Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Computational Sustainability and Artificial Intelligence
Downloads:
Abstract:
Big human mobility data are being continuously generated through a variety of sources, some of which can be treated and used as streaming data for understanding and predicting urban dynamics. With such streaming mobility data, the online prediction of short-term human mobility at the city level can be of great significance for transportation scheduling, urban regulation, and emergency management. In particular, when big rare events or disasters happen, such as large earthquakes or severe traffic accidents, people change their behaviors from their routine activities. This means people's movements will almost be uncorrelated with their past movements. Therefore, in this study, we build an online system called DeepUrbanMomentum to conduct the next short-term mobility predictions by using (the limited steps of) currently observed human mobility data. A deep-learning architecture built with recurrent neural networks is designed to effectively model these highly complex sequential data for a huge urban area. Experimental results demonstrate the superior performance of our proposed model as compared to the existing approaches. Lastly, we apply our system to a real emergency scenario and demonstrate that our system is applicable in the real world.
DOI:
10.1609/aaai.v32i1.11338
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.