AAAI Publications, Thirty-First AAAI Conference on Artificial Intelligence

Font Size: 
Grounded Action Transformation for Robot Learning in Simulation
Josiah P. Hanna, Peter Stone

Last modified: 2017-02-12


Robot learning in simulation is a promising alternative to the prohibitive sample cost of learning in the physical world. Unfortunately, policies learned in simulation often perform worse than hand-coded policies when applied on the physical robot. Grounded simulation learning (GSL) promises to address this issue by altering the simulator to better match the real world. This paper proposes a new algorithm for GSL -- Grounded Action Transformation -- and applies it to learning of humanoid bipedal locomotion. Our approach results in a 43.27% improvement in forward walk velocity compared to a state-of-the art hand-coded walk. We further evaluate our methodology in controlled experiments using a second, higher-fidelity simulator in place of the real world. Our results contribute to a deeper understanding of grounded simulation learning and demonstrate its effectiveness for learning robot control policies.


Grounded simulation learning; Robotic bipedal walking; Transfer from simulation

Full Text: PDF