Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Link prediction is of fundamental importance in network science and machine learning. Early methods consider only simple topological features, while subsequent supervised approaches typically rely on human-labeled data and feature engineering. In this work, we present a new representation learning-based approach called SEMAC that jointly exploits fine-grained node features as well as the overall graph topology. In contrast to the SGNS or SVD methods espoused in previous representation-based studies, our model represents nodes in terms of subgraph embeddings acquired via a form of convex matrix completion to iteratively reduce the rank, and thereby, more effectively eliminate noise in the representation. Thus, subgraph embeddings and convex matrix completion are elegantly integrated into a novel link prediction framework. Experimental results on several datasets show the effectiveness of our method compared to previous work.
DOI:
10.1609/aaai.v32i1.11655
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.