AAAI Publications, Thirty-First AAAI Conference on Artificial Intelligence

Font Size: 
Regret Ratio Minimization in Multi-Objective Submodular Function Maximization
Tasuku Soma, Yuichi Yoshida

Last modified: 2017-02-12


Submodular function maximization has numerous applications in machine learning and artificial intelligence. Many real applications require multiple submodular objective func-tions to be maximized, and which function is regarded as important by a user is not known in advance. In such cases, it is desirable to have a small family of representative solutions that would satisfy any user’s preference. A traditional approach for solving such a problem is to enumerate the Pareto optimal solutions. However, owing to the massive number of Pareto optimal solutions (possibly exponentially many), it is difficult for a user to select a solution. In this paper, we propose two efficient methods for finding a small family of representative solutions, based on the notion of regret ratio. The first method outputs a family of fixed size with a nontrivial regret ratio. The second method enables us to choose the size of the output family, and in the biobjective case, it has a provable trade-off between the size and the regret ratio. Using real and synthetic data, we empirically demonstrate that our methods achieve a small regret ratio.


submodular function, multiobjective optimization

Full Text: PDF