TorusE: Knowledge Graph Embedding on a Lie Group

Takuma Ebisu,1,2 Ryutaro Ichise2,1,3
1SOKENDAI (The Graduate University for Advanced Studies)
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
2National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
3National Institute of Advanced Industrial Science and Technology
2-3-26 Aomi, Koto-ku, Tokyo, Japan
{takuma,ichise}@nii.ac.jp

Abstract
Knowledge graphs are useful for many artificial intelligence (AI) tasks. However, knowledge graphs often have missing facts. To populate the graphs, knowledge graph embedding models have been developed. Knowledge graph embedding models map entities and relations in a knowledge graph to a vector space and predict unknown triples by scoring candidate triples. TransE is the first translation-based method and it is well known because of its simplicity and efficiency for knowledge graph completion. It employs the principle that the differences between entity embeddings represent their relations. The principle seems very simple, but it can effectively capture the rules of a knowledge graph. However, TransE has a problem with its regularization. TransE forces entity embeddings to be on a sphere in the embedding vector space. This regularization warps the embeddings and makes it difficult for them to fulfill the abovementioned principle. The regularization also affects adversely the accuracies of the link predictions. On the other hand, regularization is important because entity embeddings diverge by negative sampling without it. This paper proposes a novel embedding model, TorusE, to solve the regularization problem. The principle of TransE can be defined on any Lie group. A torus, which is one of the compact Lie groups, can be chosen for the embedding space to avoid regularization. To the best of our knowledge, TorusE is the first model that embeds objects on other than a real or complex vector space, and this paper is the first to formally discuss the problem of regularization of TransE. Our approach outperforms other state-of-the-art approaches such as TransE, DistMult and ComplEx on a standard link prediction task. We show that TorusE is scalable to large-size knowledge graphs and is faster than the original TransE.

1 Introduction
Knowledge graphs are one of the ways to describe facts of the real world in a form that a computer can easily process. Knowledge graphs such as YAGO (Suchanek, Kasneci, and Weikum 2007), DBpedia (Auer et al. 2007) and Freebase (Bollacker et al. 2008) are used for many tasks, such as question answering, content tagging, fact checking, and knowledge inference. Although some knowledge graphs contain millions of entities and billions of facts, they still might be incomplete and have missing facts. Hence, it is required to develop a system that can complete knowledge graphs automatically.

In a knowledge graph, facts are stored in the form of a directed graph. Each node represents an entity in the real world and each edge represents the relation between entities. A fact is described by a triple \((h,r,t)\), where \(h\) and \(t\) are entities and \(r\) is a relation directed from \(h\) to \(t\). Some relations are strongly related. For example, the relation HasNationality is related with the relation CityOfBirth. Hence, if the triple \((\text{DonaldJohnTramp}, \text{HasNationality}, \text{U.S.})\) is not stored while \((\text{DonaldJohnTramp}, \text{CityOfBirth}, \text{NewYorkCity})\) is stored in a knowledge graph, the former can be easily predicted because most people born in New York City have the nationality of U.S. Many kinds of models have been developed to predict unknown triples and to complete knowledge graphs through a link prediction task to predict the missing \(h\) or \(t\).

TransE, the original translation-based model for link prediction tasks, was proposed by Bordes et al. (2013) and it is well known because of its effectiveness and simplicity. TransE embeds triples and relations on a real vector space with the principle \(h + r = t\), where \(h\), \(r\) and \(t\) are embeddings of \(h\), \(r\) and \(t\), respectively, if the triple \((h,r,t)\) is stored in the knowledge graph used as training data. Although it is very simple, the principle can capture the structure of a knowledge graph efficiently. Many extended versions of TransE have been proposed. These include TransH (Wang et al. 2014), TransG (Xiao, Huang, and Zhu 2016) and pTransE (Lin et al. 2015a). On the other hand, various types of bilinear models, such as DistMult (Yang et al. 2014), HolE (Nickel, Rosasco, and Poggio 2016) and ComplEx (Trouillon et al. 2016), have been proposed recently and they achieve high accuracy on link prediction tasks with the metric HITS@1. The TransE model does not yield good results with the metric HITS@1, but TransE is competitive with bilinear models with the metric HITS@10. We find the reason for the TransE results is its regularization. TransE forces entity embeddings to be on a sphere in the embedding vector space. It conflicts with the principle of TransE and warps embeddings obtained by TransE. In this way, it...
affects adversely the accuracies of the link predictions, while it is required for TransE because embeddings diverge unnecessarily without it.

In this paper, we propose a model that does not require any regularization but has the same principle as TransE by embedding entities and relations on another embedding space, a torus. Several characteristics are required for an embedding space to operate under the strategy of TransE. A model under the strategy can actually be defined well on a Lie group of mathematical objects. By choosing a compact Lie group as an embedding space, embeddings never diverge unnecessarily and regularization is no longer required. Thus, we choose a torus, one of the compact Lie groups, for an embedding space and propose a novel model, TorusE. This approach allows the model to learn embeddings, which follow the TransE principle more precisely, and outperforms alternative approaches for link prediction tasks. Moreover, TorusE is more scalable to large-size knowledge graphs because its complexity is the lowest compared with other methods, and we show that it is faster than TransE empirically because of the reduced calculation times without regularization.

The remainder of this paper is organized as follows. In Section 2, we discuss related work for link prediction tasks. In Section 3, we briefly introduce the original translation-based method, TransE, and mention its regularization flaw. Then, the conditions required for an embedding space are analyzed to find another embedding space. In Section 4, we propose a new approach to obtain embeddings by changing an embedding space to a torus. This approach overcomes the regularization flaw of TransE. In Section 5, we present an experimental study in which we compare our method with baseline results of benchmark datasets. In Section 6, we conclude this paper.

2 Related Work

Various models have been proposed for knowledge graph completion through the link prediction task. These models can be roughly classified into three types: translation-based models, bilinear models and neural network-based models. We describe notations here to discuss related work. \(h, r, t \) denote a head entity, relation, and a tail entity, respectively. The bold letters \(\mathbf{h}, \mathbf{r}, \mathbf{t} \) denote embeddings of \(h, r, t \), respectively, on an embedding space \(\mathbb{R}^n \). \(E \) and \(R \) represent sets of entities and relations, respectively.

2.1 Translation-based Models

The first translation-based model is TransE (Bordes et al. 2013). It has gathered attention because of its effectiveness and simplicity. TransE was inspired by the skip-gram model (Mikolov et al. 2013a; 2013b), in which the differences between word embeddings often represent their relation. Hence, TransE employs the principle \(\mathbf{h} + \mathbf{r} = \mathbf{t} \). This principle efficiently captures first-order rules such as "\(\forall e_1, e_2 \in E, (e_1, r_1, e_2) \rightarrow (e_1, r_2, e_2) \)" and "\(\forall e_1, e_2 \in E, (e_1, r_1, e_2) \rightarrow (e_2, r_2, e_1) \)";

TransH (Wang et al. 2014) projects entities on the hyperplane corresponding to a relation between them. Projection makes the model more flexible by choosing components of embeddings to represent each relation. TransR (Lin et al. 2015b) has a matrix for each relation and the entities are mapped by linear transformation that multiplies the matrix to calculate the score of a triple. TransR is considered as a generalized TransH because projection is one of linear transformations. These models have an advantage in power of expression comparing with TransE. At the same time, however, they easily become overfitted.

TransE can be extended in other ways. In TransG (Xiao, Huang, and Zhu 2016), a relation contained in a knowledge graph can have multiple meanings, and so a relation is represented as multiple vectors. pTransE (Lin et al. 2015a) takes relation paths between entities into account to calculate the score of a triple. A relation path is represented by the summation of each relation in a path.

2.2 Bilinear Models

Recently, bilinear models have yielded great results of link prediction. RESCAL (Nickel, Tresp, and Kriegel 2011) is the first bilinear model. Each relation is represented by an \(n \)-by-\(n \) matrix and the score of triple (\(h, r, t \)) is calculated by a bilinear map that corresponds to the matrix of the relation \(r \) and whose arguments are \(h \) and \(t \). Hence, RESCAL is also the most generalized bilinear model.

Extensions of RESCAL have been proposed by restricting bilinear functions. DistMult (Yang et al. 2014) restricts the matrices representing relations to diagonal matrices. DistMult makes the model easy to train and eliminates the redundancy. However, it also has the problem that the scores of (\(h, r, t \)) and (\(t, r, h \)) are the same. To solve this problem, ComplEx (Trouillon et al. 2016) uses complex numbers instead of real numbers and takes the conjugate of the embedding of the tail entity before calculating the bilinear map. The score of the triple is the real part of the output of the bilinear map.

Bilinear models have more redundancy than translation-based models, and so easily become overfitted. Hence, embedding spaces are limited to low-dimensional space. This might be a problem in a huge knowledge graph that contains large numbers of entities, because high-dimensional space is required to embed the entities so that they are adequately distinguished.

2.3 Neural Network-based Models

Neural network-based models have layers and an activation function like a neural network. Neural Tensor Network (NTN) (Socher et al. 2013) has a standard linear neural network structure and a bilinear tensor structure. This can be considered as a generalization of RESCAL. The weight of
the network is trained for each relation. ER-MLP (Dong et al. 2014) is a simplified version of NTN.

Neural network-based models are the most expressive models among the three categories because they have a large number of parameters. Hence, they can possibly capture many kinds of relations but, at the same time, they tend to overfit training data the most easily.

3 TransE and Its Flaw

In this section, we explain TransE (Bordes et al. 2013) in detail and show its regularization flaw. In the latter part of this paper, we propose a novel model that employs a similar strategy to TransE that overcomes the flaw.

The algorithm of TransE consists of three main parts as follows:

- **Principle**: TransE learns embeddings so that $h + r = t$ holds if $(h, r, t) \in \Delta$, where Δ denotes the set of true triples. To measure how much a triple embedding follows the principle, a scoring function f is used. Usually f_1 or the square of the L_2 norm of $h + r - t$ is used as $f(h, r, t)$. In this case, $f(h, r, t) = 0$ means $h + r = t$ holds completely.

- **Negative Sampling**: With only the principle, TransE learns the trivial solution that all entity embeddings are the same and all relation embeddings are 0. Hence, negative triples are required. Usually a knowledge graph contains only positive triples, so TransE makes a negative triple by changing the head or the tail entity at random for each true triple. This is called negative sampling. TransE learns embeddings so that $f(h', r, t')$ gets larger if $(h', r, t') \in \Delta'_{(h,r,t)}$, where $(h, r, t) \in \Delta$ and $\Delta'_{(h,r,t)} = \{(h', r, t') | h' \in E, h' \neq h \} \cup \{(h, r, t') | t' \in E, t' \neq t \}$.

- **Regularization**: To not allow embeddings to diverge unlimitedly, regularization is needed. TransE employs normalization as regularization. Embeddings of entities are normalized so that their magnitude becomes 1 in each step of learning. That is, for every entity $e \in E, e \in S^{n-1} \subset \mathbb{R}^n$, where S^{n-1} is an n-l dimensional sphere.

TransE exploits margin loss. The objective function is defined as follows:

$$
\mathcal{L} = \sum_{(h, r, t) \in \Delta} \sum_{(h', r, t') \in \Delta'_{(h,r,t)}} [\gamma + f(h, r, t) - f(h', r, t')].
$$

where $[x]_+$ denotes the positive part of x and $\gamma > 0$ is a margin hyperparameter. TransE is trained by using stochastic gradient descent.

All three parts are necessary if entities and relations are embedded on a real vector space. However, the principle and regularization conflict during training, because for each $e \in E$ and $r \in R, e + r \notin S^{n-1}$ almost always holds. Hence, the principle $h + r = t$ is rarely realized in most cases, as shown in Figure 1. In this figure, it is assumed that $(A, r, A'), (B, r, B')$ and (C, r, C') hold. The points represent the entity embeddings and the arrows represent the embedding of r. Embeddings of (A, r, A') are obtained so that they follow the principle completely. However, $B + r$ and $C + r$ are out of the sphere and B' and C' are regularized on it.

The regularization warps embeddings and they do not satisfy the principle. As a result, it becomes difficult to predict new triples more accurately.

4 TorusE

In this section, our aim is to change the embedding space to solve the regularization problem while employing the same principle used in TransE. We first consider the required conditions for an embedding space. Then, a Lie group is introduced as candidate embedding spaces. After that, we propose the novel model, TorusE, which embeds entities and relations without any regularization on a torus. The torus is a compact Lie group.

4.1 Required Conditions for Embedding Space

To avoid the problem of regularization shown in Figure 1, we need to change the embedding space from \mathbb{R}^n, which is an open manifold, to a compact space, because any real value continuous functions on a compact space are bounded. It means embeddings never diverge unlimitedly because the scoring function is also bounded. This allows us to avoid regularization and solve the conflict between the principle and the regularization during training. Some conditions are required for an embedding space according to the embedding strategy of TransE. We list them as follows.

- **Differentiability**: The model is trained by gradient descent so that the object function is required to be differentiable. Hence, an embedding space has to be a differentiable manifold.

- **Calculation possibility**: It is required that the principle can be defined on an embedding space. To do so, an embedding space has to be equipped with operations such as summation and subtraction. Hence, an embeddings space needs to be an Abelian group and the group operation has to be differentiable.

- **Definability of a scoring function**: To construct an objective function for training the model, a scoring function is required to be defined on it.
If a space fills these three conditions and is compact, we can use it as an embedding space and solve the regularization flaw of TransE. Actually, an Abelian Lie group fills all conditions required for embedding spaces with the TransE strategy. We explain the Lie group in the next section.

4.2 A Lie Group

The foundation of the theory of Lie groups was established by Sophus Lie. Lie groups, which play various roles in physics and mathematics, are defined as follows.

Definition 1 A Lie group is a group that is also a finite-dimensional smooth manifold, in which the group operations of multiplication and inversion are smooth maps.

A Lie group is called an Abelian Lie group when the operation of multiplication is commutative. For an Abelian Lie group, we denote \(\mu(x, y)\), \(\mu(x, y^{-1})\) and \(x^{-1}\) by \(x + y\), \(-y\) and \(-x\), respectively, where \(\mu\) is the group operation.

An Abelian Lie group satisfies the Differentiability and Calculation possibility conditions from the definition. It is also known that distance function \(d\) can be defined on any manifold. By defining a scoring function \(f(h, r, t) = d(h + r, t)\), an Abelian Lie group also satisfies the Definability. A real vector space as an embedding space of TransE is an example of an Abelian Lie group, because it is a manifold and an Abelian group with ordinary vector addition as the group operation. TransE also uses the distance function as the scoring functions derived from the norms as the vector space. However, TransE requires regularization because the real vector space is not compact.

4.3 A Torus

We show any Abelian Lie group can be used as an embedding space for the translation-based strategy. We introduce a torus, which is a compact Abelian Lie group, and define distance functions on the torus. The definition of a torus is as follows.

Definition 2 An \(n\)-dimensional torus \(T^n\) is a quotient space, \(\mathbb{R}^n / \sim = \{(x)|x \in \mathbb{R}^n\} = \{(y)\mid y \sim x\}|x \in \mathbb{R}^n\}, where \(\sim\) is an equivalence relation and \(y \sim x\) if and only if \(y = x + z\) for some \(z \in \mathbb{Z}^n\).

Through the natural projection \(\pi : \mathbb{R}^n \to T^n, x \mapsto [x]\), the topology and the differential structure of a torus is derived from the vector space. Note that \(g : T^n \to S^n \subset \mathbb{C}, [x] \mapsto \exp(2\pi i x)\) is a diffeomorphism and \(T^n\) is diffeomorphic to \(S^1 \times S^1 \times \cdots \times S^1\). The group operation \(\mu\) is also derived from the original vector space: \(\mu([x], [y]) = [x + y] \notin [x + y]\). A torus is a compact Abelian Lie group with these structures and group operation. We define distance functions in three ways:

- \(d_{L_1}\): A distance function \(d_{L_1}\) on \(T^n\) is derived from the \(L_1\) norm of the original vector space by defining \(d_{L_1}([x], [y]) = \min_{x', y' \in [x], [y]} \|x' - y'\|_1\).
- \(d_{L_2}\): A distance function \(d_{L_2}\) on \(T^n\) is derived from the \(L_2\) norm of the original vector space by defining \(d_{L_2}([x], [y]) = \min_{x', y' \in [x], [y]} \|x' - y'\|_2\).

4.4 TorusE

TransE assumes embeddings of entities and relations on \(\mathbb{R}^n\). If \((h, r, t)\) holds for TransE, embeddings should follow the principle \(h + r = t\); otherwise, \(h + r\) should be far away from \(t\). Our proposed method, TorusE, follows the principle also, but the embedding space is changed from a vector space to a torus. To explain the strategy, we define scoring functions in three ways that exploit the distance functions in the previous section:

- \(f_{L_1}\): We define a scoring function \(f_{L_1}(h, r, t)\) as \(2d_{L_1}([h] + [r], [t])\).
- \(f_{L_2}\): We define a scoring function \(f_{L_2}(h, r, t)\) as \(4d_{L_2}^2([h] + [r], [t])\).
- \(f_{L_3}\): We define a scoring function \(f_{L_3}(h, r, t)\) as \(d_{L_3}^2([h] + [r], [t])/4\).

These scoring functions are normalized so that their maximum values are \(n\). These scoring functions and their derivatives when \(n = 1\) are illustrated in Figure 2. \(f_{L_1}, f_{L_2}\) and \(f_{L_3}\) look similar; however their derivatives are surprisingly different. \(f_{L_1}\) is constant, \(f_{L_2}\) has a vanishing point at \(x = 0\), and \(f_{L_3}\) has two vanishing points at \(x = 0\) and \(x = 0.5\). These affect the obtained embeddings through gradient descent learning.

For TorusE, each entity \(e \in E\) and each relation \(r \in E\) are represented by \([e] \in \mathbb{R}^n\) and \([r] \in \mathbb{R}^n\), respectively. Then, the principle is rewritten as follows:

\[[h] + [r] = [t]\] (2)

and embeddings are obtained by minimizing the following objective function:

\[L = \sum_{(h, r, t) \in \Delta} \sum_{(h', r', t) \in \Delta} [y + f_d(h, r, t) - f_d(h', r', t)]^2,\] (3)

where \([x]\), denotes the positive part of \(x\), \(y > 0\) is a margin hyperparameter and \(f_d \in \{f_{L_1}, f_{L_2}, f_{L_3}\\}\). TorusE does not
Table 1: Scoring functions for triple \((h, r, t)\), parameters and complexity of related work.

<table>
<thead>
<tr>
<th>Model</th>
<th>Scoring Function</th>
<th>Parameters</th>
<th>(O_{\text{time}})</th>
<th>(O_{\text{space}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransE</td>
<td>(</td>
<td>h + r - t</td>
<td>_d)</td>
<td>(h, r, t \in \mathbb{R}^n)</td>
</tr>
<tr>
<td>TransH</td>
<td>(</td>
<td>(h - w_0^t h_r) + r - (t - w_0^t tw_r)</td>
<td>_d)</td>
<td>(h, r, t, w_r \in \mathbb{R}^n)</td>
</tr>
<tr>
<td>TransR</td>
<td>(</td>
<td>W_r h + r - W_t t</td>
<td>_d)</td>
<td>(h, t \in \mathbb{R}^n, r \in \mathbb{R}^k, W_r \in \mathbb{R}^{k \times n})</td>
</tr>
<tr>
<td>RESCAL</td>
<td>(\hat{h}^t W_r t)</td>
<td>(h, t \in \mathbb{R}^n, W_r \in \mathbb{R}^{k \times n})</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>DistMult</td>
<td>(h^t \text{diag}(r)t)</td>
<td>(h, t, r \in \mathbb{R}^n)</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>ComplEx</td>
<td>(Re(h^t \text{diag}(r)t))</td>
<td>(h, t, r \in \mathbb{C}^n)</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>NTN</td>
<td>(u_1^t \text{tanh}(h^t W_1^{[1]} t + V_{ch} h + V_{rt} t + b_r))</td>
<td>(h, t \in \mathbb{R}^n, u_r, b_r \in \mathbb{R}^k,)</td>
<td>(O(kn^2))</td>
<td>(O(kn^2))</td>
</tr>
<tr>
<td>TorusE</td>
<td>(u_1^t \text{tanh}(h^t W_1^{[1]} t + V_{ch} h + V_{rt} t + b_r))</td>
<td>([h], [r], [t] \in T^n)</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

Figure 3: The image of embeddings on 2-dimensional torus obtained by TorusE. Embeddings of the triples \((A, r, A')\) and \((B, r, B')\) are illustrated. Note that \([A'] - [A]\) and \([B'] - [B]\) are similar on the torus.

The scoring functions and the complexity of related models are listed in Table 1. Although ComplEx is a bilinear model and TorusE is a translation-based model, they have strong similarity. By mapping \([h], [r]\) and \([t]\) on \(\mathbb{C}^n\) by \(g\) and identifying \(g([r])\) as a corresponding diagonal matrix, \(-2f_{\text{el}}(h, r, t) + 1 = f_{\text{ComplEx}}(h, r, t)\) holds. Bilinear models are trained to maximize the scores of triples while translation-based models are trained to minimize them. Hence, TorusE with \(f_{\text{el}}\) can be considered as a more restricted and less redundant version of ComplEx on \(T^n \subset \mathbb{C}^n\).

Note that some extensions of TransE, such as TransG and pTransE, can be applied directly to TorusE by changing the embedding space from a real vector space to a torus.

Calculation Technique of a Torus Each embedding is represented by a point on a torus \([x]\). Note that \(x\) itself is an \(n\)-dimensional vector and we use it to represent a point of the torus on a computer. By taking a fractional part of a vector, an embedding becomes one to one with a point of the torus and we can calculate the scoring functions. For example, we show the calculation procedure of \(d_s(x, [y])\). Let \(\pi_{\text{frac}} : \mathbb{R} \rightarrow [0, 1)\) be the function taking a fractional part. Then, the distance is calculated as follows:

\[
d_s(x, [y]) = \sum_{i=1}^{n} \min(|\pi_{\text{frac}}(x_i) - \pi_{\text{frac}}(y_i)|, 1 - |\pi_{\text{frac}}(x_i) - \pi_{\text{frac}}(y_i)|)
\]

For example, let \(x\) and \(y\) be 3.01 and 0.99 \(\in \mathbb{R}^1\). Then \(|\pi_{\text{frac}}(x_i) - \pi_{\text{frac}}(y_i)| = 0.98\) and \(1 - |\pi_{\text{frac}}(x_i) - \pi_{\text{frac}}(y_i)| = 0.02\) hold. Hence we obtain \(d_s(x, [y]) = 0.02\) Other distance functions are calculated in a similar way.

5 Experiments

We evaluated TorusE from two perspectives: one is its scalability and the other is the accuracies of the link prediction tasks.

5.1 Datasets

The experiments are conducted on two benchmark datasets: WN18 and FB15K (Bordes et al. 2013). These datasets are respectively extracted from real knowledge graphs: WordNet (Miller 1995) and Freebase (Bollacker et al. 2008). Many researchers use these datasets to evaluate models for knowledge graph completion. The details of the datasets are shown in Table 2.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Ent</th>
<th># Rel</th>
<th># Train</th>
<th># Valid</th>
<th># Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>WN18</td>
<td>40,943</td>
<td>18</td>
<td>141,442</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>FB15K</td>
<td>14,951</td>
<td>1,345</td>
<td>483,142</td>
<td>50,000</td>
<td>59,071</td>
</tr>
</tbody>
</table>

5.2 Experimental Setup

Evaluation Protocol To evaluate the scalability of TorusE, we measured the time it took to train TorusE for one epoch by changing the dimensions of the model.

We also conduct the link prediction task in the same way reported in the paper of TransE (Bordes et al. 2013). For each test triple, the head (or tail) is replaced by each entity. Then the score of each corrupted triple is calculated by the models, and the rankings of entities are obtained according to the scores. We refer to these as “raw” rankings. However,
these rankings can be flawed when the relation and the tail have many correct entities. In this case, the entity of the test triple might be ranked lower unfairly by other correct entities above it. To avoid such situations as much as possible, Bordes et al. employ another ranking method, referred to as "filtered" ranking. A filtered ranking is obtained by eliminating entities whose corresponding triple (except the target test triple) is contained in the training, validation or test datasets.

Models are evaluated by the Mean Reciprocal Rank (MRR) and HITS@n of these rankings. HITS@n is the proportion of test triples whose entity is ranked in the top n in corresponding rankings.

Optimization and Implementation Details In our implementation, TorusE was optimized by stochastic gradient descent, as for TransE. For each epoch, we randomly separated training triples into one-hundred groups, and embedding parameters were updated for each group. Because the datasets contained only positive triples, we employed the "Bern" method (Wang et al. 2014) for negative sampling. Regularization is not required, in contrast with the other embedding methods.

We conducted a grid search to find suitable hyperparameters for each dataset. The dimension was fixed to 10000, because a model with a higher dimension yields a better result in practice. We selected the margin \(\gamma\) from \(\{2000, 1000, 500, 200, 100\}\) and the learning rate \(\alpha\) from \(\{0.002, 0.001, 0.0005, 0.0002, 0.0001\}\). Scoring functions \(f_d\) were selected from \(\{f_{l_1}, f_{l_2}, f_{dL}\}\). The best models were selected by the MRR with "filtered" rankings on the validation set.

The optimal configurations were as follows: \(\gamma = 2000, \alpha = 0.0005\) and \(f_d = f_{L_1}\) for WN18; \(\gamma = 500, \alpha = 0.001\) and \(f_d = f_{dL}\) for FB15K. The results in the following section are from the models with these configurations.

5.3 Results

Scalability of TorusE The calculation times of TorusE and TransE are shown in Figure 4. They are measured by using a single GPU (NVIDIA Titan X). The scoring functions of TorusE were \(f_{L_1}\) for WN18 and \(f_{dL}\) for FB15K, and the scoring functions of TransE were \(L_2\) norm for both datasets in this experiment. The complexities of TorusE and TransE are theoretically the same and the lowest among all models at \(O(n)\). For both models, the calculation time is considered a first-order equation of the dimension. However, a large gap exists between the empirical calculation times of these models.

For the WN18 dataset, TransE takes 55.6 seconds to complete one epoch when the dimension is 10,000. On the other hand, TorusE takes 4.0 seconds when the dimension is 10,000, and so TorusE is eleven times faster than TransE. This is mainly due to the regularization of TransE, because the normalizing calculations of all entity embeddings are time-consuming.

For FB15K, TransE takes 29.4 seconds to complete one epoch and TorusE takes 16.8 seconds when the dimension is 10,000, and so TorusE is faster than TransE. FB15K contains more triples than WN18 does. Hence, TorusE takes more time for FB15K than WN18. However, TransE takes less time. This is because of the number of entities contained in the datasets. The number of entities of WN18 is much more than the number of entities of FB15K.

These models were trained for 500 epochs in an experiment. So, the total time was about 30 minutes and 2 hours 30 minutes for TorusE to finish training on WN18 and FB15K respectively. We also measured the calculation times of ComplEx with the implementation by Trouillon et al.(2017). The calculation times of ComplEx were 1 hour 15 minutes and 3 hours 50 minutes on each dataset with 150 and 200 dimensions on the same GPU, and TorusE was faster than it.

Accuracies of the Link Prediction Tasks The results of the link prediction tasks are shown in Table 3. Our method, TorusE, outperforms all other models on all metrics except HITS@10 on FB15K. TorusE is second even on FB15K and the difference between TorusE and the best model, ComplEx, is only 0.8%.

As is shown, TransE and extended models of TransE do not yield good results on HITS@1. Although they perform well on HITS@10. We believe that this phenomenon is caused by regularization of the models, even though the principle of TransE has the potential to represent real knowledge and to achieve knowledge graph completion. We took this approach to change the embedding space in order to
We proposed the novel model, TorusE, which is a model that embeds entities and relations on a torus. Unlike other models, it does not employ any regularization for embeddings. TorusE outperformed state-of-the-art models for link prediction tasks on the WN18 and FB15K datasets and it was experimentally shown to be faster than TransE.

Our contributions in this paper are as follows.

- We pointed out the problem of TransE: regularization. Regularization conflicts with the principle and makes the accuracy of the link prediction task lower.
- To solve this problem, we aimed to change the embedding space by using the same principle as TransE. By embedding on a compact space, regularization is no longer required. The required condition for an embedding space was clarified by finding a suitable space.
- We showed that a Lie group fills all conditions required. Then, we introduced a torus, which is a compact Lie group that can be easily realized.
- We proposed the novel model, TorusE, which is a model that embeds entities and relations on a torus. Unlike other models, it does not employ any regularization for embeddings.
In future work, we will consider other embedding spaces, because we only employed a torus, even though we showed all Lie groups can be used as an embedding space. As another approach, we will try to combine TorusE with other extended models of TransE. Some of these models can be directly applied to TorusE by changing an embedding space from a vector space to a torus.

Moreover, we have to consider more general models to complete a knowledge graph which can retrieve information from other materials than triples, because sometimes information is not included training triples to predict a required triple. There are models extracting triples from text such as OpenIE models (Fader, Soderland, and Etzioni 2011; Mausam et al. 2012; Angeli, Premkumar, and Manning 2015) and word embedding-based model (Ebisu and Ichise 2017). We think we can develop a more general model combining with these methods.

Acknowledgements
This work was partially supported by the New Energy and Industrial Technology Development Organization (NEDO).

References

