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Abstract
The design of rule bases is plagued by various anoma-
lies due to lack of structured development, and lack of
a formal reference for the acquired knowledge. Often,
the lack of a clear link connecting the functional re-
quirements, the design, and the implementation lev-
els of a rule-based system makes it difficult to ana-
lyze the rule base in terms of how well it represents
the acquired knowledge. This also makes the exist-
ing verification and validation (V&V) tools to stand
alone and to be isolated from development. Integra-
tion of V&V in a rule-based system design and devel-
opment life cycle is being recommended by contem-
porary researchers for quality and reliability improve-
ment. However, V&V processes for rule-based systems
have been accepted to be non-trivial: methods that
are general enough for comprehensive anomaly detec-
tion require impractical amounts of computation, and
special methods (reduced computation for V&V) lack
in their scope and applicability. In this work, we out-
line the use of a knowledge acquisition strategy called
goal specification and its role as a link that connects
the functional, design, and implementation stages of
a system. We then identify various issues that affect
integrating evaluation into development and how goal
specification can facilitate handling these issues.
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Introduction and Motivation

Conceptually, the design and development of a rule-
based system is a combination of comprehension, map-
ping, and encoding of the knowledge from the do-
main expert into a set of rules (Yost 1993; Chan-
der, Radhakrishnan, & Shinghal 1997a).However, 
variety of anomalies plague rule bases, and detecting
such anomalies requires a variety of evaluation proce-
dures (O’Keefe ~ Lee 1990; O’Keefe ~ O’Leary 1993;
Kiper 1992; Guida & Mauri 1993).

The evaluation processes for rule-based systems have
been traditionally classified as verification, validation,
and performance analysis (or measurement) (Zlatareva
& Preece 1994; Guida & Mauri 1993). Verification de-
tects the anomalies due to redundancy, deficiency, cir-
cularity and ambivalence; functional validation tests
the conformance of a system with its functional re-
quirements; structural validation checks whether the
observed functional performance is the result of the
correct structure (rule interactions) and tries to cap-
ture the system structure in a well defined way; and
performance assessment measures the adequacy, op-
timality, and test case coverage of the system. Not
only are these processes non-trivial, but system de-
velopers are often unclear where they fit in a system
life-cycle (Andert Jr 1993; Hamilton, Kelley, & Culbert
1991).

Our motivation arises partly from our experience in
the design and evaluation of rule-based systems, and
from the increasing emphasis on integrating evalua-
tion and on reducing evaluation costs (Meseguer 1992;
Lee & O’Keefe 1994; Chander 1996). Contemporary
researchers believe that quality and reliability improve-
ment for rule-based systems can be obtained through
formal approaches to system construction and inte-
grated evaluation (Plant 1992; Krause et al. 1993;
Lee & O’Keefe 1994). Integrating evaluation in a sys-
tem’s life-cycle, however, is non-trivial as costs can be
prohibitive if all tests are automatically repeated for
every modification to the system. It has also been
pointed out that a development methodology that does
not encourage integrating V&V (or emphasizes only
on function-based evaluation) is unsatisfactory as func-
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tional-or random testing approaches alone do not test a
system sufficiently (Plant 1992). Based upon these ob-
servations, and from our experience, we believe that in-
tegrating evaluation in a system’s life-cycle should em-
phasize incremental evaluation procedures and should
take into account the the role of a system’s structure
for its evaluation (Chander, Shinghal, & Radhakrish-
nan 1997).

The work reported in this paper is part of a larger
frame-work for rule-based systems that is aimed to-
wards providing "testable designs." More specifically,
our objective is to provide models for integrating the
evaluation processes into a rule-based system life-cycle.
We argue that such integration of design and evalua-
tion can occur only by providing a link between the
knowledge acquisition, the design, and the implemen-
tation stages of a rule-based system (Chander, Shing-
hal, & Radhakrishnan 1997). Unless there is a formal
link between these stages, it is difficult to analyze how
effectively the rule base represents the acquired knowl-
edge (Chander, Radhakrishnan, & Shinghal 1997a). 
this paper, we outline how such a link encourages in-
tegrated evaluation.

The paper is organized as follows. In section 2, we
describe our approach to knowledge acquisition called
goal specification, and report out experince on its
use at both the design and evaluation level. In sec-
tion 3, we outline the various issues that confront a
developer in trying to integrate V&V processes into
a system’s life-cycle, and argue how goal specification
can play a useful role in tackling such issues. Section
4 provides concluding remarks.

Rule Base Design
A rule base will consist of a set of rules and hy-
potheses. The hypotheses are atoms of first order
logic that capture a concept, or inference associated
with the domain. For example, the designation of
"professor in a university" is typically captured as
PROFESSOR(.~e, y), where x refers to the professors
name, and y to the university. However, this alone does
not portray the importance of this concept (hypothe-
sis) in relation to solving problems in its domain. Thus,
capturing knowledge in terms of atoms for rule encod-
ing is necessary, but not sufficient. The insufficiency
arises because in diagnostic domains where rule-based
systems are typically employed, the required knowl-
edge should capture the progress of problem solving
in the domain through a set of concepts/hypotheses
so that the rule base can be designed to reflect this
progress through well defined rule sequences.

In a goal specification approach towards knowledge
acquisition, the domain expert, in conjunction with a
knowledge engineer, specifies a set of states that are
needed to solve problems from the domain. Typically,
the domain expert specifies concepts associated with
the domain that serve as mile posts of problem solv-
ing, and the knowledge engineer translates these con-

cepts into a set of first order logic atoms that capture
the intent of the domain expert. Such states are called
goals. In addition, the domain expert also specifies con-
straints associated with the domain called inviolables;
an inviolable is a conjunction of hypotheses such that
all of them cannot be true at the same time. An ex-
ample of an inviolable is MALE(z) A FEMALE(x);
it is obvious that no goal or part of a goal should be
an inviolable.

Goal specification is a rigorous process that involves
the mapping of the acquired concepts into goal de-
scriptions, and is in conformance with the contempo-
rary frame works for knowledge acquisition (Yost 1993;
Krause et al. 1993). Every goal in a goal specifica-
tion, when translated into a first order logic formula,
consists of a conjunction of hypotheses. The hypothe-
ses that are used as goal compositions are called goal
atoms, in order to contrast them with the other hy-
potheses in the system that may be needed (for rule
base coding) called non-goal atoms. Solutions to prob-
lems in the domain are also clearly demarcated at the
time of goal specification. Thus, it is possible to par-
tition the goal specification into two goal classes: in-
termediate goals and final goals. Typically, the inter-
mediate goals are those that are achieved in order to
infer a final goal.

A design issue arises in mapping the intermediate
and final goals arrived at during specification to the
intermediate and final hypotheses in a rule base. A
design scheme is a satisfiable restriction imposed in
mapping intermediate and final goals to intermediate
and final hypotheses in the rule base.
Definition 1 (Design Scheme) A design scheme 7) is
an ordered pair of partial mappings < izl, 1~2 > such
that

#1 : .T ~ Hi U HI
Iz2 : Z ~-* HI U H y

where .T is the set of final goals, Z is the set of inter-
mediate goals, Hi is the set of intermediate hypotheses,
and HI is the set of final hypotheses. The mapping
is partial because not all hypotheses need be goal con-
stituents.
Though several design schemes can be identified from
the above mapping (see Figure 1), only a subset 
these schemes whose mapping constraints make sense
are allowed (for example, schemes with constraint F4
in Figure 1 where final goals are composed only of in-
termediate hypotheses is counterintuitive to the notion
of a final goal, and are not allowed.)1 For more details
on the properties of the design schemes, and their im-
pact of choosing a design scheme on system evaluation,
see (Chander 1996; Chander, Radhakrishnan, & Shing-
hal 1997a).

1This does not mean final goals cannot contain interme-
diate hypotheses. If some final goal representation requires
use of intermediate hypotheses (typically in synthesis do-
mains), use mapping constraints F2 or F3.
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Hypotheses in a final goal f
(F1) All are final hypotheses.
(F2) At least one hypothesis is final.
(F3) At least one hypothesis is intermediate.
(F4) All are intermediate hypotheses.
(F5) No constraints.

Hypotheses in an intermediate goal i
(I1) All are final hypotheses.
(I2) At least one hypothesis is final.
(I3) At least one hypothesis is intermediate.
(I4) All are intermediate hypotheses.
(I5) No constraints.

Figure 1: The choices for constituent hypotheses in a final goal f and an intermediate goal i, provided neither f
nor i contains an inviolable.

A rule base constructed based on a given goal spec-
ification of a domain implements the problem solv-
ing by rule sequences (called paths) that progress from
goal(s) to goal (Chander, Radhakrishnan, & Shinghal
1996). The complete knowledge of the domain is repre-
sented in a system via the goals and the paths inferring
these goals causing a progression in problem solving.
This progression can be conceptually portrayed as an
AND/OR graph called the goM graph of the domain,
or, simply, the goal graph.The extent to which a given
rule base realizes the acquired knowledge of goal infer-
ence is reflected by the paths in the rule base; they are
collectively said to portray the structure of the rule
base.
Definition 2 (Rule Base Structure) The structure of
a rule base (or, simply structure) is defined as < ~, E 
where ~ is the goal specification of the domain, and E
is a set of paths in the rule base such that,

(W C P,)(3G, g)(GcG)(g C G) 
A sample goal graph and a rule base path are shown
in Figure 2.

Goal Specification: Applications

Goal specification is a pragmatic approach and has
been used successfully in two applications. The first
one is an expert system to solve an ill-structured prob-
lem called the "black box puzzle." Here, goal speci-
fication was used to extract the paths from the exist-
ing rule base (Grossner et al. 1996; Simon 1973). It
proved to be a powerful tool by controlling the combi-
natorial explosion that arose due to the multitude of
rule dependencies while enmnerating rule base paths.
The second applicaiton is an expert system that mim-
ics a "reference librarian." Here, goal specification was
used to structure the encoded knowledge to optimize
the rule base and make rule base analysis easier. The
earlier version of the rule base, due to lack of a struc-
tured design, performed poorly when the input size
was large (Chander et al. 1997). A brief description
of how the goal-based approach facilitates both system
re-structuring and evaluation appears below.

Experience Report 1: The Blackbox System
The Blackbox expert is a large system consisting of
435 rules developed using the CLIPS expert system
shell (Giarratano & Riley 1993), and has been de-
signed to solve the Blackbox puzzle (Grossner et al.

1996).2 An important problem that is associated with
the structural validation of such large rule-based sys-
tems in the extraction of paths is the combinatorial
explosion that occurs while trying to enumerate all
rule sequence combinations (Grossner et al. 1996). 
brief description of how goals were useful in cutting
down this combinatorial explosion appears below¯ For
more details on the structural validation of the sys-
tem using paths and goals see (Preece et al. 1993b;
Grossner et al. 1996).

In the Blackbox expert, the rule base was developed
without any prior knowledge of the goals, and goals
were identified by the importance of an atom. The
goals were first reverse engineered using hypotheses
from the rule base by the rule base designer, Since the
paths in our case are rule sequences inferring goals,
whenever a combinatorial explosion arose because an
inferred atom A by a rule r is used in the antecedent
of many rules, the number of such rules was used as
a heuristic to determine whether the atom A should
be included as part of an existing goal (goal incorpo-
ration), or qualifies as a new goal (incremental goal
identification) to cut the rule dependencies arising due
to that atom. This goal-based restructuring process
helped cut the combinatorial explosion and facilitated
the extraction of rule base paths and to perform a suc-
cesful structural validation of the system.

Experience Report 2: The Reference Librarian
System The second application of goal specification
was an expert system to perform library search. The
expert is given a set of input search fields associated
with a document such as title, author, subject
¯.., up to a total of thirteen fields¯ The system checks
for the location of the document using a data base sys-
tem, and having obtained the location eventually re-
trieves the document. For more details on the expert
system, see (Chander et al. 1997).

2The Blackbox puzzle consists of an opaque square grid
(box) with a number o:f balls hidden in the grid squares.
The puzzle solver can fire beams into the box. These beams
interact with the balls, allowing the puzzle solver to ana-
lyze the contents of the box based on the entry and exit
points of the beams. The objective of the Blackbox puzzle-
solver is to determine the contents of as many of the grid
squares as possible, while minimizing the number of beams
fired (Gmssner et al. 1996).
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Figure 2: A sample goal graph and a rule base path.

;; A typical rule simplified from its original tbrm
(defrule test-rule (phase ?x)

(phase ?y&=N?x)
(phase ?zgz~?y&=~?x)

=>
(find-match t ?x ?y ?z) ; some action

)
Figure 3: A simplified version of a rule in the rule base
of the library expert system. The rule takes three input
fields and tries to find a set of documents matching the
input.

(defrule test-rule-restructured
(FIELD-INPUT 3) ; cut subsumption
(FIELD-VALUES ?x ?y ?z) cut enumeration
(phase ?x)
(phase ?y)
(phase ?z)

(find-match t ?x ?y ?z) some action
)
Figure 4: Rule in Figure 3 restructured using two goals
(FIELD-INPUT and FIELD-VALUES).

In this application, however, the knowledge obtained
from the human reference librarians (the domain ex-
perts) was translated literally to handle the various
input fields while searching for a document. One such
rule is shown in Figure 3. However, the direct trans-
lation as shown to check whether each input field is
different from the other using the "&" and ",,/’ opera-
tors of the CLIPS shell in the rules caused an enormous
computational overhead as the inference engine tries to
enumerate all possible instantiation for the variables
in the rule antecedent (in fact, this pattern match-
ing computation is of factorial complexity (Chander
et al. 1997)). For example, the rule in Figure 3 would
be activated by the CLIPS inference engine six times
(= 3!) for the sample input (phase author), (phase
title), (phase subject). The primary reason 
this inefficiency is the pattern matching computation
that is forced to enumerate the variable instantiation
in the rule antecedent. This, augmented by severe sub-
sumption between rule groups in the system (rules that
handle i input fields subsume rules that handle i-/-1 in-
put fields entered, but, the handling of i input fields
versus i÷1 input fields are supposed to be exclusive),
caused additional performance degradation. This sub-
sumption arises because there are no goals identified as
discriminators and encoded into the rule groups. For
goal-based re-structuring, we identified predicates and
goals to reflect the extent of input handling. In addi-
tion, we also need to make use of the fact that rules
that handle i-fields can be treated exclusively from
rules handling a different number of input fields. Sub-

sumption was controlled and rule base performance im-
proved considerably upon augmenting the antecedent
of the rules of the form shown in Figure 3 with the
such goals used as discriminators (see Figure 4 that
shows a re-structured rule using goals as discrimina-
tors) (Chander e¢ al. 1997).

Design Issues for Integrated Evaluation

Broadly speaking, integrated evaluation is the appli-
cability of appropriate evaluation procedures to as-
sess the evolution of every stage in a life-cycle that
otherwise does not include an explicit (that is, post-
development) evaluation phase. In other words, the
system development and evaluation processes go hand
in hand and are not treated separately in a system’s
life-cycle.

A design that allows integrated verification and val-
idation should emphasize rule sequences rather than
individual rules. The intent is that the design cap-
tures the rule interactions in the form of rule sequences
rather than individual (or pairwise) rules so that the
role of every rule in problem solving can be explicitly
mapped to the acquired knowledge. An ideal model
would capture every possible rule sequence without los-
ing computational tractabiliy, but owing to the expo-
nential complexity associated with rule sequence enu-
meration, one can only hope to be closer towards the
ideal (Preece et al. 1993a; Hamilton, Kelley, & Culbert
1991).

Goal specification can be used to extract paths and
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can also be used to control the computation for path
extraction. This allows one to speculate on its role for
integrated evaluation. Below, we outline issues that
confront integrating evaluation in a system’s life-cycle
and explore how goal specification based on rule base
designs can facilitate integrating evaluation into a sys-
tem’s life-cyle. We do not claim that goal specification
and path-based evaluation methods (Chander 1996)
are panacea to the problem of integrating evaluation
in a system life-cycle efficiently, but merely point out
many of its features that support this objective.

Structure extraction for V&:V As defined ear-
lier, the structure of the system in our case is a static
part of the system which is a set of rule sequences
that move from goal-to-goal resulting in a progres-
sion of problem solving. The structure of a rule base
forms the basis for structural validation (Kiper 1992;
Chang, Combs, & Stachowitz 1990; Rushby & Crow
1990; Grossner et al. 1996). The extraction of paths,
however, is a non trivial issue due to the combinato-
rial explosion that arises while trying to enumerate the
paths in a system, and goal specification can be used
as "recta knowledge" of the domain to cut down the
computation required to extract the paths involved in
goal-to-goal progressions in the system. They also fa-
cilitate path extraction, even if goals are to be reverse
engineered from an existing rule base (see Experience
l~eport I above). A software tool, called Path Hunter,
has also been developed to extract the paths in a rule
base given the goal specification (Grossner et al. 1996).
The choice of a design scheme has an important bear-
ing in extracting the paths from a rule base Chander,
Radhakrishnan, & Shinghal 1996).

Behavior understandability The behavior is a dy-
namic part that is actually observed as the various
rules are fired, and is a complimentary aspect of the
rule-based system structure. Behavior understandabil-
ity, informally, can be stated as "how well the system
concurs with the problem solving view/method of a
domain expert?" It is difficult to understand the prob-
lem solving that occured by examining only the rules
fired because a rule can fire under different situations,
and it is difficult to determine the exact problem solv-
ing context under which a given rule fired for each of
its firing observed in a run trace. The understandabil-
ity of behavior thus implies the ability to map a run
trace unambiguously to a set of paths thereby knowing
the actual goal-to-goal progression that occured while
solving a given problem. Our design scheme helps one
to understand the role of a fired rule by mapping this
rule to a path.

Performance evaluation A well-defined way for
performance evaluation is provided by the scheme us-
ing the acquired knowledge as the basis. One of the

problems that is currently faced by researchers in per-
formance evaluation is that of defining a "good" crite-
ria to assess performance (Guida & Mauri 1993). 
our case, the goal specification approach incorporates
the notion of a goal, captured during knowledge acqui-
sition, as a unit of work done by the system in solving
a problem: indeed by building the goal graph from
the paths, a procedure has been developed to assess
a system’s optimality (a measure of the extent of re-
dundant work done by the system) and its adequacy
(a measure of the system’s ability to solve problems in
a domain) (Chander et al. 1997).

Incremental Evaluation An important aspect of
integrated evaluation is its inherent ability to fa-
cilitate incremental testing to reduce evaluation
costs (Meseguer 1992). Evaluation based upon goals
and paths provide support to this objective in the sense
that incremental path extraction is possible subject to
some limitations (based on the type of modifications
effected on a goal specification and its associated rule
base). Incremental path extraction for unconstrained
modifications to goal specification and rule base, how-
ever, is an open problem (Chander 1997).

Test case generation The ease with which test
cases can be generated to test a given rule base is im-
portant to control evaluation costs. In our case, se-
quences of paths enumerated from permissible initial
evidence to final goals can help identify initial evidence
that can be input selectively to the system (Chan-
der, Shinghal, & Radhakrishnan 1994). Automated
test-case generating tools, similar in spirit to those de-
scribed in (Ayel & Vignollet 1993), can easily inte-
grate with our approach. Indeed, a simple modifica-
tion to the goal graph extraction algorithm presented
in (Chander, Shinghal, & Radhakrishnan 1994) is all
that is required.

Ease of analysis of test case coverage This can
be re-stated as follows: "given a test case and the run
trace of the system as a set of rule firings, how can we
measure the coverage of the system for this test?" The
paths extracted from a goal specification based design
can help measure given test case coverage of the rule
base by means of a set of criteria that allows how many
paths are exercised and the extent to which a given
rule sequence is exercised for a test run; a software
tool, called Path Tracer, has also been developed by
us to analyze the run trace of a system to measure
rule sequence coverage (Preece e~ al. 1993b).

Comprehensive verification of rule base anoma-
lies Inference chains are widely used as a basis for
comprehensive verification schemes (Ginsberg 1988;
Ginsberg & Williamson 1993; Rousset 1988; Loiseau &
Rousset 1993). Paths are generalized inference chains
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compared to the linear chains used for computing la-
bels in the above schemes. A set of criteria has also
been-developed for comprehensive rule base verifica-
tion by spotting certain path combinations called "rule
aberrations" (Chander, Shinghal, ~ Radhakrishnan
1995) to detect rule base anomalies.

Quality Assurance Goal-based design scheme pro-
vide several metrics to assess the "goodness" of knowl-
edge representation, and implementation (Chander,
Radhakrishnan, ~ Shinghal 1997a). It is also relatively
easy to track these metrics as a rule base evolves. In
addition, paths can provide several implementation-
specific metrics to assess the various qualities of a rule
base such as its complexity, verifiability, etc (Preece et
al. 1993a).

Reverse engineering support for existing rule
bases Several existing rule bases have been con-
structed with incomplete, ad hoc methods of knowl-
edge acquisition and representation. Evaluation meth-
ods for such rule bases should provide support for re-
verse engineering of specifications in a reasonable man-
ner. Goal specification allows for reverse engineering
simply by identifying and specifying the goals appro-
priate to the existing rule base to extract the paths (see
also Experience Report 1). Goal specification based
rule base construction provides several different de-
sign schemes and a systematic set of guidlines have
also been developed to facilitate rule base developers
in choosing a design scheme from several alternatives
for easier reverse engineering and evaluation (Chander,
Radhakrishnan, & Shinghal 1997b).

Summary L: Conclusion

Our aim to integrate the evaluation processes in a sys-
tem life-cycle is based on providing a link that connects
the conceptual, design, and implementation levels of a
system. Knowledge is acquired using goal specification
to capture the desired problem solving states. Based
on the specified goals, the structure of the system at
the implementation level is defined by a set of rule
sequences inferring goals. Goals also play an impor-
tant role in providing design alternatives based on the
choice of goal composition versus hypotheses in a rule
base (Chander, Radhakrishnan, & Shinghal 1997a).

We believe that a goal specification based approach
for system construction holds much promise for conti-
nous improvement of a system’s quality and reliability
by helping to integrate system evaluation as part of its
development cycle. However, integrating the verifica-
tion and validation processes is non-trivial and requires
consideration of several research issues. We outlined
those issues and argued how a goal specification based
design can help a developer in tackling these issues.
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