Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Semi-supervised or constrained community detection incorporates side information to findcommunities of interest in complex networks. The supervision is often represented as constraints such as known labels and pairwise constraints. Existing constrained community detection approaches often fail to fully benefit from the available side information. This results in poor performance for scenarios such as: when the constraints are required to be fully satisfied, when there is a high confidence about the correctness of the supervision information, and in situations where the side information is expensive or hard to achieve and is only available in a limited amount. In this paper, we propose a new constrained community detection algorithm based on Lagrangian multipliers to incorporate and fully satisfy the instance level supervisio nconstraints. Our proposed algorithm can more fully utilise available side information and find better quality solutions. Our experiments on real and synthetic data sets show our proposed LagCCD algorithm outperforms existing algorithms in terms of solution quality, ability to satisfy the constraints and noise resistance.
DOI:
10.1609/aaai.v32i1.11753
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.