Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Text Mining
Downloads:
Abstract:
Typically, neural conversation systems generate replies based on the sequence-to-sequence (seq2seq) model. seq2seq tends to produce safe and universal replies, which suffers from the lack of diversity and information. Determinantal Point Processes (DPPs) is a probabilistic model defined on item sets, which can select the items with good diversity and quality. In this paper, we investigate the diversity issue in two different aspects, namely query-level and system-level diversity. We propose a novel framework which organically combines seq2seq model with Determinantal Point Processes (DPPs). The new framework achieves high quality in generated reply and significantly improves the diversity among them. Experiments show that our model achieves the best performance among various baselines in terms of both quality and diversity.
DOI:
10.1609/aaai.v32i1.12062
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.