Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Machine Learning
Downloads:
Abstract:
Neural network models are capable of generating extremely natural sounding conversational interactions. However, these models have been mostly applied to casual scenarios (e.g., as “chatbots”) and have yet to demonstrate they can serve in more useful conversational applications. This paper presents a novel, fully data-driven, and knowledge-grounded neural conversation model aimed at producing more contentful responses. We generalize the widely-used Sequence-to-Sequence (Seq2Seq) approach by conditioning responses on both conversation history and external “facts”, allowing the model to be versatile and applicable in an open-domain setting. Our approach yields significant improvements over a competitive Seq2Seq baseline. Human judges found that our outputs are significantly more informative.
DOI:
10.1609/aaai.v32i1.11977
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.