Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Student Abstract Track
Downloads:
Abstract:
Autoencoders (AE) are essential in learning representation of large data (like images) for dimensionality reduction. Images are converted to sparse domain using transforms like Fast Fourier Transform (FFT) or Discrete Cosine Transform (DCT) where information that requires encoding is minimal. By optimally selecting the feature-rich frequencies, we are able to learn the latent vectors more robustly. We successfully show enhanced performance of autoencoders in sparse domain for images.
DOI:
10.1609/aaai.v32i1.12155
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.