Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: Machine Learning Applications
Downloads:
Abstract:
Deep neural networks have shown promise in collaborative filtering (CF). However, existing neural approaches are either user-based or item-based, which cannot leverage all the underlying information explicitly. We propose CF-UIcA, a neural co-autoregressive model for CF tasks, which exploits the structural correlation in the domains of both users and items. The co-autoregression allows extra desired properties to be incorporated for different tasks. Furthermore, we develop an efficient stochastic learning algorithm to handle large scale datasets. We evaluate CF-UIcA on two popular benchmarks: MovieLens 1M and Netflix, and achieve state-of-the-art performance in both rating prediction and top-N recommendation tasks, which demonstrates the effectiveness of CF-UIcA.
DOI:
10.1609/aaai.v32i1.11884
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.