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Abstract

Although software agents are becoming more widely
used, methodology for constructing agent programs is
poorly understood. In this paper, we take a step to-
wards specifying and proving correctness for a class
of agent programs based on the PRS architecture,
Georgeff and Lansky (1987), one of the most widely
used in industrial settings. We view PRS as a simpli-
fied operating system, capable of running concurrently
a series of plans, each of which at any time is in a state
of partial execution. The PRS system is construed as
using a simplified interrupt mechanism that enables it,
using information about goal priorities, to "recover"
from various contingencies so that the blocked plans
can be resumed and eventually successfully completed.
We develop a simple methodology for PRS program
construction, then present a formalism combining dy-
namic logic and context-based reasoning that can be
used to reason about such PRS plans.

1. Introduction

In this paper, we take a step towards specifying and
proving correctness for a class of agent programs based
on the PRS architecture, Georgeff and Lansky (1987).
PRS and its successor dMARS are two of the most
widely used architectures for building agent systems,
and have been used in air traffic management, busi-
ness process management and air combat modelling,
Georgeff and Rao (1998). PRS is a type of rational
agent architecture, by which is meant that it is based
on taking seriously the notion of intention, e.g. as ex-
pounded by Bratman (1987).

We take the view that PRS is a kind of simplified
operating system, capable of running concurrently a se-
ries of plans, each of which at any time is in a state of
partial execution. The system is operating in an envi-
ronment which is dynamically changing, and the job of
the interpreter is to monitor these changes and respond
to them in such a way that the plans can succeed in
achieving their goals. It does this, we contend, by use
of a simplified interrupt mechanism that enables the
system, using information about goal priorities, to "re-
cover" from various contingencies so that the blocked
plans can be resumed and eventually completed. The

job of the programmer is to specify plans that can be
invoked to deal with every contingency that can occur.
If it is possible to recover from every contingency, the
system can be guaranteed to achieve its preset goals.

We develop a formalism that can be used to reason
about PRS programs viewed in this way, without claim-
ing that this is the only way that PRS can be viewed.
Our formalism is based on dynamic logic, and thus con-
strues programs as state transition functions (but where
in Computer Science, the states are internal machine
states, our states are external world states). This work
follows on from similar applications of dynamic logic in
agent settings, e.g. Singh (1994). In section 2, we re-
view the PRS architecture and present a simple method
for constructing PRS agent programs. We give a for-
malism for reasoning about PRS program construction
based on our methodology in section 3, and illustrate
the use of the formalism with a simple correctness proof.

2. PRS Agent Programs

PRS (Procedural Reasoning System) was initially de-
scribed in Georgeff and Lansky (1987). Basically, PRS
agent programs (as I will call them) are collections 
plans, officially called Knowledge Areas (KAs). These
plans are essentially the same as standard plans in the
Artificial Intelligence literature, in that they have a pre-
condition (a condition under which the plan can be
executed), an effect (a condition which successful ex-
ecution of the plan will achieve), and a body (a collec-
tion of subactions which when successfully executed will
achieve the effect). The body of a plan is very similar
to a standard computer program, except that there can
be subgoals of the form achieve g, meaning that the
system should achieve the goal g in whichever way is
convenient: these are the analogues of procedure calls.
In addition, PRS plans have a context (a condition that
must be true when each action in the plan is initiated), 
trigger (a condition that indicates when the interpreter
should consider the plan for execution), a termination
condition (a condition indicating when the plan should
be dropped), and a priority (a number indicating how
important the plan’s goal is to achieve). The trigger is
important in dynamic settings: when there are a num-
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! helps the interpreter to find the "best" way of achiev-
ing the goal, given the current execution context. Note
that due to unforeseen changes in the world, the exe-
cution context of a goal cannot always be predicted at
planning time. The priority of each plan enables the
system to determine which plan to pursue given lim-
ited resources (usually a plan with the highest priority
is chosen for execution). Thus the use of triggers em-
bodies a kind of "forward-directed" reactive reasoning,
whereas goal reduction embodies a kind of "backward-
directed" goal-driven reasoning.

Our treatment of correctness relies on a particular
approach to the construction of PRS programs. We do
not claim that the formalization applies to any PRS
program. Consider designing a plan to achieve a par-
ticular goal g. We give the following intuitive picture
as to how this might be done, taking for now the simple
case in which it is assumed that there are no calls to
subgoals and no contingencies that arise during execu-
tion. Recall that each plan has an associated context,
a condition that must be true throughout the plan’s
execution. It seems natural to start by determining a
collection of possible initial states S, then proceed by
dividing this set into subsets of states S~ such that for
each subset Si, it is possible to define a single plan Pi
that can achieve g without leaving the states in Si (ex-
cept possibly at the end of the plan, when g itself is
true). The subsets Si need not be disjoint, but their
union should equal S. The next task is to define formu-
lae ci that characterize the S~, meaning that each ci is
true of all the states in Si but not true of any state not
in Si (because Pi does not work in these states)--this is
not necessarily straightforward! The correctness of the
plan Pi can be expressed as the dynamic logic formula
ci ~ [Pi]g, and proven so using standard techniques.
Furthermore, the formula cl V... V c~ (assuming there
are a finite number of contexts 1, ..., n) characterizes
the set of initial states S, and the assumption that S
contains all the possible initial states is expressed by the
formula [] (cl V...Vcn). From this and the correctness 
the individual plans, it follows that ([P1]g Y... V [pn]g).

Now consider designing plans to respond to "proce-
dure calls", i.e. to satisfy subgoals of the form achieve
g occurring in a plan P. The plan will have a context
c that characterizes a set of states S: each state in S
is one in which P achieves its goal, assuming that all
the calls to achieve g succeed. Note first that, not only
should the procedure achieve g, but it should also main-
tain the context c. Thus the context of the subprogram
should entail c. Now we may proceed as above, decom-
posing S into subsets Si, characterizing those subsets
by context formulae ci, and defining plans Pi with con-
texts ci that achieve g. The priorities of each subplan
Pi should be at least that of P. It is apparent that
by repeating this process for calls to achieve subgoals
within subprograms, the programmer defines a hierar-
chy of contexts by continually partitioning the original
set of states S. For each subprogram Pi with set of

S and context c, we have that S~ C_ S and c4 ~- c. That
is, the hierarchy forms a partial order on sets of states
with the ordering inherited from set inclusion. Note
that, as above, from a collection of formulae c4 =~ [Pi]g
for i = 1, ...,n, it follows that c =~ ([P1]gY...Y[P,]g),
where c - c~ V ̄  .. V ca.

The next stage is to consider the contingencies that
can arise while executing a plan P. The purpose of the
contingency plans is, whenever possible, to restore the
context of the original plan c (or if this is impossible,
to cause the original plan to be dropped by achieving
~c). However, it is not necessary that each contingency
plan achieve c: below, we give a simple example where
executing a sequence of contingency plans restores c.
Moreover, a contingency plan need not directly achieve
c; rather it can block the original plan from being ex-
ecuted until c is true. This is also illustrated in the
example below. Even so, it seems natural to start with
a set of states S that defines when the contingency oc-
curs, and to divide this set into subsets for each of which
a contingency plan can be defined. The priority of any
contingency plan must be greater than that of the orig-
inal plan to ensure that the contingency plan is chosen
by the interpreter for execution in preference to the
original plan. Any subgoals in the contingency plan
can be handled as described above. Now by repeat-
ing this process, i.e. by defining contingencies to handle
contingencies, the programmer also defines a hierarchy
of contexts, but in contrast to that defined for subpro-
grams, this is a hierarchy of exceptions. That is, if Pi
is a contingency plan with set of states Si and context
ci, for a plan P with set of states S and context c, then
there is no necessary relationship between Si and S, nor
between ci and c. The whole design process stops when
there are no remaining contingencies to consider.

For example, consider designing a simplified program
for an aircraft to take off. Assume the basic takeoff
plan can be defined, and succeeds provided the runway
is free. That is, the condition -~runwayffree is a contin-
gency. Two plans are defined to deal with this contin-
gency, differing in their context of application. In one,
the plane is on the runway and must be diverted; in the
other, the plane is not on the runway and simply waits.
Note the subtleties in even this program: the divert
plan does not restore the original context runway_~ree,
but changes the context to -~on_runway so that the wait
plan is invoked. Also, the wait plan may be repeatedly
invoked until its trigger is false; when this is the case,
the context of the takeoff plan is true, so this plan can
be resumed. It only remains to assign priorities to the
plans such that the contingency plans have higher pri-
ority than the takeoff plan (this can be done in any
way convenient, so just let the priority of takeo’ff be 10
and the priority of divert and wait be 20). The final
program is shown in Figure 1. Boxes indicate contexts
and an arrow from one context to another indicates that
the first handles a contingency that can arise while the
second is executing.
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/
priority: 20
trigger: -~runway_free
context: on_runway
plan: [ divert]-~on_runway

::( . .

trigger: true
context: runway_free
plan: [takeoff]airborne

priority: 20
trigger: -~runway_free
context: -~on_runway
plan: [wait]-~on_runway

Figure 1: Takeoff Program

3. Correctness of Agent Programs
We now present a formalism that can be used to reason
about PRS programs constructed as in section 2. The
essence of the formalism is the combination of dynamic
logic and context-based reasoning, Wobcke (1989). The
technical formalism is related to labelled deductive sys-
tems, Gabbay (1996), in which each formula is assigned
a label, signifying a context in which the formula is true.
For a formula representing the correctness of a plan, the
label can be identified with the possible execution con-
texts of the plan, and hence the label also indirectly
represents a set of assumptions under which the plan
can be proven correct.

The formal language we use is based on propositional
dynamic logic, Pratt (1976). The semantics of dynamic
logic is based on binary state transition relations. More
precisely, an interpretation M consists of a modal frame
F and a valuation on atomic proposition symbols V.
The frame F consists of a nonempty set of states S to-
gether with a binary relation P~ on S for each program
term ~r. The valuation V is a mapping from the set of
atomic proposition symbols to the power set of S.

Satisfaction at a state s in an interpretation M is
defined as follows.

M ~8 A iff s E V(A) for A an atomic formula
M ~8 -~A iff M ~=8 A
M ~s AA B iff M ~s A and M ~s B
M ~a AVB iff M ~8 A or M ~8 B
M ~s A =~ B iff M ~s A or M ~s B
M ~s [Tr]A iff for all t such that R,r(S, t), M ~t 
Finally, there are a number of constraints on the R~

to ensure that each reflects the operational semantics
of the program construction operations.

R~;~ = R~ o R~ = {(s,t): 3u(R~(s,u) and R~(u,t))}
R~u~ = R~ u R~
Ra. = R* (the transitive closure of R~)
RA? = {(s, s) M ~8A}
It can be shown, Goldblatt (1992), that the follow-

ing axiom schemata and rule are sound and complete

with respect to the above semantics (that includes the
constraints on the Rr).

[a; fl]A ~ [a]MA
[a U fl]A ¢, ([a]A A [fl]A)
[~*]A ~ (A A [a]Ia*lA)
[~*](A =~ [a]A) ~ (A =~ [a*]A)
[A?IB ~ (A =~ B)
[a](A ~ B) =~ ([a]A ~ [a]B)
If t- A infer [a]A

We define a formal language LPDL (Labelled Proposi-
tional Dynamic Logic) for use in context-based reason-
ing. The atomic formulae of LPDL are of the form l : A,
where / is drawn from a given set of/abels and A is a
formula of propositional dynamic logic. These atomic
formulae can be combined using the propositional con-
nectives -~, A, V and =~. An LPDL interpretation I is
an assignment of a dynamic logic interpretation Ml to
each label I. Satisfaction of LPDL formulae is defined
as follows.

I ~ l : A iff Mt ~ A for A an atomic LPDL formula
I ~ ~A iff I ~ A
I ~ AAB iff I~ Aand I ~ B
I~ AVB iffI~ Aor I~ B
I~ A ~ BiffI~:Aor I~ B

It is straightforward to axiomatize LPOL, given an
axiomatization of dynamic logic. LPDL contains all
instances of propositional calculus axioms and modus
ponens obtained by replacing an atomic proposition
symbol by aa LPDL formula, and the following axiom
schemes in which l stands for any possible label.

/ : A for A an axiom of propositional dynamic logic
l: (A=~ B) =~ (l :A~/: 
l : A =~ -~(/: -A)
I:A~I:DA

The reasoning behind the process of designing PRS
programs described in section 2 is essentially one of
combining context-based reasoning for reasoning be-
tween contexts with dynamic logic for reasoning within
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ous contexts that need to be considered. First, each
plan is associated with a labelled context that corre-
sponds to its execution context, as illustrated for the
takeoff plan in Figure 1. Second, each contingency is
itself associated with a labelled context corresponding
to the execution contexts of the set of plans that may
be invoked to deal with the contingency. Finally, each
priority level is associated with a labelled context cor-
responding to the execution contexts of the set of plans
of that priority--these are plans that can possibly com-
pete with each other for selection by the interpreter for
execution.

A proof of correctness of a PRS program proceeds
in stages, mirroring the design process. First, standard
techniques are used to show correctness of plans and
subprograms that execute in a single context. These
proofs are all on the assumption that execution never
leaves the assigned context, except possibly at the end
of the plan when the goal is achieved. Next, reasoning
between contexts is used to infer that all contingencies
that arise during the execution of any plan can be suc-
cessfully met. Any such proof of correctness is therefore
reliant on the programmer’s having identified the range
of possible contingencies to any plan. Finally, conclu-
sions about lower level plans are "lifted" to higher level
contexts, and the process repeated until the top level
plans are reached. We present three rules correspond-
ing to these types of inference. The soundness of these
inference rules follows from properties of the PRS in-
terpreter.

A proof begins with assumptions about the lowest
level plans in the hierarchy, and proceeds inductively
according to the structure of the context hierarchy, as
indicated in the plan in Figure 1. The required assump-
tions all mean that there are no exceptions arising at
the lowest level (highest priority) plans, and all have
the following form.

c :[]((context V goal) A -,termination)

We need contextV goal rather than just context because
of the technical complication arising from the fact that
the final state in the plan’s execution may not satisfy
the context formula (it satisfies the goal formula). 
envisage, therefore, that the proof of correctness for the
plan involves verifying that the goal formula is false
after execution of each subaction in the plan, except
possibly at the final state.

The Contingency Rule is used to infer that all con-
tingency plans achieve some goal g. Here Achieves(g)
is a special formula intended to indicate that the agent
has a plan or plans that achieve g, and knows in which
context to execute which plan. Here li, ""In are any
finite number of context labels.

Contingency Rule:

li: t :=> [c~i]g, "-’, ln: t ~ [an]g
li U"" U In : t => Achieves(g)

rule, to ensure that li, "" In denote all the contexts
that correspond to a plan dealing with the given con-
tingency. Typically these plans are all at the same level
of priority.

The Priority Rule is used to infer that out of all plans
that have a given priority (the same priority as a con-
tingency plan), the agent can achieve some goal. This
rule is needed to ensure that the interpreter is still able
to choose the correct plan(s) for execution when it must
choose from a larger set of plans. The rule is as follows,
assuming that ll, ..., In are all the plans that have
priority p, and that p is also a new context label. It is
intended that t denote a trigger for a contingency, and
g the goal achieved by the contingency plans.

Priority Rule:

11 : t ~ Achieves(g), ..., l~ : t ~ Achieves(g)
p: t ~ Achieves(g)

The Lifting Rule connects contingency plans to the
higher level plans from which their contingency derives.
We use the rule to infer that in the higher level context
the contingency can be handled correctly. The state-
ment of the rule assumes that the priority of the plan
in context c is less than p. Again, t denotes a trigger
and g the goal achieved by the contingency plans.

Lifting Rule:

p : t => Achieves(g)
c :[3(t ~ g)

Intuitively, while the trigger t is true and the goal g is
not true, the agent’s execution is in context p, hence all
states in c satisfy the negation of t A -~g, i.e. t =~ g.

To illustrate the use of these rules in reasoning about
PRS programs, consider the aircraft takeoff plan from
Figure 1. We first assign labels (arbitrarily) to the exe-
cution contexts of the plans; let c correspond to takeo~,
ci to divert and c2 to wait. The reasoning starts at the
leaves of the tree, where it is assumed there are no con-
tingencies that arise duting the context of executing
these plans. In this example, the assumptions that are
needed are as follows.

ci : [~( on_runway V -~on_runway) (1)

c2 : [] (-~on_runway V -~on_runway) (2)

Assumption (1) is trivially true: it implies that there
is no logical need for an exception to the divert plan.
Intuitively this is because whenever such an exception
could arise, the goal would already be true. However
this does not preclude the possibility of plan failure for
other reasons, and this could mean that further .contin-
gency plans are required. Assumption (2) is nontrivial:
it states that when executing the wait plan, it is as-
sumed that the plane is not on the runway. This would
be false if it were possible for some event to cause the
plane to become on the runway whilst waiting: this also
could be reason for another contingency plan (perhaps
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have to be verified).
By constructing the proof, we aim to verify the fol-

lowing formula, which represents the assumption under
which the takeoff plan should be proven correct.

c :[:J(rnnway_free V airborne) (3)

Forming the basis of the proof, we assume that the
following formulae representing the correctness of the
individual plans relative to their execution contexts can
be proven using dynamic logic using the above assump-
tions. Each formula says that whenever the plan is
initiated in a state in which its context is true, the plan
achieves its goal.

c: [:](runway_free ~ [takeoff]airborne) (4)
cl : [~(on_rnnway ~ [divert]-~on_rnnway) (5)
C2 : rq(-~on_runway ~ [wait]~on_runway) (6)

As an aside, the following formulae can also be proven
using standard dynamic logic.

cl : -~on_rnnway ~ [wait*]-~on_runway (7)
c2: on_runway ~ [divert; wait*]-~on_rnnway (8)

These formulae indicate that both [wait*] and
[divert; wait*] are possible plans in their respective
these contexts, but note that it does not follow that
these are the only plans that can be executed in these
contexts.

Now we need to start reasoning about contexts. Let
Cl U c2 denote the context corresponding to the con-
tingency -~runway_free. In the present example, the
Contingency Rule enables the inference of the following
formula from (5) and (6), which means that in every
context associated with the contingency -~runway_free,
the condition -~on_runway is achieved.

cx U c2 : -~runway_free =~ Achieves(-~on_runway) (9)

The Priority Rule is now used to infer the following
formula, which means that the set of plans at priority 20
handle the contingency -~runway_free correctly (recall
that the contingency plans both have priority 20).

20 : -~runway_free ~ Achieves(-~on_runway) (10)

Finally, the Lifting Rule is used to prove the following
formula, meaning that while the plane is attempting
to take off, it is not on the runway unless the runway
is free. This represents a "safety" condition that it is
desirable to verify in this example.

c: D(-~runway_free ~ -~on_runway) (11)

This means that the following formula holds at every
state in context c, and so is a candidate for the context
of the takeoff plan.

on_rnnway ~ runway_free (12)

But (12) does not entail the plan’s current context
runway_free. However, it is apparent that (12) more

that if it does not represent the context, there is no
guarantee the plan will work (with the current plan,
it is assumed, but not required, that the plane is al-
ways on the runway). It should therefore be possible to
prove (4) using this weaker context assumption. Alter-
natively, the condition -~on_runway could be added as a
termination condition for the takeoff plan, so that (12)
together with the negation of this condition imply the
current context. In either case, the proof of correctness
for the modified plan is now complete.

4. Conclusion

Our formalism for verifying PRS programs is based on
dynamic logic and reasoning in context. The method
presumes a simple hierarchical design process in which
contingencies to plans are identified and contingency
plans then defined to deal with them. Any proof of
correctness is dependent on the programmer’s having
identified all the possible contingencies to any plan, and
on the correctness of the contingency plans themselves.
We do not claim that this is the only way to construct
PRS agent programs, nor that this is the only way of ap-
plying formal methods to proving correctness for agent
programs. The main lesson, we feel, is that any method-
ology for verifying agent programs must refer explicitly
to the architecture of the system; the comparative sim-
plicity of reactive systems perhaps explains why ver-
ification techniques for these systems are further ad-
vanced than those for more complex architectures.
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