AAAI Publications, Thirtieth AAAI Conference on Artificial Intelligence

Font Size: 
Efficient Computation of Emergent Equilibrium in Agent-Based Simulation
Zehong Hu, Meng Sha, Moath Jarrah, Jie Zhang, Hui Xi

Last modified: 2016-03-03


In agent-based simulation, emergent equilibrium describes the macroscopic steady states of agents' interactions. While the state of individual agents might be changing, the collective behavior pattern remains the same in macroscopic equilibrium states. Traditionally, these emergent equilibriums are calculated using Monte Carlo methods. However, these methods require thousands of repeated simulation runs, which are extremely time-consuming. In this paper, we propose a novel three-layer framework to efficiently compute emergent equilibriums. The framework consists of a macro-level pseudo-arclength equilibrium solver (PAES), a micro-level simulator (MLS) and a macro-micro bridge (MMB). It can adaptively explore parameter space and recursively compute equilibrium states using the predictor-corrector scheme. We apply the framework to the popular opinion dynamics and labour market models. The experimental results show that our framework outperformed Monte Carlo experiments in terms of computation efficiency while maintaining the accuracy.


Emergent Behavior; Equilibrium Computation; Agent-Based Simulation

Full Text: PDF