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Abstract

We compare two approaches to Bayesian network in-
ference, called variable elimination (VE) and arc rever-
sal (AR). It is established that VE never requires more
space than AR, and never requires more computation
(multiplications and additions) than AR.

Introduction

Two approaches for eliminating variables from Bayesian
networks (BNs) (Pearl 1988) are considered here. The
first approach, called variable elimination (VE) (Zhang and
Poole 1994), eliminates a variable by multiplying together
all of the distributions involving the variable and then sum-
ming the variable out of the obtained product. The sec-
ond method, known as arc reversal (AR) (Olmsted 1983;
Shachter 1986), removes a variable vi with k children in
a BN by building 3k − 1 distributions and outputting k of
them. More specifically, three distributions are built when
considering each child, except for the last child, when only
two distributions need be constructed.

In this paper, we obtain space and computational relation-
ships between VE and AR. Proofs and experimental results
will be provided in a separate paper. Note that only rows
with positive probability values are stored. We introduce the
notion of row-equivalent to indicate that the rows (config-
urations) in one distribution are precisely those in another
distribution. Within AR itself, we establish that the rows ap-
pearing in the first constructed distribution are exactly those
rows appearing in the third constructed distribution, for each
child (of the variable being eliminated) except the last. That
is, the first distribution built is row-equivalent to the third
distribution built for each child except the last. Next, with
respect to VE and AR, we show that the only distribution
output by VE is row-equivalent to the distribution created for
the last child in AR. As AR also requires space for the dis-
tributions created for any other children of the variable be-
ing eliminated, it is established that VE never requires more
space than AR. With respect to computation, we consider
multiplication and addition. It is shown that the number of
multiplications performed by VE is the same as the number
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of multiplications required by AR to build the first distribu-
tion for every child of the variable being eliminated. How-
ever, AR necessarily requires further multiplications when
building the third distribution, for all children except the
last. Therefore, VE never does more multiplications than
AR. Lastly, with respect to addition, the number of addi-
tions required by VE for its only marginalization operation
are exactly those required by AR to build the second dis-
tribution when considering the last child. As AR needs to
perform marginalization to build the second distribution for
all other children, it is shown that VE never performs more
additions than AR.

AR eliminates a variable vi by reversing the arcs (vi, vj)
for each child vj of vi, where j = 1, 2, . . . , k. With respect
to multiplication and addition, AR reverses one arc (vi, vj)
as a three-step process:

p(vi, vj |Aj) = p(vi|Aj−1) · p(vj |Pj), (1)

p(vj |Bj) =
∑

vi

p(vi, vj |Aj), (2)

p(vi|Aj) =
p(vi, vj |Aj)
p(vj |Bj)

. (3)

We refer to Eqs. (1) - (3) as the first equation in AR, the
second equation in AR, and the third equation in AR, re-
spectively.

For example, to eliminate variable b from the BN shown
in Fig. 1, where two of the CPTs are illustrated in Fig. 2, AR
reverses arc (b, c) by building the following distributions:

p(b, c|a, e) = p(b|a) · p(c|b, e), (4)

p(c|a, e) =
∑

b

p(b, c|a, e), (5)

p(b|a, e, c) =
p(b, c|a, e)
p(c|a, e)

, (6)

as illustrated in Figure 3.

Row Equivalence within AR

When computing the product of two probability distribu-
tions, Wong et al. (1995) showed that the rows appearing in
the product are precisely the natural join (Maier 1983), de-
noted ��, of the two distributions. Similarly, when comput-
ing a marginalization of a probability distribution, the rows

571

Proceedings of the Twenty-Second International FLAIRS Conference (2009)



a

b

c d

e f

Figure 1: A BN.

a b p(b|a) b e c p(c|b, e)
0 0 0.502 0 0 0 0.708
0 1 0.498 0 0 1 0.292
1 1 1.000 0 1 0 1.000

1 0 0 0.323
1 0 1 0.677
1 1 0 0.358
1 1 1 0.642

Figure 2: CPTs p(b|a) and p(c|b, e) for the BN in Fig. 1.

appearing in the marginalization are exactly those defined by
the projection (Maier 1983), denoted π, of the distribution.
This leads us to the following known result in the relational
database community.
Theorem 1. (Maier 1983) Let r be a relation on attributes
X and Y ⊆ X . Then r = r �� πY (r).

In order to obtain the corresponding result for AR, we
introduce the notation of row-equivalent.
Definition 1. Given two potentials φ1(X) and φ2(X) on the
same set X of variables, we say φ1(X) and φ2(X) are row-
equivalent, denoted φ1(X) � φ2(X), if the configurations
of X in φ1 are precisely those in φ2.

In other words, φ1(X) � φ2(X) means that the same
rows appear in both φ1 and φ2. Note that the probability
values can still be different.
Theorem 2. Let φ(X) be a potential and Y ⊆ X . Let

φ′(X) =
φ(X)∑
Y

φ(X)
.

Then φ(X) � φ′(X).
The rows in p(vi, vj |Aj) of the first equation in AR can

now be shown to be precisely those in p(vi|Aj) of the third
equation in AR.
Theorem 3. Suppose AR will eliminate variable vi with k
children v1, v2, . . . , vk in a given BN. Then the distribution
created in Eq. (1) is row-equivalent to the distribution cre-
ated in Eq. (3), for j = 1, 2, . . . , k − 1.

For example, recall the three distributions built in Eqs.
(4)-(6) and that are depicted in Fig. 3. It can be seen that
the rows in distribution p(b, c|a, e) of Eq. (4) are exactly the
same rows in distribution p(b|a, e, c) of Eq. (6).

b
�

�

a� b� e� c� p(b,c|a,e)�
0� 0� 0� 0� 0.355�
0� 0� 0� 1� 0.147�
0� 0� 1� 0� 0.502�
0� 1� 0� 0� 0.161�
0� 1� 0� 1� 0.337�
0� 1� 1� 0� 0.178�
0� 1� 1� 1� 0.320�
1� 1� 0� 0� 0.323�
1� 1� 0� 1� 0.677�
1� 1� 1� 0� 0.358�
1� 1� 1� 1� 0.642�

�

�

�

�

�

a� b� e� c� p(b|a,e,c)�
0� 0� 0� 0� 0.688�
0� 0� 0� 1� 0.303�
0� 0� 1� 0� 0.738�
0� 1� 0� 0� 0.312�
0� 1� 0� 1� 0.697�
0� 1� 1� 0� 0.262�
0� 1� 1� 1� 1.000�
1� 1� 0� 0� 1.000�
1� 1� 0� 1� 1.000�
1� 1� 1� 0� 1.000�
1� 1� 1� 1� 1.000�

a� e� c� p(c|a,e)�
0� 0� 0� 0.516�
0� 0� 1� 0.484�
0� 1� 0� 0.680�
0� 1� 1� 0.320�
1� 0� 0� 0.323�
1� 0� 1� 0.677�
1� 1� 0� 0.358�
1� 1� 1� 0.642�
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Figure 3: Row-equivalence of AR Eqs. (4) and (6), namely,
the same rows appear in the first and third distributions.

Relationships Between VE and AR

The establishment of row equivalence within AR allows us
to comment on the space relationship between AR and VE.
Theorem 4. VE never requires more space than AR to elim-
inate a set of variables from a BN.

Since VE never uses more space than AR, it can be shown
that VE does less work than AR.
Theorem 5. VE never requires more multiplications, nor
more additions, than AR to eliminate a set of variables from
a BN.
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