Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Machine Learning
Downloads:
Abstract:
Language Modeling (LM) is a fundamental research topic in a range of areas. Recently, inspired by quantum theory, a novel Quantum Language Model (QLM) has been proposed for Information Retrieval (IR). In this paper, we aim to broaden the theoretical and practical basis of QLM. We develop a Neural Network based Quantum-like Language Model (NNQLM) and apply it to Question Answering. Specifically, based on word embeddings, we design a new density matrix, which represents a sentence (e.g., a question or an answer) and encodes a mixture of semantic subspaces. Such a density matrix, together with a joint representation of the question and the answer, can be integrated into neural network architectures (e.g., 2-dimensional convolutional neural networks). Experiments on the TREC-QA and WIKIQA datasets have verified the effectiveness of our proposed models.
DOI:
10.1609/aaai.v32i1.11979
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.