AAAI Publications, Thirty-First AAAI Conference on Artificial Intelligence

Font Size: 
Using Discourse Signals for Robust Instructor Intervention Prediction
Muthu Kumar Chandrasekaran, Carrie Demmans Epp, Min-Yen Kan, Diane J. Litman

Last modified: 2017-02-12

Abstract


We tackle the prediction of instructor intervention in student posts from discussion forums in Massive Open Online Courses (MOOCs). Our key finding is that using automatically obtained discourse relations improves the prediction of when instructors intervene in student discussions, when compared with a state-of-the-art, feature-rich baseline. Our supervised classifier makes use of an automatic discourse parser which outputs Penn Discourse Treebank (PDTB) tags that represent in-post discourse features. We show PDTB relation-based features increase the robustness of the classifier and complement baseline features in recalling more diverse instructor intervention patterns. In comprehensive experiments over 14 MOOC offerings from several disciplines, the PDTB discourse features improve performance on average. The resultant models are less dependent on domain-specific vocabulary, allowing them to better generalize to new courses.

Keywords


MOOC discussion forum, MOOC, Instructor intervention, PDTB discourse relations

Full Text: PDF