
KOJAC: Implementing KQML with Jini to Support Agent-Based

Communication in Emarkets

M. Brian Blake

Department of Information and Software Engineering
George Mason University

Fairfax, VA 22030
mblake@gmu.edu

Abstract
The Java programming language and technologies have
been used extensively in the construction of web-based
components and applications specifically in the context of
electronic markets (emarkets) development. Java-based
components can fulfill a variety of atomic roles in an
emarket scenario from graphical user interfaces to complex
database functions. However, in distributed settings, a great
deal of monolithic code must be wrapped into the core
functionality offered by Java components to allow for
communication or message passing. Java introduces the
Jini specification and associated functions to handle this
distributed collaboration. Unfortunately, even Jini adds
unnecessary overhead to the core functionality of these
atomic components. Consequently, agents can be deployed
in conjunction with these Java technologies to assist in
communication as well as other nonfunctional concerns.
The Knowledge Query and Manipulation Language
(KQML) is a protocol that has been used in implementing
agent communication. This paper suggests the use of agents
to broker communication between atomic components.
KOJAC (KQML over Jini for Agent Communication) is
approach to agent-based communication implemented with
Jini services, specifically JavaSpace. KOJAC defines
methods using Jini services that conform to the KQML
protocol and incorporate an object-oriented ontology.

Introduction

Emarkets are becoming increasingly popular currently with
even higher expectations in the future. One particular
domain underlying emarkets is the implementation of
workflow. A workflow can be defined as the realization of
some business process. Some Internet implementations of
workflow are the on-line ordering process, the on-line
stock purchasing process, etc. In each step of these
processes, a component or actor plays a role in fulfilling
the overall goal. In the case of the (Figure 1.1) on-line
stock purchasing process some characteristic roles may be

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

a customer interface, broker, or trader roles. Each of these
role players can be realized by a Java-based component,
while some component-based service or operation may
fulfill their functionality or task. Finally, a centralized
controller component or scheduler can be deployed to
invoke each operation in accordance with a workflow
policy.

ICentralized
Control Server I Workflow Controller (WC)

.,w

/’/~. WC invokes 5. WC invokes
Z WCrespondsto / / po~fote paymentsemce

1, Customer ~~oo~t
requests stock

l~rChase
Intemet Customer Broker Trader Payment Department

Figure 1.1 On-line Stock Purchasing Domain

Workflow Automation through Agent-Base Reflective
Processes, WARP (Blake, 2000b), is an approach that uses
an agent-base middleware layer to coordinate internet-
based workflow. This work has successfully used agents
to mediate communication among distributed services. A
high-level architecture in context of the on-line stock-
purchasing domain is shown in Figure 1.2

Components WARP
Agent Middleware Layer

[WorkflowManagerAgent I

Components

Figure 1.2 WARP Architecture for the On-line Stock
Purchasing Domain

From: AAAI Technical Report WS-00-04. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

This paper proceeds in the next section with an overview
of all the pertinent technologies. Next, the workfiow-based
ontology is defined. Later, the agent-based communication
and tools in KOJAC is detailed in context of specific
KQML semantics. Finally, this work is summarized in the
in context of related work.

Overview of Technologies

In order to set the context for further discussion, this
section gives background of each of the underlying
technologies (i.e. workflow, Jini services, and KQML).

Workflow Terminology

The workflow language here follows workflow
terminology used presently by researchers. The
terminology closely follows the concepts in (Lei and
Singh, 1997). In order to set the nomenclature for further
discussion, the following set of definitions are adhered to
throughout this paper.

¯ A task is the atomic work item that is a part of a
process.

¯ A task can be implemented with a service.
¯ An actor or resource is a person or machine that

performs a task by fulfilling a service.
¯ A role abstracts a set of tasks into a logical

grouping of activities.
¯ A process is a customer-defined business process

represented as a list of tasks.
¯ A worldlow (instance) is a process that is bound

particular resources that fulfill the process.

Jini Services: JavaSpaces

Jini technology is a suite of services developed by Sun
Microsystems that provide a simple substrate for
distributed computing (Edward, 1999). Jini supports most
common principles surrounding distributed coordination
(i.e. remote objects, leasing, transactions, and distributed
events). It is not in the scope of this paper to give an in-
depth description of Jini but to describe those services that
are used for agent communication, specifically JavaSpaces
(Freeman, Hupfer, and Arnold, 1999). JavaSpace
technology is based on "Tuple Spaces" (Gelernter, 1985).
Tuple spaces, first introduced in the context of the "Linda"
project in 1982, allows distributed software processes to
communicate autonomously. The tuple space emulates a
data storage server. The server receives entries from
independent components and stores them for retrieval.
Exterior components can be notified when an entry of a
certain pattern or tuple is entered. Components can also
read and take matching entries based on a tuple-based
pattern they submit. Though JavaSpace technology was
motivated by tuple space, it is slightly different.
JavaSpaces are "object" storing service. It supports read,
write, take, and notify on actual software objects. Sample
JavaSpace interactions are illustrated in Figure 2.1.

Figure 2.1 Typical JavaSpace Functions

KQML

The motivation for KQML (Labrou and Finin, 1994),
(Labrou, Finin, and Peng, 1999) was to formalize a method
by which agents can communicate effectively and
efficiently. The message format supplies the agent with
knowledge of which agent it is communicating to, a
protocol for establishing dialogue, the language by which
agents are communicating, terms by which other agents
will interpret expressions, and exception handling. It is not
my intend to cover the KQML specification in entirety but
to introduce the portions of the protocol that may assist
later interpretations

KQML is separated into 3 layers, content, message and
communication layers. The content layer allows agents to
communicate which language is going to be used in a
particular message. The message layer contains the
message to be communicated in the form of content
messages and declaration messages. The final layer is the
communication layer, which exchanges packages to
specify communication attributes. The message layer is of
importance to us. The message layer, more specifically in
content messages, is what KOJAC emulates

As all layers, the message layer format is in Common Lisp
keyword argument format. Some possible keyword
arguments are TYPE, QUALIFIERS, CONTENT-
LANGUAGE, or CONTENT. The following depiction
illustrates an example message.

(MSG
:TYPE <Type of message (e.g. query, assert>
:QUALIFIERS <list of qualifiers for message>
:CONTENT-LANGUAGE <name of language used>
:CONTENT-TOPIC <topic of knowledge>
:CONTENT <Actual message in content language>)

The idea of message types is important to the functionality
of this protocol. A specific message may have the
functionality of asking a question or responding with an
answer. Performatives are specialized KQML message
types. The specification of a performative can increase
system-wide transactions and functionality. The following
example is a sample performative where an agent joe
queries a stock server agent about the price of a share of

IBM stock.

(ask- one:
:sender joe
:content (PRICE IBM 7 price)
:receiver stock server
:reply-with ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

In later sections, I will show how KOJAC can be used to
implement a subset of the common reserved performatives
(Labrou and Finin, 1994) as in Table 2.1.

Catego~. Name

Basic query ask-one, ask-all
Generic tell-one, tell-all
Informational
Capability-definition advertise, subscribe, monitor
Networking register

Table 2.1 A Subset of Reserved Performatives

Workflow-based Ontology

KOJAC uses an object-oriented ontology as a shared
knowledge base among agents. This solution is practical in
the context of object-oriented domain analysis (Gomaa and
Kerschberg, 1991) since agents reason about a particular
domain when they communicate. Emarket designers can
use traditional object-oriented analysis and design
techniques to construct a domain model using object-
oriented structural diagrams (Booch, 1999). This domain
model later translates into a physical set of classes.
Objects from these domain classes are later specialized to
particular types of JavaSpace entry objects. This is
discussed in greater detail in the operational semantics of
KOJAC.

The first implementation of KOJAC is for the WARP
agents. WARP agents communicate based on a domain
that considers workflow policy, roles, services and data
flow. This business process-based ontology is reusable

Role
~ Work,owPolicy ~ ,ra.s,,o°Role Name Workflow_Name DataFIow

List<Services> Num of Services TransitionlD
List< Roles>
List<Services>

fw°rkfl°wlWorkflowPollcyInstance_lD:-- ~ ~TransitionlD>

Parameters

Service DataType DataFIow
DataValue

ServlceName ParameterlD List< ParamerlD>
List<ParameterlD> List< ReturntD>
List< ReturnlD>

Return

DataType

!o~a ~iv iP~ti!!r~e DataValue

Figure 3.1 Worldlow-based Object-Oriented Ontology

across all Emarket domains that implement a world’low of
distributed components. The structural view of the
workflow-based ontology is illustrated in Figure 3.1. The
workflow policy is the heart of this ontology. Agents that
coordinate component-based services first need to know
the workflow policy. Each step in the workflow policy
correlates to a role and the completion of a specific service.
Each service has one or more parameters or return values.
The workflow policy further defines the subset of
parameter and returns that are populated between each
individual step as a dataflow. The reason for defining data
flow is because one service may return more information
than the subsequent service requires. Also, multiple
concurrent services may proceed a single service. In this
case, a combination of returns from multiple services
would precede the subsequent service.

Setting the Foundation for KOJAC

In order to understand the operational semantics of
KOJAC, we use the generic workflow-based ontology
defined in the previous section. KOJAC can be
implemented for any ontology following an object-oriented
analysis of the domain and of the system. The
corresponding object-oriented design and software would
be implemented both in the actual system software and in
the agent-based communication software. This section
describes this process in the terms of the WARP
environment. Therefore, we first give an operational
overview of the WARP environment. Then, we describe
how KOJAC can be implemented into the system-level
object-oriented design lifecycle. Finally, we show how the
ontology can be implemented using a Java package of
domain model-based classes.

An Overview of the WARP Environment

To consider the operational environment, again let’s use
the on-line stock-purchasing domain (Figure 1.1.).
configured WARP system would have a Role Manager
Agent (RMA) for each of the roles. RMAs act as middle
agents (Decker and Sycara, 1997) for components. The
RMAs obtain system aspects of the component through
introspection and are able to invoke component functions
through the process of reflection. The three roles are the
Customer Interface Role, the Broker Role, and Trading
Role. There is a RMA for each role. There is one
Workflow-Manager Agent (WMA) that helps in the
coordination of the entire workflow. Each RMA would
subscribe for service completion events prior to their
affiliated services. For example, the Portfolio
Management Role would monitor for the completion event
of a getTradeRequest service. Suppose a customer invokes
the getTradeRequest service. The Customer Interface
RMA would receive a completion event from the
component (actor) and would broadcast the pertinent data
for this service completion. The RMA for the Portfolio

Management Role would be notified of this completion.
First it would check to see if this service is pertinent to any
of its workflow policy responsibilities. If so, the RMA for
the Portfolio Management Role would wait for the ready
event to be written to the server by the WMA. The WMA
would have also been monitoring and notified of the
getTradeRequest service completion. The WMA would
post any amendments to the workflow based on
nonfunctional concerns at the process level. Subsequently,
the WMA would publish a ready event to the pertinent
RMA. Through reflection, the RMA would invoke the
proper service (searchPortfolio service) for this step
(reflection) in the workflow policy. Subsequently the
output data, and the service completion would be
broadcast. This process sequence is shown in Figure 4.1
for the stock purchase process.

3a. Notif,j
WMA

2.$

4. Write any process
level events and write

ready events
RMA

5. Receive Ready
"<~. Event

l[’l[Customer Interface Portfolio Mgmt Ro~e (RMA
Robe (RMA) (RMA)

Internet Customer Broker Trader

Figure 4.1 WARP Environment for On-line Stock
Purchase Domain

Domain Model as the Object-Oriented Ontology
In the previous sections, we discuss the development of a
"generic" domain model (Gomaa and Kerschberg, 1991)
that can act as an agent-based ontology. Traditional object-
oriented analysis techniques analyze the system domain
prior to software analysis and design. This analysis
clarifies the requirements of the system. In the
development of KOJAC, we have noted that this same
domain model has all the aspects necessary for
communication among agents.

In the business process/workflow ontology, the RMAs
communicate among themselves and the WMAs about the
status of the process and of the status of services. For
example, the Customer Interface RMA would tell other
RMAs and the WMA if a particular service on the
Customer Interface component had been completed, failed,
etc. The WMA may notify multiple RMAs about the start
of a process. The WMA may query RMAs to find out
what services are available. Moreover, the RMAs can
reply with the number of services and specific returns and
parameters. The information required for the
aforementioned communication is a subset of the
information provided in the domain model-based ontology.

Integrating the Ontology with KOJAC
A common second step in object-oriented analysis is
translating the domain model into a system analysis model.
In this translation, implementation classes are added to the
model such as servers, queues, stacks etc. Also, some
domain classes are translated into "proxy" classes (i.e.
software classes that represent domain entities).
Furthermore, some domain classes are directly transferred
to the analysis model. The analysis model is the basis for
the software design and development.

KOJAC specifically isolates the original domain and proxy
class implementations. The agents use the software
implementations of these classes for communication. In
order to facilitate this process, the software designer needs
to specialize these classes to a specific set of abstract
classes that adds additional communication based
information.

JavaSpace communication relies heavily on the
instantiation and use of objects that either implement Entry
interfaces or subclass the AbstractEntry class. These
objects can be written, taken, read or notified in the
JavaSpace server. Jini further specializes these Entry
classes. These specializations are Address, Comment,
Location, Name, Servicelnfo, ServiceType, and Status.
The structural view of the Entry classes is shown in Figure
4.2.

enurn{invoke, cancel, quer
respond}

I I I I
Location Comment

vendorServtcelnf°

Status

locality comment model status
organization name enum{completed

serial number failed, started,

Figure 4.2 Entry: Class Diagram

In order to incorporate the domain and proxy classes with
KOJAC, the designer must specialize those classes with
the pertinent Entry class. In some cases, we added another
layer of specialization to include some functionality that
was not included in Jini’s set of specializations. In the case
of the WARP environment, we added the attribute,
"action", to the AbstractEntry class. Finally, this set of
classes with the new specializations are compiled into a
Java package. This package acts as the shared ontology for
the agents. In Figure 4.3, the domain classes from Figure
3.1 are stereotyped for their particular type of Entry. The
Service, Parameter, Return, DataFlow, and Transition are
all Status Entry classes that get passed among the RMAs
and WMAs. The Component class is a Location Entry
class because it reveals the location of the components.
Roles, WorkflowPolicy, and Workflowlnstance classes are
Servicelnfo Entry classes. Interpretations of the type of

4

Entry Classes will vary from domain to domain. Sub-
classing the domain classes is important for object
matching.

[
<< Servicelnfo>> ~/

~

<< Star
Role Transition

<< Servicelnfo>>
Workflow Policy

[i

WorkflowInstance

~ ~<<Parameters Status>>

<< Status>>
Secvice << status>>

DataFIow

<< Status>>
ReturnI << Location>>

Component

Figure 4.3 Entry Class Specializations

KOJAC: OPERATIONAL SEMANTICS
This section illustrates the interaction protocols of KOJAC
based on a subset of the reserved performatives from Table
2.1 using the WARP environment as an example. It is not
the intent to detail all possible interactions but more to
show how typical interactions would occur.

Register

An agent can register by both connecting to the JavaSpace
server and setting notify commands for all entries that it is
interested in. For example, a Broker RMA would first
connect to the JavaSpace, then it would set notifications for
Status entries (Service Class) on services that it can
perform. Also, the Broker RMA would set notifications for
ServiceInfo entries (Workflow Instance Class) that include
services that it encapsulates. The Java-based syntax to
register is as stated below.

//Get reference to Javaspace Server
JavaSpace SpaceWARP = (JavaSpace)rh.proxy0;

//Instantiate Status Entry
this_Service = new Service();
Service.ServiceName = "searchPortfoliolnfo";

//Other fields are set to null (WlLDCARDS)

//Instantiate Servicelnfo
this_WFInstance = new Workflowlnstance0;
this_WFInstance.Service = "searchPortfoliolnfo";

//Notify on Service
EventRegistration thisReg =

SpaceWARP.notify(thisService, null, null,Lease.ANY, null);

//Notify on WFInstance
EventRegistration thisReg =
SpaceWARP.notify(thisWFInstance, null, null, Lease.ANY,null);

Subscribe

An agent can subscribe by setting notifications for
pertinent entries. For example, the Trader RMA would
subscribe for a Status entry on the searchPortfolio service
specifically for entries denoting an invocation action was
delivered. This would allow the Trader RMA to prepare
for the completion Status entry once the searchPortfolio
service is completed. The syntax for this notification is as
follows.

//Instantiate Status Entry
this_Service = new Service();
Service.action = invoke;

//Set other fields to NULL (WlLDCARDS)

//Notify on Service
EventRegistration thisReg =

SpaceWARP.notify(thisService, null, null, Lease.ANY, null);

Tell-all

An agent can tell-all or broadcast a message with a simple
write entry to the JavaSpace. Since all agents register their
own interests, they will get notified after the completion of
the write command. An example in the WARP
environment is when a WMA wants to notify all RMAs
about a new workflow instance. The WMA would write a
ServiceInfo entry of the WorkflowInstance class into the
space. This WorkflowInstance class will be fully
populated with the entire workflow policy information.
The RMAs that are included in the list of services in the
policy would be notified. The syntax is as follows.

//Instantiate Servicelnfo
this_WFInstance = new Workflowlnstance0;

//Populate of all of the pertinent workflow policy information
this_WFInstance.WorkflowPolicy = all_info;

//Write this entry into the Space
SpaceWARP.write(thisWFInstance, null, timeToLive);

Ask-all

Implementing the Ask-all performative is a two step
process. The agent would first insert a notification for a
template of the response that was expected. Secondly, the
agent would write an entry where the action is denoted as a
query. Using the WARP environment, the WMA might
request the location of service. The WMA would first set
notify on Component class entries that have a specific
service designated. Secondly, the WMA would write a
location entry of the Component class that specifies
pertinent services and populates the action field as a query.

This process is implemented in the following syntax.

//Set notifications for response
this_Camp = new Component();
this_Comp.Service.ServiceName = "searchPortfoliolnfo";
this_Camp.action -- respond;

//Other fields are set to null 0NILDCARDS)

//Notify for response
EventRegistration thisReg =

SpaceWARP.notify(this_Comp, null, null, Lease.ANY, null);

//Change field to action field to query
this_Camp.action = query;

II Write this entry into the Space
SpaceWARP.write(this_Comp, null, timeToLive);

KOJAC Tools

To implement KOJAC, there is a set of object-oriented
tools that can be integrated with the Java-based agents to
assist in using the JavaSpace and Entry classes. This toolkit
can be incorporated into the agent communication
functionality or it can be called remotely through Java
Remote Method Invocation (RMI). The architecture for the
KOJAC tools is detailed in Figure 5.1.

J avaSpace_Wrapper

I-- J

<<Interface>>

Notify

RemoteEvent

Read
Take
Connect

Register
~

<<Inter/ace>>............_4]Tell-all J
Ask-all

T
Introspector

Get EntrySpecs

Figure 5.1 High-level KOJAC Components

The KOJAC architecture consists of a Communicator class
that inherits functionality from a JavaSpace_wrapper. The
JavaSpace_wrapper class implements all of the native
JavaSpace commands. The Introspector class looks into
the ontology-based package to construct entries used by the
Communicator class. The Communicator class also
brokers events between the JavaSpace server and the
agents.

The flow of operation in the tools is illustrated in Figure
5.2. When a component completes a service, it fires a

completion event. The completion event is captured by the
RMA. The RMA classifies the event as a completion. The
RMA invokes the Tell-all method. Within the Tell-all
method the Introspector is instantiated. This Introspector
searches the ontology-based package for an entry class that
has the same name as the completed service. The
introspected class is returned and the action field is
populated as a completion. Finally, the inherited write
function (from JavaSpace_wrapper parent class) is called
with introspected class as a parameter.

I. Fire Comple~n Event 5.
J eva space_~oloer.vaite(inlm~ecLdass)

In~spect0~

I
Ser~i:e)

KOJAC Components

Figure 5.2 KOJAC Tools Operational Flow

Summary

This paper suggests an approach to agent communication
that implements KQML semantics using Jini services. Two
main focuses in specifying an implementation for agent
communication languages are developing a standard suite
of APIs that support message transfer and an infrastructure
of services that support basic facilitation services (Labrou,
Finin, and Pang, 1999). The problem with this currently is
that there are many different implementations that tend to
deviate from the semantics. KOJAC standardizes an
implementation by integrating a standard ACL into a
known set of tools and services. By using the primitive
structures and functions, other agent-based developers
using Java-based technologies can incorporate the same
semantics. By using Jini services, agent communication
inherits common distributed programming features by
default. This use also enforces the standardization of the
agent communication semantics.

References
Blake, B. and Bose, P. 2000a. An Agent-based Approach
to Alleviating Packaging Mismatch, Proceedings of the 4h

International Conference on Autonomous Agents
(AGENTS2000), Barcelona, Spain

Blake, M.B. 2000b. WARP: An Agent-Based Process and
Architecture for World’low-Oriented Distributed
Component Configuration. Proceedings o1" the 2000

International Conference of Artificial Intelligence, Las
Vegas, NV, June 2000

Booch, G., Rumbaugh, J., Jacobsen, I., 1999 The Unified
Modeling Language User Guide. Reading MA, Addison
Wesley

Decker, K., Sycara, K., and Williamson, M. 1997. Middle
Agents for the Internet, In the Proceedings of the 15~
International Joint Conference on Artificial Intelligence,
Nagoya, Japan.

Edwards, K. 1999. Core Jini. Upper Saddle River, N.J.:
Prentice Hall

Freeman, E., Hupfer, S., and Arnold, K. 1999. JavaSpaces
Principles, Patterns, and Practice, Reading, MA.:Addison
Wesley

Gelernter, D. 1985 Generative Communication in Linda.
A CM Transactions on Programming Languages and
Systems, Vol. 7, No. 1, pp. 80-112.

Gomaa H and Kerschberg, L. 1991. An Evolutionary
Domain Life Cycle Model for Domain Modeling and
Target System Generation, In Proceedings of the
Workshop on Domain Modeling for Software Engineering,
International Conference on Software Engineering, Austin,
TX

Labrou, Y. and Finin,T. 1994. A semantics approach for
KQML - a general purpose communication language for
software agents. Proceedings of the Third International
Conference on Information and Knowledge Management
(CIKM-94), Gaithersburg, MD.

Labrou, Y., Finin, T. and Peng, Y. 1999 "The current
landscape of Agent Communication Languages",
Intelligent Systems, 14 (2): IEEE Computer Society

Lei, K. and Singh, M. 1997. A Comparison of Workflow
Metamodels, Proceedings of the ER-97 Workshop on
Behavioral Modeling and Design Transformations: Issues
and Opportunities in Conceptual Modeling, Los Angeles,
CA

