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Abstract

Prerequisite relations among concepts play an important role
in many educational applications such as intelligent tutoring
system and curriculum planning. With the increasing amount
of educational data available, automatic discovery of concept
prerequisite relations has become both an emerging research
opportunity and an open challenge. Here, we investigate how
to recover concept prerequisite relations from course depen-
dencies and propose an optimization based framework to ad-
dress the problem. We create the first real dataset for empiri-
cally studying this problem, which consists of the listings of
computer science courses from 11 U.S. universities and their
concept pairs with prerequisite labels. Experiment results on
a synthetic dataset and the real course dataset both show that
our method outperforms existing baselines.

Introduction
A prerequisite is a concept or skill that is necessary to learn
before one can proceed to understand more advanced knowl-
edge. Prerequisite relations exist as natural dependencies
among concepts in cognitive processes when we learn, orga-
nize, apply, and generate knowledge (Laurence and Margolis
1999). Recently, the growth of available educational data has
made a variety of emerging educational applications possi-
ble. Examples include intelligent tutoring systems (Aleven
and Koedinger 2002), curriculum planning (Agrawal, Gol-
shan, and Papalexakis 2015), automatic sequencing of learn-
ing materials (Changuel, Labroche, and Bouchon-Meunier
2015), etc. In these applications, obtaining prerequisite rela-
tions plays a crucial role.

While it can benefit both learners and instructional de-
signers, discovering prerequisite relations among concepts is
usually done manually by domain experts (Bergan and Jeska
1980). However, it is inefficient and expensive — and does
not scale with large concept sets. A possible solution for
scaling is to develop or integrate approaches that automat-
ically infer such prerequisites from the increasing amount of
digital educational data. Available sources include knowl-
edge bases, student assessment data, text books, course ma-
terials, etc.

Developing data-driven methods for automatically dis-
covering prerequisite relations is challenging. Earlier work
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in educational data mining has been devoted to analyzing
student assessment data which records the performance of
students on different items (e.g. units, sections, etc.) (Vuong,
Nixon, and Towle 2011). Existing approaches aim to dis-
cover prerequisite relations among certain performance vari-
ables such as handcrafted knowledge components and skills.
Since those discovered relations are highly structured and
are often subject to a specific assessment pool, they can not
be generalized for other educational purposes or applica-
ble for processing a large concept set. To address these is-
sues, Wikipedia data is exploited to find prerequisite rela-
tions among universally shared concepts (Talukdar and Co-
hen 2012; Liang et al. 2015), using both the Wikipedia arti-
cle contents and their linkage structures. For the purpose of
curriculum planning, Yang et al. (2015) proposed a super-
vised framework to infer course prerequisites by construct-
ing a latent concept graph to support the prediction.

Here, we focus on the problem of recovering concept
prerequisite relations from course dependencies (denoted as
CPR-Recover for short). We utilize a similar data setting as
that of (Yang et al. 2015) but instead focus on recovering
an accurate and universally shared concept graph from the
observed course dependencies rather than extrapolating the
course prerequisites to unseen course pairs. We have infor-
mation and dependencies of courses collected from different
universities. As shown in Figure 1, courses #1-4 are from
the curriculum of University A. Based on their descriptions,
course dependencies (e.g. Course #2 depends on Course #1)
are used to recover concept prerequisite relations in a shared
concept graph. To address the CPR-Recover problem, we
propose an unsupervised optimization-based method based
on the following two assumptions:

1. Causality: The dependency among courses is caused
by sufficient evidence provided by prerequisite relations
among concepts representing the courses.

2. Sparsity: The prerequisites in a concept graph will be
sparse, which means the number of prerequisite relations
is much smaller than the total number of concept pairs.

Our method is designed to recover the part of concept pre-
requisite relations that causes course dependencies. Take
the example in Figure 1, the prerequisite relations (Matrix
⇒ Gaussian elimination, Matrix ⇒ QR decomposition) are
evidences for supporting the dependency between Course
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Figure 1: Recovering course prerequisite relations from
course dependencies.

#1 and #2, thus can be recoverable from course data. Our
method has been tested on both a synthetic dataset and a real
computer science course dataset (including course names,
descriptions, dependencies, etc.) collected from 11 U.S. uni-
versities. In order to make the discovered concept prerequi-
site relations explicit and interpretable, we represent these
courses in terms of Wikipedia concepts. For the evaluation
of concept prerequisites, we recruit a group of graduate stu-
dents to assign the ground truth labels on a filtered subset of
concept pairs. Experimental results on the two datasets both
demonstrate the superior performance of our approach.

Our main contributions include:

1. A novel method to learn concept-level prerequisite rela-
tions from course dependencies that outperforms existing
baselines on both a synthetic dataset and a real university
course dataset.

2. The first real dataset for studying and evaluating the CPR-
Recover problem, which consists of 654 unique computer
science courses from 11 universities and 3544 concept
pairs with their prerequisite labels.

Problem Setup
For convenience, we will use the following notations:

• M = {1, 2, ...m} is the set of concepts where m is the
number of concepts.

• N = {1, 2, ..., n} is the set of all course IDs where n is
the number of unique courses;

• xi ∈ R
m is the vector representation of the course i in

concept space;

• {xi}i∈N is the set of courses;

• i �→ j represents course i is a prerequisite of course j;

• Ω = {i �→ j}i,j∈N is the set of prerequisite relations
among courses;

• A = (as,t) is a m-by-m matrix representing prerequisite
relations among concepts, where as,t is the weight quan-
tifying how concept t depends on concept s.

CPR-Recover Problem Definition. Given a set of courses
{xi}i∈N with a concept representation per course, and a set
of observed course dependencies Ω, our goal is to recover
the matrix A which quantifies the strength of prerequisite
relations among concepts.

Our Approach
Course Representation
Since course descriptions are usually in the form of unstruc-
tured text, we first calculate a document representation for
each course. In order to get an explicit and interpretable con-
cept space, we choose to represent the text using Wikipedia
concepts1. We represent each course as a bag-of-concepts
model. Instead of using all words in the text, we first extract
all Wikipedia concepts that are in the course description us-
ing Wikipedia Miner (Milne and Witten 2013). After con-
cept extraction, the course vector xi is calculated using term
frequency-inverse document frequency (tf-idf).

CPR-Recover Formulation
Our approach to solve the CPR-Recover problem makes two
assumptions: causality assumption and sparsity assumption.
The former assumes that the prerequisite relation between
two courses is caused by sufficient evidence provided by
prerequisite relations among concepts which the two courses
consist of. This serves as a bridge for making inferences
between course dependencies and concept prerequisite re-
lations. The latter assumption is that the prerequisite rela-
tions in a concept graph are sparse: the number of prerequi-
site relations is much smaller than the total number of con-
cept pairs. Since concepts are usually linked with their pre-
requisites, we validate our sparsity assumption by estimat-
ing the sparsity of a concept prerequisite graph by sampling
from the Wikipedia link graph. A depth-first search under
the category “Computer science” returns a domain-specific
sub-graph with about 105 nodes and 2.8 × 106 edges. The
graph density is ∼ 2.8 × 10−4, showing the sampled graph
is quite sparse.

Based on the two assumptions, we propose to solve the
CPR-Recover problem by the following formulation:

min
A,ξ

‖vec(A)‖1 + λ · ∑

i�→j∈Ω

ξ2i�→j

s.t. xT
i [Ci�→j �A]xj ≥ θ − ξi�→j , ∀i �→ j ∈ Ω

as,t + at,s = 0, ∀s, t ∈ M
−1 ≤ as,t ≤ 1, ∀s, t ∈ M
as,t = 0, ∀(s, t) �∈ K

(1)
where θ and λ are constant positive parameters; ξi�→j is a
slack variable for the course pair (i, j); � is element-wise
product; Ci�→j = (cs,t) is a design matrix where cs,t ∈
{0, 1} and cs,t = 0 if xi[t] > 0 or xj [s] > 0, otherwise

1Each concept corresponds to a unique English Wikipedia arti-
cle.

4787



cs,t = 1; K is the set of candidate concept prerequisite rela-
tions obtained from external prior knowledge.

Constraints result from the causality and sparsity assump-
tions, and also external knowledge. The first constraint is
based on the causality assumption. Every course dependency
i �→ j is caused by the interaction among xi, A, and xj .
Ci�→j is incorporated to remove the contribution from the
common concepts between xi and xj to the course depen-
dency i �→ j. If concepts occur in both course i and j, we
assume they are not the cause of the course dependency. The
second constraint specifies that A is a skew-symmetric ma-
trix, which means if concept ca is a prerequisite of cb then
cb is not a prerequisite of ca. The third constraint bounds
the strength of prerequisite relation in [−1, 1]. The last con-
straint allows the method to incorporate external knowledge.
Specifically, K here consists of all Wikipedia concept pairs
{(ca, cb)} where there is at least one hyperlink between ca
and cb. Following Talukdar et al. (2012), we assume there is
no prerequisite relation between two concepts which are not
linked. Additional external knowledge can also be inserted.
For example, if some of the concept prerequisite relations is
already known from other resources such as manually-built
concept graphs, this knowledge can also be incorporated into
our method as constraints.

For the objective function, the first term is the regulariza-
tion term and the second term is the empirical loss. In par-
ticular, the L1-norm on parameter A exploits the sparsity of
computed prerequisite relations, and L2-norm of the slack
variables is the loss in this setting. Two distinct variants of
our approach come from mutating the choices of these two
norms. By replacing the first term by L2-norm instead, one
could show that a model proposed in (Yang et al. 2015) is a
special case of this variant. And by replacing the first term
by L2-norm and the second term by L1-norm, the resulting
variant problem is the soft-margin SVM (Cortes and Vap-
nik 1995). For solving problems of moderate scale within
minutes, it suffices to use standard quadratic programming
solvers. Scalable optimization techniques, such as ADMM
or dual coordinate descent, are available to handle large-
scale problems. Experimental results below validate that this
choice of norms which is coherent with our model assump-
tion and achieves empirically good performance.

Experiments
For evaluation we conduct experiments on two datasets cre-
ated by us: a synthetic dataset and a real course dataset. To
the best of our knowledge, there is no existing dataset that
contains both the course dependency data and prerequisite
labels for the underlying concept graph. All experiments are
done on a Red Hat Enterprise Linux server with 24 Intel
Xeon processors @ 2.67GHz and 32GB of RAM. Mosek2 is
used to solve the optimization problem.

Synthetic Dataset
To simulate the CPR-Recover problem, we generate a con-
cept prerequisite graph, pairs of course with dependencies,
and documents representing the courses.

2Available online at https://www.mosek.com/

Course #1 Course #2… …

Concepts of 
Interest

Background 
Words

Prerequisite Course Pairs

Figure 2: Process of synthetic data generation. After a con-
cept prerequisite graph is created, prerequisite course pairs
are generated by blending prerequisite concept pairs with
background words.

G m |E| |V | p l lc
GS 100 100 100 0.01 10 2
GL 500 2463 500

Table 1: Statistics of two synthetic datasets.

Process of Data Generation The process of data gener-
ation illustrated in Figure 2 consists of the following two
steps:

1. (Concept prerequisite graph generation) We follow the
Erdős-Rényi model to generate the underlying concept
prerequisite graph, i.e., generating a random graph given
the number of concepts (nodes) m and the probability p
for creating a prerequisite relation (edge) between two
concepts. Note every edge is set to be directed from a ver-
tex to another with a larger concept ID. This step results
in a directed graph G with m nodes and |E| edges.

2. (Prerequisite course pairs generation) Next we generate k
pairs of courses with prerequisite relations. Two assump-
tions are made: (i) The document representing the course
consists of both concepts and background words. Prereq-
uisite relations that only exist among concepts and back-
ground words are considered as noise. (ii) The prerequi-
site relation between two documents is consistent with the
prerequisite relation between concepts in the two docu-
ments. Specifically, given the document length l, the num-
ber of concepts in a document lc, the vocabulary of back-
ground words V , we generate a pair of documents (di, dj)
representing i �→ j with the following three steps:

(a) Randomly sample lc edges from the concept prerequi-
site graph G generated from previous step.

(b) For every edge cs �→ ct from the sampled lc edges, add
cs to di, ct to dj .

(c) Randomly sample l− lc background words from V and
add them to di. Conduct a similar random sampling to
add background words to dj .

For our experiment, two concept prerequisite graphs, GS

and GL, with different sizes are generated to test perfor-
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Figure 3: Results on two synthetic datasets.

mance at different scales. A detailed description of the two
experiment settings is shown in Table 1. The vocabulary size
of background words is set equal to the number of nodes in
G. The edge creation probability p is set to be 0.01 to enforce
the sparsity on the concept graph. The document length l
is set to 10 and each document consists of 2 concepts. We
now explore the relation between the method performance
and the number of course prerequisite pairs k. Specifically
consider the following questions: will the concept prerequi-
site matrix A be better recovered if we obtain more pairs
of course prerequisites? How will our method perform com-
pared to other baselines?

Baselines and Evaluation Metrics – Synthetic Data For
comparison we use the two following baselines, one a pre-
vious method (CGL.Class (Yang et al. 2015)) and the other
a naive method — Freq which for the concept pair (cs, ct)
calculates as,t as the number of times the pair “co-occurs”
in course prerequisite pairs. For i �→ j, (cs, ct) “co-occurs”
if xi[s] > 0 and xj [t] > 0.

Precision at K (P@K) is calculated for the evaluation
of A. We first sort the elements of A in a descending or-
der and get an ordered list lA = {as,t}. P@K is calcu-

lated as
∑K

i=1 rel(i)

K , where rel(·) is binary indicator func-
tion; rel(i) = 1 if the concept pair (cs, ct) corresponding
to the i-th element in lA belongs to E. In our experiment,
we set K = |E| because ideally the top |E| elements of A
should correspond to all |E| edges in the generated concept
prerequisite graph.

Results – Synthetic Data Experimental results on the two
synthetic datasets are shown in Figure 3. For each method
P@|E| is calculated with a given number of course pre-
requisite pairs k. For the experiment setting GS , k is cho-
sen from [100, 200, ..., 1000]. And for GL, k is chosen from
[2500, 5000, ..., 25000]. We can see that results for GS and
GL are consistent and show that: (i) As k increases, the per-
formance of different methods keeps improving; (ii) Our
method outperforms both CGL.Class and Freq for every
choice of k. A closer look at the performances of the three
methods shows that the difference is decreasing when k be-
comes small enough (≈ |E|) or large enough (≈ 10|E|).
While for the former case there are not enough observations
to make correct inferences, for the latter case all three meth-
ods are able to recover most of the concept prerequisites
from the sufficient observed course prerequisites. In addi-
tion, we can see that when k ≈ 6|E| our method can re-

cover almost all edges in G while the other two methods
perform significantly worse. We explain this by noting that
our method is designed to exploit the sparsity assumption
for the concept prerequisite graph G. In contrast, CGL.Class
and Freq do not.

University Course Dataset
In addition to the synthetic dataset, we also create a real
course dataset based on data collected from 11 U.S univer-
sities, all with a focus on computer science or computer sci-
ence like departments (CS). We developed a Web scraper to
extract the course information from the online course cata-
logs of these universities. Besides the basic information such
as course ID, name, and description, the course catalogs also
provide course prerequisite information. For example, “CS
311 Data Structures and Algorithms” is a prerequisite for
“CS 422 Data mining”. Our focus on courses in the com-
puter science is two-fold. We have domain expertise in that
area and focusing on only one domain will make the ground
truth acquisition easier and more realistic. After collecting
the course descriptions, we apply Wikipedia Miner (Milne
and Witten 2013) to extract Wikipedia concepts.

In total from the 11 universities there were 654 unique CS
courses (both undergrad and graduate level), 639 pairs of
courses with prerequisite relations, and 569 Wikipedia con-
cepts. And the average number of concepts per course was
4.73. The dataset is available upon request.

Data Labeling To accurately label for a given concept pair
(cs, ct) whether ct is an actual prerequisite of cs requires do-
main knowledge. As such for labeling we recruited 13 grad-
uate students with CS backgrounds. Instead of labeling all
pairs of concepts in the concept space, they only needed to
label the set of candidate concept pairs P = {(cs, ct)|∃i �→
j ∈ Ω, s.t. xi[s] > 0 and xj [t] > 0}, i.e., only the concept
pairs that “co-occur” in course prerequisite pairs. Note that
for a concept pair (cs, ct) /∈ P , as,t would be unchanged
and stay at zero during the optimization process.

In the course dataset, from 861 course prerequisites we
get |P | = 3544. For each candidate pair (cs, ct), each stu-
dent annotator decides whether ct is a prerequisite of cs and
gives a binary label. The labeling task is assigned to the 13
annotators in a way that each concept pair can get labels
from three annotators. The majority vote for the three la-
bels is treated as the ground truth. Based on our setting of
the labeling process, Fleiss’ kappa κ (Fleiss 1971) is used
to assess the reliability of agreement between annotators.
Note that κ = 1 if annotators are in complete agreement
and κ ≤ 0 if the observed agreement among the raters is
no more than what would be expected by chance. For the
labels we collected, κ = 0.42, which shows a level of mod-
erate agreement. With no existing labeled concept prerequi-
site dataset available, such data, though not perfect, is nec-
essary for evaluation. Finally, from the 3544 candidate con-
cept pairs we get 1008 pairs of concepts with prerequisite
relations, denoted as Ptrue.

Baselines and Evaluation Metrics – University Course
Data Besides CGL.Class and Freq, our method is also
compared with the following two baselines. RefD (Liang et
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Methods P@50 P@100 AP@50 AP@100
Our method 0.54 0.50 0.60 0.57
CGL.Class 0.46 0.42 0.56 0.51

Freq 0.44 0.46 0.37 0.41
RefD 0.52 0.55 0.42 0.49

Random 0.28

Table 2: Results on the course dataset.
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Figure 4: Results using different numbers of pairs (k) of
course dependencies. ∗ indicates that with a given k our
method significantly outperforms other two methods (p <
0.05).

al. 2015): A link-based metric for measuring prerequisite re-
lations among Wikipedia concepts. For each (cs, ct) ∈ P ,
set as,t = RefD(cs, ct). Note that instead of utilizing
course dependencies this method requires the knowledge of
the whole Wikipedia graph. We compare with this method
in order to explore the performance difference between our
method and methods based on external knowledge bases.
Random: For each (cs, ct) ∈ P , randomly choose as,t from
{0, 1} with equal probability. Each time the probability of
discovering a true prerequisite pair is equal to the ratio of
prerequisite pairs Ptrue to all candidate pairs P , which is
|Ptrue|/|P |.

Given the size of concept graph and the limited number
of observed course prerequisites in the dataset, the method
is expected to recover only a part of all prerequisite con-
cept pairs. Thus we focus on the Top-K precision perfor-
mance. Specifically, for the evaluation of A, we use pre-
cision at K (P@K) and average precision at K (AP@K).
Given the ranked list of scores for each candidate pair,
lP = {as,t}(cs,ct)∈P , P@K and AP@K are calculated by

P@K =
∑K

i=1 rel(i)

K and AP@K =
∑K

i=1 P@i·rel(i)
K , where

rel(·) is binary indicator function; rel(i) = 1 if the concept
pair (cs, ct) corresponding to the i-th element in lP belongs
to Ptrue. In our experiments, we compare different methods
with K equal to 50 and 100.

Results – University Course Data Note that there are
two parameters θ and λ for our method. We perform
a grid search on θ ∈ {4, 8, 12, 16, 20, 24} and λ ∈
{2−13, 2−12, ..., 2−6, 2−5} to find the best parameters. We
find that the parameter combination (θ = 8, λ = 2−8)
yields the best AP@100. Table 2 lists the experiment re-
sults of different methods, from which we have the follow-
ing findings: Our method outperforms all baselines in terms

(cs, ct)

TPP

(System programming, Computer programming)
(Computer graphics, Algorithm)
(Machine learning , Probability)
(Machine learning, Mathematical optimization)
(Parallel algorithm, Parallel computing)
(Computer animation, Computer graphics)
(Programming language, Computer science)
(Operating system, Computer programming)
(Computer network, Computer)
(Software engineering, Data structure)

FPP

(Mathematical optimization, Computer science)
(Analysis of algorithms, Data structure)
(Algorithm, Dynamic programming)
(Database, Computer software)
(Computer vision, Graph theory)

Table 3: Examples of prerequisite concept pairs we recov-
ered, which are categorized as true prerequisite pairs (TPP)
and false prerequisite pairs (FPP).

of P@50 and AP@K. As for P@100, our method per-
forms better than CGL.Class, Freq, and Random, only worse
than RefD. Such results are encouraging because, as previ-
ously mentioned, RefD utilizes the link structure of the entire
Wikipedia, which contains much more information than the
collected course prerequisite dataset. In other words, if we
only compare methods which are strictly based on the CPR-
Recover problem setting, our method is the best one w.r.t.
both P@K and AP@K.

Our method is also evaluated in a similar setting to the
one used for the synthetic dataset, where our method is
compared with CGL.Class and Freq using different num-
ber of course dependencies (k). Since in total only |Ω| =
639 course dependencies are available, k is chosen from
[100, 200, ..., 600]. For each k, we randomly sample k de-
pendencies from Ω and compare different methods. We re-
peat such process 40 times and calculate the average per-
formance. Results using different k are shown in Figure 4.
While different methods perform similarly when k is small,
the advantage of our method to other baselines becomes sta-
tistically significant (p < 0.05) given sufficient k, specifi-
cally when k ≥ 200 for P@50 and k ≥ 400 for P@100.

To analyze the human performance for identifying con-
cept prerequisites, we evaluate each of the 13 student anno-
tators based on the ground truth Ptrue (i.e., the consensus).
The precision and F-score for identifying concept prerequi-
sites by student annotators are 0.75±0.13 (mean±SD) and
0.75±0.08. Because they have previously acquired back-
ground knowledge, it is not surprising that the precision is
much higher than the top-K precision of all methods in Ta-
ble 2. From experimental results on synthetic dataset, we
have noticed that our method benefits more from the increas-
ing number of course dependencies than baselines do. If a
sufficient number of course dependencies is given, the dif-
ference between the performances of our method and that of
humans is expected to become smaller.

Case Study We further investigate our method by study-
ing examples of prerequisite concept pairs recovered. Ta-

4790



ble 3 lists examples of both true prerequisite pairs (TPP) and
false prerequisite pairs (FPP), based on the ground truth la-
bels collected. While we can see from the TPP that we can
recover some of the concept prerequisites based on course
dependencies, the FPP illustrate errors. Looking closely at
the FPP, we hypothesize the errors are due to: (i) The per-
formance of concept extraction is not that good. For exam-
ple, the Wikipedia Miner extracts Mathematical optimiza-
tion from the course description “...basic program analy-
sis and optimization...” rather than find the correct concept
Program optimization. Program optimization requires Com-
puter science, but Mathematical optimization does not. (ii)
A Wikipedia concept can have different levels of interpreta-
tion, which will affect the choice for data labeling. For ex-
ample, both Database and DBMS correspond to the same
Wikipedia concept Database. Computer software is a pre-
requisite for DBMS but not for the general Database. (iii)
For our dataset, concept pairs such as (Algorithm, Dynamic
programming) and (Analysis of algorithms, Data structure)
co-occur many times in course prerequisites. Such pairs are
more likely to be recovered by data-driven methods includ-
ing ours and the compared baselines.

Related Work
To the best of our knowledge, the problem of recover-
ing concept prerequisite relations from course dependencies
has not been systematically studied. However, our work is
closely related to the following research areas.

Design of data-driven methods for automatically discov-
ering prerequisite relations has been explored in multiple
works. Established methods in educational data mining have
been developed based on the automatic analysis of the as-
sessment data acquired by students’ performance (Vuong,
Nixon, and Towle 2011). In addition, Liu et al. (2011) pro-
posed a classification method for mining learning dependen-
cies between knowledge units in text books. As the largest
open knowledge base, Wikipedia has also been studied to
find prerequisite relations among concepts (Agrawal, Gol-
shan, and Papalexakis 2015; Liang et al. 2015; Talukdar and
Cohen 2012), where both Wikipedia article contents and
their link structures are utilized. Using Wikipedia, Wang
et al. (2016) designed a joint framework for key concept
extraction and prerequisite identification to extract concept
maps from textbooks. For automatic curriculum planing,
Yang et al. (2015) proposed a supervised framework to infer
course prerequisites by constructing a latent concept graph
to support prediction. Such a data setting is also utilized
in our work. In comparison, their empirical efforts focused
more on extrapolating the observed course prerequisites to
unseen pairs, while we focus on recovering a universally
shared concept graph. In their paper, the latent concept graph
based on their approach — not yet formally evaluated as re-
marked in (Yang et al. 2015) — is also empirically evalu-
ated with our method in the two experiments. Gordon et al.
(2016) proposed a information-theoretic metric to capture
concept dependencies in a scientific corpus. Their method
relies on topic modeling techniques and requires human an-
notaions of latent topics to make the result interpretable.

Conclusion
We proposed an effective data-driven method for recovering
concept prerequisite relations from university course depen-
dencies, the CPR-Recover problem. Our method was evalu-
ated on a synthetic dataset and real course datasets derived
from computer science or related course listings at 11 US
universities and significatly outperformed existing baselines.
To our knowledge, this is the first real dataset for the CPR-
Recover problem.
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