Font Size:

Fast Gradient Descent for Drifting Least Squares Regression, with Application to Bandits

Last modified: 2015-02-21

#### Abstract

Online learning algorithms require to often recompute least squares regression estimates of parameters. We study improving the computational complexity of such algorithms by using stochastic gradient descent (SGD) type schemes in place of classic regression solvers. We show that SGD schemes efficiently track the true solutions of the regression problems, even in the presence of a drift. This finding coupled with an $O(d)$ improvement in complexity, where $d$ is the dimension of the data, make them attractive for implementation in the \textit{big data} settings. In the case when strong convexity in the regression problem is guaranteed, we provide bounds on the error both in expectation and high probability (the latter is often needed to provide theoretical guarantees for higher level algorithms), despite the drifting least squares solution. As an example of this case we prove that the regret performance of an SGD version of the PEGE linear bandit algorithm is worse than that of PEGE itself only by a factor of $O(\log^4 n)$. When strong convexity of the regression problem cannot be guaranteed, we investigate using an adaptive regularisation. We make an empirical study of an adaptively regularised, SGD version of LinUCB in a news article recommendation application, which uses the large scale news recommendation dataset from Yahoo! front page. These experiments show a large gain in computational complexity and a consistently low tracking error.

#### Keywords

Stochastic Gradient Descent; Drifting; Linear Bandits; Least Squares Regression

Full Text:
PDF