Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Text Mining
Downloads:
Abstract:
For the task of entity disambiguation, mention contexts and entity descriptions both contain various kinds of information content while only a subset of them are helpful for disambiguation. In this paper, we propose a type-aware co-attention model for entity disambiguation, which tries to identify the most discriminative words from mention contexts and most relevant sentences from corresponding entity descriptions simultaneously. To bridge the semantic gap between mention contexts and entity descriptions, we further incorporate entity type information to enhance the co-attention mechanism. Our evaluation shows that the proposed model outperforms the state-of-the-arts on three public datasets. Further analysis also confirms that both the co-attention mechanism and the type-aware mechanism are effective.
DOI:
10.1609/aaai.v32i1.12043
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.