AAAI Publications, Thirty-First AAAI Conference on Artificial Intelligence

Font Size: 
Feature Selection Guided Auto-Encoder
Shuyang Wang, Zhengming Ding, Yun Fu

Last modified: 2017-02-13


Recently the auto-encoder and its variants have demonstrated their promising results in extracting effective features. Specifically, its basic idea of encouraging the output to be as similar as input, ensures the learned representation could faithfully reconstruct the input data. However, one problem arises that not all hidden units are useful to compress the discriminative information while lots of units mainly contribute to represent the task-irrelevant patterns. In this paper, we propose a novel algorithm, Feature Selection Guided Auto-Encoder, which is a unified generative model that integrates feature selection and auto-encoder together. To this end, our proposed algorithm can distinguish the task-relevant units from the task-irrelevant ones to obtain most effective features for future classification tasks. Our model not only performs feature selection on learned high-level features, but also dynamically endows the auto-encoder to produce more discriminative units. Experiments on several benchmarks demonstrate our method's superiority over state-of-the-art approaches.

Full Text: PDF