning to variables objects that are either
generated by a skolem function or are already in the transla-
tion.

2In the future, a sorted version of GenSAT could be developed
to prevent some spurious matches

OneStep(P, O, s) = UcClauseGrounding(c, O, s)

The grounding of a clause with respect to a set of objects
is the set of clauses that can be formed by all the possible as-
signments of those objects to variables in the clause. Where
cl is a logical clause, l → r, ...pi..., with variables v1...vn,
first appearing in the clause in that order,

ClauseGrounding(cl, objects, s) = {la,s → ra,s|a ∈ A}

where la,s and ra,s, are the antecedent and consequent of cl

formed by substituting non-posited variables in cl according
to the assignment a and skolum function s applied to posited
variables.

For example, the grounding of A(?x) → B(?y), ?x, with
respect to s and objects {a, b}) includes (only) the following
two clauses: A(s(a)) → B(a) and A(s(b)) → B(b).

The grounding of causal clause, cs = ls → (w)rs, ...pi...
is similar except it is ”bifurcated”, as was illustrated previ-
ously and is described presently:

ClauseGrounding(cs, objects, s) = ls,a → (w)m, m → rs,a

where m, called an intermediate literal, occurs nowhere else
in the translation and is unique to cs and a.

For example, the grounding of P (?x) → (15)Q(?y), ?y
with objects a, b is the following set of four clauses

{P (a) → (15)ma, ma → Q(s(a)),

P (b) → (15)mb, mb → Q(s(b))}

As mentioned above, the purpose of bifurcating a causal
clause using an intermediate literal, m is that it enables
the creation of clauses that express mandatory support con-
straints. A mandatory support constraint for a literal states
that if none of the possible ”supports” of l is true, then l is
false. Specifically:

MCClause(l) = (...∧¬mi∧...) → ¬l, where the mi are
the intermediate literals of causal clauses in the translation
that have l in the consequent.

MCClauses(S) = ∪lMCConstraint(l), where l
ranges over all the literals in S that occur in clauses ground
from causal literals.

For example, if Rain() → (∞)Wet(g) and
Sprinkler(g) → (∞)Wet(g) are the only two causal
clauses in the grounding of P , then the following
mandatory support clause appears in the translation,
¬mrain ∧ ¬msprinkler → ¬Wet(g), where mrain and
msprnkler are the intermediate literals formed in the
grounding of the clauses in P.

Note also that any MaxSAT theory can be expressed as a
GenSAT theory. MaxSAT theories are a conjunction of dis-
junctions (often called clauses) of the form (t1∨ ...∨ tn, w),
where each ti is a possibly negated propositional literal
and w is a weight. MaxSAT theories can be straight-
forwardly translated into GenSAT theories by translating
clauses into the GenSAT clauses with equivalent truth condi-
tions: (¬t1...∨ ...¬tn−1 ∨ tn, w). This equivalence between
implication and disjunction can also be used to convert a
translation of a GenSAT theory into a MaxSAT constraint

23



that has possibly infinitely many clauses, some of which
have infinite many disjunctions.

Since a translation can have an infinite number of clauses
with the same literal in the consequent, there can be manda-
tory causation constraints that have an infinite number of
disjuncts. All other clauses have only finite numbers of dis-
juncts because they are translations of GenSAT clauses, all
of which have finite relational disjuncts.

Models

Propositional translations of GenSAT theories motivate a
straightforward approach to defining models of them. In
many cases where the translation is infinite, it is possible
to identify finite models of a theory that are suitable for the
purposes of inference. We introduce the notion of relevance
in order to characterize such models.

A model for a GenSAT theory is simply an assignment
of truth values to the ground literals in its translation. The
cost of a model is the sum of the weights on the clauses that
are unsatisfied under this assignment. A clause, ...li... →
...lj ..., is unsatisfied if all the li are true and lj is false or if
one of the lj are false and all of the li are true. A solution
to a GenSAT theory is a model whose cost is finite and not
exceeded by the cost of another model for that theory. We
say that an object is an object of a model if it occurs in a
literal assigned a truth value by the model. Except for the
possibility of involving infinite numbers of literals, GenSAT
models are similar to models of ordinary MaxSAT theories.

Satisfiability algorithms return models of SAT theories.
This creates a problem for making inferences using Gen-
SAT theories because they can have infinite models. In many
cases, however, it is possible to identify ”relevant” parts of
models that suit many inferential purposes. In this section,
we introduce and more precisely characterize the notion of
a relevant model.

As a simple illustration, consider the GenSAT theory with
two clauses, Pet(?x) → (10)Loved(?x) and Dog(?x) →
Furry(?x), and one fact, Dog(d). Intuitively, we can in-
fer from one fact from this theory: that the dog, d, is furry.
There are however four models for this theory. In each of
these models, the d is furry, but the models vary according
to whether d is a pet or loved.

Given what is known, however, whether d is a pet or loved
cannot be inferred and can in no way affect whether d is
furry. Ignoring the Pet and Loved literals, we have one
relevant model:

Dog(d) Furry(d) Cost
1 1 0

Definition 1 A model of GenSAT theory P is relevant iff
it can be derived by eliminating all irrelevant truth value
assignments from a model for P. A literal l and a truth value
assignment (l, tv) are relevant in a model if (i) l is a ground
literal in a clause in P or if (ii) l is in a grounding of a
clause, C, that has a relevant literal and l’s truth value can
affect whether C is satisfied.

As an example of the second condition above, if
Furry(d) is false in a model, then Dog(d) is relevant in

that model because if Dog(d) is true then the clause is un-
satisfied. Since neither Pet(d) nor Loved(d) occur in the
GenSAT theory and because they occur in no clauses in the
translation that have a relevant literal, they are not assigned
in any relevant models.

A relevant solution to a GenSAT theory is a relevant
model whose cost is finite and not exceeded by another rel-
evant model.

Finding models
An algorithm for finding models of GenSAT theories must
address several challenges. First, in cases where a theory
has both finite and infinite models, care must be taken to not
endlessly explore models with infinite size. Second, even
in cases where there are no infinite models, the size of the
propositionalized translation can be very large. Finally, in
cases where all objects are not known during inference, all
possible supports for a literal cannot be known in advance
either. Thus, an algorithm can only guess at the mandatory
support constraint before exploring models, and it must po-
tentially alter that guess as search proceeds.

The GenDPLL algorithm successfully addresses these is-
sues under certain conditions described below. It is based
on DPLL ”branch and bound” (Borchers and Furman, 1999)
algorithms. These algorithms perform a depth-first search
of the space of possible models by branching on one literal
at a time, first exploring one truth value for that literal and
then the other. Each time DPLL assigns a truth value to a lit-
eral, it performs an elaboration step, which sets variables to
values implied by current assignments. ”Branch and bound”
DPLL algorithms avoid needless search by ceasing to ex-
plore a partial assignment when its predicted cost exceeds
the best model found so far (or some threshold set a priori).

Algorithm 1 GenDPLL(P, t)

Require: P is a GenSAT theory and t ≥ 0

Choose an arbitrary skolem function s.
initialClauses = OneStep(Objects(P ), P, s)
q = the empty queue
m = GenDPLLInner(P, t, q, {}, intialClauses, 0, nil)
if (m 
= fail) then

return m
else

return GenDPLL(P, 2t)
end if

In order to not endlessly explore infinite-cost models,
GenDPLL begins searching (GenDPLLInner) with a cost
threshold such that partial models are excluded if their cost
exceeds it. If no such models are found, search begins again
with the threshold doubled. This can lead to parts of the
search space being explored more than once, but this can
often be addressed in practice by estimating the cost of the
best model and choosing a threshold significantly above that
estimate.

The main procedural differences between GenDPLL and
DPLL occur during the elaboration step. Elaboration in-
volves three elements that address the three problems with

24



infinite models we have just described. First, in order
to conserve space, GenDPLL lazily grounds GenSAT into
weighted DPLL constraints. Second, the elaboration step
uses a variable selection and unit propagation scheme that
prevents infinite models from being explored unnecessarily.
Finally, at any given time, it explicitly assumes that all the
possible supports for a literal are known. When a new pos-
sible support for a literal is inferred, GenDPLL backtracks
to the stage where it assumed that all supports for that lit-
eral were known. Thus, at any given time, the assumptions
about all supports being known for a literal are encoded and
can be retracted. These aspects of GenDPLL are explained
in further detail presently.

Algorithm 2 GenDpllInner(P, threshold, q, assignment,
propClauses, depth, best)

Require: P is a GenSAT theory, q is a queue of propo-
sitionalized literals, t > 0, maxNewObjects ≥
1, assignment is a partial assignment from proposi-
tional literals, propClauses is a set of propositionalized
clauses, d ≥ 0, bestModel is a model of P or nil.

elaborate(P, assignment, propClauses, depth)
weight ← total cost of unsatisfied clause in
propClauses under assignment.
if there is a hard contradiction or weight > threshold
then

return fail
else if q is empty then

return assignment
else

next ← q.next()
newAssignment ← GenDPLLInner(P, threshold, q,

assignment[next/true], propClauses, depth, best-
Model)
if (newAssignment = fail) then

return GenDPLLInner(P, threshold,
q, assignment[next/false],
propClauses, depth, bestModel)

else
return GenDPLLInner(P, threshold,

q, assignment[next/false],
propClauses, depth, newAssignment)

end if
end if

GenDPLL takes as input a GenSAT theory and a max-
imum cost for models it considers. Its output is one of
the models with the lowest cost. In describing GenDPLL
we make use of the functions introduced in the section on
propositional translation.

GenDPLL maintains several data structures.
groundConstraints is the list of propositional
constraints that have been translated from first-order Gen-
SAT clauses. ”The queue”, or q, contains propositional
literals to be branched on. If a literal is put on the queue in a
partial model that has been backtracked from, it is removed
from the queue during backtracking. Specifically, literals
on the queue are associated with the depth of search (d)

Algorithm 3 Elaborate(P, assignment, propClauses, depth)

Require: P is a GenSAT theory, assignment is a partial
assignment of literals to truth values, propClauses is a
set of propositional clauses and depth ≥ 0
maxNewObjects ← an arbitrary nonzero
purge q of literals added at depth levels greater than
depth
n ← 0
oldMCCLauses = mcCLauses(D)
repeat

propClauses ← propClauses ∪ all relevant literals
in OneStep(P, objects(PropClauses))
newLiterals ← literals in D not in assignment or
already in q
add newLiterals to q
n ← n+ number of newly posited objects in
newLiterals

until n < maxNewObjects
newMCCLauses ←
mcClauses(D, P )− oldMCCLauses
add to q all relevant literals in newMCClauses not in
assignment or not already in q
propClauses = propClauses ∪ newMCCLauses
move to front of q all known supports assumption literals
in newMCCLauses

when they were put on the queue. When backtracking from
a level, all literals from that level are dequeued.

Lazy Instantiation. GenDPLL begins by finding all
grounded GenSAT constraints and adds the literals in them
to the queue. It then performs an elaboration step (described
in more detail below) that grounds conditionals involving
the current literal and adds new relevant (according to the
the definition in section ) literals to the queue. If the elab-
oration step finds that the current assignment’s cost exceeds
the threshold, failure is returned and literals put on the queue
at this depth of search are removed. If there are no more lit-
erals on the queue, this assignment and weight are returned
and the threshold is lowered to the new weight. If there are
more literals to explore, GenDPLL ”branches” on the next
literal in the queue.

Finite elaborations. Since grounding can add new
objects, which themselves can lead to further grounded
clauses, it is a potentially infinite process. Conse-
quently, GenDPLL only adds a finite number of objects
(maxNewObjects) during each elaboration step. This pre-
vents elaboration steps that do not terminate. Since literals
that might lead to more objects being posited remain on the
queue, they will be elaborated eventually, so long as this par-
tial assignment is not backtracked from.

Mandatory causation. During the elaboration step, if a
literal, l, is created for the first time and it appears on the
right hand side of a ground causal rule, GenDPLL ”as-
sumes” all supports are known for it and creates a manda-
tory support constraint. Specifically, for a P (a1, ..., an)
the literal AllSupportsKnownPm(a1, ..., an) (where m
is the number of known-support literals that have been

25



instantiated for P (a1, ..., an)) is added to the current as-
signment as true and the following constraint is added:
AllSupportsKnownPm(a1, ...an) ∧ ¬C1 ∧ ¬Cm →
¬P (a1, ..., an).

Literals whose predicates begin with
AllSupportsKnown 3 When another causal clause is
added with P (a1, ..., an) on the right hand side, the point in
search where its known-supports assumption was made is
backtracked to and the assumption is constrained false.

Increasing Cost Theories

There are many cases where infinite numbers of models
and/or models of infinite size are possible, but where a fi-
nite model is guaranteed to be the best solution. For ex-
ample, some context-free grammars generate infinite num-
bers of trees. However, if the parses are weighted such that
each phrase in the parse adds a ”cost” to that parse tree, then
if there are any finite parses at all, the parse with the best
cost will be finite. As another example, consider path search
problems with an unbounded numbers of moves being pos-
sible. If there is a path of finite length and there is a cost
associated with each move, then the best (i.e., least costly)
path will be finite, even if there are paths of infinite length.

In cases such as these, where the cost of a theory’s model
grows as the size of the model grows, GenDPLL can find
models of GenSAT theories even when there are infinitely
many models and/or some have infinite size. In this section
we will precisely characterize such ”increasing cost theo-
ries” and show that GenDPLL is guaranteed to find finite
models of them, when they exist.

First, we show that GenDPLL is sound.

Proposition 1 GenDPLL only returns models whose as-
signed literals are all relevant.

Proof. When finding a model for a theory P, GenDPLL
will only put the following two kinds of literals on the queue:
ground literals in clauses in P and relevant literals in con-
ditionals ground from other literals on the queue that have
been assigned. These are precisely the conditions of literal
relevance. Since GenDPLL will only make assignments for
terms in the queue, all literals in the assignments it forms
will be relevant. �

When models for a GenSAT theory increase in cost as
objects are added, GenDPLL will halt. We can state this
more precisely using the notion of an increasing cost theory.

Definition 2 A GenSAT theory P is an increasing cost the-
ory if for each object o that does not occur in P (i.e., for each
object that will be posited during inference), o is involved in
at least one satisfied clause (which by definition will have a
positive nonzero cost).

Proposition 2 For increasing cost theories, GenDPLL ter-
minates and when there is a relevent solution, GenDPLL re-
turns one.

3If predicates beginning with ”AllSupportsKnown” exist in the
GenSAT theory, GenDPLL will choose another name for this pred-
icate.

Proof. First, we show that for one of the relevant solu-
tions, s, for an increasing-cost theory, GenDPLL will find
it and then we show that it will do so in finite time. If a
literal, l, is relevant, it is, by definition, either because (1)
it is a ground literal in P (in which case it is either put on
the queue to be branched on or assigned at the beginning of
GenDPLL) or (2) it is relevant under an assignment of other
ground literals in P or in partial assignments whose literals
are already relevant. In the second case, the elaboration step
either branches on or unit propagates values for these liter-
als. These two cases correspond exactly to the definition of a
relevant literal. Thus, unless a relevant solution has already
been found, s will be found.

This will occur in finite time because all models with
higher cost will exceed threshold or the cost of the best
model as objects and the cost of unsatisfied constraints they
participate in are added. Such constraints are guaranteed to
exist by definition of an increasing-cost model. �

Conclusions

Many problems can be formulated using relational theo-
ries over known and unknown objects. Such theories can
have infinite numbers of models with infinite variables. On
problems where each unknown object is associated with at
least one broken constraint, DPLL-like search with lazy con-
straint instantiation and explicit assumptions about causes
for objects being known can be used to find solutions.

References

Borchers, B., & Furman, J. (1999). A two-phase exact al-
gorithm for MAX-SAT and weighted MAX-SAT problems.
Journal of Combinatorial Optimization, 2, 299-306.
Domingos, P., & Richardson, M. (2006). Markov Logic Net-
works. Machine Learning, 62, 107-136.
Een, N., & Sorensson, N. (2005). MiniSat-A SAT solver
with conflict-clause minimization. In SAT 2005 Competi-
tion.
Heras, F., Larrosa, J., & Oliveras, A. (2008). MiniMaxSAT:
An Efficient Weighted Max-SAT Solve. Journal of Artificial
Intelligence Research 31, 1-32.
Jackson, D. (2000). Automating first-order relational logic.
Paper presented at the ACM SIGSOFT Symposium on Foun-
dations of Software Engineering.
Kersting, K., & De Raedt, L. (2001). Towards combining
inductive logic programming with Bayesian networks. Pa-
per presented at the ILP-01.
Milch, B., Marthi, B., Sontag, D., Russell, S., & Ong, D.
L. (2005). Approximate inference for infinite contingent
Bayesian networks. Paper presented at the AISTATS-05.
Muggleton, S. (1996). Stochastic logic programs. In L. D.
Raedt (Ed.), Advances in inductive logic programming (pp.
254-264): IOS Press.
Selman, B., Levesque, H., & Mitchell, D. (1992). A new
method for solving hard satisfiability problems. Paper pre-
sented at the Tenth National Conference on Artificial Intelli-
gence.
Singla, P., & Domingos, P. (2006). Memory-Efficient Infer-
ence in Relational Domains. Paper presented at AAAI-06.

26




