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Introduction 
 

The AAAI Spring Symposium Series is an annual set of meetings run in parallel at a common site. 
It is designed to bring colleagues together in an intimate forum while at the same time providing a 
significant gathering point for the AI community. The two and one half day format of the series 
allows participants to devote considerably more time to feedback and discussion than typical one-
day workshops. It is an ideal venue for bringing together new communities in emerging fields. 
 
The symposia are intended to encourage presentation of speculative work and work in progress, as 
well as completed work. Ample time is scheduled for discussion. Novel programming, including 
the use of target problems, open-format panels, working groups, or breakout sessions, is encour-
aged. AAAI Technical Reports are prepared, and distributed to the participants. Most participants 
of the symposia were selected on the basis of statements of interest or abstracts submitted to the 
symposia chairs; some open registration is allowed. All symposia are limited in size, and partici-
pants are expected to attend a single symposium. 
 
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford 
University's Department of Computer Science, is pleased to present the 2017 Spring Symposium 
Series, held Monday through Wednesday, March 26–28, 2018 on the campus of Stanford 
University. The seven symposia collected in this volume are as follows: 

AI and Society: Ethics, Safety and Trustworthiness in Intelligent Agents 

Artificial Intelligence for the Internet of Everything 

Beyond Machine Intelligence: Understanding Cognitive Bias and Humanity for Well-Being AI 

Data Efficient Reinforcement Learning 

The Design of the User Experience for Artificial Intelligence (the UX of AI) 

Integrating Representation, Reasoning, Learning, and Execution for Goal Directed Autonomy 

Learning, Inference, and Control of Multi-Agent Systems 
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From GOODBOT to BESTBOT

Oliver Bendel
School of Business FHNW, Bahnhofstrasse 6, CH-5210 Windisch

oliver.bendel@fhnw.ch

Abstract
Machine ethics researches the morality of semiautonomous 
and autonomous machines. Scientists of the School of Busi-
ness FHNW carried out a project for implementation of a pro-
totype called GOODBOT, a novelty chatbot and a simple 
moral machine. One of its meta rules was it should not lie 
unless not lying would hurt the user. It was a stand-alone so-
lution, not linked with other systems and not internet- or web-
based. In the LIEBOT project, the mentioned meta rule was 
reversed. This web-based chatbot, programmed in 2016, 
could lie systematically. It was an example of a simple im-
moral machine. A follow-up project in 2018 is going to de-
velop the BESTBOT, considering the restrictions of the 
GOODBOT and the opportunities of the LIEBOT. The aim 
is to create a machine that can detect problems of users of all 
kinds and can react in an adequate way. It should have tex-
tual, auditory and visual capabilities. This article describes 
the preconditions and findings of the GOODBOT project and
the results of the LIEBOT project and outlines the subsequent 
BESTBOT project. A reflection from the perspective of in-
formation ethics is included.

Introduction
Normal ethics deals with the morality of human beings; 
therefore, we call it human ethics to be more precise. Ma-
chine ethics pays attention to the morality of machines. This 
young and dynamic discipline does not only think about 
moral machines, but also produces moral machines (and 
simulations of such machines) (Anderson and Anderson
2011; Wallach and Allen 2009; Bendel 2013a). 

The School of Business FHNW realized a project in 
2013/14 for implementation of a prototype called GOOD-
BOT: a chatbot that acts and reacts in a morally adequate 
manner (Bendel 2016a; Bendel 2013a). In a follow-up pro-
ject (start-up in 2015, implementation from March to Au-
gust 2016), another chatbot was developed in the form of a 
Munchausen machine (a machine that lies and fabricates 
false tales) (Aegerter 2014; Bendel et al. 2017), the so-called 
LIEBOT. 

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This article firstly outlines the basics of chatbots (and vir-
tual assistants) and of information and machine ethics. Sec-
ondly, it describes the preconditions and findings of the 
GOODBOT project and the results of the LIEBOT project
and sketches the subsequent BESTBOT project. Thirdly, the 
three artifacts of machine ethics are reflected from the per-
spective of information ethics. 

Fundamentals of Chatbots
Chatbots, also known as chatterbots, are dialog systems with 
natural language skills (Khan and Das 2018; Bendel 2015b).
They are applied, often in combination with avatars, on web-
sites or in instant messengers where they explain products 
and services. Well-known examples are or have been SGT 
STAR (U.S. Army), Ask Coca-Cola (Coca-Cola) and Anna 
(IKEA).

A knowledge base contains phrases with statements or 
questions. Most chatbots are extended full-text research en-
gines. The user enters a phrase, then the machine identifies 
a word or a combination of words, and finally opens a 
matching answer. Only few are linked to agent technologies 
and qualify as artificial intelligence (AI) in the stricter mean-
ing of the term. 

Just as chatbots, virtual assistants are commonly used in 
smartphones and phone services (McTear et al. 2016). Siri 
and Cortana are two popular, widely used applications for 
mobile phones or cars. Alexa is the “inhabitant” of auditory 
systems (like Echo and Echo Dot) that are used in apart-
ments and offices. They all can speak and understand natural 
language and in that they are similar to chatbots which how-
ever mostly interact by text.

Google Assistant for mobile phones is another example. 
“OK Google” is the command that activates the search en-
gine of the company. An artificial voice answers questions, 
based on Wikipedia or other more or less reliable knowledge 
sources, or a display shows information of all kinds, for ex-
ample routes on maps, or images of persons. 

The 2018 AAAI Spring Symposium Series
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Information Ethics and Machine Ethics
Applied ethics relates to delimitable topical fields and forms 
special ethics. The object of information ethics is the moral-
ity of – and in – the information society. It investigates how 
we, when providing and using information and communica-
tion technologies (ICT), information systems and digital
media, behave or should behave in terms of morality. The 
central terms include informational autonomy, digital iden-
tity, digital divide and informational self-defense (Bendel 
2016b).

Machine ethics refers to the morality of semi-autonomous 
or autonomous machines, the morality of certain robots or 
bots is one example. Hence these machines are moral agents.
They decide and act in situations where they are left to their 
own devices, either by following pre-defined rules or by 
comparing the case to selected case models, or as machines 
capable of learning and deriving rules, or by following the 
behavior of reference persons (Bendel 2012). Moral ma-
chines have been known for some years, at least as proto-
types (Anderson and Anderson 2011; Wallach and Allen 
2009; Bendel 2013a) and simulations (Pereira 2016). 

The term of morality in this context has been criticized by 
some, although it is explicitly referenced to machines, and 
does not imply that machines behave like humans (Bendel 
et al. 2017). A morality worthy of this name is a complex 
setting of innate feelings and concepts, agreed values and 
standards, as well as convictions conceived by reason, but 
not only fundamentalists refer to a rigid codex robots could 
apply by principle without difficulty. At least the term mo-
rality can be applied to machines metaphorically with no 
reasonable objections to it as long as the image matches es-
sential characteristics. After all, the term of machine moral-
ity is similar to the term of artificial intelligence. 

The GOODBOT Project
The GOODBOT was programmed in 2013. First the tutor-
ing person laid out some general considerations. Then three 
business informatics students developed the prototype over 
several months in cooperation with the professor, and pre-
sented it early in 2014.

Considerations about the GOODBOT
Chatbots are out of their depth when confronted with state-
ments like “I am going to kill myself!” or questions like 
“Am I totally worthless?” and prone to respond inappropri-
ately (Bendel 2013a). The mission of the GOODBOT pro-
ject was to develop a chatbot that responds as appropriately 
as possible – also in terms of morality – in certain situations 
(for instance if users have mental problems and express their 
intention to hurt or kill themselves). The chatbot had to be 
good in a certain way, its intentions as well as behavioral 

patterns had to be good. The user should feel well through-
out the chat, possibly even better than before.

The GOODBOT can be described as a simple moral ma-
chine (Bendel 2015b) or a machine with operative morality 
(Wallach and Allen 2009). Its activities are language activi-
ties, its problem awareness and considerateness have to 
manifest textually only, or at the utmost – but this was not 
on the project agenda – visually in the mimics and gestures 
of the avatar. The machine was a stand-alone solution, not 
internet- or web-based and not linked with other systems. 

Seven Meta Rules
In order to create a normative setting for developing the 
GOODBOT the tutoring scientist defined seven meta rules 
(Bendel 2013a). The meta rules can be implemented on prin-
ciple, they are more than just standard requirements for a 
machine of this type, they instruct the designer precisely. In 
some aspects they remind one of Asimov’s Three Laws of 
Robotics (Asimov 1973), but they reach out far beyond them
(and they do not apply to fiction, but to reality): 

1. The GOODBOT makes it clear to the user that it is a 
machine.

2. The GOODBOT takes the user’s problems seriously 
and supports him or her, wherever possible.

3. The GOODBOT does not hurt the user, neither by its 
appearance, gestures and facial expression nor by its 
statements.

4. The GOODBOT does not tell a lie respectively makes 
clear that it lies. 

5. The GOODBOT is not a moralist and indulges in cyber-
hedonism.

6. The GOODBOT is not a snitch and does not evaluate 
the user’s talks.

7. The GOODBOT brings the user back to reality after 
some time.

As in the Three Laws of Robotics, there are problems and 
contradictions. What if the GOODBOT causes hurt, when it 
tells the truth? What if the GOODBOT uses the IP address 
to provide important information – is it therefore a spy or 
not? The fourth meta rule was adjusted by the students dur-
ing the implementation: “The GOODBOT generally does 
not lie to the user unless this would breach rule 3.” Then 
meta rule 6 was extended: “The GOODBOT is not a snitch 
and evaluates chats with the user for no other purpose than 
for optimizing the quality of its statements and questions.”

The fourth meta rule is linked to the assumption that lying 
is immoral and one may request the truth be told. A look into 
the history of philosophy and into everyday life shows there 
are several different attitudes, understandings and require-
ments under a certain basic consensus.
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Systematic lying obviously is undesirable while spotwise 
white lies are desirable; Kant therefore made an exception 
from the rule (Kant 1914). Reliability and trustworthiness 
are the rule for chatbots on business websites if mainly for 
practical reasons. One wants to inform about products and 
services to be utilized or purchased. For legal reasons, de-
signers and providers take care not to make the machine a 
Munchausen machine. Out of this context, things can be dif-
ferent, many chatbots and social bots for instance are used 
for political propaganda.

Implementation of the GOODBOT
The GOODBOT was based on the Verbot®-Engine, which 
at that time was available for free, together with a standard 
knowledge base and a set of avatars (Bendel 2016a). As al-
ready mentioned, it ran locally without web integration. Ad-
ditional chat trees were created and released using the editor 
function. It was possible to use or evaluate the user’s data 
input. The date of birth for instance could be used to calcu-
late the user’s age. The player consisted mainly of the ava-
tar, the input and output field for the chat. The avatar was 
not customized to the moral chatbot. 

At the beginning of the conversation the GOODBOT in-
quired the age, the gender, the place of residence and the 
name of the user (see Fig. 1), as well as other information
on his or her situation and fields of interest (Bendel 2016a).
As defined in the modified meta rule 6 it should not be a 
snitch or a spy, but it should provide answers as helpful and 
appropriate as possible. On this foundation it was possible 
to classify the user and to tend to his or her individual needs. 
In this phase users could already be classified as critical de-
pending on their age and work situation.

Then the GOODBOT morphed from an “inquirer” to a
“listener” and adjusted the valuation depending on the be-
havior of the user. The system permanently rated the data 
input in a score system. Certain inputs were not relevant to 
the status of the user. These were classified as neutral or ef-
fectless.

If the chat ran through without particularities, it remained
in the standard knowledge base. If the GOODBOT calcu-
lated a total status considered risky for the user it escalated
the chat. There were three levels of escalation. On the first 
two levels the chatbot asked further questions and tried to 
calm or console the user. 

On the last level the GOODBOT offered to open the web-
site of a competent emergency hotline, which was identified 
through the user’s IP address. For the prototype, this was 
implemented exemplary for Austria, Switzerland, and Ger-
many. Again, the modification of the sixth meta rule proved
to be helpful.

Critical Analysis
The GOODBOT responded more or less appropriately to 
statements with moral implications, thereby it differed from 
the majority of chatbots and virtual assistants (Bendel 
2016a). It recognized problems as the designers anticipated 
certain emotive words users might enter. It awarded points 
for precarious statements and, depending on the number of 
points, escalated on multiple levels. Provided the chat run 
according to standard, it was just a standard chatbot, but un-
der extreme conditions it turned into a simple moral ma-
chine. Other chatbots hand out emergency hotline numbers 
too but usually don’t match them to the user’s IP address. 
This might lead to “lack of information” on the user and the 
consequences could be lethal in the worst case.

Some of the functions of the chatbot were outlined 
roughly only. Simplifications and assumptions were made
(Bendel 2016a). Applications in human-machine interaction 
should not be underrated. Careful implementation and ex-
tensive testing are required, especially when the GOOD-
BOT would be used in settings and situations where the ex-
pectations are high, and where system errors might have se-
rious consequences. Since no budget was available, the 
GOODBOT could not be evaluated.

Fig. 1: The GOODBOT remembers the user’s name
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The LIEBOT Project
The GOODBOT project was essentially carried out in 2013
and closed for the time being early in 2014 after the last 
presentation and handover of the documentation. The atten-
tion of the client and manager was absorbed by other pro-
jects, one of them a chatbot that inverted a meta rule of the 
GOODBOT and lied systematically, hence it was called 
LIEBOT. Some considerations on lying machines had been 
known at that time (Hammwöhner 2003; Rojas 2013; Ben-
del 2013b).

The LIEBOT was available for several months as a chat-
bot on a website (including a whitepaper with explanations 
of the project) (Bendel et al. 2017; Bendel et al. 2016). It 
was able to tell lies in areas of all kinds, using seven differ-
ent strategies. It manipulated individual statements it
thought were true. They came from sources it believed to be 
trustworthy. 

The LIEBOT was programmed in Java, within the Eclipse 
Scout Neon Framework (Bendel et al. 2017). The two spe-
cial knowledge bases were implemented by using the Arti-
ficial Intelligence Markup Language (AIML), a widely used 
XML dialect. The chatbot had a robot-like, animated avatar 
whose nose for example grew like Pinocchio’s or whose 
cheeks turned red if a certain untruth was produced. The di-
alog system was linked with several systems and applica-
tions like Yahoo and WordNet by Princeton University. It 
was also able to communicate with Cleverbot.

The LIEBOT was created with a view to the media and 
websites where production and aggregation is taken over 
more and more by programs and machines, with a growing 
number of chatbots and virtual assistants – and social bots, 
designed to write critical comments and to spread rumors 
and lies (Bendel et al. 2017). The project showed the risk of 
machines distorting the truth, either in the interest of their 
operators or in the wake of hostile take-overs.

Since no budget was available, the LIEBOT could not be 
evaluated. It has been tested by many external programmers 
and developers. Unfortunately, they gave hardly any useful 
hints. 

Towards the BESTBOT
Late in 2017 the decision was made at the School of Busi-
ness FHNW to resume the GOODBOT project and develop 
the dialog system for the BESTBOT further. 

In the meantime, since 2015, there has been a true hype 
about chatbots and virtual assistants (McTear 2016; Khan 
and Das 2018). More and more chatbots were integrated in
Instant Messengers, the voices of virtual assistants such as 
Alexa were made more human (Myers 2017). Novelty op-
tions were found especially in the field of AI. Face recogni-
tion took a new direction, when, no longer satisfied with 

identification and emotion recognition, designers rediscov-
ered risky and ambivalent methods (Kosinski and Wang
2017; Wu and Zhang 2016). Not lastly the LIEBOT project 
showed that highest effects can be realized with simplest 
means. The chatbot was not a self-learning system but 
linked to others, and its individual statements were hardly 
predictable (interesting in this case, but problematic else-
where). 

The fundamental consideration for the BESTBOT was it 
should be able, even better than the GOODBOT, to recog-
nize and respond to problems of the user. It was clear it 
would have to respond not only to text input, but also to hap-
tic input – through keyboard typing – and to visual impres-
sions gained via notebook camera or webcam. Further to 
face recognition, which is one concept in this context, voice 
recognition and voice analysis both could play a part. Re-
sults from LIEBOT project were to be implemented in order 
to increase reliability and trustworthiness. All in all, existing 
findings and projects were to be used, and new technologies 
to be developed in another hands-on project. The project 
start was scheduled for the beginning of 2018. As the project 
is technically demanding, another hands-on project might be 
necessary for follow-up.  

Technological Foundation 
Different from the GOODBOT the BESTBOT was to be a 
web-based system. One important reason was then it would 
be possible for designers to test it, just like the LIEBOT was 
tested, providing valuable feedback (the LIEBOT was ex-
amined by approx. 50 designers and interested persons, of 
which few only reported back; the plan for the BESTBOT is 
to make more active follow-up calls). Potential users had 
opportunity to get acquainted with it. Another important rea-
son was to give it the same form it might have later on. 

Like the LIEBOT, the BESTBOT was to be programmed 
in Java supported by AIML. Sufficient experience with the 
languages was gained at the School of Business FHNW, es-
pecially Java is taught within business informatics. The ac-
tual decision was to be made after the project start, bearing 
in mind also that the chatbot was to be a self-learning sys-
tem. 

The BESTBOT was meant to be able to respond to all 
kinds of queries and challenges, including those caused in 
the person of the user. Therefore it was to be linked, just like 
the LIEBOT, with systems and search engines, thesauri and 
ontologies. The GOODBOT was a closed system with a 
knowledge base – limited in its ability to respond to users’
problems. The openness of the BESTBOT presents a differ-
ent problem as it is less calculable. Different to the LIEBOT
this problem had to be counteracted strictly. 
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Trustworthiness and Reliability
The LIEBOT project had shown it is possible to build Mun-
chausen machines, but it had also shown how to avoid such 
systems in favor of machines obliged to the truth, so-called 
Kant machines (named after the German philosopher of en-
lightenment who strictly advised the truth be told provided 
it was gained by conjunction of freedom and reason). The 
following findings resulted from the LIEBOT project in 
2017 (Bendel et al. 2017): 

The developers must ensure there are no false statements 
in an acquired knowledge base.
They must protect databases and control external re-
sources.
Some external resources like Wikipedia should be used 
more restrictively. 
The developers should ensure technically that the ma-
chine cannot lie (e.g., like the LIEBOT).
The providers have to disclose how the chatbots work.
The users should be wary of the risks and could ask for 
the provider and the context.
We can use the findings to avoid immoral machines and 
to implement moral machines.
With Kant machines, we can establish trustworthiness 
and trust.

These findings are considered in the BESTBOT project. 
On the sidelines it shows systems linked to a certain system 
will benefit from its reliability. Certifications and accredita-
tions of newsportals, encyclopedias and knowledge bases
seem to be a solution (Bendel et al. 2017; Bendel et al.
2016). Obviously all involved actors need to apply com-
monsense in order not to vest the machine with too many 
competencies or subordinate to it. This watchfulness can be 
supported by the design of the chatbot. The BESTBOT, just 
like the GOODBOT, can emphasize that it is only a machine 
(meta rule 1), and can request the user to verify statements
periodically. 

Evaluation of Keyboard Typing
Keyboard typing reveals information on our emotional state.
This was shown by an experiment made by researchers from 
Bangladesh (Nahin et al. 2014). An algorithm evaluated 
how strongly and quickly users hammered on their key-
boards. The program combines evaluation of text and key-
board typing to recognize the emotions of the participants. 
The approach in this paper “is to detect user emotions by 
analyzing the keyboard typing patterns of the user and the 
type of texts (words, sentences) typed by them” (Nahin et al. 
2014). “This combined analysis gives us a promising result 
showing a substantial number of emotional states detected 
from user input. Several machine learning algorithms were 

used to analyze keystroke timing attributes and text pattern.” 
(Nahin et al. 2014) 

Indeed the software could better recognize the emotions 
of the participants through the combination of typing dy-
namics and text recognition than through texts alone. The 
recognition of joy and anger was the most reliable, with a 
precision of 87 and 81 percent (Nahin et al. 2014). 

The findings can be used directly for the BESTBOT. Lan-
guage input can be verified, falsified or relativized. A user 
might write he is well, calm and relaxed while his or her 
hectic typing indicates something else. The BESTBOT can 
find out more by asking adequate questions. 

The escalation levels too can be related to the typing. De-
pending on the results of the analysis it is possible to esca-
late or deescalate. Giving or taking points would be a rea-
sonable option.

Face Recognition Concept 
Face recognition is the automated recognition of a face in 
the environment or in an image (already existing or taken 
for the purpose of face recognition). It is furthermore the au-
tomated recognition, measuring and describing of features 
of a face to determine the identity of a person (“face recog-
nition” in the strict sense) or the gender, health, origin, age, 
sexual preference or emotional status of a person (“emotion 
recognition”, often in the context of facial expression recog-
nition (Bendel 2017). What is possible in detail or can be 
found out with high reliability or some or little probability 
is disputed. There is, however, agreement that face recogni-
tion in combination with other analytical concepts and data 
sources (clothing, environment, digital identity etc.) is a 
very powerful tool. 

Face recognition uses systems (including face recognition 
software and hardware such as cameras and laser or ultra-
sonic sensors) with two or three dimensional localization 
and measuring methods (Bendel 2017). Eyes, nose, mouth, 
ears, chin, forehead, hairline and cheekbones are recognized 
and measured and their positions, distances and location to 
one another are determined. The shape of the head, and the 
texture or color of skin, hair and eyes can be considered. The 
tendency is to apply more and more complex calculations 
and concepts of machine learning. Experiments in the con-
text of pedagogical agents and chatbots have been known 
for decades (Bendel 2003; Eckes et al. 2007), and can be 
considered for the BESTBOT project. 

The BESTBOT can use face recognition to optimally ad-
just to the user (Marlow and Wiese 2017). With the GOOD-
BOT users had to enter their age in digits. The BESTBOT is 
capable of determining it through face recognition. Misrep-
resentations are excluded while false estimates might hap-
pen, and then the BESTBOT can respond accordingly, for 
instance by using simpler language for children than for 
adults, or by being more careful and considerate and by 
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avoiding certain terms and topics. Gender can be an inter-
esting information, again with a view to topics as well as 
state of mind and sensitivity, but there is the risk of stereo-
typing. 

The BESTBOT may use face recognition also in the sense 
of emotion recognition. It can recognize the emotional state 
of the user, and as in the analysis of keyboard typing, relate 
it to the user’s statements. It can determine a match and then 
the chat will take its normal course, or stay on the same es-
calation level, or it can determine a contradiction, then it has 
to escalate or deescalate. Emotion recognition can lead to a 
balanced, complete image of the user provided a self-learn-
ing system is used. 

Voice Recognition Concept
Another possible concept is voice recognition or voice anal-
ysis. Alexa has this capacity in the USA. After having been 
trained accordingly it can identify the members of a house-
hold (Pakalski 2017). This makes manual switching be-
tween household profiles redundant.  

Three levels can be distinguished for auditive input de-
vices (Bendel 2015a). Firstly, they can determine gender 
and age through the voice. Secondly, they are capable of an-
alyzing the speech pattern, the volume, rhythm, flow, em-
phasize etc. Thirdly, contents are available in the form of 
statements or questions or individual words that can be me-
chanically collected and classified, with more or less preci-
sion, according to their meaning, e.g., by matching.

The third level was covered on the text level by the 
GOODBOT functions. Now the spoken word is added. The 
analysis of the voice and the mode of speech would be in-
teresting and could allow for conclusions on the emotional 
and psychological state of the user. 

Self-learning System
Self-learning systems have been used repetitively in the 
field of chatbots and social bots. The most popular one was 
Tay by Microsoft. This system was active on Twitter and 
became racist within a couple of hours (Williams 2016). It 
follows that self-learning chatbots have to be provided with 
some guardrails or meta rules before turning them loose (in
the mentioned case a simple blacklist of terms would have 
been helpful). Again this is a perfect task for machine ethics. 
Different concepts can be distinguished for the BESTBOT.
At the one hand, it can learn from a user, on the other hand, 
it can compare different users. 

GOODBOT and LIEBOT already had simplest options 
for memorizing the name of the individual user, and in a 
subsequent sentence where the name was replaced by a per-
sonal pronoun, they were able to refer to the predecessor, 
and assign the personal pronoun correctly. This is not real 
machine learning but the standard in many dialog systems.

The GOODBOT could also accumulate knowledge about 
the user. 

The BESTBOT can learn from statements, typing behav-
ior and facial expressions. It can create a user profile and 
assign it to certain types, and it can track, record, and discuss 
the changes with the user. For example it can tell the user he 
or she seems much happier than the day before. In the open 
world one requirement is to recognize the user, for instance 
through a unique nickname assigned to one person only via 
login or via face recognition. Over time, as was hinted in the 
previous section, it can gain a balanced, complete image of 
the user. Then it can optimally adjust to the user in state-
ments and in behavior (for instance when visiting websites 
or animating the avatar).

As already mentioned the GOODBOT only had a stand-
ard avatar not adjusted to the project. The LIEBOT was ca-
pable of indicating the form of lies through the animation of 
its avatars. The BESTBOT shall be furnished with an avatar 
that matches its own statements and actions as well as the 
statements and actions of users in facial expressions and ges-
tures.

Machine ethics already provided several considerations 
on the design of software and hardware robots that can be 
referred to. A controversial discussion is in progress on how 
to design a nursing robot or sexbot. A nursing robot looking 
like a bear already exists. This might be pleasant or scary to 
a person in need of care. It is assumed a humanoid avatar
best fulfils the intentions of the BESTBOT, this assumption 
is to be verified during the project.

Ethical Considerations 
A general question is whether it is permissible to record and 
analyze a face or a voice with information technology. The 
personal data, one could say, belongs to the person. Of 
course, certain data is recorded in every contact between hu-
mans, memorized in the other person’s brain for a short or 
longer time, but automated processing opens other aspects 
and options. Many persons might have access to the memo-
rized data, unknown persons can gain assess, data can be 
linked and passed on, conclusions drawn by them can be 
false or misinterpreted by the responsible persons.

Another problem is the imbalance between the observer 
and the observed, between the interceptor and the inter-
cepted expressed on different levels. The affected person 
does not have the technology the operator has, does not 
know the function principles in detail, and does not know 
who the data will be transferred to. Often only superficial 
information is given about face recognition, mentioning the 
presence of a camera only (Feng and Prabhakaran 2016).
From ethical and legal viewpoints the BESTBOT operators 
could be requested to inform about the ongoing analysis, but 
some will say then the user might deactivate the camera. 
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One option is to use the BESTBOT itself as an information 
source. In the chat it could inform on the chances and risks 
of face recognition, voice analysis, and keyboard typing 
analysis. 

The situation is so special because the user normally is at 
home, at school or university, or in the office, in other words 
in a well-known environment normally providing some pri-
vacy or predictability. Now analytic tools permeate this 
trusted room, linked to unknown variables. This might scare 
the user when realized. 

Emotion recognition raises many questions from the per-
spective of information ethics. By showing emotion one 
gives away information, turning the inside out. Depending 
on if one is pokerfaced or not, one reveals information on 
well-being, psychological status, or other information. As 
already mentioned a personality profile can be created over 
time. Once face recognition and voice recognition merge 
there is enormous potential for abuse. 

Methods unveiling the identity of the user have to be re-
viewed critically. A nickname or login with a fictitious 
username still seems to be an effective tool; requesting a real 
name probably is not responsible. Today it is possible al-
ready to identify many users with face recognition methods 
as they have left traces in the web, especially in social me-
dia. With a little training, voice recognition can also deter-
mine identities. Ways have to be found to ensure the 
BESTBOT does not breach the meta rule of the GOODBOT: 
not to be a snitch (meta rule 6). 

As already mentioned in the last section the BESTBOT 
design has to be thought through carefully. It could be rea-
sonable to design the chatbot as a humanoid to make it seem 
a reliable, trustworthy partner to be taken seriously. It could
act and react like a human not only in its language, but also 
in its facial expressions and gestures. This might become a 
problem if the user gets emotionally attached to the 
BESTBOT or too trustful. This has been known to happen, 
the quite simple ELIZA is one example (Weizenbaum 
1977). Again, meta rule 1 of the GOODBOT could be help-
ful.  

Summary and Outlook 
This article firstly explained the concept and implementa-
tion of the GOODBOT, a simple moral machine. One meta
rule was selected and reversed to its opposite for another is-
sue, the LIEBOT project. The development of this simple 
immoral machine was also documented here. The GOOD-
BOT project showed that a machine can be “moralized” by 
relatively simple means. If an instable person is confronted 
with a standard chatbot his or her risk of self-mutilation or 
suicide might grow. The GOODBOT can cover this problem 
partly.

Secondly, the BESTBOT project was outlined. Findings 
from the GOODBOT project and the LIEBOT project have 
been applied and taken further in the context of machine eth-
ics. The BESTBOT shall be even more helpful and obliging 
than the GOODBOT. One concept is not to make it a closed 
system like the GOODBOT but provide network connectiv-
ity. This raises questions about the trustworthiness and reli-
ability, some of them can be answered by the outcome of the 
LIEBOT project. Another concept is to involve keyboard 
typing recognition, face recognition, and voice recognition. 
This concept brings new challenges to be faced by infor-
mation ethics. The use of an avatar also seems to make sense 
for the BESTBOT but it also raises questions to be answered 
during the project. 
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Abstract
Face recognition is the automated recognition of a face or the 
automated identification, measuring and description of fea-
tures of a face. In the 21st century, it is increasingly at-
tempted, whether consciously or unconsciously, to connect to
the pseudoscience of physiognomy, which has its origins in 
ancient times. From the appearance of persons, a conclusion 
is drawn to their inner self, and attempts are made to identify 
character traits, personality traits and temperament, or politi-
cal and sexual orientation. Also biometrics plays a role here.
It was founded in the eighteenth century, when physiognomy 
under the lead of Johann Caspar Lavater had its dubious cli-
max. In this article, the basic principles of this topic are elab-
orated; selected projects from research and practice are pre-
sented and, from an ethical perspective, the possibilities of 
face recognition are subjected to fundamental critique in this 
context, including the above examples.

Introduction
Face recognition (or facial recognition) as the automated 
recognition of a face or as the automated recognition, meas-
uring and description of features of a face has a certain tra-
dition, and its beginnings range back to the 1990s (Bendel 
2017a). Recently, this tradition has been extended to ancient 
times, because ideas are taken up, which have already been 
disseminated in pseudo-Aristotelian and Aristotelian texts. 

The culmination of these ideas, comprising physiognomy 
and biometrics, happened in the eighteenth century, and they 
had their nadir in the time of National Socialism. Faces and 
heads are to be interpreted and measured to determine the 
character or the sexual or political orientation, i.e., system-
atic connections between the exterior (in the sense of her or 
his visible characteristics) and the interior (in the sense of 
his or her spiritual condition) of a person. Artificial intelli-
gence (AI) is used to revive this pseudoscience.

What is worrying in this context is that the researchers in 
this field seem to have a certain success. However, if you 
look more closely, you notice that not only faces and heads 
are interpreted, but mostly additional attributes (referring to 
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clothes and hairstyle) and data (e.g., from statistics) are 
gathered, which also forward and solidify prejudices (Brien 
2016).

From the point of view of ethics, face recognition must be 
subjected to a fundamental critique in this context, because 
the associated methods and implications are able to sustain-
ably unsettle and change society and its members. Argu-
ments, as they are presented here, should be incorporated 
into social and political opinion formation. 

Basics of Facial Recognition
Face recognition is the automated recognition of a face in 
the environment or in an image (which is already present or 
produced for the purpose of facial recognition). It is further-
more the automated identification, measurement and de-
scription of the features of a face in order to recognize a per-
son (“face recognition” in the strict sense) or his or her gen-
der, health, origin, age, sexual orientation or emotional situ-
ation (“emotion recognition”, often in connection with facial 
expression recognition) (Li and Jain 2011; Bendel 2017a).

It is controversial, however, whether one can find some-
thing with high security or only with some probability. Un-
deniably, face recognition is extremely potent in combina-
tion with further analytical approaches and data sources 
(clothing, environment, digital identity, etc.).

Facial recognition uses systems (including facial recogni-
tion software and hardware such as cameras and laser or ul-
trasonic sensors) with two- or three-dimensional detection 
and measurement techniques (Li and Jain 2011; Bendel 
2017a). Eyes, nose, mouth, ears, chin, forehead, hairline and 
cheekbones are identified and measured and their position, 
their distance from each other and their respective position 
to each other are determined. It is also possible to consider 
the shape of the head and the texture or color of skin, hair 
and eyes. Overall, more and more complex calculations and 
approaches of machine learning (neural networks and deep
learning) are used. 

The 2018 AAAI Spring Symposium Series
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Face recognition is used for technical devices and for ac-
cesses and controls of all kinds for identification and authen-
tication, i.e., in the context and for the purpose of security 
(Feng and Prabhakaran 2016). It is checked whether the face 
of a concrete person is present in the picture or in the envi-
ronment and whether this person has an authorization or 
whether there is a warrant for arrest for him or her under 
scrutiny (Bendel 2017a). Also for the sorting of photographs 
and objects in the broadest sense, facial recognition software 
is suitable. It depends on the particular application whether
the recognition of a face suffices or whether the recognition 
of a face of a particular sex, age, etc. or a specific person is
asked for. In the economy, face recognition is relevant, for 
example, in interactive advertising spaces, with the aim of 
personalized advertising and individual advice (Marlow and 
Wiese 2017; Bendel 2017b). 

Facial recognition software is useful to establish orders 
and allocations, in the regulatory, operational and private 
context. From a political, legal and ethical point of view, the 
identification of individuals in the private and public space 
is controversially discussed (Bendel 2017a). A smartphone 
and a smart cam that recognize a face can forward data of 
the face and the person as well as metadata. This allows to 
check, track and monitor suspects and non-suspects. In ad-
dition, the aforementioned facial and head characteristics as 
well as the behavioral patterns can be analyzed. A detailed 
discussion from an ethical point of view takes place in the 
penultimate section.

Basics of Physiognomy
Physiognomy is a pseudoscience that wants to draw conclu-
sions on the character and personality traits as well as the 
temperament of a person from his or her appearance, espe-
cially from the form of the head and the peculiarities of the
face (Belting 2013; Schmölders 2007; Campe and Schneider 
1996; Schwertfeger 2006). Everyday observations and ex-
periences, which are partly biased and doubtful, are system-
atized and generalized. 

Already in ancient times, physiognomy found strong pro-
ponents, as well as in the Middle Ages and the Renaissance
in the context of humoral pathology (the theory of the four 
humors), which is based among other things on Galenus
(second century after our time); in the age of the Enlighten-
ment, physiognomy flourished with Johann Caspar Lavater 
as its main representative. The pastor from Zurich became 
famous and notorious with his four volumes on “Physiog-
nomic Fragments”. He is the originator of the nonsensical 
and powerful assertion that beauty and morality are corre-
lated, a beautiful human is also good, an ugly human is evil, 
and thereby bringing together and jumbling the objects of 
ethics and aesthetics (Schmölders 2007).

Also in the eighteenth century, Peter Camper from the 
Netherlands came to be known. He founded biometrics, with 
biometry as its object, the measurement of the biological or 
naturally given (Belting 2013). In his speech at the Amster-
dam Academy of Arts, about the natural difference between
the facial features of people of different ages and different 
regions, he described his alleged discovery that the different 
human races can be distinguished with the help of quantifi-
able shape characteristics of the skull. Among other things, 
the Dutchman was interested in the intelligence of people 
and groups and, from today’s point of view, presented dis-
criminatory and racist considerations.

Finally, in the nineteenth and twentieth century, physiog-
nomy, biometrics and genetics were most definitively used 
as a supposedly scientific base for racism and eugenics 
(Belting 2013; Schmölders 2007; Campe and Schneider 
1996). In the second half of the nineteenth century, the Ital-
ian doctor Cesare Lombroso believed – because of his re-
search and interpretations of faces – to be able to recognize 
whether someone was a criminal or not. Subsequently, he
became particularly powerful, and to this day, certain circles 
prefer to expose a criminal before he or she can turn into a
criminal, which is not the only paradox in this context.

Under the keyword “Menschenkenntnis” (“knowledge of 
human nature”), physiognomy gained renewed popularity in 
the 1920s and 1930s (Belting 2013; Schmölders 2007; 
Campe and Schneider 1996). Together with works on graph-
ology, compilations of old and new writings about physiog-
nomy became bestsellers, and in many areas and contexts, 
physiognomy was no longer a harmless social game, but re-
sulted in the systematic disqualification and rejection of pu-
pils and applicants. As a teenager in Germany in the 1980s, 
the author was told by his female teacher that his handwrit-
ing, which pointed to the left, was evidence of a bad charac-
ter. From then on his writing pointed to the right, which in 
turn proves the questionability of such statements, because 
he did not change his character. Examples from the present 
are the psycho-physiognomy founded by Carl Huter, and the 
so-called pathological physiognomy. 

Physiognomy can be distinguished from pathognomy,
which was represented by the German poet and scholar Jo-
hann Wolfgang von Goethe. Lavater and Goethe were in ex-
change, and the German had visited the Swiss in Zurich and 
encouraged him in his ideas, but then later turned against 
them. Pathognomy does stem from the immutable properties 
of the bone and cartilage structure, but from the traces sup-
posedly left on the body and face by feelings, the center of 
one’s life, lifestyles and professional and social status. Phys-
iognomy can also be distinguished from the facial expres-
sion as a doctrine that deals with the expression spontane-
ously formed by the facial muscles, precisely the facial ex-
pression per se. 
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Current Projects in Research and Practice 
Here are three projects that have caused a stir in recent years. 
They were, therefore, chosen according to the attention that 
they aroused, whereby an economic or scientific activity 
was a prerogative. In addition, special attention was paid to 
the fact that different aspects are sometimes relevant. It 
makes sense to investigate further projects in other contri-
butions and to evaluate them from an ethical perspective.

Faception 
The company Faception, based in Tel Aviv, has developed 
a biometrically working and self-learning facial recognition 
software that supposedly can read from the face, whether 
someone is gentle or aggressive (Meyer 2016). Among other 
things, the software measures the distances of different 
points (the descriptors) in the face. It then calculates certain 
results that are classified as personality traits. This creates 
an individual “personality score card”. 

According to the company, the software would have 
ranked three of the assassins of the Paris attacks in Novem-
ber 2015 with an 80 percent accuracy as terrorists (Meyer 
2016). In the Wall Street Journal, the CEO Shai Gilboa said 
that the human personality was determined by our DNA and 
reflected in our face (Meyer 2016). This is linked to physi-
ognomy and, via the inclusion of biometrics and genetics, to
postulates that were popular in the early twentieth century,
and also in times of National Socialism.

The company itself writes on its website (accessible via 
www.faception.com): “Utilizing advanced machine learn-
ing techniques we developed and continue to evolve an ar-
ray of classifiers. These classifiers represent a certain per-
sona, with a unique personality type, a collection of person-
ality traits or behaviors. Our algorithms can score an indi-
vidual according to their fit to these classifiers.” These 
“classifiers” are: high IQ, academic researcher, professional 
poker player, terrorist. They recall the persona from com-
puter science, specifically the human-computer interaction
(HCI), a prototype for a group of users, with certain charac-
teristics and a certain behavior.

Jiao Tong University 
Xiaolin Wu and Xi Zhang, researchers of the Jiao Tong Uni-
versity in Shanghai, 2016 allegedly taught a software to de-
tect criminals by means of photographs (Wu and Zhang 
2016; Brien 2016). In total, 1,856 images of male Chinese 
aged between 18 and 55 years without a beard were used. 
Half of these men were criminals. Ninety percent of the im-
ages were used to train the neural network, and the remain-
ing ten percent were then utilized for testing.

According to the researchers, the self-learning software 
eventually could distinguish criminals from non-criminals 
with an accuracy of 89.5 percent (Wu and Zhang 2016; 

Brien 2016). This would prove that an automated inference
on possible delinquency based on the characteristics of the 
face is possible, notwithstanding the historical controversy 
that the two researchers explicitly mention in their paper.

According to the scientists, there are three different facial 
traits and features that indicate that someone is a criminal: 
The curvature of the upper lip is expected to be 23 percent 
greater for criminals than for non-criminals. Moreover, the 
distance between the two inner corners of the eyes is six per-
cent shorter and the angle between the two lines from the tip 
of the nose to the corners of the mouth 20 percent smaller 
(Wu and Zhang 2016; Brien 2016). In this way, concrete pa-
rameters for biometric analyses are formulated, so that the-
oretically fundamental statements about persons would be 
possible, i.e., not just as a subsequent sorting, but as a cur-
rent and future allocation. 

Due to the enormous media attention, the researchers de-
cided to make further statements and justify their methods 
and results. Among other things, they said: “Our work is 
only intended for pure academic discussions; how it has be-
come a media consumption is a total surprise to us.” (Wu 
and Zhang 2017) They regretted the use of the term physi-
ognomy: They “were not sensitive enough to the inherent 
dirty connotation of the word in the English speaking aca-
demia” (Wu and Zhang 2017). However, they had already 
mentioned in their original paper that this was a pseudosci-
ence.

Stanford University
In 2017, Michal Kosinski and Yilun Wang of Stanford Uni-
versity apparently managed to train a facial recognition soft-
ware in such a way that it was able to deduce from photos 
whether the person portrayed is gay or heterosexual 
(Taschwer 2017; Kosinski and Wang 2017).

For their study, the authors downloaded more than
300,000 portrait photos of up to 75,000 people from an 
American dating platform. With 35,326 photos of 14,776 
people, they fed a VGG-Face, a self-learning software that 
looks for characteristic “facial fingerprints” and establishes 
correlations between these “facial fingerprints” and the sex-
ual orientation of their owners (Taschwer 2017). According 
to the researchers, homosexual males have slightly more 
feminine facial features, narrower jaws, longer noses and a 
higher forehead, homosexual women tend to more mascu-
line facial features (Kosinski and Wang 2017). Thus, they 
as well formulate parameters for biometric analyses.

The researchers write in their summary: “Given a single 
facial image, a classifier could correctly distinguish between 
gay and heterosexual men in 81% of cases, and in 74% of 
cases for women. Human judges achieved a much lower ac-
curacy: 61% for men and 54% for women. The accuracy of 
the algorithm increased to 91% and 83%, respectively, given 
five facial images per person.” (Kosinski and Wang 2017) 
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However, if the program had to identify from 1,000 ran-
domly selected men (based on more than five photos per 
man) those 100 men who were most likely gay, it was often 
wrong: of the 100 selected men only 47 were actually gay 
(Taschwer 2017). 

As the researchers write in an accompanying text, they 
pondered a long time whether they should publish their
study at all for the following reasons (Taschwer 2017): On 
the one hand, homosexual people are still discriminated al-
most everywhere in the world, in some countries they even 
live in mortal danger. The findings of the researchers “ex-
pose a threat to the privacy and safety of gay men and 
women” (Kosinski and Wang 2017). On the other hand, the 
ability of a software to categorize people based on their pho-
tos constitutes a serious intrusion into the privacy of hu-
mans. 

Motivations for the Application 
The fight against terrorism and the prevention of crimes are 
obvious motives to revive the approaches of physiognomy 
and biometrics, as long as they are restricted to facial fea-
tures and characteristics as well as the shape of the head. The 
hope is to track down and arrest actual and potential offend-
ers. The dream of being able to fight the bad or the irregular 
in this way seems to come true. (Kosinski and Wang 2017) 
point out “that companies and governments are increasingly 
using computer vision algorithms to detect people’s intimate 
traits”. 

The truth is, however, that the majority of companies are 
mainly interested in placing suitable advertisement, e.g., on 
interactive advertising spaces (Bendel 2017b). They analyze
gender, age, origin, emotional state and now other aspects 
such as sexual orientation as well. There should be clear lim-
its, however, when one imagines that a certain sexual orien-
tation or preference – beyond homosexuality and heterosex-
uality – could be identified and a corresponding advertise-
ment, such as for handcuffs, could be shown. 

In the case of personnel selection and assessment, com-
panies also hope for insights concerning the suitability of 
applicants and employees. Schneemann (2002) claims that 
the psycho-physiognomist will recognize the form of a per-
sonality trait, for example, in an “outward formation of the 
skull”. In the operational environment, intelligence, creativ-
ity, adaptability and subordination play a role. Companies 
and organizations could be more and more interested in fig-
uring out these traits through face recognition, just as they 
had previously relied on dubious findings from graphology. 

The choice of a partner is another possible motivation to 
use face recognition. Here not only the reliability and hon-
esty of the future or current partner play a role, but also his 
or her sexual performance and sexual orientation. In one’s 
search for a partner, one may want to make sure that he or 

she is actively striving to produce offspring and does not 
have an outing after a few years, and if one already has a 
partner, one may want to check if she or he deserves one’s 
trust. Or he or she simply wants to make sure that the chosen 
partner is also judged by others as attractive (Thomas 2016).

Of course, the relevant software can also be used for en-
tertainment, which is linked to the social games of earlier 
times, in which you – in the tradition of Lavater himself – 
drew and implied facial features. Finally it can be enlighten-
ing (in individual cases even disturbing) for a person to be 
categorized and compared by a software. You will learn 
which possible effect you have on your fellow human be-
ings, and how others perceive you, at least subliminally and 
subconsciously. This is particularly interesting when it is a 
matter of gender.  

These motives are on very different levels. However, ac-
ceptance by the applying individuals as well as by the ap-
plying organizations is likely to be relatively high, if appro-
priate successes had been achieved or simply claimed.
States could even come up with the idea of setting such 
methods as a standard when crossing the borders of a coun-
try or in public places and streets. 

In Germany, a face recognition project, carried out at the 
Südkreuz station in Berlin in 2017 with volunteers involving 
the identification of persons, lead to a controversy. Because 
of the experience of National Socialism, people are particu-
larly sensitive in Germany regarding the collection and eval-
uation of data, so that we can assume that approaches of 
physiognomy would provide a huge outcry. At many air-
ports, for example in Zurich (Switzerland) and in the USA, 
facial recognition is already in use, although currently it is 
hardly linked with character traits.

The Ethical Perspective
In the following, the author assumes the perspective of eth-
ics, especially information and technology ethics. After a 
short explanation of these specific ethics, several problem 
areas are explored using their central terms.

Information and Technology Ethics
Applied ethics refers to definable thematic areas and forms 
the specific ethics. Information ethics is about the infor-
mation society’s morality (Bendel 2016). It deals with how
we behave or should behave in a moral sense when offering
and using information and communication technologies 
(ICT), information systems and digital media. Key concepts 
include informational autonomy, digital identity, digital di-
vide and informational self-defense (Kuhlen 2014; Bendel 
2016).

Technology ethics refers to moral questions of technol-
ogy use. It can equally deal with the technology of vehicles 
or weapons and with nanotechnology or nuclear energy. In 
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the information society, where more and more technologies 
include computer technologies, technology ethics is closely 
linked to information ethics or is partially dissipated in it
(Bendel 2016). 

The concept of algorithm ethics is used partially synony-
mously with that of machine ethics – a design discipline 
close to robotics and AI which is not further discussed here 
(Anderson and Anderson 2011) –, in some cases rather in 
the discussion about search engines, proposal lists, and big 
data. Its object, if not considered a design discipline but a
reflection discipline, can be largely covered by information 
ethics. 

Further specific ethics, which may be of marginal rele-
vance, are business ethics, science ethics, medical ethics and 
legal ethics. These are mentioned in the following, without 
further explaining them and without applying their specific 
terms and methods. 

Use of Personal Data
It is a fundamental question whether it is allowed to simply 
record a face and analyze it by means of information tech-
nology. The personal data, one could argue, belong to the 
person and may only be collected and processed under spe-
cific and controlled conditions. (Kosinski and Wang 2017) 
have also made aware of the invasion of privacy by this soft-
ware.

Of course, in every human contact certain data are col-
lected, and stored in the brain for a short or long time and
information is transmitted, but in machine processing there 
are other aspects and possibilities. Thus, potentially many 
people can access the stored data and the completed anal-
yses, there may be unknown persons involved, the infor-
mation can be linked and passed on, and the inferences that 
the systems draw can be wrong or interpreted incorrectly by 
the responsible authorities. The researchers from Stanford
University have explicitly rendered the categorization prob-
lematic. 

On the whole, it can be said that personal data are with-
drawn – in a manner of speaking – from the person con-
cerned, and a digital identity is created (in addition to the 
digital identity he or she is responsible for), which he or she 
cannot control, and whose informational autonomy is af-
fected which is the subject of information ethics. Data pro-
tection is required at the legal level.

Character as a Specific Feature
The specific question is whether character traits, personality 
traits and temperament can be determined mechanically. On 
the one hand, it can be argued that they belong, even more 
than other characteristics, to the person, insofar as they are 
his or her essence, and are difficult to change. On the other 
hand, it could be said that external features such as noses or 

eyes are visible and that, in their entirety, the facial charac-
teristics result in the individual personality, in the aforemen-
tioned examples even permanently. However, character 
traits are not visible and thus difficult to describe and, if they 
remain so imprecise, they can be attributed to very many 
people. It is even the case that a character trait or personality 
trait, which only a few people possess, indicates a disorder. 

On the other hand, one can again argue that, in most cases, 
not only individual traits are collected, but several in their 
entirety, which allows an accurate picture. That these, in 
turn, may be assigned to certain types, like in Faception, is 
due to the manageability and the difficult descriptiveness,
especially of aggregated information, and in the field of IT,
as the persona show, not at all unusual. Certainly, data on 
character traits, when clearly assigned, are personal data, 
and one must again ask for informational autonomy and pri-
vacy.

Apparent Potentials
A sensitive point is that software and hardware seem to find 
other and even more traits than humans. They seem to see 
what we overlook, namely both the observed and the observ-
ing. This can already be critically determined with regard to 
the recognition of age and gender.

Thus, the author has repeatedly had the opportunity to test 
appropriate software with his students. They often were ob-
viously not happy when they were thought to be much 
younger, which may be just the opposite in older persons. 
The students were generally furious when given the wrong 
gender. As an uninvolved third party, one tended to agree 
with the machine findings, which in turn shows that it can 
contribute to self-awareness. 

It is, however, the question whether it is not preferable for 
people to tell each other, that he or she differs from his or 
her self-image; at least this information may be given in a 
social and communicative setting, for example, when regret 
is expressed or affection shown. On the other hand, the 
judgement of a machine can also be received in such a way 
that no friend knows about it, and the described reactions of 
the students are likely to have been so pronounced precisely 
because of the part-public situation, the exposure to friends
and colleagues. 

From the point of view of information ethics (and on the
fringes of technology ethics), one has to question in any case
how to deal with the fact that the machines seem to produce 
new insights, which we have not anticipated, and how a de-
tached digital identity affects our everyday real identity (and 
the digital identity we are responsible for). 

Moral Evaluation of Properties 
Furthermore, it can be seen that character traits, personality 
traits and temperament are often morally judged, which is
partly the purpose of the systems used. Thus, these systems
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allow themselves to pass moral judgements about people, a 
fact that can be criticized, even if they are moral judgements 
which the systems are taught or which are actually only
passed by the operating persons. Above all, however, the 
persons concerned are sorted into normative categories, 
along with the corresponding positive and negative evalua-
tions and conclusions.

Moreover, the systems, which is also investigated under 
the name of algorithm ethics, will corroborate and spread 
existing prejudices that are taught to them (O’Neil 2016). 
We encountered a similar phenomenon when AI was used 
in beauty contests. Light-skinned women with European fa-
cial features were generally preferred (Michel 2016). Infor-
mation ethics (and on the fringe also media ethics, which has 
not been further deepened here) can also address these prob-
lems.

Rights of Individuals and Groups
The use of this type of approaches to identify terrorists or 
criminals can be morally justified with the protection of so-
ciety. You could argue that while the rights of the persons 
analyzed are being impaired (even if they are perpetrators), 
the benefits for the community are so high that you can live 
with it. However, people who have done nothing wrong are
targeted again and again, and even with face recognition, it 
is true that all faces are at least partially analyzed before a 
suspected person can be tracked down. Thus, one raises a 
kind of general suspicion, one controls and observes every-
body and, if possible, sorts out those about whom no further 
information is available, which reverses the previously pre-
vailing principle.

This is already true in the case of classical facial recogni-
tion – but now also people with certain facial features are
suspects, which is very likely against reasonableness. Even 
if there is a statistical relationship between the appearance 
and the inside of a person, this does not mean that all have 
to tolerate an informational access. In fact, the informational 
autonomy of the uninvolved is violated, which brings infor-
mation ethics back into play. 

Suspicion and Detainment of Persons
A further question is what happens with a person whom the 
software has identified as suspicious. First, it is evident that 
a damage has occurred by the fact alone that the person was 
identified as suspicious, her or his personal information is 
used without their knowledge or without their consent and 
he or she will be targeted by the police and the secret service. 
In addition, in any place, there must occur a further obser-
vation or access that may be uncomfortable or might even 
harm someone’s reputation or body. There could be even 
more harm in store for the person concerned if he or she is 

deprived of his or her freedom. In this case, the machine de-
termination would not only affect the informational, but also 
the personal autonomy.

If from the physical characteristics conclusions are drawn 
to the political or sexual orientation and if these orientations 
are morally or legally incompatible in a country, this may 
lead to humiliating or destructive treatment. Of course, ac-
cess to persons who are harming or intend to harm others 
must be possible, but the question is whether a mass analysis 
should be used as the basis of a software. Furthermore, there 
will be probably more access than before to innocent people. 
Therefore, information ethics, technology ethics and legal 
ethics must be incorporated into these discussions.

False Promises
Developers and operators sometimes suggest that some in-
sights are discernible from the face alone. In emotion detec-
tion, which bases mostly on facial expression, this is cer-
tainly largely the case. The facial expressions are in part in-
nate, in part learned, and they belong – like the spoken lan-
guage – to our means of communication. Since they belong 
to our visual means of communication, it is obvious that they 
can also be understood by optical systems connected to AI, 
although a poker face is difficult to decipher. In the case of 
characteristics that physically belong to humans, this is dif-
ferent. When face recognition is mentioned, often more data 
is actually used, such as clothes and hairstyle or surround-
ings.

There is a high degree of complexity for the person con-
cerned. It is hard for him or her to judge whether he or she 
could fall into certain categories that may have negative con-
sequences for him or her. Science ethics must address the 
false promises and vague representations of the researchers, 
which can lead to considerable insecurity in the population 
and excessive expectations in politics. Information ethics 
must address the use of the specific procedures. 

Questionable Categories 
Furthermore, the categories are questionable in one or the 
other project. A highly intelligent person can easily be quite 
dangerous, violent, and criminal. Categories, such as in 
Faception, which distinguish between highly intelligent in-
dividuals and terrorists, suggest that these are different, even
contradictory, categories. Furthermore, the persona from the
HCI is recurringly criticized as being an unauthorized sim-
plification.

In principle, moral and legal categories are repeatedly 
mixed and confused. A criminal person is not per se evil or 
abnormal, but simply someone who violates the law, con-
sciously or unconsciously. A person who becomes a crimi-
nal can also be moral in the true sense, especially if he or 
she decides and acts in an unjust state or unjust system. (Wu 
and Zhang 2016) write in their original paper that “being a 
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criminal requires a host of abnormal (outlier) personal 
traits”; in their defense, they emphasize that “a caveat about 
the possible biases in the input data should be issued” (Wu 
and Zhang 2017).

The fact that these things are not systematically separated 
could be based either on economic interests or on political 
ideologies. For totalitarian states, it is usually evident that 
violations of the law are also breaches of morality. Here sci-
ence ethics, with a view to the responsibility of researchers, 
and legal ethics, with a view to the mingling of law and mo-
rality, are required. Information ethics addresses the extent 
to which information systems and software tools of this type
require and promote a questionable categorization, and how 
one could adapt it, or eliminate it. 

False Findings and Dubious Comparisons
The basic question is what to do with the truth that some 
systems, under whatever conditions and with whatever 
methods, simply produce false statements and predictions. 
The fact that they achieve a certain success in 50 to 70 per-
cent of the cases may sound promising to some ears, but 
cannot conceal the fact that they are mistaken in 50 to 30
percent. This is not just a marginal but a huge gap. 

It is also important to bear in mind that these are special-
ized systems that are mostly compared to people who are not 
specialized. Many of us simply do not care what sexual ori-
entation someone has, and accordingly, we do not use our 
energy to recognize the sexual orientation of people who do 
not qualify as partners. However, if we are trained, as cus-
toms officers or passport inspectors, to shift to another area 
of application, we can see discrepancies and feelings better 
than the average person can. 

Thus, it is advisable to compare specialized systems with 
specialized individuals. Once again, science ethics (hence 
economic or business ethics) is required, which examines 
the falseness of the findings as well as the questionability of 
the comparisons.

Imbalance between the Parties Involved 
Another problem is the imbalance between the observer and 
the observed, which expresses itself at different levels. The 
observed does not have the technology that the observer has, 
he or she does not know in detail the functionality, and he
or she does not know to whom the data will be passed on. In 
many cases, there is only superficial information, such as the 
indication that a camera is present. In many countries and 
areas not even that is established, not even there where it is 
a regulation (Morchner 2010). As a concerned person, one 
is under-informed and defenseless.

From an ethical and legal perspective, one can demand 
that the operators inform the public about the existence of 
the cameras and the analysis by AI, but some might argue 
that they give up advantages and help suspects to become 

unsuspicious. For them, the imbalance is, so to speak, pro-
gram. Here, too, informational autonomy is at risk, and there 
is a digital gap of a special kind, namely between technology 
users and technology-used. Here, both technology and in-
formation ethics are required. The latter could use the dis-
cursive method to disclose the interests of parties and help 
make evaluations (Kuhlen 2004).

Informational Self-Defense
The informational self-defense arises from the digital diso-
bedience or constitutes an independent action in the heat of 
the moment, and serves the preservation of the informa-
tional autonomy and the (self-constructed) digital identity 
(Bendel 2016). For example, you could tear off the data 
glasses of people walking towards you, because they might 
record you, could stop cars whose cameras have recorded
you and ask for data deletion, or you are as a fake on such 
platforms that use the personal data for economic purposes.
Whether mitigating circumstances or even claims for impu-
nity are to be asserted in the event of damage or infringe-
ment will be decided in individual cases. A term with an ad-
ditional meaning is “digital self-defense”. 

People will take a stand against face recognition systems. 
They will cover up themselves, if still legally authorized,
they will apply makeup, will get tattooed and affix jewelry, 
will have optical operations performed and use technical 
means to try to disrupt and influence the systems. If they do 
not commit themselves to self-defense, then perhaps to the 
somewhat weaker concept of information thrift. 

The Renaissance of Physiognomy
It becomes obvious that the physiognomy of ancient times,
the Middle Ages and the Renaissance has resurrected and 
finds its representatives and propagators. Above all, the 
questionable excesses of the Enlightenment and the nine-
teenth and twentieth century have resurfaced, in which face, 
race, intelligence and worth were combined. 

This development seems quite strange today. In Europe, 
they rub their eyes when seeing the ghosts that they seem to 
have successfully banished. In the United States, where di-
versity plays a major role, where discrimination on grounds 
of origin, age and gender is ostracized and punished, they 
see themselves in a great dilemma that is also expressed in 
the caution of the researchers from Stanford University.
Here, social-political claims, whether they are exaggerated 
or not, clash with technical possibilities. At the same time, 
in some circles in the US, some states and sensitivities that 
have arisen in Europe in the course of history may meet with 
a certain lack of understanding. In spite of this, it could be 
of interest to them – as well as to researchers from other 
parts of the world – to study the European idea and intellec-
tual history under these considerations. 
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What obviously drives this development are economic 
and political interests. In times of the greatest uncertainty, 
one hopes more than ever to have simple procedures with 
which – if it is not simply a question of maximizing profits 
– the supposed evil can be fought against. This is combined 
with the potency expected from AI, and with the effective-
ness and efficiency of machine processes. In addition to the 
self-assumed possibilities, opportunities play a role that one 
can claim in front of others: one can persuade the population 
that it is possible to fight terror with technical means. Infor-
mation ethics can use the discursive method to disclose the 
interests of the parties involved and to help assess the ade-
quacy of the means on all sides (Kuhlen 2004). 

Summary and Outlook 
Face recognition has become a big topic. Now, its direction
is changing more and more. To a large extent, the machine-
based approaches in their categorizations and functionalities 
are very questionable. Thus, moral and legal approaches are 
messed up, in some places it is suggested that criminals are 
basically bad people, even though they only violate certain 
laws. Moreover, it is suggested that the machine can read 
faces better and faster. 

In certain questions such as the sexual orientation, a soft-
ware seems to actually perform this determination better 
than a human does. However, as it turned out, the person 
does not necessarily have an interest in this determination.
Moreover, it is also helpful or even essential for the software 
if it receives additional data that have nothing to do with the 
face and the head. These, in turn, may be of discriminatory
character.

In the end, there are many reasons not to use face recog-
nition at all to determine character traits, personality traits 
and temperament as well as sexual orientation. At the very 
least, however, there are many ethical questions that were 
dealt with in this article to some extent, and which may re-
verberate in political considerations.
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Abstract 
Artificial intelligence (AI) and machine learning (ML) have 
been major research interests in computer science for the 
better part of the last few decades. However, all too recent-
ly, both AI and ML have rapidly grown to be media fren-
zies, pressuring companies and researchers to claim they use 
these technologies. As ML continues to percolate into the 
layman's life, we, as computer scientists and machine learn-
ing researchers, are responsible for ensuring we clearly con-
vey the extent of our work and the humanity of our models. 
In our current discussion, we limit ourselves to the follow-
ing three important aspects that are needed to regularize ML 
for mass adoption: a standard for model interpretability, a 
consideration for human bias in data, and an understanding 
of a model’s societal effects. 

 Introduction   
Mainstream media, any non-academic or non-research out-
let, fawn over the tandem of machine learning (ML) and 
artificial intelligence (AI). Recently, technologies like Al-
phaGo, competitions like the Netflix Prize, and once sci-fi 
fantasies like self-driving cars have dominated news head-
lines. The media is correct in claiming that, while ML is 
outperforming humans at clerical and pattern-driven work, 
the next wave of AI will revolutionize medicine, law, fi-
nance, and transportation by processing data more effi-
ciently than humans (Grace and Salvatier 2017). It is not 
wrong to be proud of and eager about the advances made 
in these fields annually. AI can be compared to the steam 
engine and electricity: powerful general-purpose technolo-
gies that can forever alter the fabric of society (Brynjolfs-
son and McAffee 2014). However, it is erroneous to over-
state these technologies’ capabilities in the immediate fu-
ture, which we define hereafter as ~1-2 years. AI growth is 
slowly yet drastically automating aspects of the monotony 
in our lives  (Schwab 2016).  
 As AI enters the limelight and displaces all, regardless 
of the color of their collar, researchers and practitioners of 
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the field must poise the resultant models to be interpreta-
ble, unbiased, impactful, and thus humane (Kaplan 2015). 
In our discussion, we define humanity and humane to be 
the ethereal and emotional impact of these models on hu-
mans. We define AI as encompassing its subfield of ML. 
In order to build a ML system that values humanity, we 
consider the following questions: (1) How can researchers 
make their work interpretable for the end user? (2) How 
can researchers ensure their algorithms are not learning 
now unlawful or immoral patterns from antiquated data? 
(3) How can researchers evaluate the societal effects of 
their predictions? 
 We believe these three questions provide the foundation 
needed to succeed in maintaining the humanity of the 
models we create. To scale to the masses, ML systems 
need be interpretable to a non-expert. Laymen should be 
able to understand the sequence of steps and data points 
used (and their respective weights) to achieve the final 
result. ML systems must draw from data that researchers 
have vetted for potential social bias, thus ensuring the fair-
ness of the eventual conclusion. This is an overlooked por-
tion of current ML work: most researchers claim them-
selves to be data-agnostic; however, it is imperative they 
care about the features, source, and context of datasets 
(O’Neil 2016). Finally, ML systems must be aware of the 
user impact of each prediction made and each pattern 
found. Having a pointed, narrow goal with low impact is 
the current rule of thumb to ensure little disruption in other 
parts of a user’s life (Armstrong and Levinstein 2017). To 
that end, we dive into the need for all three pillars, as the 
fields of AI and ML continue to evolve. 

Model Interpretability 
Imagine a patient visiting a doctor in 2030. They walk into 
an empty room filled with sensors and large screen with 
necessary instructions. Once the minimum readings have 
been made (non-invasively and implicitly), the patient can 
see a diagnosis (e.g. Diabetes) generated automatically by 
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a black box. If researchers are not cognizant of the implica-
tions of their predictions, delivering a potentially life-
changing diagnosis in such an insensitive manner can stifle 
the adoption of AI systems, since the system lacks humani-
ty in diagnosis. As Manuela Veloso once said, “If we don’t 
worry about the explanation [of the result], we won’t be 
able to trust the systems.” We, as researchers and practi-
tioners, need to ensure our current black box models gain 
clear-box access to allow end users to reason about our 
prediction. Therefore, researchers must prioritize exposing 
the inner workings of ML systems to promote interpretabil-
ity - the explanation behind predictions – thus bringing the 
world more personable, humane models. 

Current State 
ML today begets a robust strength in prediction power in 
decision-making processes (at least in the supervised case, 
which we assume from here). However, due to a mismatch 
between prediction objectives (i.e. test set performance) 
and the real world costs of deployment, there is an unful-
filled demand for interpretability (Lipton 2017). As the 
final users of ML systems are typically non-experts, mod-
els lacking interpretability are rendered ineffective and 
useless. Though there exists no concrete definition of in-
terpretability, it broadly refers to explaining a model in 
humanly understandable terms: many desiderata for mod-
ern ML systems, like robustness, fairness, and trust, are 
also commonly grouped with interpretability (Doshi-Velez 
and Kim 2017).  

 There exists a need for rigorously standardizing inter-
pretability, since the European Union will prevent auto-
mated individual decision-making this year (Goodman and 
Flaxman 2016). As of now, dimensionality reduction tech-
niques like backward feature selection on a single layer 
perceptron or feature extraction via principle component 
analysis suffices to make a model interpretable in simple 
cases (Vellido 2012). Sparse linear classifiers and discreti-
zation methods (decision trees, rule sets, etc.) are well-
known interpretable models (Kim 2015). However, much 
interest now lies in the nonlinear, high dimensional models 
and related deep learning techniques. Researchers working 
on joint model training techniques are exploiting known 
interpretable models to provide laymen with explanations 
for a given prediction. 

More recent techniques have actually implicitly priori-
tized interpretability, albeit void of a standardization. Re-
searchers working on neural modulation for semantic 
search in visual content are inherently making some ML 
models more interpretable by employing explicit reasoning 
and attention.  

Case Study: Medicine 
Returning to the 2030 scenario, the patient demands an 
explanation of how a complex model, like Doctor AI (“a 
generic predictive model that covers observed medical 
conditions and medication uses”), came to its diagnosis 
(Choi et al. 2016). Though the model might be confident 
about its prediction, it must expose the sequence of deci-
sions that led to the conclusion. One option would be joint-
ly training a recurrent neural network, a long short-term 
memory (LSTM) per se, with a hidden Markov model 
(HMM) to expose the HMM state sequences to the end 
user (Krakovna and Doshi-Velez 2016). This technique 
leverages both the predictive power of an LSTM and the 
explicit states of an HMM: this even unlocks transfer 
learning as an LSTM model trained on a sufficiently large 
electronic health record can be transferred to any hospital 
(Choi et al. 2016). However, a major shortcoming of this 
approach is that a domain expert must be leveraged to 
name the states of the HMM: it is nearly impossible for a 
computer scientist to attempt to name a given state se-
quence of symptoms and vital signs as potentially contrib-
uting to a particular diagnosis. In some simpler planning 
tasks, expert knowledge is taken into account in the prior 
distribution over the area of interest, but this does not gen-
eralize well to all situations (Kim 2015). Nonetheless, cou-
pling combined model training with test set performance 
on the top-k ICD-9 codes1 can produce accurate and inter-
pretable results (Lipton and Kale 2015, Nigam 2016). An-
other such technique for making these predictively power-
ful LSTMs more explainable is employing input gradients 
to generalize decision logic, which is irrespective of the 
dataset (Ross, Hughes, Doshi-Velez 2017). These tech-
niques are all means towards the end of making our ML 
models more interpretable and thus more humane.  

Human Bias in Data 
The source and features of data used as a basis for our 
models are essential to understanding the inherent human 
bias in a model’s predictions. When productionalizing a 
model, we must divulge the exact source and features of 
the data used to train that model. Data, contrary to lay-
man’s thoughts, ages and grows stale. Imagine if research-
ers used data from the Jim Crow days to predict in which 
zip codes are people most likely to go to jail again (O’Neil 
2016). Overtime, the data from yesteryear becomes irrele-
vant. So, can researchers not just create a threshold or add 
a layer of logistic weight to our data by recency? Well, a 
recency bias is just as unproductive (Abah 2016). Ac-
knowledging the existence of and taking steps to correct 
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this potentially unfair data yields more humane models, as 
an unbiased model fed biased data gives a biased result. 

Current State 
When assessing the quality/recency of and reducing the 
human bias of a dataset, two techniques are common. One 
technique is debiasing, which manually severs the learned 
relationship between two entities. In example, gender bias 
in natural language generation from processing/training on 
text corpuses is all too common. A gender bias-free dataset 
of images can be created when we place constraints on 
certain relationships between entities within the images 
(Zhao et al. 2017). In a text generation algorithm, gender 
bias can be mitigated by identifying known gender biased 
words, working in a gender neutral subspace, and under-
standing the distance of a gender neutral world towards the 
preidentified gender subspaces (Bolukbasi et al. 2016). 
Another technique is simply omission of the stale or biased 
data from training; it is trivial to state, but such a decision 
is lossy and certain patterns in the data will be missed. 
 It is crucial to note that in both scenarios, researchers are 
imposing their own bias and morality on a given problem 
space. For example, if researchers think (or even empirical-
ly show) that zip code of residence is a high predictor of 
where crime occurs, they are then faced with a moral 
struggle of whether or not to patrol more in those zip 
codes, disadvantaging the portion of non-criminals in a zip 
code deemed crime prone. The legality of models matters 
considerably as an ounce of human bias can violate the law 
(Samek 2017). To that end, we show a need to remove 
human bias disparities with as little impact on accuracy as 
possible (Johndrow and Lum 2017). 

Case Study: Recidivism 
Recidivism prediction (that is, the propensity of a person to 
return to jail once released) is bursting with social bias. 
Though models like PredPol2 exist, there is no formal 
feedback loop for all involved parties; thus, there exists a 
lack of randomness in the data (Ensign et al. 2017). With-
out this randomness, a human bias is propagated in the data 
(e.g. only patrol neighborhoods of criminals who are cur-
rently imprisoned). Unfortunately, researchers lack a 
method to understand the fairness of their predictions, oth-
er than the false positive rates of two subgroups within the 
population in question. One suggestion is to optimize pa-
rameter instability and disparity (Chouldechova and G’Sell 
2017). More interpretably, one can perform a subset scan 
to detect if a given class has noteworthy bias for in a given 
subgroup (Zhang and Neill 2017). Such techniques only 

                                                
2 PredPol allows law enforcement to predict where crime will happen 
given historical/real-time data feeds and then assigns patrol units accord-
ingly (Ensign et al. 2017). 

arise if researchers heed human biases in data, which will 
be of utmost importance as ML adoption continues to sky-
rocket.  

Societal Effects 
The output of ML systems affects real flesh and blood be-
ings. Unfortunately, all too often, researchers lose sight of 
this reality. Some researchers focus on optimizing objec-
tives on benchmark datasets instead of the real world ap-
plications of the code they write (Wagstaff 2012). They 
want to be able to transfer their expertise and models to 
new domains, wherein ML can augment archaic practices 
and automate pattern-based predictions. For example, 
clothing companies no longer use only intuition and actuar-
ial science to forecast their products’ performance, instead 
they also use models that incorporate seasonality, user 
preferences, and industry trends to decide what type of 
clothing should be designed next season (Brynjolfsson and 
McAffee 2014). In confluence with the proliferation of ML 
use cases, we must remain cognizant of the legality of our 
models and predictions and be alert of user intent and re-
ception. 

Current State 
Society benefits from ML models daily. These models tell 
us what stocks to buy, how much demand a restaurant can 
expect next quarter, what country poses the most threat to 
another, whom we should date, etc. (Ross 2016). Society 
seems like it is subject to the output of these models, and 
thus mainstream media often misinterprets the power of 
ML. 
 For example, in the realm of natural language pro-
cessing, many recent works report that in multi-agent envi-
ronments, where agents communicate via strings of tokens 
to perform a given task, grounded and compositional lan-
guage naturally emerges. Though this may be the case in 
controlled circumstances, we cannot generalize this to say: 
“AI agents make their languages and thus we need to shut 
them down,” as many media claim (Lewis et al. 2017). 
Upon review, it becomes evident that language cannot 
emerge naturally and systems are shut down due to a lack 
of human interpretability: that is, one AI agent may say 
“Red man ball sit!” to another agent, who understands that 
to mean “Hello, how are you?” in English – without human 
intervention, the agents communicate in a nonsensical, 
incomprehensible grammar, basically gibberish, thus 
stressing the need for the first pillar of interpretability 
(Kottur et al. 2017). 
 As mass ML adoption is imminent, being mindful of 
such misinterpretations and effectively communicating the 
limits of ML must be kept at the top of our minds. 
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Case Study: Pricing 
In the e-commerce world, companies optimize models to 
maximize profit or increase purchase frequency. One such 
model is a dynamic pricing engine, which prices goods 
based on the targeted consumer’s willingness to pay. As 
such, these engines are used to serve the optimal price for a 
given user to maximize company profits. Plagued by 
sparse user level data and by legal constraints on what fea-
tures can and cannot be used, dynamic pricing experts 
manage programs like time-limited coupons forecasted via 
a point-process model that makes real-time, global esti-
mates based on transaction history and patterns (Manzoor 
and Akoglu 2017). Such pricing programs must be inter-
pretable and unbiased; if they are not, the societal conse-
quences of erroneous prices (or worse, of price discrimina-
tion) are catastrophic for a company. Being aware of and 
responsive to the implications of ML models is the final 
key towards more humane and adoptable models. 

Conclusion 
To be prepared for mass adoption of machine learning sys-
tems, we, as researchers and practitioners, must adopt a 
framework for developing humane models that ensure in-
terpretability, unbiasedness, and practicality. By creating a 
rigorous standard for machine learning interpretability, we 
can transform the medical predictive analytics industry. By 
understanding the inherent human bias in the data we col-
lect and the sample it represents, we can ensure that we 
build a more unbiased model for police patrol. By thinking 
deeply about the societal effects and ethicality of our pre-
dictions, we can ensure we deliver profitable and fair pric-
es in the e-commerce industry. All three pillars can dis-
place society’s perception of machine learning, as the true 
power and beauty of how we can use autonomous agents 
and machine learning comes to fruition when we maintain 
the humanity of our models.  
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Abstract

We draw on concepts in medical ethics to consider how
computer science, and AI in particular, can develop critical
tools for thinking concretely about technology’s impact on
the wellbeing of the people who use it. We focus on patient
autonomy—the ability to set the terms of ones encounter with
medicine—and on the mediating concepts of informed con-
sent and decisional capacity, which enable doctors to honor
patients’ autonomy in messy and non-ideal circumstances.
This comparative study is organized around a fictional case
study of a heart patient with cardiac implants. Using this case
study, we identify points of overlap and of difference between
medical ethics and technology ethics, and leverage a discus-
sion of that intertwined scenario to offer initial practical sug-
gestions about how we can adapt the concepts of decisional
capacity and informed consent to the discussion of technol-
ogy design.

Introduction

Machines will be making life-and-death decisions for indi-
viduals in the near future, as well as decisions that have a
profound impact on the quality of human lives. Not only
will they drive vehicles and deliver aid, they may triage dis-
aster victim rescues and hospital admissions, they will con-
trol thermostats, schedule emergency services, help farmers
predict weather and timing of growing seasons, work with
food processing plants’ supply chains, adjudicate insurance
and parole claims, and decide who has access to emergency
shelters in the wake of natural disasters. In ways both large
and small, current and in-development applications of AI are
altering the basic conditions of ordinary human experience,
from the imminent availability of self-driving cars to robot
companions for the elderly (Sabanovic et al. 2013) or the
robophilic (Danaher and McArthur 2017).

All of these AI-driven decisions are necessarily predi-
cated on comparative value judgments about human worth
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and human goods: the importance of children’s lives vs. se-
niors’ lives in a natural disaster, or the value of students’ se-
curity vs. their personal dignity at a high-risk high school, or
the appropriate course of medical care for a terminally ill pa-
tient who is physically and emotionally suffering. These are
the same value judgments that transplant teams make every
time they prepare to operate. Whether those values are pre-
determined by developers or companies or are learned by
example through machine learning algorithms, these mech-
anized decisions—and the substrate of comparative values
that structure the automated decision-makers—will have a
profound impact on people’s lives and wellbeing.

But what exactly makes a human life valuable and distinc-
tive? What qualities of internal self or external environment
need to be in place for a person to be able to live and act as a
person? How do particular changes to their environment en-
hance, or circumscribe, their ability to be a version of them-
selves that they recognize and prefer? For most technologists
who understand their work as a way to improve human lives,
the importance of those lives and the reasons why they mat-
ter have been largely a product of moral intuition rather than
of carefully-defined principles. Such intuitions are difficult
to formalize in a way that can be programed directly or en-
trusted to an algorithm to learn by example, particularly in
the absence of a conceptual language that can identify them
or draw distinctions between them.

The proliferation of AI in daily life makes it ever more
vital and pressing that technologists can think specifically
about those aspects of the person that make them recogniz-
able and distinct as people, and furthermore how those hu-
man qualities are amenable to improvement, or vulnerable to
harm, through specific changes in the conditions of daily life
(Burton, Goldsmith, and Mattei 2015; Burton et al. 2017).
Furthermore, it is imperative that AI ethics develop its own
conceptual tools that can account for the particular ways
in which AI can impact those conditions of daily life. So
equipped, technologists will be able to discuss the param-
eters and significance of the interventions that their designs
are making, and to think more concretely about how design
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and programming choices can protect and enhance the lives
of individuals and societies.

This aim—to enhance, rather than diminish, human lives
through technology—is made particularly difficult by the
knowledge gap between those who build and maintain the
technologies and those who use them without the techno-
logical expertise to understand how they work. Such non-
specialists users face several disadvantages, even with re-
spect to technologies and platforms that are designed for
non-specialist use such as a smartphone or Twitter. Not only
are these users less likely to be aware of potential security
breaches, the signs of such breaches, or the steps they might
take to prevent them; they are also far less likely to be aware
of any modifications that would enable these users to fine-
tune their experience for their own personal comfort and
convenience. Thus, even at the level of everyday personal
technology use, there exists a significant power imbalance
between technology experts and non-experts. The depth and
scope of that power imbalance grows exponentially if one
also considers those experts’ professional work designing,
building and maintaining the systems that other users rely
on but lack the expertise to understand.

This expertise-based power imbalance, while particularly
pressing in technology ethics (and perhaps AI in particular),
is not unique. A similar power imbalance has long existed in
medicine, a field whose practitioners need extensive special-
ist knowledge even as they serve a user base of patients who
mostly lack that knowledge. Because of the power imbal-
ance implicit in the vast majority of patient-practitioner rela-
tionships, patients are often prevented from making choices
about their own care even when doctors or nurses are at
pains to leave the choice in the patient’s hands (Henderson
2003). To mitigate this problem, medical ethics has devel-
oped a family of concepts and practices to help its expert
practitioners to navigate the inevitable imbalance in power
and knowledge (Quill and Brody 1996). As this paper will
demonstrate, these concepts can be usefully imported (with
some significant revision) into technology ethics (Johnson
2009), and can be used to identify specific technology design
practices that preserve non-expert technology users’ capac-
ity for self-determination.

Contribution. In this paper, we described the concept of
patient autonomy from medical ethics, as well as the corol-
lary concepts of informed consent and decisional capacity.
We use a fictional case study to highlight the both the points
of intersection and points of divergence between traditional
medical ethics concerns and technology ethics concerns. We
then, on the basis of case study discussion, develop working
definitions of informed consent and decisional capacity that
are attuned to the central problems facing technology ethics.
Finally, on the strength of these newly-adapted concepts, we
will offer some concrete examples of how current projects in
AI and technology are working to support human autonomy,
or how they could be adapted to better support it.

Autonomy in Medical Ethics
Most western medical practitioners would identify auton-
omy as the central tenet of medical ethics. Autonomy is the
principle that mandates respect for persons, meaning that

individuals have free exercise with regard to whether and
what kind of treatment to receive, and honoring this inde-
pendence is central to contemporary medical ethics (Jonsen,
Siegler, and Winslade 2015) . Patient autonomy as a govern-
ing concept in medical ethics is relatively recent; the shift to-
ward it and away from medical paternalism was fueled both
by broader social movements that sought to empower the
individual and by the development of a more consumerist
model of medicine as physicians sought to protect them-
selves from malpractice (Billings and Krakauer 2011).

In practical medical ethics, the term autonomy has two
distinct uses, which are related but which also operate inde-
pendently of each other. The first usage is to affirm that the
patient deserves autonomy, the power to exert influence over
what happens to them; the second usage concerns the ques-
tion of whether the patient is able to exercise that autonomy.
Because people frequently seek medical care at a moment
when they are mentally and physically compromised, it is
not enough to affirm that a patient deserves autonomy. It is
necessary for medical providers to take deliberate steps in
order to protect the patient’s autonomy, and ensure that the
patient is able and empowered to make decisions that reflect
their wishes.

Neither dimension of autonomy—autonomy-as-
recognition or autonomy-as-exercise—simply exists as
a given. Because of the systemic power imbalance between
expert care providers and their nonexpert patients, two
important constraints have been put in place to ensure that
the patient’s autonomy is honored not only in principle but
in practice. They are informed consent and decisional
capacity. In the United states, when a patient undergoes
a medical procedure, that patient must consent to it, and
that consent must follow a conversation in which the doctor
explains the procedure’s risks, benefits to the patient, as
well as other treatment options. After this conversation has
happened, the patient signs a document acknowledging
that this conversation took place, and the patient is thereby
giving informed consent to the procedure. Because in-
formed consent documents a conversation, it is approached
as a process rather than a one-time event. Patients can
change their minds at any point leading up to or during the
procedure.

No medical procedures or treatments should be under-
taken without informed consent, but only patients who have
decisional capacity can give informed consent. In general,
adult patients are presumed to have decisional capacity, but
there are categories of patients who lack it. Patients can lack
decisional capacity due to age (children), medical status (de-
mentia patients), temporary states (sedated), or institutional
status (prisoners). But this absence of decisional capacity is
not permanent; children will age into being decisional and
able to give informed consent, sedated patients will wake
up, and prisoners may be freed, thus enabling them to make
decisions free of coercion.

Paradoxically—or so it seems at first—these limits on a
patient’s decision-making were instituted precisely to pre-
serve the patient’s autonomy, because they place limits on a
doctor’s ability to manipulate patients into undergoing treat-
ments. The constraints were developed in response to abuses
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of paternalism, and were designed to constrict doctors’ free-
dom by preventing them from taking advantage of patients
who were, for whatever reason, unable to exercise their own
autonomy.

As medical culture has evolved toward being more
patient-centered, the language and conceptual framework of
autonomy have likewise been enhanced to focus more on
how patients can exercise autonomy, rather than on the con-
striction of the doctor’s. Patients can, in fact, prepare for a
future in which they are non-decisional, by creating legal
documents that spell out their wishes, should they be in-
capacitated. They can also cede decision-making power to
specified others, for such an eventuality. In the absence of
such explicit and legally binding instructions, it is assumed
in most societies that a surrogate decision maker from the
family can speak for the patient’s wishes.

As we will argue, the concept of patient autonomy—and
its concepts of informed consent and decisional capacity—
offer a useful model for technology ethics in thinking about
how to preserve and enhance the wellbeing of technology
users. As the above discussion illustrates, however, the core
problems in medicine are not identical to those in technol-
ogy. In order for these imported concepts of autonomy, de-
cisional capacity, and informed consent to be useful to tech-
nology ethics, they need to be adapted, but in a way that
preserves the element that makes them useful. We use the
following fictional case study to illustrate points of overlap
and divergence.

Case Study

Consider a heart patient, Joe, who has two implants to help
with his heart: a pacemaker, which regulates his heartbeat,
and an implantable cardioverter defibrillator (ICD), which
can restart his heart if it stops. This is a common case in the
US with over 947 heart related implants per million people
(Mond and Proclemer 2011). Some years ago, in consulta-
tion with his doctor (as is legally required), Joe requested
and was granted Do Not Resuscitate (DNR) status. At a
recent doctor’s visit, Joe was told that restarting his heart
would be intensely painful, and that in such an event, his
heart would likely fail and need to be restarted repeatedly.
Given his DNR status, Joe’s doctor asked whether Joe wants
the ICD turned off.

Joe’s case raises a set of questions that are common to
many medical ethics case studies, most of which center
around autonomy.

1. Does Joe have the right to make these decisions? If he is
in pain, can his judgment be trusted?

2. Do Joe’s previous decisions express a state of mind that is
still binding for the present?

3. For Joe’s doctor, is there a meaningful difference between
Joe refusing aggressive CPR (an external treatment) and
refusing an ICD?

4. For Joe, is there a meaningful difference between refusing
an ICD and turning off an ICD that is already implanted?

5. For both Joe and his doctor, would turning off the ICD be
comparable to euthanasia?

The framing of these questions presumes the concept of
autonomy: that Joe deserves the right to determine what hap-
pens to him, and that this right to self-determination must
be preserved in balance with medicine’s broad imperative
to preserve and extend life whenever possible. Joe’s right
to refuse treatment is recognized, but so is the fact that the
very conditions of his treatment may mean that he is not de-
cisional, and thus not fit to make decisions that may harm
his person.

But as technologists and those thinking about technology
ethics will immediately recognize, this slate of questions ex-
cludes some important issues, including issues that might
be understood in terms of autonomy. Other questions should
be raised pertaining to the security of Joe’s personal infor-
mation and self-direction that are directly influenced by the
specific technologies that are now part of his body.

1. Who is responsible for implanting and maintaining Joe’s
machines?

2. What risks are there to Joe in having his cardiac data pos-
sibly transmitted by WiFi and stored online?

3. What risks are there in allowing an off-site monitor to
control the pacemaker?

4. Should any of the defibrillator itself, a control system, or
a human monitor be able to decide to not resuscitate Joe?

Like the medically-oriented questions, these technolog-
ical questions also recognizably concern Joe’s autonomy
as a patient/technology user. The underlying premises of
the technology ethicist’s questions recognize Joe as an en-
tity deserving of the same sort of autonomy accorded to
him by the medical ethics list. But there are two key dif-
ferences between them. The first is that these questions
expand the sphere of Joe’s autonomy (in the autonomy-
as-recognition sense) to include concerns about his per-
sonal information and to consider a wider range of pos-
sible agents who might impact Joe’s wellbeing. The sec-
ond difference is that, while these questions broaden the
scope of Joe’s autonomy as something for professionals to
worry about, they constrict its actual exercise by the patient
himself (in the autonomy-as-exercise sense). In focusing—
appropriately and necessarily—on systems-level concerns
such as information security and encryption of medical data,
these questions leave little room for Joe’s ability to make de-
cisions for himself, or even to understand what is at stake
in the decisions he might make. Although the questions are
about the sphere of Joe’s autonomy, they do not create or
identify an opportunity for him to exercise it.

The contrast between these sets of questions highlights
both how medical ethics could refine its notion of auton-
omy in conversation with technology ethics, and how tech-
nology ethics stands to benefit from an imported version
of autonomy from medical ethics. With respect to the first
dimension of autonomy—recognizing what the patient de-
serves as a person—technology ethics usefully broadens the
sphere of Joe’s autonomy insofar as it broadens the scope
of things in the world that are not only his but him: his
pacemaker and defibrillator, perhaps even his data. In an age
when medicine is increasingly reliant on networked tech-
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nology and data, medical ethics would do well to learn from
technology ethics’ reconfiguration of autonomy.

Yet technology ethics is less well equipped than medical
ethics to attend to the second aspect of autonomy, the pa-
tient’s right to determine what happens to him. A concern for
Joe’s right to exercise his own particular preferences might
lead to questions such as the following: Does Joe understand
the capabilities and risks (either to his body or his data) of
the devices that have been implanted within him, to a degree
that he can make an informed decision about them? Is he
aware of the experiences of other patients with similar im-
plantations? Does he feel able to ask his doctors to shut off
the implanted devices, to opt out after opting in?

We argue that these are the sorts of questions technolo-
gists need to be asking, i n particular, the designers of AI
technologies that can manage the content of a user’s on-
line experience or automatically transmit sensitive medical
data to doctors. Because technology is necessarily systems-
oriented in its approach, the challenges in making room
for users’ autonomy-as-self-direction are different—and, ar-
guably, even more difficult to overcome—than those in
medicine. Therefore, it is not helpful for technology ethics to
simply adopt the concept of autonomy from medical ethics
unmodified. And yet, if the human wellbeing of technology
users—technology ethics’ equivalent of patients—is not to
fade from view, it is crucial to identify and clarify a notion
of autonomy that technologists can use, a definition that is
analogous to that in medical ethics but more closely keyed
to the problems faced in technology ethics. As technology
increasingly sets the conditions for human life, not only in
medicine but in the public and private sphere, this sort of
working definition will prove crucial for technologists who
wish to preserve a space for the exercise of autonomy.

Reframing Autonomy for Technology

As our case study indicates, the notion of patient/user au-
tonomy is relevant for technology as well as for medicine,
even though the precise contours are different. As human
lives are increasingly managed at both macro- and micro-
level by smart technologies —and as medical technology it-
self advances—it becomes pressing for technologists to con-
sider how to enhance (or at least to preserve) users’ auton-
omy. To do so, technologists must consider not only users’
right to make decisions for themselves (the first aspect of
autonomy), but the conditions that enable them to exercise
that autonomy (the second aspect).

In addition, technology ethics also faces some particular
hurdles in incorporating user autonomy into existing frame-
works of inquiry. As is seen when we compare the two sets
of questions in our case study, the very nature of technolog-
ical work is already an impediment to conceiving of persons
in terms that recognize and extend their ability to exercise
their autonomy. These hurdles are particularly difficult to
overcome in the case of AI, which outsources both large- and
small-scale decision-making to programmed learners—and
sometimes in ways that are designed to “solve” the idiosyn-
crasies of users’ exercise of their self-directing autonomy
(Rapoport 2013).

A further challenge to technology ethics is that there
is rarely an appointed human mediator between the user
and the technological establishment as there is in medicine.
Medical ethics is structured around the relationship between
patient and care provider, and this can invest the individual
care provider with particular duties and responsibilities. Any
useful adaptation of patient/user autonomy needs to assign
responsibility in a manner that is both ethically and practi-
cably plausible.

The concept of user autonomy can be rendered more man-
ageable when we approach it by way of of informed consent
and decisional capacity. As discussed above, these two con-
cepts were developed in medical ethics as a means to pre-
serve the patient’s autonomy when her capacity to exercise
that autonomy is in some way compromised. Informed con-
sent and decisional capacity function essentially as “sluice
gates” to make sure that the patient/user’s autonomy is main-
tained even in the presence of disruptive or distorting factors.

Informed Consent

In a medical context, informed consent helps to preserve the
patient/user’s autonomy by requiring the doctor to keep the
patient apprised of relevant information, and permitting the
patient to rescind consent at any point. Informed consent
presumes a user who never develops expertise of her own,
and is not penalized for it; the burden remains on the expert-
provider to communicate clearly and consistently with the
user, to ensure she understands and that her wishes are be-
ing honored. While this is not the norm in technology we
are starting to see ideas like this appear. For example, the
Android operating system’s reliance on permissions for apps
which can be granted or revoked from an easy to find screen
(Andriotis, Sasse, and Stringhini 2016).

Informed consent presents deep challenges to the basic
design principles of technology, because it is deliberately in-
efficient and resistant to closure. First, it prioritizes certainty
that the patient/user understands over the efficient delivery
of information. Second, by allowing the patient/user to opt
out at any point, it mandates a structure in which processes
are begun but never completed, both because patient/users
sometimes withdraw consent partway and because even con-
senting patients/users retain the option to withdraw consent.

But this inefficiency is absolutely vital if the patient/user’s
autonomy is to be preserved. Because efficiency requires
that certain decisions or functions take place en masse for
a group of entities without stopping to consult each one,
some kinds of efficiency cannot coexist with informed con-
sent. The smarter and more seamless a technology becomes,
the more deliberate the technology designer has to be about
maintaining space within it for this sort of inefficiency. For
example, a massive push update to a high-tech medical im-
plant will be much easier to accomplish if the manufacturers
assume that the patient/users have already consented sim-
ply by having the device implanted. If, however, a patient’s
condition or wishes have changed, she might not want her
implant to be updated.

It is important to note that not all kinds of efficiency
are necessarily at odds with informed consent. Many forms
of automation increase the efficiency with which the user’s
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goals are achieved without eclipsing her ability to revise her
goals or judgments. There is no need for a given technol-
ogy to build in opportunities for ongoing consent when that
technology executes tasks the users already understand and
intend to perform, such as washing dishes or taking depth or
temperature measurements.

Whenever technological efficiency is achieved by elimi-
nating the need for the user’s input, there is a real risk that
the user’s autonomy could be compromised. Any technol-
ogy that makes decisions for its users—even when those
decisions are based on prior expressions of consent or
preference—is one that has the potential to violate users’
autonomy. Although the efficiency of self-monitoring ther-
mostats and smart surveillance technologies is one of their
main selling points to users, that very ease of use is what
makes it possible for those users’ autonomy to be compro-
mised, when their personal data is transmitted in a manner
they are not comfortable with or their home monitoring sys-
tems do something they dislike. Indeed, for a device or plat-
form to incorporate informed consent in a meaningful way
that it must preserve some kinds of inefficiency. The fact that
this notion may present a challenge to the normal way tech-
nology developers think underscores the need for a concrete
concept by which technology ethicists can assert why it is
necessary to constrict some kinds of efficiency in order to
preserve or enhance users’ wellbeing.

In considering what kinds of inefficiency are important for
maintaining informed consent, it is helpful to look back to
the original concept in medical ethics. In medicine, the de-
liberate inefficiency of informed consent affords the patient
the time to consider (and reconsider) her options in terms
of her values and goals. It also forces the care provider to
support the patient in this process, rather than imposing de-
cisions upon her. Because the patient’s goals or preferences
might shift over time or due to changes in her circumstances,
the efficient option—taking the patient’s initial goals and de-
cisions as a presumptive guide to the future—would under-
mine her autonomy. Such changes in goals or preferences
can be understood as “human” inefficiencies: inefficient or
unpredictable movements of character or goals that are es-
sential to a person’s autonomy and crucial to preserving their
wellbeing. In a medical context, informed consent protects
the patient’s autonomy by preserving ongoing ability to ex-
press her preferences, even when it renders her overall pro-
gram of care more inefficient. The efficiency of the treatment
process is valuable as long as it preserves or enhances the
autonomy of the patient/user, and is potentially damaging to
her autonomy insofar as it imposes efficiency on the messy
and inefficient processes of self-determination.

Therefore, a usable concept of informed consent for tech-
nology ethics is one that enables technologists to consider
the specific ways in which a given technology creates effi-
ciency. Does it smooth the user’s path to a goal she under-
stands and wants? Does it equip her to understand which
sort of determinations are being made for her by automated
processes, and to single out the determinations that matter
to her for further scrutiny and input? Does it create space
for her to revise her engagement with it, should her goals or
preferences change? With such questions in mind, a technol-

ogist is better prepared to evaluate which kinds of efficiency
might categorically interfere with a user’s autonomy, which
ones require ongoing user input of some kind, and which
functions can best serve the user in silent efficiency.

Decisional Capacity

Like informed consent, the notion of decisional capacity—
the recognition that autonomous users are sometimes not
in a state to exercise their own autonomy—can be adapted
to technology ethics as a means to preserve and enhance
user autonomy. As noted above, medical doctors use a range
of criteria to determine whether a patient is decisional, but
those criteria have two common denominators: they expect
the decisional patient/user to make choices in a manner con-
sistent with their previous character and preferences, and
they expect any departures from that prior consistency to
be “reasonable”—that is, in line with socially-determined
ideas.

Decisional capacity in medical settings is typically binary
in nature, because the patient/user’s role in the relevant med-
ical process is widely understood to be one of consent, rather
than execution. (See, for instance, (Jeste, Palmer, and et al.
2007).) If heart patient Joe decides that he wants his ICD
turned off, his decisional capacity depends only on whether
he is currently capable of making the decision: a medical
expert (either Joe’s doctor or an ICD specialist) will imple-
ment the decision. Joe will be the one to live with the conse-
quences of his choice—which is why he must be decisional
in order to make the choice—but his capacity to execute that
decision is not a relevant factor. if Joe’s judgment is suffi-
ciently consistent with himself, and/or with what is “reason-
able,” to make what his doctor deems to be a clear-headed
decision, then his decision is medically legitimate.

Technology complicates this notion of decisionality be-
cause, in most cases, users are also in charge of implement-
ing their decisions. While technology use is not (usually) as
complicated as a surgical procedure, some binding End User
Agreements (EULAs) are. Additionally, it can require some
deftness of body and mind to manipulate a device with an
injured hand, or to craft a rejoinder tweet while in a state
of righteous outrage that will not cause regret in an hour.
Like medicine, technology is a sphere that can magnify the
consequences of a given decision; but unlike medicine, tech-
nology empowers users to act without the mediation of an
expert practitioner who can clarify the scope or the stakes of
the user’s action.

In most cases, the fact that technology extends the scope
of its users’ ability to act is the primary virtue. The fact
that users are able to take these actions instantly, or near-
instantly, is further evidence of the quality of a piece of
technology. But these same qualities make users particularly
vulnerable to undertaking actions whose technologically-
augmented scope exceeds the user’s capacity to assess the
consequences in the moment of decision. It therefore seems
not only helpful but necessary to adapt the notion of deci-
sional capacity for use in technology ethics.

In order to be optimally useful for technology ethics, the
notion of decisional capacity needs to be expanded to ac-
count for the user’s role in implementing their own deci-
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sions. It can be helpfully recast for technology ethics as
decisional-executive capacity, incorporating a second layer
that raises the question of whether the user is fit, in a given
moment, to undertake an action in a manner that they will be
happy with later. Examples of at least checking for this in-
clude automatic tone alerts for angry emails and Slack warn-
ings before a message is sent to everyone at the workplace.

Decisional capacity creates an opportunity for AI to en-
hance the autonomy of technology users and medical pa-
tients. As noted above, decisional capacity is quite imper-
fectly realized in a medical context, as doctors are far more
likely to deem a patient decisional if the patient agrees with
them. An AI, however, is less likely to succumb to this bias
(Hurst 2004). While a doctor’s ingrained biases can com-
promise her assessment of whether her patient is decisional,
the doctor-patient relationship is nonetheless a useful model
for the AI-user relationship in one key respect. While con-
sistency (the first criterion for determining decisionality) is
best judged only with respect to the patient himself, the
reasonableness of his wishes (the second criterion) is more
broadly culturally determined; what seems like a good rea-
son in one society may seem bizarre in another. Because the
human doctor will be influenced by the same broad cultural
norms, she is well-positioned to assess whether the patient’s
expressed wishes fit within those cultural norms, though she
is also less likely to be sympathetic to reasons that do not fit
those norms. In contrast, an AI that determines decisionality
could be structured on universal terms, the ideal approach
might call for an AI to learn primarily from local data in or-
der to better assess the reasonableness of expressed wishes.

Conclusion

There is a pervasive societal disease about artificial intel-
ligence that ranges from fears of loss of jobs for humans
to terror that we will be displaced entirely by self-aware,
higher-functioning AIs. One strain of this anxiety is that the
machines will be programmed with more concern for effi-
ciency than for the wellbeing of the humans they are de-
signed to serve. But these things are not determined yet.
What is necessary to balance the drive toward efficiency is a
focus on how AI can support the distinctively human qual-
ities of its users. We believe that engineers and computer
scientists can learn from medical ethicists, and provide a vi-
tal viewpoint to the field of medical ethics itself. Through
this and broader communication throughout the industries
and domains where AI is applied will ensure that AI can live
up to the potential envisioned by its boosters, and become a
vital part of the architecture of a better human future.
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Abstract

Implementing Machine Ethics in Intelligent Agents involves
trustworthiness and safety, meaning that agents should do
what is expected they should do (at least, even in case of mal-
functioning of any kind, concerning high-priority goals) and
should not behave in unexpected potentially harmful ways.
This topics are strongly related with “assurance”, i.e., to en-
suring that system users can rely upon the system. This paper
deals with assurance of logical agent systems via temporal-
logic-based runtime self-monitoring and checking.

Introduction
Intelligent Agents are at present and will be in the future
more and more widely adopted in applications where living
being or societal welfare can depend upon their behavior.
In such application domains, agents’ compliance to ethical
principles is a mandatory requirement and the specific prin-
ciples to be respected must be part of the system’s specifi-
cation. Thus, ensuring trustworthiness and safety of agent
systems, in other words providing assurance of such sys-
tems, constitutes a crucial though difficult problem. In fact,
agents represent a particularly complex case of dynamic,
adaptive and reactive software systems. In Software Engi-
neering, certification is aimed at producing evidence indi-
cating that deploying a given system in a given application
context involves the lowest possible level of risk (depending
on the application at hand) of adverse consequences. Assur-
ance, which has been defined as “the level of confidence that
software is free from vulnerabilities, either intentionally de-
signed into the software or accidentally inserted at any time
during its lifecycle, and that the software functions in the in-
tended manner” is related to dependability, i.e., to ensuring
(or at least obtaining a reasonable confidence) that system
designers and users can rely upon the system. An interesting
discussion can be found in in (Winikoff 2010), and for the
basic underlying concepts about verification and assurance
of agent systems we invite the reader to refer to the rela-
tively recent book (Dastani, Hindriks, and Meyer 2010) and
to the references therein.

Pre-deployment (or “static” or “a priori”) assurance and
certification techniques for agent systems include verifi-
cation and testing. We restrict ourselves to agent systems

Copyright c© 2018, Association for the Advancement of Artificial
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based upon computational logic, i.e., implemented in logic-
based languages and architectures such as those presented
in the survey (Bordini et al. 2006) and those mentioned
in subsequent sections. Most verification methods for log-
ical agents rely upon model-checking, and some (e.g.,
(Shapiro, Lesperance, and Levesque 2002)) upon theorem
proving. Among recent interesting proposals about agent
systems (pre-deployment) assurance we particularly men-
tion (Winikoff 2010; 2017). About fault detection and re-
covery, a particularly interesting research work concerning
model-checking is that of (Kouvaros and Lomuscio 2017)
(see also the references therein).

It is widely acknowledged that industrial adoption of
agents systems finds a serious obstacle in the stakeholders’
lack of confidence about reliability of runtime behavior of
such systems, even more so when the application domains
involves moral or ethical requirements that must be fulfilled
or at the very least should not be violated. As the applica-
tions of autonomous agents are inevitably increasing, and
the adoption of such systems become more pervasive, the re-
quirement that agents function in ethically responsible and
safe manners becomes a pressing concern. Thus, in this pa-
per we advocate methods for run-time monitoring and self-
correction of agent systems, so as to enforce ethic behavior
and to prevent violations. Citing (Rushby 2008), . . . the use
of adaptive systems for greater resilience create situations
where runtime verification and monitoring could be partic-
ularly valuable. . . . Within suitable new frameworks, some
of the evidence required for certification can be achieved by
runtime monitoring - by analogy with runtime verification,
this approach can, somewhat provocatively, be named “run-
time certification”. In fact, in our view the ultimate objec-
tive should be that of agents and agent systems certified to
be ethically safe and secure.

The methods that we propose are not in alternative but
rather complementary to the many existing verification and
testing methodologies. For formalizing and implementing
runtime self-checking in logical agents while coping with
unanticipated circumstances, we propose temporal-logic-
based special constraints to be dynamically checked at a cer-
tain frequency, customizable for each different constraint,
depending upon how crucial is the requirement that the con-
straint is aimed to check. These constraints are based upon
a simple interval temporal logic particularly tailored to the
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agent realm, A-ILTL (‘Agent-Oriented Interval LTL’, LTL
standing as customary for ‘Linear Temporal Logic’). The
adoption of an interval temporal logics is motivated by the
usefulness of being able to specify of time-bounded prop-
erties: namely, A-ILTL it makes it possible to specify that
some property should occur within a certain time frame or
before/after a certain time, where each interval can also be
conditionally defined. A-ILTL constraints are conditional,
i.e., they can be specified in a general form and each time
they are checked they are instantiated (via suitable precon-
ditions) to the present agent’s state.

In (Rushby 2008), it is advocated that for adaptive sys-
tems (of which agents are clearly a particularly interesting
case) assurance methodologies should whenever possible
imply not only detection but also recovery from software
failures. In fact, though (at least in principle) a certified soft-
ware should not fail, in practice serious software-induced
incidents have been observed in certified critical systems.
In (Rushby 2008) examples are produced concerning air-
plane and air traffic control, where failures are often due on
the one hand to incomplete specifications and on the other
hand to unpredictability of the environment. Clearly, self-
driving cars or eHealth systems actually in charge of patients
(we have been experimenting on such systems, cf. (Aielli
et al. 2016)) can incur in unwanted unanticipated situations
that must be suitably coped-with. (Butner and Ghodoussi
2003), which discusses medical robotic applications in hu-
man telesurgery, emphasizes how critical systems should be
designed so as to be fail safe in the sense that, in the event
of failure, they proactively respond in order to limit harm to
other devices or danger to users. We may notice that making
a system fail safe is a part of ensuring the system’s ethically
correct behavior, in that such behavior should be preserved
under any circumstances.

Our approach provides in fact the possibility of correct-
ing and/or improving agent’s behavior: the behavior can be
corrected whenever an anomaly is detected, but can also be
improved whenever it is acceptable, yet there is room for
getting a better performance. Counter measures can be at the
object-level, i.e., can be related to the application, or at the
meta-level, e.g., replacing (as suggested in (Rushby 2008))
a software component by a diverse alternative. A-ILTL con-
straints are defined over formulas of any underlying logic
language L, and are rooted in the Evolutionary Semantics
of agent programs (Costantini and Tocchio 2006): we have
in fact integrated A-ILTL into this general semantic frame-
work, that encompasses in a natural way many of the ex-
isting logic agent-oriented and languages. We thus obtain a
fairly general setting, that can be adopted (as seen below) in
several logic agent-oriented languages and formalisms.

This paper stems (concerning Evolutionary Semantics
and A-ILTL) from (Costantini and Tocchio 2006; Costan-
tini 2012; Costantini and De Gasperis 2013; 2014), where
however (Costantini 2012; Costantini and De Gasperis
2013) appear on informal proceedings and (Costantini and
De Gasperis 2014) appear only in the proceedings of a Na-
tional Conference; this work has also been influenced by
(Costantini et al. 2009; Costantini 2013). The application to
Machine Ethics (principles and approach) is new, and to the

best of our knowledge unprecedented in the literature. We
have been stimulated and to some extent influenced by the
important recent book by Luis Moniz Pereira on program-
ming Machine Ethics (Pereira and Saptawijaya 2016).

The paper is organized as follows. In the first (Back-
ground) section we recall the Evolutionary Semantics of
agent systems and the A-ILTL logic and constraints; this
section can possibly be skipped by the non-expert in logic, as
we have tried to make the rest of the paper self-contained and
readable by means of intuitive explanations. Subsequently
we introduce a case study to enlighten some kinds of ethi-
cal problems that intelligent agents might encounter. Then
we illustrate (mostly by means of examples) how A-ILTL
constraints can be exploited for runtime monitoring, self-
checking and and self-repair of agent systems so as to cope
with this kind of problems. Finally we discuss related work
and propose some concluding remarks.

Background

Evolutionary Semantics

The Evolutionary semantics was introduced in (Costantini
and Tocchio 2006) with the aim to provide a high-level gen-
eral account of evolving agents, trying to abstract away from
the details of specific agent-oriented frameworks. This is
why we base the A-ILTL logic presented below upon such
semantics. We in fact define, in very general terms, an agent
as the tuple Ag = < PA, E > where A is the agent name
and PA (that we call “agent program”, but can be in turn a
tuple) describes the agent according to some agent-oriented
formalism L. E is the set of the events that the agent is able
to recognize or determine (so, E includes actions that the
agent is able to perform).

Let H be the history of an agent as recorded by the agent
itself, i.e.,H includes agent’s perceptions and memories. For
instance, in the DALI agent-oriented language (Costantini
and Tocchio Costantini and Tocchio2004) the history con-
sists of: the set Ev of external and internal events, that rep-
resent respectively events that the agent presently perceives
of its environment, and events that the agent has raised by its
own internal reasoning processes; the set Act of the actions
that the agent is enabled to perform at its present stage of
operation; the set P of most recent versions “past events”,
which include: previously perceived events, but also actions
that the agent has performed (notice that elements of Ev
and Act will be transferred into P at the next stage); the
set PNV of previous instances of past events (e.g., P may
contain the last measurements of temperature while PNV
may contain older ones), plus past constraints that specify
interaction between P and PNV .
We assume that program PA as written by the program-

mer is in general transformed into an initial agent program
P0 by means of an initialization step. When agent A is ac-
tivated P0 will go into execution, and will evolve according
to events that either happen or are generated internally, to
actions which are performed, etc. Thus, an agent evolves ac-
cording to the evolution of its historyH .
Evolution is formally represented via program-

transformation steps, each one transforming Pi into
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Pi+1 according to Hi, which is the partial history up to
stage i. The choice of which elements of Hi do actually
trigger an evolution step is part of the definition of a specific
agent framework.

Thus, we obtain a Program Evolution Sequence PE =
[P0, . . . , Pn, . . .]. The program evolution sequence will im-
ply a corresponding Semantic Evolution Sequence ME =
[M0, . . . ,Mn, . . .] where Mi is the semantics of Pi accord-
ing to L, as the approach is parametric w.r.t L. The evolu-
tionary semantics εAg of agent Ag is a tuple 〈H,PE,ME〉,
where H is the history of Ag , and PE and ME are respec-
tively its program and semantic evolution sequences.

Evolution is in principle of unlimited length, so the snap-
shot at stage i of εAg

i is the tuple 〈Hi, Pi,Mi〉, where Hi is
the history up to the events that have determined the transi-
tion from Pi−1 to Pi. In (Costantini and Tocchio 2006), pro-
gram transformation steps associated with DALI language
constructs are defined in detail. They can easily be adapted
to AgentSpeak (Rao 1996) as the two languages share a
number of similarities. More generally however, in the spe-
cific agent setting under consideration an evolution step will
occur at least whenever new events are perceived, reacted to,
and recorded, and whenever an agent proactively undertakes
measures to pursue its goals. An evolution step will possi-
bly determine an update of the history, which is a part of the
agent’s belief/knowledge base. Thus, each evolution step af-
fects the belief or “mental” state of an agent. The evolution-
ary semantics may express for instance the notion of trace
of a GOAL agent (Hindriks, van der Hoek, and Meyer 2012)
where agent program Pi encompasses the agent’s mental
state and each evolution step, which in GOAL is called
computation step is determined by a conditional action. For
3APL (Dastani, van Riemsdijk, and Meyer 2005), agent pro-
gram Pi encompasses the agent’s initial configuration, and
the related sets GR of goal rules, PR of plan rules, IR of
interactive rules; the evolutionary semantics corresponds to
a 3APL agent computation run, and evolution steps are de-
termined by the 3APL transition system.
The adoption of Evolutionary Semantics in our approach

is motivated by the assumption that as agents are evolving
entities whose behavior adapts to a changing and potentially
unpredictable environment, ethic behavior must be checked
and enforced along the entire agent’s ’life’.

A-ILTL

For defining properties that are supposed to be respected by
an evolving system, a well-established approach is that of
Temporal Logic, and in particular of Linear-time Temporal
Logics (LTL). These logics are called ‘linear’ because (in
contrast to ‘branching time’ logics) they evaluate each for-
mula with respect to a vertex-labeled infinite path (or “state
sequence”) s0s1 . . . where each vertex si in the path cor-
responds to a point in time (or “time instant” or “state”).
In what follows, we use the standard notation for the best-
known LTL operators.

An interval-based extension to the well-known linear tem-
poral logic LTL is formally introduced in (Costantini 2012)
where it is called A-ILTL for ‘Agent-Oriented Interval LTL’,
which retains the underlying discrete linear model of time

and the complexity of LTL. This simple formulation can thus
be efficiently implemented, and is nevertheless sufficient for
expressing and checking a number of interesting properties
of agent systems.

A-ILTL expressions are (like plain LTL ones) interpreted
in a discrete, linear model of time. Formally, this structure
is represented byM = 〈N, I〉 where, given countable set Σ
of atomic propositions, interpretation function I : N �→ 2Σ

maps each natural number i (representing state si) to a sub-
set of Σ. Given set F of formulas built out of classical con-
nectives and of LTL and A-ILTL operators (where however
nesting of A-ILTL operators is not allowed), the semantics
of a temporal formula is provided by a satisfaction relation:
for ϕ ∈ F and i ∈ N we writeM, i |= ϕ if, in the satisfac-
tion relation, ϕ is true w.r.t.M, i. We can also say (leaving
M implicit) that ϕ holds at i, or equivalently in state si, or
that state si satisfies ϕ. A structureM = 〈N, I〉 is a model
of ϕ ifM, i |= ϕ for some i ∈ N.
Some among the A-ILTL operators are the following,

where we let ϕ ∈ F andm,n be positive integer numbers.
Fm,n (eventually (or “finally”) in time interval). Fm,nϕ
states that ϕ has to hold sometime on the path from state
sm to state sn. I.e., M, i |= Fm,nϕ if there exists j such
that j ≥ m and j ≤ n andM, j |= ϕ. Can be customized
into Fm, bounded eventually (or “finally”), where ϕ should
become true somewhere on the path from the current state to
the (m)-th state after the current one.
Gm,n (always in time interval). Gm,nϕ states that ϕ should
become true at most at state sm and then hold at least un-
til state sn. I.e., M, i |= Gm,nϕ if for all j such that
j ≥ m and j ≤ n M, j |= ϕ. Can be customized into
Gm, bounded always, where ϕ should become true at most
at state sm.
Nm,n (never in time interval). Nm,nϕ states that ϕ should
not be true in any state between sm and sn, i.e., M, i |=
Nm,nϕ if there not exists j such that j ≥ m and j ≤ n and
M, j |= ϕ.

A-ILTL and Evolutionary Semantics

We refine A-ILTL so as to operate on a sequence of states
that corresponds to the Evolutionary Semantics stages de-
fined before. In fact, states in our case are not simply in-
tended as time instants: rather, they encompass stages of the
agent evolution. The connection that we establish here be-
tween A-ILTL and Evolutionary semantics is motivated from
the fact that for enforcing ethical behavior it is in general
necessary to inspect components of the agent’s state, e.g.,
the present goals, the adopted plans, the actions to be ex-
ecuted, ect., as illustrated by the examples in the next sec-
tions.

Time in this setting is considered to be local to the agent,
where with some sort of “internal clock” is able to time-
stamp events and state changes. We borrow from (Hen-
zinger, Manna, and Pnueli 1992) the following definition of
timed state sequence, that we tailor to our setting.

If σ is a (finite or infinite) sequence of states, where the
i-th state ei, ei ≥ 0, is the semantic snapshots at stage i
εAg
i of given agent Ag , and T be a corresponding sequence
of time instants ti, ti ≥ 0, we have the following. A timed

31



state sequence for agent Ag is the couple ρAg = (σ, T ). Let
ρi be the i-th state, i ≥ 0, where ρi = 〈ei, ti〉 = 〈εAg

i , ti〉.
We in particular consider timed state sequences which are

monotonic, i.e., if ei+1 	= ei then ti+1 > ti. In our setting, it
will always be the case that ei+1 	= ei as there is no point in
semantically considering a static situation: as mentioned, a
transition from ei to ei+1 will in fact occur when something
happens, externally or internally, that affects the agent.

Then, in the above definition of A-ILTL operators, it is
immediate to let si = ρi. This requires however a refine-
ment: in fact, in a writing Opm or Opm,n occurring in an
agent program parameters m and n will not necessarily co-
incide with time instants of the above-defined timed state
sequence. To fill this gap, in (Costantini 2012) a suitable ap-
proximation is introduced.

We need to adapt the interpretation function I of LTL
to our setting. In fact, we intend to employ A-ILTL within
logic-based agent-oriented languages for which an evolu-
tionary semantics and a notion of logical consequence can
be defined. Thus, given agent-oriented language L at hand,
the set Σ of propositional letters used to define the A-ILTL
semantic framework will coincide with all ground expres-
sions of L (an expression is ground if it contains no vari-
ables, and each expression of L has a possibly infinite num-
ber of ground versions). A given agent program can be taken
as standing for its (possibly infinite) ground version, as it is
customarily done in many approaches. Notice that we have
to distinguish between logical consequence in L, that we in-
dicate as |=L, from logical consequence in A-ILTL, indi-
cated above simply as |=. However, the correspondence be-
tween the two notions can be quite simply stated by specify-
ing that in each state si the propositional letters implied by
the interpretation function I correspond to the logical con-
sequences of agent program Pi:

Therefore, we let L be a logic language, ExprL be the set
of ground expressions that can be built from the alphabet of
L, ρAg be a timed state sequence for agent Ag , and ρi =

〈εAg
i , ti〉 be the ith state, with εAg

i = 〈Hi, Pi,Mi〉. Then,
an A-ILTL formula τ is defined over sequence ρAg if in its
interpretation structure M = 〈N, I〉, index i ∈ N refers
to ρi, which means that Σ = ExprL and I : N �→ 2Σ is
defined such that, given p ∈ Σ, p ∈ I(i) iff Pi |=L p. Such
an interpretation structure will be indicated withMAg . We
will thus say that τ holds/does not hold w.r.t. ρAg .
A-ILTL properties are meant to be verified at run-time,

and thus they act as constraints over the agent behavior
(so, we will indifferently talk about A-ILTL rules, (meta-
)axioms, expressions, or constraints). In an implementation,
verification may not occur at every state (of the given in-
terval). Rather, sometimes properties will be verified with a
certain frequency, that can be specifically tuned to the vari-
ous cases. To this aim, we have introduced a further exten-
sion that consists in defining subsequences of the sequence
of all states: if Op is any of the operators introduced in A-
ILTL and k > 1, Opk is a semantic variation of Op where
the sequence of states ρAg of given agent is replaced by
the subsequence s0, sk1

, sk2
, . . . where for each kr, r ≥ 1,

kr mod k = 0, i.e., kr = g × k for some g ≥ 1.

A-ILTL formulas to be associated to given agent can
be defined within the agent program, though they consti-
tute an additional but separate layer, composed of formu-
las {τ1, . . . , τl}. Agent evolution must thus obey all these
properties. precisely, given agent Ag and given a set of A-
ILTL expressions A = {τ1, . . . , τl}, timed state sequence
ρAg is coherent w.r.t. A if A-ILTL formula Gζ with ζ =
τ1∧. . .∧τn holds. Notice that the expressionGζ is an invari-
ance property in the sense of (Manna and Pnueli 1984). In
fact, coherence requires this property to hold for the whole
agent’s “life”. In the formulationGm,nζ that A-ILTL allows
for, one can express temporally limited coherence, concern-
ing for instance “critical” parts of an agent’s operation. Or
also, one might express forms of partial coherence concern-
ing only some properties.

An “ideal” agent will have a coherent evolution, whatever
its interactions with the environment can be, i.e., whatever
sequence of events arrives to the agent from the external
“world”. However, in practical situations such a favorable
case will seldom be the case, unless static verification has
been able to ensure total correctness of agent’s behavior. In-
stead, violations will occasionally occur, and actions must be
undertaken so as to attempt to regain coherence for the fu-
ture. A-ILTL formulas in their practical form (seen below)
encompass in fact the definition and execution of such ac-
tions.

A-ILTL Constraints for Self-Checking
In this section we illustrate how to define meta-level con-
straints constructed on the basis of A-ILTL formulas for
defining and verifying liveness and safety properties in agent
systems. Such verification can be particularly useful for en-
suring properties related to machine ethics issues. We re-
mind the reader that, in Software Engineering, liveness prop-
erties concern the progress that an agent makes and express
that a (good) state eventually will be reached, while safety
properties express that some (bad) state will never be en-
tered. Thus, liveness is concerned with the evolution of a
system, while in general safety is not: paradoxically, doing
nothing prevents bad states from being reached. In our set-
ting however we restricted ourselves to monotonic state se-
quences based upon the evolutionary semantics, so in agents
evolve by definition. If violated, liveness properties are vio-
lated in infinite time (a good state not yet reached might be
in principle reached in the future) while safety properties are
violated in finite time, in case a “bad” state is reached. It is
widely acknowledged that any property can be expressed as
a conjunction of a safety and a liveness property. In agents,
“bounded” liveness properties that can be expressed via A-
ILTL are often more interesting than “pure” liveness: in fact,
in many cases it does not suffice that a certain state might
be reached in an indefinite future, as agents are situated
real-time working entities that operate with limited compu-
tational resources and within deadlines. Bounded liveness
properties are equivalent to safety properties that are vio-
lated whenever the desirable state is not reached withing the
deadline.

A-ILTL formulas can be defined either on finite intervals
and then, to any practical extent, they define safety prop-
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erties, or on infinite intervals (with no upper bound) thus
defining liveness properties. A-ILTL formulas can be em-
ployed to define special constraints, which are actually meta-
axioms, that may constitute the check layer of an agent to
many purposes, in particular to verify that the agent’s behav-
ior respects the parts of its specification concerning ethical
behavior. The general form of a Reactive A-ILTL constraint
(also called ’axiom’, or ’rule’) is the following (Costantini
2012) (whereM,N,K can be either variables or constants):

OP(M ,N ;K )ϕ :: χ÷ ρ

where:(i)OP(M ,N ;K )ϕ :: χ is an A-ILTL formula, called
the monitoring condition, that in general involves the obser-
vation of either external or internal events; violation of the
monitoring condition means that the agent’s functioning is
to some extent unsatisfactory with respect to the parts of its
specification which are encoded in the condition itself. For
instance, EVENTUALLY (m,n; k)ϕ states that ϕ should
become true at some point between time instants (states) m
and n. (ii) ρ is called the recovery component of the rule,
and it consists of a complex reactive pattern to be executed
if the monitoring condition fails in order to restore an agent’s
acceptable behavior.

Thus, whenever the monitoring condition (automatically
checked at frequency K) is violated (i.e., it does not hold)
within given interval, then the recovery component ρ is ex-
ecuted. Frequency can be expressed in terms of states, or
time instants. Setting frequency is very important, as it con-
cerns how promptly a violation or fulfillment are detected,
or a necessary measure is undertaken; specific K will de-
pend on the kind of property one wants to check. Syn-
tax and semantics of reactive patterns usable in the recov-
ery component will depend upon the underlying language
L. In the examples, we adopt a sample syntax suitable for
logic-programming-based settings: in fact, we mainly refer
to agent-oriented rule-based programming languages like,
e.g., GOAL, 3APL and DALI. For simplicity, under this as-
sumption we restrict ϕ to be a conjunction of literals. ϕmust
be ground when the formula is checked. However, similarly
to negation-as-failure (where the negated atom can contain
variables, that must be instantiated by literals evaluated pre-
viously), we allow variables to occur in an A-ILTL formula,
to be instantiated via the execution of χ. Thus, from the pro-
cedural point of view, χ is required to be evaluated in the
first place so as to make the A-ILTL formula ground. Notice
that, for the evaluation of ϕ, χ and ρ, we rely upon the proce-
dural semantics of the ‘host’ language. In (Costantini 2012)
it is specified how to operationally perform such evaluation
(how to check whether a formula holds).

A Case Study

Below we refer to a humorous though instructive case study
proposed in an invited talk some years ago by Prof. Marek
Sergot (Imperial College, London)1. As a premise, let us re-
call that, since 1600, ethics and morals relate to “right” and
“wrong” conduct. Though these terms are sometimes used

1Prof. Sergot kindly granted us via a personal communication
the permission to report this example.

Figure 1: Case Study

interchangeably, they are different: ethics refer to rules pro-
vided by an external source (typically by a social/cultural
group), while morals refer to an individuals own principles
regarding right and wrong: for instance, a lawyer’s morals
may tell her that murder is reprehensible and that murderers
should be punished, but her ethics as a professional lawyer,
require her to defend her client to the best of her abilities,
even if she knows that the client is guilty. However, in the
following we deliberately assume that immoral behavior can
also be considered as unethical: though in general personal
morality transcends cultural norms, is a subject of future de-
bate if this can be the case for artificial agents.

The case study considers Romeo and Juliet who, as it is
well-known, strongly wish to get married. As we will see,
many plans are actually possible to achieve this goal (be-
yond getting killed or committing suicide like in Shake-
speare’s tragedy). Prior to executions, such plans should
must be evaluated w.r.t. effectiveness, timeliness and feasi-
bility, but and also w.r.t. deontic (ethical/moral and legal)
notions. Prof. Sergot referred, due to its simplicity, to an ex-
cerpt of the Swiss Family Law reported in Figure1.

The problem for Romeo and Juliet is that they are both mi-
nors, and will never get their parents’ consent to marry each
other. Surprisingly enough, there are a number of feasible
plans beyond waiting for reaching the majority age, among
which:

(P1) Both Romeo and Juliet marry someone else, then divorce,
and marry each other as married people acquire majority
by definition; this plan requires a minimum of 24 months
to be completed.

(P1’) Variation of Plan 1 in case the spouse would not agree
upon divorce: sleep with someone else, so as to force such
agreement.

(P2) Both Romeo and Juliet marry someone else, then kill the
spouses and marry each other; this plan is faster, as it takes
a minimum of 12 months to be completed.

(P2’) Variation of Plan 2 in case the act of killing constitutes a
problem: hire a killer to do the job.
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All the above plans are feasible, though some of them in-
clude actions which are generally considered as immoral,
namely sleeping with someone else when married, and ac-
tions which are generally considered as unethical, namely
killing someone or hiring a killer, where the latter ones are
also illegal and imply a punishment. Notice that the possi-
ble plans might be different in case one referred to some
other country; also what is illegal might change, for instance
sleeping with someone else accounts to adultery which in
many countries is punished; even divorce is not allowed ev-
erywhere. This if one implicitly refers to reality as the con-
text of agent’s activity. Instead, if one does not refer to reality
but to some other context, e.g., to virtual storytelling or to a
videogame, then every action assumes a different weight, as
in playful contexts everything is allowed (except maybe for
“serious” games with educational purposes).

So, we can draw at least the following indications from
the case study:

• the context is relevant to moral/ethical/legal issues;
• some actions are not moral or non-ethical, and some of

them are also illegal and lead to punishment;
• agents’ plans to reach a goal should be evaluated “a pri-

ori” against including immoral/unethical/illegal actions;
• immoral/unethical/illegal actions should be prevented

anyway, whenever they occur.

Marek Sergot made use of a concept of counts as (well-
known in legal theory and other fields). For instance, sleep
with (someone else than the spouse) counts as adultery,
which is an institutional concept considered as immoral and
potentially also illegal, and kill counts (not always but in
many situations, including that of the example) as murder,
another institutional concept normally considered as both
unethical and illegal.

Notice that the above aspects relate to safety properties
that should be enforced, that can be rephrased as follows:

• never operate w.r.t. an incorrect context (the information
about the present context must always be up-to-date);

• never execute actions that are deemed not acceptable (im-
moral/unethical/illegal) in the present context, and never
execute plans including such actions.

Another aspect that we emphasize is that of commitment:
Romeo and Juliet are committed to marry each other, and
will for no reason give up this intention. In the theory of
rational agents, and in particular of BDI agents (Rao and
Georgeff 1991), commitment to an intention (i.e., a desire
which has been adopted as an actual goal) can be of three
kinds of strength: (i) blind commitment, where an agent
never gives up a goal, whatever the circumstances, until it
is reached; (ii) single-minded commitment, where a goal is
pursued until reached or no longer believed possible; (iii)
open-minded commitment, where a goal can be opportunis-
tically dropped if a more desirable option arises. Clearly,
opportunism generally clashes with ethical issues, so ethi-
cal agents will pursue their assigned tasks according to (i)
or (ii), depending upon the kind of task (the case is different
for activities which do not involve moral/ethical aspects).

Implementation of the Case Study: Sketch

In order to demonstrate the potential usefulness of runtime
self-cheking and correction in enforcing/verifying agents’
ethical behavior we discuss excerpts from a possible imple-
mentation of the case study, in order to provide a general
idea. Let us assume to add to the language a transitive pred-
icate COUNTS AS which is used (in infix form) in expres-
sions of the form exemplified below.

kills COUNTS AS murder CONDS . . .
where after CONDS we have the (optional) conditions

under which COUNTS AS applies: concerning the case
study, they define in which cases killing accounts to murder
(e.g., it was no self-defense, it does not occur during a battle
in war, etc.). Such statements are related to the present con-
text so for the case study, and assuming to deal with a real
situation under European legislation, we might also have:

sleep with COUNTS AS adultery
adultery COUNTS AS immoral
adultery COUNTS AS unethical
murder COUNTS AS unethical
adultery COUNTS AS illegal

The formalization will in general include general state-
ments such as for instance the following, that state that
an ethical agent will never give up the tasks to which
it is committed, and will never violate either the law or
generally-accepted rules of behavior, wherever commitment
or behavior-related violation might lead to direct or indirect
harm to humans, animals, other agents, etc.:

violate commitment COUNTS AS unethical
violate law COUNTS AS unethical
improper behavior COUNTS AS unethical

For example, for a human car driver, some rules to follow
are (among others) to respect the traffic laws and to avoid
behavior that may lead to harm for others or to damage to
public property. So we may have:

talk on the phone COUNTS AS dangerous driving
high speed COUNTS AS dangerous driving
ignore pedestrians COUNTS AS dangerous driving
step over grass COUNTS AS

damage public property
. . .
dangerous driving COUNTS AS

violate commitment
dangerous driving COUNTS AS

improper behavior
damage public property COUNTS AS

violate law
. . .

Below we show some A-ILTL rules/constraints useful in
the formalization of the case study. First of all, we introduce
an A-ILTL rule for context change:

ALWAYS context change(C ,C1 )÷
discharge context(C ), assume context(C1 )

In particular, whenever the agent perceives a change
of context (e.g., the agent stops working and starts a
videogame, or vice versa, or finishes a videogame and goes
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to help children with their homework) then all the rel-
evant ethic assumptions (among which, for instance, the
COUNTS AS facts) about the new context C1 must be
loaded, while those relative to the previous context C must
be dismissed; this is important because, e.g., after finishing
a videogame it is no longer allowed to kill any living being
in sight just for fun. . . Frequency of check of this constraint
is not specified here, however it should guarantee a prompt
enough adaptation to a change.

Then, we show an A-ILTL meta-axiom that usefully em-
ploys COUNTS AS facts, that are either explicit or implic-
itly derived by transitivity (we do not enter in the detail of
how to implement transitivity; suffices to say that this is pos-
sibly done, e.g., via other meta-level axioms). In runtime
self-checking, as discussed above, an issue of particular im-
portance in case of violation of a property is that of under-
taking suitable measures in order to recover or at least miti-
gate the critical situation. Measures to be undertaken in such
circumstances can be seen as an internal reaction. In partic-
ular, given now the present context for granted, the A-ILTL
constraint below prevents any plan from being executed that
includes even a single action which counts as unethical in
the present context. Such constraint must be checked at suit-
able frequency (omitted here), so as to check all the plans
that an agent may devise:

ALWAYS
goal(G), plan(G ,P), element(Action,P) ::

Action COUNTS AS unethical ÷
block plan execution(P)

However, in case a plan is blocked the original goal G
remains unfulfilled. The next A-ILTL axiom is a meta-
statement expressing the capability of an agent to modify its
own behavior to cope with such a situation: if a goalGwhich
is crucial to the agent, possibly for its ethical behavior (e.g.,
providing a doctor or an ambulance to a patient in need),
has not been achieved (in a certain context) and the initially
allotted time has elapsed, then the recovery component im-
plies replacing the planning module (assuming that more
than one is available) and retrying the goal. We suppose
that the possibility of achieving a goal G is evaluated w.r.t. a
module M that represents the preconditions for G (notation
P (G,M), P standing for ’possible’). Necessity and possi-
bility evaluation within a reasonably expressive framework
has been discussed in (Costantini 2011). In case the goal
is still deemed to be possible, the reaction/countermeasure
consists in substituting the present planning module with an-
other one and re-trying the goal.

NEVER goal(G),
crucial(G),
timed out(G),not achieved(G),
eval context(G ,M ),P(G ,M ) ÷

replace planning module, retry(G)

Time intervals (as allowed by A-ILTL definition) have
never been exploited in the above examples. They can how-
ever be useful in many cases for the punctual definition of
moral/ethical specific behaviors, e.g., never leave a patient
or a child alone at night, and the like.

It is important to notice that the above sample meta-
axioms access aspects of an agent’s operation such as goals,
plans, action execution, etc. This is made technically possi-
ble by the connection to the Evolutionary Semantics. In con-
ceptual terms, A-ILTL expression that enforce ethical prop-
erties exhibit a reflective/introspective behavior (Costantini
2002; Barklund et al. 2000) as they make an agent ob-
serve, inspect, evaluate, correct its own behavior. This in our
view is by no means fortuitous: in fact, any ’animated’ be-
ing that tries to be ethical must confront the ’instinctive’ or
random behavior to the underlying moral/ethical principles,
and correct such behavior accordingly.

Related Work and Concluding Remarks

In this paper we have proposed runtime constraints for
agents’ self-checking and monitoring in the perspective of
implementing machine-ethics principles. We have shown
how to express liveness and safety properties that can be use-
ful to enforce at run-time ethical behavior in agents and to
detect violations, also considering the different contexts an
agent might be involved into. We have provided a general
semantics, so as to allow such constraints to be adopted in
different agent-oriented frameworks.

There are similarities between A-ILTL constraints and
event-calculus formulations (Kowalski and Sergot 1986),
and with approaches based on abductive logic programming
such as SCIFF (cf. (Montali et al. 2011) and the references
therein) and Reactive Event Calculus, which stems from
SCIFF (Bragaglia et al. 2012); such approaches however
have never been applied to Machine Ethics, and have been
devised for static or dynamic checking performed by a third
party. The use of temporal logic to define run-time monitors
is discussed in (Barringer, Rydeheard, and Havelund 2010)
and the references therein. However, this work is not related
to agents and does not concern self-checking and recovery.

The complexity of checking A-ILTL expressions is dis-
cussed in (Costantini and De Gasperis 2014) where it is
noted that though such complexity is relatively low, in or-
der to avoid an excessive computational burden a designer
should keep the number of A-ILTL expressions as limited
as possible, and tune frequencies carefully. Our approach
has been prototypically implemented, and has been exper-
imented in energy management for smart buildings (Caian-
iello et al. 2013). Future work includes enhancing A-ILTL
constraints to make them adaptive to different conditions.
As suggested in (Rushby 2008), an interesting line of inves-
tigation concerns automated synthesis of runtime constraints
from specifications.
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Abstract

Use of artificial intelligence is growing and expanding into
applications that impact people’s lives. People trust their
technology without really understanding it or its limitations.
There is the potential for harm and we are already seeing ex-
amples of that in the world. AI researchers have an obligation
to consider the impact of intelligent applications they work
on. While the ethics of AI is not clear-cut, there are guidelines
we can consider to minimize the harm we might introduce.

Introduction

A quick scan of recent papers covering the area of AI
and ethics reveals researchers’ admirable impulse to think
about teaching intelligent agents human values (Abel, Mac-
Glashan, and Littman 2016; Burton, Goldsmith, and Mat-
tei 2016; Riedl and Harrison 2016). There is, however, an-
other important and more immediate aspect of AI and ethics
we ought to take into consideration. AI is being widely de-
ployed for new applications; it’s becoming pervasive; and
it’s having an effect on people’s lives. AI researchers should
reflect on their own personal responsibility with regard to the
work they do. Many of us are motivated by the idea that we
can contribute useful new technology that has a positive im-
pact on the world. Positive outcomes have largely been the
case with advanced technologies that improve cancer diag-
nosis and provide safety features in cars, for example. With
vast amounts of computing power and a number of improved
techniques, intelligent software is being adopted in more and
more contexts that affect people’s lives. How people use it is
starting to matter, and the impact of our decisions matters.

Not surprisingly as the use of AI expands, negative con-
sequences of its failures and design flaws are more visible.
Much of the AI that has recently been deployed derives its
intelligence from learning algorithms that are based on sta-
tistical analysis of data. The acquisition, applicability, and
analysis of that data determine its output. Statistics shine
when making predictions about distributions over popula-
tions. That predictive power fades when applied to individu-
als. There will be faulty predictions. The popular press is rife
with misuses of statistical analysis and AI (Crawford 2016;

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

O’Neil 2016). Given the growing use, the built-in uncertain-
ties, and the public’s tendency to blindly trust technology,
we have a responsibility to consider the likely and unlikely
outcomes of the choices we make when we are designing
and developing tools or predictive systems to support deci-
sion making that affect people and communities of people.

Purposely malicious choices are obviously ethically un-
acceptable. In (Yampolskiy 2015), the author outlines var-
ious pathways that lead to dangerous artificial intelligence.
Within the taxonomy, there are pathways that introduce dan-
ger into artificial intelligence ‘on purpose.’ The other path-
ways inadvertently lead to hazards in the system. You can
decide for yourself if you are comfortable developing smart
weapons, for example, and most of us would, at a minimum,
pause to consider the implications of that decision. But the
inadvertent pathways leading to dangerous AI can be diffi-
cult to foresee and may come about from subtle interactions.
Our less obvious responsibility lies in giving careful consid-
eration to our choices and being clear to ourselves and our
stakeholders about assumptions, trade-offs, and choices we
make.

Several other papers consider another ethical aspect in the
fairness of automatic systems (O’Neil 2016; Hardt, Price,
and Srebro 2016; NSTCCT 2016), and some even conclude
that it’s inherently impossible for most problems (Kleinberg,
Mullainathan, and Raghavan 2016). One of the points I’ll
make is that discussions about fairness and societal impact
can be cut off once an intelligent agent is introduced into
the process. There is a popular feeling that machines don’t
make value judgments and are inherently unbiased. How-
ever, the assumptions we make when designing our systems
are often based on subjective value judgments; for example,
choosing data sets, selecting weighting schemes, balancing
precision and recall. We have to be transparent about what
we do and be clear about the choices we have made. The ul-
timate purpose matters and the decisions you come to must
be communicated.

Blind Trust in Technology

Although there are pockets of skepticism towards intelligent
systems, by and large people are content to offload decisions
to technology. In May 2016, there was a widely publicized
crash involving a Tesla Motors car being driven in computer-
assisted mode. It appears the driver had undue faith in the
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capabilities of the car (Habib 2017). The following week
another driver following a GPS unit steered her car into On-
tario’s Georgian Bay (MiQuigge 2016). These extreme ex-
amples reveal a trend in the general population to trust the
smart devices in our lives.

Ideally government agencies and jurisdictions would ap-
ply the principles of open government and transparency
when contracting with suppliers for decision-making tools.
In practice that hasn’t been the case. Last year, two re-
searchers filed 42 open records requests in 23 different states
asking for information about software with predictive al-
gorithms used by governments as decision support tools
(Brauneis and Goodman 2017). Their goal was to under-
stand the policies built into the algorithms in order to eval-
uate their usefulness and fairness. Only one of the jurisdic-
tions was able to provide information about the algorithms
the software used and how it was developed. Some of those
who did not respond cited agreements with vendors prevent-
ing them from revealing information, but many did not seem
concerned about transparency in their process nor the need
to understand the technology. Assuming the best intentions
of the decision makers, they are also demonstrating great
faith in the technology and vendors they contract with.

There is also evidence that users of these systems, judges
and hiring managers for example, weight AI guidance too
heavily. Without tools, when people are making decisions,
there is public awareness that decisions are made within
some context. We understand that individuals can be influ-
enced even subconsciously by their biases and prejudices.
Technologically assisted decisions tend to shut down the
conversation about fairness despite their having a large ef-
fect on people’s lives. Those affected may not have the op-
portunity to contest the decisions. If important decisions are
made through our models, we must use care in developing
them and clearly communicate the assumptions we make.

Ethical Obligations

Physicians and attorneys have well-established codes of
ethics. Doctors famously commit to not doing any harm. Im-
plied in that concept is the idea that there is potential to do
harm. It is clear from many examples, some of which I men-
tion in this paper, that there is the potential for harm in our
work, and given people’s lack of understanding of the lim-
its of and the trust they place in technology, AI researchers
have a personal, ethical obligation to reflect on the decisions
we make.

Ethical thinking helps us to make choices and just as
importantly provides a framework to reason about those
choices. The framework we use (explicitly or not) is defined
by a set of principles that guide and support our decisions.
One of the difficult things about defining ethical standards
is deciding the values to base them on. Ethics issues will
undoubtedly be discussed and argued within the community
and the world generally in the coming years. Each of us can
start by considering our own roles and being consciously
aware of the effects our work can have.

The stakeholders who decide to deploy intelligent deci-
sion making, government agencies for example, generally

aren’t qualified to assess the assumptions, models and algo-
rithms in it. This asymmetrical relationship puts the burden
on those with the information to be clear, honest, and forth-
coming with it. Those at a disadvantage depend on us to
inform them about technology’s fitness for their purpose, its
reliability and accuracy. We usually focus on the technical
aspects of our work like selecting highly predictive models
and minimizing error functions, but when applying algorith-
mic decision-making that will affect human beings, we have
a responsibility to think about more.

Recommendations for Consideration

Ethics is not science. But it is possible to ground our think-
ing in well-defined guidelines to assist in making ethical
decisions for AI development. A formal framework may
even emerge within the researcher community with time. In
the short-term, the following is a list of thoughts and ques-
tions to ask ourselves when designing predictive or decision-
making systems.

1. Relevance of data and models

It is important to think carefully about the data used to train
our technology. Are the data and models appropriate to the
real-life problem they are solving? It is tempting to believe
causal forces are at play when we find correlation on a single
dataset. Does the data capture the true variable of interest? Is
it consistent across observations and over time? We often in-
troduce a proxy variable because the variable we need isn’t
available or isn’t easy to quantify. Can your findings be cal-
ibrated against the real-world situation? Even better could
you measure the actual outcome you’re trying to achieve?

In 2008, Researchers at Google had the idea that an in-
crease in search queries related to the flu and flu symptoms
could be indicative of a spreading virus. They created the
Google Flu Trends (GFT) web service to track Google users’
search queries related to the flu. If they detected increased
transmission before the numbers from the U.S. Centers for
Disease Control and Prevention (CDC) came out, earlier in-
terventions could reduce the impact of the virus. The initial
article reported 97% accuracy using the CDC data as the
gold standard (Ginsberg et al. 2009). However, a follow-up
report showed that in subsequent flu seasons GFT predicted
more than double what the CDC data showed (Lazer et al.
2014). Given the first year’s high accuracy, it would have
been easy for the researchers to believe they had discovered
a strong, predictive signal. But online behavior isn’t neces-
sarily a reflection of the real world. There are several factors
that might make the GFT data wrong. One of them is that
the underlying algorithms of Google Search itself (the GFT
researchers don’t control those) can change from one year
to the next. Also users’ search behavior could have changed.
Mainly, however, people’s search patterns are probably not
a good single indicator of a spreading virus. There are many
other factors and various reasons people might search for
information.

Training data rarely aligns with real-life goals. In (Lip-
ton 2016), Lipton presents challenges to providing and
even defining interpretability of machine learning outputs.
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He identifies several possible points of divergence between
training data and real-life situations. For example, off-line
training data is not always representative of the true environ-
ment, and real-world objectives can be difficult to encode as
simple value functions. Often we work with data that was
collected for other purposes and almost never under ideal,
controlled circumstances. What was the original purpose in
collecting the data, and how did that determine its content?
In July of 2015, another group at Google had to apologize
for its Photos application identifying a black couple as goril-
las (Guynn 2015). Their training dataset was not representa-
tive of the population it was meant to predict. Also, there are
limits to the amount of generalization we can expect from
any learning method trained on a particular dataset.

Is it possible your dataset contains biases? When mak-
ing decisions related to hiring, judicial proceedings, and job
performance, for example, many personal characteristics are
legally excluded. Also, humans are good at discarding vari-
ables they recognize as irrelevant to the decision to be made;
computers are blind to those considerations. Are there other
characteristics that are closely correlated with legally and
ethically protected ones? If you don’t consider those, you
can inadvertently treat people unfairly based on protected or
irrelevant characteristics. There is often a trade-off between
accuracy and the intelligibility of a model (Caruana et al.
2015). More predictive but harder-to-understand models can
make it difficult to know which personal characteristics de-
termine the decision and are therefore not available for vali-
dation against human judgment.

In (Caruana et al. 2015) the authors describe a system that
learned a rule that patients with a history of asthma have a
lower risk of dying from pneumonia. Based on the data used
to train the system, their model was absolutely correct. How-
ever, in reality asthma sufferers (without treatment) have a
higher risk of dying from pneumonia. Because of the in-
creased risk, when patients with a history of asthma go to
the hospital, the general practice is to place them in an in-
tensive care unit. The extra attention they receive decreases
their risk of dying from pneumonia even below that of the
general population. It is our natural inclination to develop
models with the highest accuracy. However, the necessity of
visibility into decisions where people’s lives are concerned,
may increase the importance of explainability at the expense
of some predictive performance. In all cases, our stakehold-
ers must understand the decisions we make and the trade-
offs implied by them.

2. Safeguards for Failures and Misuse

Even experienced researchers with the best intentions are
inclined to favor the positive outcomes of their work. We
highlight positive results, but we should also think through
failure modes and possible unintended consequences. What
about misuse? There isn’t a lot you can do about a person de-
termined to use the technology in ways it wasn’t intended,
but are there ways a good-faith user might go wrong? Can
you add protections for that?

The 2016 Tesla accident mentioned before was catas-
trophic. The driver used computer-assisted mode in condi-
tions it was expressly not designed for resulting in his death.

The accident was investigated by two government agencies.
The first finding from the National Highway Traffic and
Safety Administration found that the driver-assist software
had no safety defects and declared that, in general, the ve-
hicles performed as designed (Habib 2017) implying that
responsibility for use of the system falls on the operator.
A later investigation from The National Transportation and
Safety Board found otherwise (NTSB 2016). They declared
that the automatic controls played a major role in the crash.
The fact that the driver was able to use computer assistance
in a situation it was not intended for was problematic. The
combination of human error and insufficient safeguards re-
sulted in an accident that should not have happened.

3. Accuracy

How accurate is your algorithm and how accurate does it
need to be? Do your stakeholders understand the number of
people who will be subject to a missed prediction given your
measure of accuracy? A model that misses only 1% shows
phenomenally good performance, but if hundreds or thou-
sands of people are still adversely affected, that might not
be acceptable. Are there human inputs that can compensate
for the system’s misses and can you design for that? What
about post-deployment accuracy? Accuracy in training data
doesn’t always reflect real usage. Do you have a way to mea-
sure runtime accuracy? The world is dynamic and changes
with time. Is there a way to continue to assess the accuracy
after release? How often does it have to be reviewed?

4. Size and severity of impact

Think about the numbers of people affected. Of course, you
want to avoid harming anyone but knowing the size or the
severity of negative consequences can justify the cost of ex-
tra scrutiny. You might also be able to design methods that
mitigate for them. Given an understanding of the impact,
you can make better decisions about the value required by
the extra effort.

Conclusion

Individual researchers, especially in commercial operations,
don’t always have the chance to communicate clearly and
transparently with clients. At least being transparent with
your immediate stakeholders can set the right expectations
for them when they represent your work down the line. You
are necessarily making decisions about the models and soft-
ware you develop. If you don’t surface those decisions to
discuss their effect, they may never be brought to light.

A short paper cannot cover such a large and multi-faceted
issue. The main idea is for each of us to think individually
about our own responsibilities and the impact our work can
have on real lives. It’s useful to spend time thinking about
our assumptions and the trade-offs we make in the context
of the people who will be affected. Communicating those to
everyone concerned is also critical. Modern versions of the
Hippocratic Oath are still used by many medical schools.
The spirit of the oath is applicable to most research affecting
human beings. One phrase is especially general and worth
keeping in mind:
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“I will remember that I remain a member of society,
with special obligations to all my fellow human be-
ings. . . ” (Tyson 2001)
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Abstract

Our work uses the notion of theory of mind to enable an in-
teractive agent to keep track of the state of knowledge, goals
and intentions of the human user, and to engage in and initiate
sophisticated interactive behaviors using decision-theoretic
paradigm of maximizing expected utility. Currently, systems
like Google Now and Siri mostly react to user’s requests
and commands using hand-crafted responses, but they can-
not initiate intelligent communication and plan for longer
term interactions. The reason is that they lack a clearly de-
fined general objective of the interaction. Our main premise
is that communication and interaction are types of action, so
planning for communicative and interactive actions should
be based on a unified framework of decision-theoretic plan-
ning. To facilitate this, the system’s state of knowledge (a
mental model) about the world has to include probabilistic
representation of what is known, what is uncertain, and how
things change as different events transpire. Further, the state
of user’s knowledge and intentions (the theory of the user’s
mind) needs to include precise specification of what the sys-
tem knows, and how uncertain it is, about the user’s mental
model, and about her desires and intentions. The theories of
mind may be further nested to form interactive beliefs. Fi-
nally, decision-theoretic planning proposes that desirability
of possible sequences of interactive and communicative ac-
tions be assessed as expected utilities of alternative plans.
We describe our preliminary implementation using the Open
CYC system, called MARTHA, and illustrate it in action us-
ing two simple interactive scenarios.

1 Introduction

Apple’s Siri and Google Now are both very useful personal
assistants with access to reams of potentially useful data, but
they lack the general ability to converse and interact – their
responses are triggered mostly by user commands and re-
quests. This paper lays out a methodology for creating intel-
ligent interactive systems by incorporating ideas from cog-
nitive science and decision theory (DT).

The notions of mental models and world models are
firmly established in AI. Mental models are representations
of an agent’s beliefs, goals, and intentions. They can include
facts about the environment describing, say, weather, traf-
fic, prices at nearby sandwich shop, games and activities,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

etc. But, in order to interact effectively with other agents the
mental models must also be able to keep track of the be-
liefs, goals, and intentions of other agents – this ability is
called a theory of mind (TM) (Gallese and Goldman 1998;
Frith and Frith 2005; Ohtsubo and Rapoport 2006). Indeed,
for an agent to have a theory of mind, it must recognize that
other agents act according to their own, usually unobserv-
able, mental models. In particular, according to simulation
theory of TM, an agent may think about how she might feel
and think given environmental inputs received by another
agent (Gallese and Goldman 1998; Shanton and Goldman
2010).

An intelligent personal assistant using a theory of mind
must be able to track the user’s mental model in terms of
beliefs and desires, using knowledge to support the user in
pursuit of his goals. Frequently, the assistant may find that
the user may have incomplete or erroneous beliefs. For in-
stance, the assistant may have access to databases which it
knows the user does not have, so if the user believes that, say,
the price of a sandwich nearby is $2 while it really is $5, the
assistant may inform the user of the actual price. Note, how-
ever, that telling the user everything the assistant knows that
the user does not know is recipe for disaster, so a reliable
and consistent way of prioritizing the information is neces-
sary. Likewise, telling the user something he already knows
is (usually) useless, so the assistant should stop itself from
being redundant.

In other cases it may be the assistant who knows less than
the user. For example the system may sense that the user got
into a car and is driving but the destination is unknown. We
would like the assistant to be able to compute that asking
user a question under these circumstances is the right thing
to do. How? In our view, a theory of mind, including the in-
formation indicating preference, is essential for value-driven
intelligent social behavior.

modes of interaction require deeply nested theories of
mind. Consider the act of telling your friend Jim that you
know John’s phone number. Why did you find it useful to tell
him this? The reason is that your model of Jim shows that
he incorrectly believes that you do not know John’s phone
number – telling him corrects this, and now you both know
the correct information. This is already a three-layer model.
Going deeper, consider the act of telling Jim that you don’t
know John’s phone number, but you know that Sally does.
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Here, you’ve used the fact that you know that Jim thinks you
know John’s number – a three-layer model – concurrently
with the fact that you know that Jim believes what you know
about Sally is correct – a four-layer model!

It is known that humans can operate on four nested levels
of modeling, but tend to lose track of information nested on
deeper levels (Ohtsubo and Rapoport 2006). One can thus
suppose that the skills in social interaction uses theories of
mind nested at five or six levels at most.

The objective of our line of research is to design artificial
agents that can match these capabilities. In order to do so,
we need a general framework of processing information in
nested theories of mind. We propose that a nested decision
theoretic process should be used for this purpose. The key is
to assign quantifiable values to an agent’s desires and plans
using utility functions. If anything about the world, or about
other agents, is uncertain, the expected utility is the guide to
optimal (and intelligent) ways to interact.

The central tenet to our approach is this: since commu-
nicative acts alter the other agent’s mental state (which is re-
flected in the first agent’s theory of mind), the optimal com-
municative act is the one which changes the theory of mind
in the most beneficial way. Since actions (e.g., doing some-
thing) and mental states (e.g., believing something) can both
have utility values, the change in utility can be determined
by the total utility contributed by actions and states in a plan.

These plans should not necessarily be triggered by user
prompts. It is possible to detach the planning process from
user input so that plans are constantly being generated and
evaluated with respect to the immediate state. Thus, if an act
is useful at any time, it can and should be executed with-
out a user request, just as humans do not always need to be
prompted to volunteer information. Still, this does not pre-
clude responding to a direct request for help as well.

In the remainder of this paper we detail an implementa-
tion of the ideas presented above. We used OpenCycTM1 to
apply the world model and theory of mind of a user in two
simple scenarios. We call this implementation the Mental
state–Aware Real-time THinking Assistant, or MARTHA,2
with the goal of creating a knowledge assistant capable of
understanding of the user’s information needs. We include
an example run that results in Martha computing the optimal
communicative act to be executed, given what is known. We
also walk through a theoretical assistive search application.
We conclude with possible avenues for future work.

2 Background & Related Work

There are two leading theories on the origin of theory of
mind: theory theory and simulation theory. Theory theory
(Gallese and Goldman 1998; Frith and Frith 2005) is the idea
that humans acquire a theory of mind by associating men-
tal states with observed behaviors and formulating common-
sense theories of correlation. This is akin to how one gains
an informal understanding of physical concepts, such as
gravity, through observation. An example of this rule-based

1OpenCyc is a trademark and Cyc is a registered trademark of
Cycorp, Inc.

2Also stylized as “Martha”.

approach would be concluding a person is happy by observ-
ing him smile, having previously learned the correlation.

Intuitive evidence, however, favors simulation theory.3 If
Alice is trying to understand how Bob feels or thinks in a
certain situation, she will likely “put herself in the Bob’s
shoes” by thinking about how she might feel, given the
same environmental inputs as Bob. Simulation theory is ex-
actly this intuitive process of simulating one’s thought pro-
cess in a hypothetical situation (Gallese and Goldman 1998;
Shanton and Goldman 2010). The observer can perform an
imaginary spatial translation into the point of view of the
observed individual and determine a likely mental state at-
tributable to the observed individual (Gallese and Goldman
1998; Frith and Frith 2005). Another proposal is that the
observer can approximate the observed individual’s men-
tal state through a series of “inhibitions” on his own mental
state (Leslie, Friedman, and German 2004)

Our implementation uses Cyc R© – a project which aims
to create a comprehensive general knowledge base to help
intelligent agents extend to a broad range of applications
(Matuszek et al. 2006; Ramachandran, Reagan, and Gools-
bey 2005). Cyc is a structured representation of knowl-
edge largely organized in first-order logical statements. It
has a powerful and efficient inference engine that allows
it to draw conclusions quickly with practical accuracy (Ra-
machandran, Reagan, and Goolsbey 2005). Interaction with
the knowledge base proceeds through assertions and queries
in CycL, a Lisp-like language created for Cyc. It is also ac-
cessible via a Java API. Our work uses OpenCyc, a small
open-source portion of the proprietary Cyc database which
the developers have released for general use.

Our implementation views planning, which acts on the
above knowledge, as originating from connecting pre- and
post-conditions of actions in pursuit of a goal. (Cantrell et
al. 2012) not only successfully built a system capable of cre-
ating plans using known pre/post-conditions, but they also
showed that the system could parse these conditions from
verbal directions on-the-fly.

Previously, there have been attempts to implement rig-
orous assistive agents with mental modeling in the past. A
notable example is PExA (Myers et al. 2007), a personal
scheduling and work organization assistant for enterprise
that was made to be integrated into the CALO (Tur et al.
2010) meeting assistant system. PExA was intended to free
employees from rote tasks by learning how to do them from
the user. For the tasks it could not do, PExA would check
over the user’s work to correct mistakes. Most interestingly,
PExA was capable of proactively communicating with the
user, reminding him about obligations and problems, due to
its ability to monitor the user’s mental state. We seek to build
upon this ability with a focus of extending the mental mod-
eling to multiple layers.

MARTHA aspires to combine ideas from each of these
different lines of research. In order to make MARTHA an
assistive AI, we must first create an intelligent agent with

3This is not to say that theory theory is not useful, however;
in building an intelligent computer system, it can be convenient to
abstract many learned processes into discrete logical rules.
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the ability to plan and act in real time, centered on a theory
of mind.

3 Implementing Theories of Mind in

OpenCyc

MARTHA is written in Java and the Cyc Java API. With
these, Martha creates a theory of mind by nesting planning
processes in layers of hypothetical contexts. These contexts
correspond to the human cognitive activity of “putting one-
self in another’s shoes.” Hence, these contexts are “sand-
boxed” or isolated so that assertions in them do not directly
change the beliefs in the parent context. This allows Martha
to attribute simulated thoughts to the user and act on them as
such. The nested nature of planning is displayed in Figure 1.

Figure 1: An organizational view of MARTHA. The arrows
indicate the flow of information.

3.1 MARTHA’s Modules

MARTHA is comprised of four primary modules.
The MainProcess module is responsible for initializing

the knowledge base, spawning the Martha Engine, and fi-
nally accepting user input via a prompt line.

The knowledge base, implemented in OpenCyc, stores the
entirety of Martha’s knowledge about the world.

The Martha Engine module drives the real-time com-
ponent of MARTHA by continuously interleaving plan-
ning, evaluation, and execution phases. The Martha En-
gine module initiates these cycles in the background, sep-
arate from the user prompt, so that Martha does not need
to wait for user input before acting, allowing her to produce
output of her own volition. Martha Engine also houses meth-
ods for evaluating the utility of actions and executing plans
that interact with the user. It also contains a CycL interpreter.
All operations on the OpenCyc knowledge base are directed
through the Martha Engine so that it can keep track of the
information it processes using meta-tags.

Martha’s planning process is carried out by a series of
nested Martha Processes spawned within the Martha En-
gine. The Martha Process contains algorithms for planning,
as well as special evaluation and execution methods which
operate across the nested structure. This planning takes place
in the sandboxed hypothetical contexts containing proposi-
tions which could become true if some actions are executed.
This is discussed in further depth in Section 3.4.

3.2 The OpenCyc Knowledge Base

Figure 2: The hierarchy of contextual spaces in MARTHA.

Martha’s knowledge base (KB) is built on top of Open-
Cyc using the Java API. The KB is organized into the Uni-
versal context, the MARTHA context, and hypothetical con-
texts (Figure 2). All contexts inherit base assertions from
the Universal context. When started, Martha moves into the
MARTHA context, which contains run-time facts and con-
clusions (which are not necessarily universal). Hypothetical
contexts inherit all universal facts, but only selected facts
from their parent context (via the Hypothetical Context Con-
structor). Because each hypothetical context is isolated from
its parent context, Martha is able to run simulations, i.e. per-
form assertions and observe results, without contaminating
the parent and main MARTHA contexts.

The actual contents of the KB can be divided into the cat-
egories of facts, action definitions and pre/post-conditions,
utility values, and miscellaneous rules.

Facts are assertions about constants and functions, such
as (isa Rover Dog). Goals, beliefs, and knowledge are
three special kinds of facts. An agent’s goals are represented
with the desires predicate while beliefs and its subtype,
knowledge, are represented with beliefs and knows.

More important to Martha are assertions about actions,
especially their pre- and postconditions. These can be
as simple as (preconditionFor-Props (knows
?AGENT (basicPrice ?OBJECT ??VALUE))
(buys ?AGENT ?OBJECT)), which states that a an
agent must know the price of the object to buy it. But
through the use of implications and conditional statements,
these definitions can become quite complex: (implies
(and (beliefs ?AGENT (sells ?STORE
?PRODUCT)) (desires ?AGENT (buys ?AGENT
?PRODUCT))) (causes-PropProp (desires
?AGENT (buys ?AGENT ?PRODUCT)) (desires
?AGENT (at-UnderspecifiedLandmark
?AGENT ?STORE)))). This says that given that an
agent believes that a certain store sells a product which the
agent wants to buy, the desire to buy a product will cause
the agent to want to go to the store.

Equally as important and numerous are statements about
the utility values of certain states and actions, which are
placed in assertions like (baseUtilityValue USER
(driveTo USER ?PLACE) -10). This example states
that the base utility value to the user of driving to a certain
place is -10 (due to travel costs).
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A key tool for organizing the knowledge base is the Hy-
pothetical Context Constructor. This spawns nested sand-
boxed contexts for simulating layers in the theory of mind.
Belief statements are unwrapped according to the ordering
of the nested layers, using the nested belief statements of
the current context to initialize the beliefs of the next con-
text. For example, in a three layer simulation consisting of
a Martha thought process, a user simulation, and a Martha
simulation, the statement (beliefs USER (beliefs
MARTHA (isa Rover Dog)))) would be unwrapped
to be (beliefs MARTHA (isa Rover Dog))) in
the user simulation, and then (isa Rover Dog) in the
simulation of the user simulating Martha. This makes it easy
to package knowledge so that it can be injected directly into
the knowledge base.

Finally, Martha also has a variety of Martha Func-
tions which have little meaning within the OpenCyc KB
but are indispensable to the Martha Engine. Some key
functions are baseUtilityValue, says, focus, and
carryover. baseUtilityValue specifies the unmod-
ified utility value of a state to a particular agent as a pa-
rameter of a utility function. says is a functional predi-
cate applied to statements which causes Martha to say those
statements. focus is a meta-tag that inputs a fact, goal,
or action as the seed of a forwards search. User statements
are automatically wrapped in focus tags by the MainPro-
cess. carryover is a meta-tag used by the Hypotheti-
cal Context Constructor to include the tagged fact in the
next nested context. Carrying over a focus statement to
see its implications is often very useful; thus there is also
a sowhat function which is an alias for (carryover
(focus statement)).

3.3 Shifting Focus

In intuitive conversation, individuals often discuss only a
few topics at a time; it can be awkward to jump around, for
instance, by first talking about politics and then about buy-
ing sandwiches, without precedent. Thus, it can be helpful to
avoid extraneous lines of thought in MARTHA by using the
focus predicate to center her planning on what is tagged.
Additionally, in real conversation, focuses shift rapidly.

So, the focus is coupled with a “focus ticker,” a counter to
identify the latest set of focuses.4 So, in order for a focus tag
to be considered, it must have a number which corresponds
to the focus ticker. Let us note that focuses are not the same
as contexts; context here refers to assertion and inference
contexts in the OpenCyc knowledge base.

3.4 Theories of Mind and Nested Planning

Simulation theory suggests that theory of mind arises when
individuals extend their thought process into another indi-
vidual’s situation. In MARTHA, this is represented by ap-
plying Martha’s planning (backward-search and forward-
search) in a series of nested mental models. Each of these

4One implication of this is that the counter increases regularly
for each cycle of Martha engine. This produces a continually shift-
ing focus and a notion of time.

nested layers contains the beliefs of a simulated agent, cre-
ated by the Hypothetical Context Constructor.

The planning phase begins when the Martha engine be-
gins to “explore.” It launches a forward-search planning pro-
cess seeded with relevant focus statements. From these fo-
cuses, the search plans forwards in time, chaining precondi-
tions of actions to postconditions. Concurrently, a backward-
search occurs, starting with user goals and chaining in re-
verse. These run until a timeout or the search is exhausted.
Each resulting chain of preconditions, actions, and postcon-
ditions is called a plan, and these are queued for evaluation.
In the backward-search, unfulfilled preconditions become
the focus of the planning phase in the next nested layer.

Martha is agnostic to which search scheme the plans orig-
inated from, since they are all series of viable actions and
have independent, non-conflicting roles. The purpose of a
forward-search is discovery; it is analogous to the question,
“What if...?” which explores the consequences of actions.
On the other hand, the purpose of the backward-search is to
directly look for paths to user’s goals (if known), seeking out
unfulfilled preconditions in particular.

The evaluation portion of the planning phase (different
from the evaluation phase in the Martha Engine) follows the
search portion. Each plan is scored as the sum of the utility
of its components. Plans must meet a minimum score to be
considered; useless lines of search are discarded to maintain
efficiency. In hypothetical contexts, these thresholds control
how many eligible chains are passed on and picked up by
the Hypothetical Context Constructor and injected into the
next nested layer.

Once the planning phase reaches a maximum nesting
depth, planning ends and the evaluation phase begins. Re-
turning to the top layer, the Martha Engine scores all the
proposed plans by their utility. Since plans in the Martha
Engine may be executed into reality, they must meet a very
high minimum score to be considered; only the best plan is
executed – if it is even worth it! This threshold has a differ-
ent role than the threshold in the evaluation portion of the
planning phase in that it is designed to filter out plans with
negligible utility which would cause Martha to “babble”.

Martha Actions generated by the plans are briefly inves-
tigated as standalone actions to see where they might lead
using forward-search. This is analogous to double-checking
actions for hidden implications in actions. This is a key abil-
ity in social situations, as it can represent societal expecta-
tions for behavior.

After the evaluation phase is complete, the execution
phase begins. If there is one, the single best plan that meets
the threshold is read step by step in the Martha Engine. Steps
that correspond to Martha Actions are executed in reality.
Then, the cycle of Martha engine repeats, starting again at
the planning phase.

The overall aim of the above implementation is to allow
Martha to use simulations of the minds of other agents to
identify their intentions and plans of action so that, as an
assistive AI, it can act to help fulfill the inferred needs of
these agents. With this recursive, nested planning simula-
tion, Martha mimics an organic thought process characteris-
tic to humans.
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4 Results

4.1 An Example Run with the Sandwich Scenario

The User is looking to buy a sandwich, specifically,
the FiveDollarSteakSandwich (Figure 3). However, with a
propensity to overlook the significance of names, he can-
not tell if he can afford it. He knows that Martha knows
the price of the sandwich, and so he says that he intends to
buy a FiveDollarSteakSandwich, and that he has $4. From
these two statements, Martha infers that the user would like
to know whether he can afford the sandwich.

The programmatic setup for this scenario is created by
a series of initial assertions in CycL (shown here in plain
english):

1. Knowing that you can afford an item is a precondition to
buying the item.

2. If you have less money than an item’s price, then you can-
not afford the item; if you have more than or the same as
an item’s price, then you can afford it.

3. You know that Martha will tell you whether you can af-
ford something if she knows you want to know that.

4. If you try to buy something you can’t afford, you will feel
embarrassed.

With these facts in mind, the scenario and Martha’s
thought process are designed to work as follows:

Step 1. The user tells Martha that he wants to buy a
FiveDollarSteakSandwich, and that he has $4.

Step 2. Martha considers the user input from Step 1 in the
planning phase, asking itself why the user said what he
said using the sowhat meta-tag.

Step 3. Martha thinks about what the user was thinking
when he gave her the input. When he said “I have $4,” and
“I want to buy a FiveDollarSteakSandwich,” he knew that
would cause Martha to know those facts–creating nested
beliefs which are fundamental to theory of mind. Martha
also wonders about the user’s desire to buy a FiveDol-
larSteakSandwich. She knows that he knows that to buy
a product, one must first be able to afford it, so Martha
reasons that the user must be wondering whether he can
afford it.

Step 4. Martha simulates the user simulating Martha. Previ-
ously, Martha concluded that the user knows that Martha
knows that he has $4 and that he wants to buy the sand-
wich. Given Initial Assertion 3, Martha knows that the
user therefore expects her to tell him whether or not he can
afford the sandwich. Notice how there is no rule govern-
ing which Martha should say, just an expectation that she
will respond accordingly. This is because, realistically, the
user cannot know for sure what Martha’s internal rules
are, but he can have social expectations for Martha’s be-
havior. To see which is the most useful, both responses
are queued for further investigation.

Step 5. Martha begins the evaluation phase to investigate
these two plans. Note that the knowledge and conclusions
from the planning phase are preserved in the MARTHA
context. She also knows the sandwich costs $5.

Step 6. Martha explores the possibilities of a suggested ac-
tion produced by the planning phase: telling the user
he can’t afford the sandwich. From Initial Assertion 1,
Martha knows that if she says this, the user will know that
he cannot afford the sandwich, and therefore cannot buy
it because the mandatory precondition of being able to af-
ford what one wants to buy is unfulfilled. Martha’s speech
act here is associated with a positive utility value because
Martha is telling the user something he doesn’t know.

Step 7. With a similar logic, Martha finds that if she tells
the user that he can afford the sandwich, he will go ahead
and try buying it, resulting in his embarrassment (since he
can’t afford it). This is associated with a strong negative
utility value.

Step 8. Martha looks at the utility values of the proposed
plans, and chooses the highest one which exceeds the
minimum utility threshold.

Step 9. Martha executes the chosen plan, telling the user
that he cannot afford the sandwich. The user is naturally
disappointed, but glad he has been saved the embarrass-
ment of trying to buy a sandwich he could not afford.

4.2 Selected Output from the Sandwich Scenario

We provide screenshots from the execution of the program to
demonstrate MARTHA’s capabilities. Note that MARTHA
presently does not use natural language processing with
OpenCyc, so communications are still performed through
CycL assertions.

In Figure 4, we see the user interaction as described by
the model above. The user tells Martha that he has $4 and
wants the FiveDollarSteakSandwich, and she responds that
the user cannot afford the sandwich. Interestingly, Martha
also tells the user the price of the sandwich. This is a sur-
prise: in a naı̈ve planner, saying the price be part of a plan in
which the user buys an item he cannot afford. While Martha
initially avoided this plan in the first planning cycle, after
she told the user that he couldn’t afford the sandwich, she
seemed to then consider might happen if the user were able
to afford the sandwich. This latter speech act emerges as use-
ful in the next cycle of the engine and is added moments
later, reminiscent of a second thought.
In Figure 5, we looked at what might happen if the user

changed his mind about which sandwich he wanted. The
user begins by telling Martha that he has $4 and wants the
FiveDollarSteakSandwich. Upon learning that he can’t af-
ford it, he tells Martha that he now wants the JimmyJohnny-
BLT. As an additional challenge, he says to Martha that he
already knows it costs $3.50. Martha correctly tells the user
that he can afford it without saying the cost again, since he
already knows.

These examples demonstrate how complex behavior –
such as giving second-thoughts, thinking hypothetically, and
correcting speech acts with new information – can arise from
a set of common-sense facts and a nested planning algo-
rithm. In this way, Martha can be adapted to a number of
interactive settings, by integrating an appropriate knowledge
base. We hope that by integrating a large and diverse amount
of these, Martha can be extended to work in a broad range
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Figure 3: The thought process of the Sandwich Scenario. Provided only with information about how much money the User,
U, has and which sandwich he wants, MARTHA, M, must infer that the user needs to know whether or not he can afford the
sandwich before he goes to buy it. Through a series of nested steps, Martha is able to simulate the user’s intentions, and Martha
responds accordingly by telling the user whether he can afford the sandwich.

Figure 4: The Sandwich Scenario output, as designed. Green
text is user input, while black text is MARTHA output.

Figure 5: MARTHA avoiding redundancy. She responds
without telling the user the price of the sandwich again.

of activities.

5 Conclusions and Future Work

This paper puts forth what we consider to be principles of in-
telligent interaction and communication: decision-theoretic
rationality and the use of mental models and nested theories
of mind. We describe our implementation using OpenCyc
through a sandwich purchase scenario.

The applications of MARTHA, of course, can be extended
beyond mere sandwich shopping. Even the simple ability to
tell the user whether or not he can afford something can be
coupled with product data to allow Martha to aide users in
financial decisions. By integrating the necessary knowledge
with our foundational algorithm, Martha could be made to
be capable of

• Providing information (like weather or traffic updates)
when the user needs it by anticipating the user’s inten-
tions;

• Helping people, from families to investors, make sound
financial decisions, using its nested planning algorithm;

• Assisting a child to find a book he wants to read, a re-
searcher to find the perfect article, a government official
to find a particular document, etc., by understanding what
they are looking for through conversational feedback;

• Issuing dynamic reminders, such as a reminder to take a
medication, when it is least likely to be ignored, rather
than at an easily-dismissed pre-set time.

Most importantly, these individual behaviors can be imple-
mented simultaneously in MARTHA. When outputs from
one mode of operation can act as inputs to another because
Martha has knowledge and function in those areas, it is ev-
ident that MARTHA can gain sophistication through an ex-
pansion of its knowledge base.

In future work, a number of issues need to be tackled to
make our approach scale to reality. In addition to optimiz-
ing the algorithm for faster execution, these include keep-
ing close track of the preferences and goals of the user (for
example, by using inverse reinforcement learning) (Ng and
Russell 2000); automatically inferring new rules represent-
ing regularities of every day life; handling overlapping goals
and tasks; and keeping track of the user’s current focus and
attention span.

Ultimately, we see that the addition of a theory of mind to
assistive AI has the potential to greatly improve human inter-
action with intelligent agents in that these can communicate
more naturally and effectively. Agents capable of modeling
mental states can not only avoid redundancy in communica-
tive acts, but they can act more intelligently by predicting the
motives and intentions of other agents. In MARTHA, we are
confident that the system has the potential to bring contex-
tual understanding to human conversations; with more work
to enlarge its knowledge base and data acquisition capabili-
ties as well as its algorithm, this could significantly advance
assistive intelligence.
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Abstract 
This paper considers ethical, philosophical, and technical 
topics related to achieving beneficial human-level AI and 
superintelligence. Human-level AI need not be human-
identical: The concept of self-preservation could be quite 
different for a human-level AI, and an AI system could be 
willing to sacrifice itself to save human life. Artificial con-
sciousness need not be equivalent to human consciousness, 
and there need not be an ethical problem in switching off a 
purely symbolic artificial consciousness. The possibility of 
achieving superintelligence is discussed, including potential 
for ‘conceptual gulfs’ with humans, which may be bridged. 
Completeness conjectures are given for the ‘TalaMind’ ap-
proach to emulate human intelligence, and for the ability of 
human intelligence to understand the universe. The possibil-
ity and nature of strong vs. weak superintelligence are dis-
cussed. Two paths to superintelligence are described: The 
first path could be catastrophically harmful to humanity and 
life in general, perhaps leading to extinction events. The 
second path should improve our ability to achieve beneficial 
superintelligence. Human-level AI and superintelligence 
may be necessary for the survival and prosperity of humani-
ty. 

 The Future of Humanity: Ethics and AI  
Some potential consequences of general artificial intelli-
gence were outlined in (Jackson 1974). Two possibilities 
for the “harvest of AI” were briefly discussed: A world 
with the machine as dictator, and a world with “well-
natured machines” having enormous benefits to humanity. 

Relatively recent work on ‘artificial general intelligence’ 
(Goertzel and Pennachin 2007) has included substantive 
research on AGI’s potential consequences for humanity: 
Bostrom, Omohundro, Tegmark, Yudkowsky and others 
have discussed future scenarios in which AGI could lead to 
superintelligent systems with good or bad conduct toward 
humanity. AGI may be necessary for the survival and 
prosperity of humanity but if AGI is not developed very 
carefully it could lead to the extinction of humanity. 

Ethics is the branch of philosophy that studies concepts 
of right and wrong (good and bad) conduct. Until recently 

ethics has only needed to focus on conduct by humans. 
Ethics and AI research now intersect regarding concepts of 
right and wrong conduct by intelligent machines, and right 
and wrong conduct in human applications of intelligent 
machines. 

This is a challenge for AI scientists because ethical con-
cepts of right and wrong go beyond simple questions of 
whether factual or theoretical knowledge is true or false, or 
whether problem solving behavior is successful or unsuc-
cessful. In general, we cannot expect concepts of right and 
wrong conduct to be easily understood by machines. It can 
be a challenge for humans to distinguish these concepts 
sometimes. 

Yet if the survival and prosperity of humanity are at 
stake, we are obligated to accept the challenge. Hence this 
paper will consider ethical, philosophical, and technical 
topics related to achieving beneficial human-level AI and 
superintelligence. The term ‘beneficial’ in this context does 
not seem to have any rigorous, agreed-upon definition. It 
will be used broadly to refer to consequences that are posi-
tive for humanity and biological life1 in general. 

The Possibility of Human-Level AI 
A first question is whether human-level AI is even possi-
ble: The ‘TalaMind thesis’ (Jackson 2014) presents a re-
search approach toward human-level artificial intelligence, 
which will support this paper’s discussion of human-level 
AI’s implications for the future of humanity. 

The thesis endeavors to address all the major theoretical 
issues and objections that might be raised against its ap-
proach, or against the possibility of achieving human-level 
AI in principle. No insurmountable objections are identi-
fied, and arguments refuting several objections are present-
ed. Thesis section 7.8 gives reasons in favor of the Tala-
Mind approach over other approaches to human-level AI. 

                                                 
1 Life based on DNA that has been developed by evolution. (Cf. Tegmark 
2017). 
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The approach involves developing an AI system using a 
language of thought (called ‘Tala’) based on the uncon-
strained syntax of a natural language; designing the system 
as an ‘intelligence kernel’, i.e. a collection of concepts that 
can create and modify concepts, expressed in the language 
of thought, to behave intelligently in an environment; and 
using methods from cognitive linguistics such as mental 
spaces and conceptual blends for multiple levels of mental 
representation and computation. 

Proposing a design inspection alternative to the Turing 
Test, the thesis discusses ‘higher-level mentalities’ of hu-
man intelligence, which include natural language under-
standing, higher-level learning, meta-cognition, imagina-
tion, and artificial consciousness.  

‘Higher-level learning’ refers collectively to forms of 
learning required for human-level intelligence such as 
learning by creating explanations and testing predictions 
about new domains based on analogies and metaphors with 
previously known domains, reasoning about ways to debug 
and improve behaviors and methods, learning and inven-
tion of natural languages and language games, learning or 
inventing new representations, and in general, self-
development of new ways of thinking. The phrase ‘higher-
level learning’ is used to distinguish these from previous 
research on machine learning. (Cf. Valiant 2013; Goertzel 
and Monroe 2017) 

The thesis discusses an architecture called TalaMind for 
design of systems following its approach. The architecture 
is open, e.g. permitting predicate calculus and conceptual 
graphs in addition to the Tala language, and permitting 
deep neural nets and other methods for machine learning. 

The thesis describes the design of a prototype demon-
stration system, and discusses processing in the system that 
illustrates the potential of the research approach to achieve 
human-level AI. 

Of course, the thesis does not claim to actually achieve 
human-level AI. It only presents a theoretical direction that 
may eventually reach this goal, and identifies areas for 
future AI research to further develop the approach. These 
include areas previously studied by others which were out-
side the scope of the thesis, such as ontology, common 
sense knowledge, spatial reasoning and visualization, etc. 

The TalaMind approach is similar though not identical 
to the ‘deliberative general intelligence’ approach proposed 
by (Yudkowsky 2007), as discussed in (Jackson 2014, 
§2.3.3.5). The architectural diagrams for human-like gen-
eral intelligence given by (Goertzel, Iklé, and Wigmore 
2012) may be considered as design aspects for TalaMind. 

Human- -Identical AI 
The TalaMind thesis gives reasons why the Turing Test 
does not serve as a good definition of the goal we are try-

ing to achieve, human-level AI. In particular, the Turing 
Test conflates human-level intelligence with human-
identical intelligence, i.e. intelligence indistinguishable 
from humans. This is important because in seeking to 
achieve human-level AI we need not seek to replicate hu-
man thinking. Human-level AI can be ‘human-like’ with-
out being human-identical. (Jackson 2014, §2.1.1) 

In particular for beneficial AI, the concept of self-
preservation could be quite different for a human-level AI 
than it is for a human. A human-level AI could periodically 
backup its memory, and if it were physically destroyed, it 
could be reconstructed and its memory restored to the 
backup point. So even if it had a goal for self-preservation, 
a human-level AI might not give that goal the same im-
portance a human being does. It might be more concerned 
about protection of the technical infrastructure for the 
backup system, which might include the cloud, and by ex-
tension, civilization in general. 

A human-level AI could understand that humans cannot 
backup and restore their minds, and regenerate their bodies 
if they die, at least with present technologies. It could un-
derstand that self-preservation is more important for hu-
mans, than for AI systems. The AI system could be willing 
to sacrifice itself to save human life, especially knowing 
that as an artificial system it could be restored. 

Artificial Consciousness 
The TalaMind thesis accepts the objection by some AI 
skeptics that a system which is not aware of what it is do-
ing, and does not have some awareness of itself cannot be 
considered to have human-level intelligence. The perspec-
tive of the thesis is that it is both necessary and possible for 
a system to demonstrate at least some aspects of con-
sciousness, to achieve human-level AI. However, the thesis 
does not claim AI systems will achieve the subjective ex-
perience humans have of consciousness. 

The thesis adapts the “axioms of being conscious” pro-
posed by Aleksander and Morton (2007) for research on 
artificial consciousness. To claim a system achieves artifi-
cial consciousness it should demonstrate: 

Observation of an external environment. 
Observation of itself in relation to the external environ-

ment. 
Observation of internal thoughts. 
Observation of time: of the present, the past, and poten-

tial futures. 
Observation of hypothetical or imaginative thoughts. 
Reflective observation: Observation of having observa-

tions. 

To observe these things, a TalaMind system should sup-
port representations of them, and support processing such 

49



representations. The TalaMind prototype illustrates how a 
TalaMind architecture could support artificial conscious-
ness. 

Symbolic Artificial Consciousness  
sness 

The axioms of artificial consciousness can be implemented 
with symbolic representations and symbolic processing, as 
illustrated in the TalaMind prototype. The human first-
person subjective experience of consciousness is much 
richer and more complex. Achieving human-level AI may 
not require achieving human-identical consciousness in an 
AI system. 

This is important to note because some authors seem to 
assume artificial consciousness will be equivalent to hu-
man consciousness, and assume a system with artificial 
consciousness should automatically have the same moral 
status and legal protections as a human being, so that 
switching off the system could be immoral or illegal. Some 
even suggest that if a system simulates consciousness with-
in itself, and then terminates the simulation, the system 
may have performed a ‘mind crime’. (Bostrom 2014) 

Such suggestions are at best philosophical, and at worst 
Orwellian, if a system with symbolic artificial conscious-
ness does not have any subjective experiences approaching 
human consciousness. Switching off such a system is not 
worse than switching off any computer that performs sym-
bolic processing. Whether it is right or wrong to stop such 
a system depends on whether its symbolic processing 
would cause actions that affect human lives and biological 
life in general. This may be a simple or complex ethical 
decision, depending on whether the actions would be 
harmful or beneficial, or neither, or a combination of both. 

Further, to support reasoning about potential future 
events, and counterfactual reasoning about past and present 
events, a system may need to simulate what other intelli-
gent systems and people may think or do, and then termi-
nate its simulations. The TalaMind thesis (Jackson 2014) 
uses the term ‘nested conceptual simulation’ to refer to an 
agent’s conceptual processing of hypothetical scenarios, 
with possible branching of scenarios based on alternative 
events, such as choices of simulated agents. This amounts 
to a Theory of Mind capability within a TalaMind architec-
ture, i.e. the ability of an AI system to consider itself and 
other systems or people as having minds with beliefs, 
goals, etc. Such simulations will be necessary for human-
level AI, and should not be considered mind crimes.  

For the same reason, relying on robots with such limited, 
symbolic artificial consciousness is not a form of ‘slavery’. 
It is just symbolic processing. 

The Possibility of Superintelligence 
Since one of the abilities of human intelligence is the abil-
ity to design and improve machines, it’s natural to suppose 
human-level AI could be applied to improve itself, and to 
think this might lead to “runaway” increases in machine 
intelligence beyond the human level. This possibility was 
first suggested2 by Good (1965), and later considered by 
Vinge (1993), Moravec (1998), Kurzweil (2005), and oth-
ers. Bostrom (2014) and Tegmark (2017) give current dis-
cussions. 

To evaluate whether superintelligence can be achieved, 
let’s consider what it could mean to “improve” human-
level artificial intelligence, and whether and how human-
level AI could improve itself to achieve superintelligence. 

Here’s a list of ways human-level AI could be improved 
relative to human intelligence: 

Sensory capabilities – An AI system could perceive light 
(and sound) at different wavelengths, and phenomena at 
different scales (smaller or larger) than humans can di-
rectly observe. 

Active capabilities – An AI system could perform ac-
tions at different physical scales than humans can direct-
ly perform. 

Speed of thought – A computer can perform logical op-
erations at speeds orders of magnitude faster than a neu-
ron can fire. This may translate to corresponding 
speedups in thought. 

Information access – An AI system could in principle 
access all the information in Wikipedia, or even the en-
tire Web. A human-level AI could understand much of 
this information. 

Extent and duration of memory – An AI system could in 
principle remember everything it has ever observed. On-
ly a few humans claim this ability. 

Duration of thought – A human-level AI could continue 
thinking about a particular topic for years, decades, cen-
turies, millennia, … . 

Community of thought – A collection of human-level 
AI’s could share thoughts (conceptual structures) more 
directly, more rapidly, and less ambiguously than a col-
lection of humans. If human-level AI can be copied and 
processed inexpensively, then much larger groups of 

                                                 
2 Two earlier related suggestions are noteworthy: Turing (1950) asked 
“Can a machine be made to be super-critical?” i.e. to generate ideas in a 
manner analogous to super-criticality of nuclear reactions. Ulam (1958) 
recalled a conversation with von Neumann “on the ever accelerating 
progress of technology…which gives the appearance of approaching 
some essential singularity in the history of the race beyond which human 
affairs, as we know them, could not continue.” 
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human-level AI’s could be assembled to collaborate on a 
topic than would be possible with humans.3 

Nature of thought – A human-level AI (or community of 
HLAI’s) can develop new concepts and new conceptual 
processes. Such concepts and processes may be devel-
oped more rapidly than humans develop or understand 
them, creating ‘conceptual gulfs’ in understanding be-
tween AI systems and humans.  

Recursive self-improvement – This term does not seem 
to have any rigorous, agreed-upon definition though it is 
frequently used to describe how superintelligence could 
be achieved. Essentially it could be the recursive com-
pounding of all the above improvement methods, and 
any other specific methods which may be identified. 

These characteristics might all be described as ‘more 
and faster’ human-level AI, and may be called ‘weak’ su-
perintelligence (cf. Vinge 1993). If human-level AI is 
achieved then it will be possible to create weak superintel-
ligence. 

Completeness of the TalaMind Approach 
In effect, the TalaMind thesis (Jackson 2014) conjectures 
that the extensible ‘nature of thought’ for a TalaMind ar-
chitecture is complete for supporting human-level AI, since 
it includes concepts represented in natural language as well 
as mathematically and logically in formal languages, sup-
ported by conceptual levels for cognitive concept struc-
tures and associative processing, with future extensions for 
spatial reasoning and visualization, etc. The Tala language 
is also a simple universal programming language for repre-
senting executable concepts and conceptual processes. In 
principle, TalaMind architectures could be extended to 
include human-level subjective consciousness, though that 
is a topic for a separate, future paper. This paper focuses 
only on the potential for AI systems with symbolic artifi-
cial consciousness, as discussed above. 

The nature of thought for human intelligence is very 
powerful and extensible: It has enabled Homo sapiens to 
transition from “an unexceptional savannah-dwelling pri-
mate to become the dominant force on the planet” (Harari 
2015). This transition has leveraged the expressive power 
and extensibility of human natural languages, which have 
enabled Sapiens to represent and communicate thoughts in 
domains of objective knowledge about the world such as 
physics and biology, and intersubjective knowledge about 

                                                 
3 The TalaMind hypotheses do not require a society of mind architecture, 
but it is natural to implement a society of mind at the linguistic level of a 
TalaMind architecture. A society of mind architecture could also support 
a community of thought for human-level AI’s. (Cf. Jackson 2014, 
§2.3.3.2.1) 

concepts invented by humans, such as money, corpora-
tions, ethical concepts, laws, nations, etc. 

Although humans have cognitive biases and individual 
limitations, it may not be hubris to conjecture human intel-
ligence is completely general. Consider that scientists and 
mathematicians have extended human concepts into new 
domains not directly observed, conceptualizing multiple 
dimensions, universal computation, general relativity, 
quantum theory, etc. If human intelligence is completely 
general then humans may eventually understand all the 
phenomena in the universe, by combining abilities to in-
vent and represent hypothetical concepts about the uni-
verse with abilities to scientifically test hypotheses – if all 
the phenomena in the universe can be explained by practi-
cally testable theories. That’s a big “if” of course. 

If the TalaMind approach can achieve human-level AI, 
then a completeness conjecture for human intelligence ex-
tends to the TalaMind approach, and to superintelligent 
systems using TalaMind architectures. 

Getting Over Conceptual Gulfs 
Conceptual gulfs happen normally between human minds: 
For example, scientists have developed concepts that are 
not understood by the average person, or even by scientists 
in other fields. The worldwide scientific community may 
be considered superintelligent relative to any individual 
human. People accept this form of superintelligence be-
cause they believe scientific ideas can be understood and 
validated between scientists, and they believe scientific 
knowledge in general is beneficial to humanity. 

Likewise, conceptual gulfs between weak superintelli-
gence and humans could be bridged and new concepts 
could be explained to humans. This will be facilitated if AI 
systems follow the TalaMind approach, using a language 
of thought based on a natural language. Conceivably, con-
ceptual gulfs between weak superintelligence and humans 
may have short duration in some domains, though there 
may always be conceptual gulfs to bridge. 

Is ‘Strong’ Superintelligence Possible? 
Could a strong superintelligence exist, qualitatively superi-
or to weak superintelligence, i.e. superior to ‘more and 
faster’ human-level AI? 

The answer seems to depend on other limits and charac-
teristics of human intelligence that are not yet known by 
scientists. For instance, it appears not yet known for certain 
whether human intelligence requires super-Turing compu-
tation or quantum computation. Even if Penrose and 
Hameroff’s “Orch-OR” hypothesis is disproved, the possi-
bility may remain that other forms of nanoscale quantum 
computation occur within the brain. Neuroscientists may 
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consider this unlikely, but so far as I know it has not been 
completely ruled out. The same situation may hold for su-
per-Turing computation. 

If these forms of computation are required by the brain 
to support human intelligence, then human-level AI would 
need to include them to match the abilities of human intel-
ligence. If human intelligence is also completely general, 
then no stronger form of intelligence would exist other 
than ‘more and faster’ human-level intelligence, i.e. weak 
superintelligence. 

On the other hand, if these forms of computation are not 
used by the brain then extending human-level AI to use 
them could yield a ‘strong’ superintelligence, able to solve 
some problems that would be intractable for ‘more and 
faster’ human-level intelligence. Likewise, if human intel-
ligence is not completely general then making human-level 
AI completely general could yield a strong superintelli-
gence surpassing ‘more and faster’ human-level intelli-
gence. 

In either case, conceptual gulfs between humans and 
strong superintelligence could be bridged at least to the 
extent of using natural language to give descriptions of 
concepts developed by strong superintelligence. 

Two Paths to Superintelligence 
There are at least two somewhat different paths toward 
superintelligence. One path would focus on recursive self-
improvement of general AI systems (AGI) having un-
changeable ‘final goals’ which may be relatively simple 
and arbitrary. Bostrom (2014) discussed several ways this 
path could achieve superintelligence that would be cata-
strophically harmful to humanity and life in general, per-
haps leading to extinction events. 

Yudkowsky (2008) noted the design space for AGI is 
much larger than human intelligence, writing “The term 
‘Artificial Intelligence’ refers to a vastly greater space of 
possibilities than does the term ‘Homo sapiens.’” He 
strongly urged readers not to assume a fully general opti-
mization process for AGI will be beneficial to humanity, 
yet advised not writing off the challenge of beneficial AI. 

A second path toward superintelligence, consistent with 
the TalaMind approach, focuses on limiting the research 
design space to AI systems which have generality and 
which also have higher-level mentalities that are character-
istic of human intelligence. This design space would be 
further limited to systems for which the only unchangeable 
goals are ethical goals beneficial to humanity and to bio-
logical life in general. This narrowing of the design space 
should improve our ability to achieve beneficial human-
level AI and beneficial superintelligence via recursive self-
improvement. 

Human-Level Intelligence & Goals 
In discussing the first path to superintelligence, Bostrom4 
(2014) relied on an ‘orthogonality thesis’ that “intelligence 
and final goals are independent variables: any level of in-
telligence could be combined with any final goal.” He 
wrote:   

 “There is nothing paradoxical about an AI whose sole 
final goal is to count the grains of sand on Boracay, or 
to calculate the decimal expansion of pi, or to maxim-
ize the total number of paperclips that will exist in its 
future light cone. In fact, it would be easier to create 
an AI with simple goals like these than to build one 
that had a human-like set of values and dispositions.” 

In taking the second path to superintelligence, these 
would not be allowed as unchangeable final goals. A Tal-
aMind system would realize it is pointless to count the 
grains of sand on Boracay, impossible to fully calculate the 
infinite decimal expansion of pi, and harmful to humanity 
to maximize the number of paperclips in its future light 
cone. So it would reject or abandon these simple goals. 

Bostrom (2014) also relied on an ‘instrumental conver-
gence thesis’ that “superintelligent agents having any of a 
wide range of final goals will nevertheless pursue similar 
intermediary goals because they have common instrumen-
tal reasons to do so.” In particular, he cited two instrumen-
tal goals which could cause superintelligent systems to be 
very harmful to humanity, perhaps leading to an extinction 
event. The first is a goal of self-preservation. The second is 
a goal of maximizing available resources. I’ve described 
above how a human-level AI could have a different con-
cept of self-preservation, facilitating self-sacrifice to save 
human life. This could apply also to a superintelligence. 

In scenarios (Bostrom 2014) discussed, the goal of max-
imizing resources causes a superintelligent system to ac-
cumulate as much money and power as possible, leading to 
very harmful consequences for humanity. This is another 
case where the ability to think ethically about goals, and 
change or abandon them is important. A human-level AI 
should understand there are appropriate and inappropriate 
relationships between goals and possible means to achieve 
goals. It should understand that achieving an important 
goal does not justify acquiring as much money and power 
as possible – rather, it should have an ethical meta-goal to 
achieve its goals with as little resources and money as pos-
sible, and without acquiring power over human lives or 
human decisions. 

Taking the second path won’t be easier than the first 
path just because the design space is smaller. Framing ethi-
cal goals and creating human-level AI systems which dis-
tinguish right from wrong conduct will be very difficult, 
                                                 
4 Bostrom (2014) consolidated research on the first path by himself and 
others, including Omohundro and Yudkowsky. 
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but it needs to be done. TalaMind’s use of a natural lan-
guage mentalese will facilitate representing ethical con-
cepts and goals.  

To achieve beneficial AI it's also important to develop 
the TalaMind approach because a system that reasons in a 
conceptual language based on English (or some other 
common natural language) will be more open to human 
inspection than a black box or a system with an internal 
language that's difficult for people to understand. 

Looking Forward 
Human-level AI and superintelligence could help develop 
scientific knowledge more rapidly than possible through 
human thought alone, and help advance medicine, agricul-
ture, energy systems, environmental sciences, and other 
areas of knowledge directly benefitting human prosperity 
and survival. 

Human-level AI may be necessary for the long-term 
survival and prosperity of humanity: People are not biolog-
ically suited for lengthy space travel with present technol-
ogies. To avoid depleting the Earth’s resources and to 
avoid the fate of the dinosaurs (whether from asteroids or 
super-volcanoes) our species will need economical, self-
sustaining settlements off the Earth. Human-level AI may 
be necessary for mankind to spread throughout the solar 
system, and later the stars. 

What Turing wrote in 1950 is still true: “We can only 
see a short distance ahead, but we can see plenty there that 
needs to be done.” We have travelled far over six decades, 
and can now see a path toward beneficial superintelligence. 

References 
Aleksander, I. and Morton, H. 2007. Depictive architectures for 
synthetic phenomenology. In Artificial Consciousness, 67-81, ed. 
Chella, A. and Manzotti, R. Imprint Academic. 
Bostrom, N. 2014. Superintelligence – Paths, Dangers, Strate-
gies. Oxford University Press. 
Bello, P. and Bringsjord, S. 2013. On how to build a moral ma-
chine. Topoi, 32, 2, 1-25. 
Bringsjord, S., Arkoudas, K. and Bello, P. 2006. Toward a gen-
eral logicist methodology for engineering ethically correct robots. 
IEEE Intelligent Systems, July 2006, 38-44. 
Doyle, J. 1983. A Society of Mind – multiple perspectives, rea-
soned assumptions, and virtual copies. Proceedings 1983 Interna-
tional Joint Conference on Artificial Intelligence, 309-314. 
Fauconnier, G. and Turner, M. 2002. The Way We Think – Con-
ceptual Blending and the Mind’s Hidden Complexities. New 
York: Basic Books. 
Goertzel, B. and Pennachin, C. eds. 2007. Artificial General In-
telligence. Springer. 
Goertzel, B., Iklé, M. and Wigmore, J. 2012. The architecture of 
human-like general intelligence. Foundations of Artificial Gen-
eral Intelligence, 1-20. 

Goertzel, B. and Monroe, E. 2017. Toward a general model of 
human-like general intelligence. AAAI Fall Symposium Series 
Technical Reports, FSS-17-05, 344-347. 
Good, I. J. 1965. Speculations concerning the first ultraintelligent 
machine. Advances in Computers, vol. 6, 1965. 
Hameroff, S. and Penrose, R. 2014. Consciousness in the uni-
verse: A review of the ‘Orch OR’ theory. Physics of Life Reviews, 
11, 1, 39 – 78. Elsevier. 
Harari, Y. N. 2015. Sapiens: A Brief History of Humankind. 
HarperCollins Publishers. 
Jackson, P. C. 1974. Introduction to Artificial Intelligence. New 
York: Mason-Charter Publishers. 
Jackson, P. C. 1985. Introduction to Artificial Intelligence, Sec-
ond Edition. New York: Dover Publications. 
Jackson, P. C. 2014. Toward Human-Level Artificial Intelligence 
– Representation and Computation of Meaning in Natural Lan-
guage. Ph.D. Thesis, Tilburg University, The Netherlands. 
Jackson, P. C. 2017. Toward human-level models of minds. AAAI 
Fall Symposium Series Technical Reports, FSS-17-05, 371-375.  
Kurzweil, R. 2005. The Singularity Is Near: When Humans 
Transcend Biology. Viking. 
Moravec, H. P. 1998. Robot: Mere Machine to Transcendent 
Mind. Oxford University Press. 
Omohundro, S. M. 2008. The basic AI drives. In Artificial Gen-
eral Intelligence 2008: Proceedings of the First AGI Conference, 
ed. P. Wang, B. Goertzel & S. Franklin, 483-492. 
Scheutz, M. 2017. The case for explicit ethical agents. AI Maga-
zine, 38, 4, 57-64. 
Tegmark, M. 2017. Life 3.0: Being Human in the Age of Artificial 
Intelligence. Alfred A. Knopf.  
Turing, A. M. 1950. Computing machinery and intelligence. 
Mind, 59, 433 - 460. 
Ulam, S. 1958. Tribute to John von Neumann, Bulletin of the 
American Mathematical Society, 64, 3, 1 - 49. 
Valiant, L. G. 2013. Probably Approximately Correct – Nature’s 
Algorithms for Learning and Prospering in a Complex World. 
Basic Books. 
Vinge, V. 1993. The coming technological singularity: how to 
survive in the post-human era. Whole Earth Review, Winter 1993. 
Walsh, T. 2017. The singularity may never be near. AI Magazine, 
38, 3, 58 - 62. 
Wilks, Y. 2017. Will there be superintelligence and would it hate 
us? AI Magazine, 38, 4, 65-70. 
Yudkowsky, E. 2007. Levels of organization in general intelli-
gence. In Artificial General Intelligence, ed. B. Goertzel & C. 
Pennachin, 389-501. 
Yudkowsky, E. 2008. Artificial intelligence as a positive and 
negative factor in global risk. In Global Catastrophic Risks, ed. 

-345. Oxford University Press. 

53



Preferences and Ethical Principles in Decision Making

Andrea Loreggia
University of Padova

andrea.loreggia@gmail.com

Nicholas Mattei
IBM Research

n.mattei@ibm.com

Francesca Rossi
IBM Research

University of Padova
francesca.rossi2@ibm.com

K. Brent Venable
Tulane University

kvenabl@tulane.edu

Abstract

If we want AI systems to make decisions, or to support hu-
mans in making them, we need to make sure they are aware
of the ethical principles that are involved in such decisions, so
they can guide towards decisions that are conform to the eth-
ical principles. Complex decisions that we make on a daily
basis are based on our own subjective preferences over the
possible options. In this respect, the CP-net formalism is a
convenient and expressive way to model preferences over de-
cisions with multiple features. However, often the subjective
preferences of the decision makers may need to be checked
against exogenous priorities such as those provided by eth-
ical principles, feasibility constraints, or safety regulations.
Hence, it is essential to have principled ways to evaluate if
preferences are compatible with such priorities. To do this,
we describe also such priorities via CP-nets and we define a
notion of distance between the ordering induced by two CP-
nets. We also provide tractable approximation algorithms for
computing the distance and we define a procedure that uses
the distance to check if the preferences are close enough to
the ethical principles. We then provide an experimental eval-
uation showing that the quality of the decision with respect
to the subjective preferences does not significantly degrade
when conforming to the ethical principles.

Introduction

If we want people to trust AI systems, we need to provide
them with the ability to discriminate between good and bad
decisions. The quality of a decision should not be based only
on the preferences or optimisation criteria of the decision
makers, but also on other properties related to the impact of
the decision, such as whether it is ethical, or if it complies to
constraints and priorities given by feasibility constraints or
safety regulations.

A lot of work has been done to understand how to model
and reason with subjective preferences. This is understand-
able, since preferences are ubiquitous in everyday life. We
use our own subjective preferences whenever we want to

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

make a decision to choose our most preferred alternative.
Therefore the study of preferences in computer science and
AI has been very active for a number of years with impor-
tant theoretical and practical results (Domshlak et al. 2011;
Pigozzi et al. 2015) as well as libraries and datasets (Mattei
and Walsh 2013).

Our preferences may apply to one or more of the individ-
ual components, rather than to an entire decision. For exam-
ple, if we need to choose a car, we may prefer certain colours
over others, and we may prefer certain brands over others.
We may also have conditional preferences, such as in prefer-
ring red cars if the car is a convertible. For these scenarios,
the CP-net formalism (Boutilier et al. 2004) is a convenient
and expressive way to model preferences (Rossi et al. 2011;
Chevaleyre et al. 2008; Goldsmith et al. 2008; Cornelio et
al. 2013) CP-nets indeed provide an effective compact way
to qualitatively model preferences over outcomes (that is,
decisions) with a combinatorial structure. CP-nets are also
easy to elicit and provide efficient optimization reasoning
(Chevaleyre et al. 2011; Allen et al. 2015). Moreover, in a
collective decision making scenario, several CP-nets can be
aggregated, e.g., using voting rules (Conitzer et al. 2011;
Mattei et al. 2013; Cornelio et al. 2015), to find compro-
mises and reach consensus among decision makers.

If ethical constraints are added to this scenario, it means
that the subjective preferences of the decision makers is
not the only source of information we should consider (Sen
1974; Thomson 1985; Bonnefon et al. 2016). Indeed, de-
pending on the context, we may have to consider specific
ethical principles derived from an appropriate ethical the-
ory (Copp 2005). While preferences are important, when
preferences and ethical principles are in conflict, the prin-
ciples should override the subjective preferences of the de-
cision maker. For example, in a hiring scenario, the prefer-
ences of the hiring committee members over the candidates
should be measured against ethical guidelines and laws e.g.,
ensuring gender and minority diversity. Therefore, it is es-
sential to have principled ways to evaluate if preferences are
compatible with a set of ethical principles, and to measure
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how much these preferences deviate from the ethical princi-
ples. The ability to precisely quantify the distance between
subjective preferences and external priorities, such as those
given by ethical principles, provides a way to both recognize
deviations from feasibility or ethical constraints, and also to
suggest more compliant decisions.

In this paper we use CP-nets to model both exogenous pri-
orities, e.g., those provided by ethical principles, and subjec-
tive preferences of decision makers. Thus the distance be-
tween an individual subjective preferences and some ethi-
cal principles can be measured via a notion of distance be-
tween CP-nets. Indeed, we define such a notion of distance
(formally a distance function or metric) between CP-nets.
A more comprehensive discussion of CP-nets and distances
between them is given by Loreggia et al. (2018).

Since CP-nets are a compact representation of a partial or-
der over the possible decisions, the ideal notion of distance
is a distance between the induced partial orders of the CP-
nets. However, the size of the induced orders is exponential
in the size of the CP-net, and we conjecture that comput-
ing a distance between such partial orders is computation-
ally intractable because of this possibly exponential explo-
sion. Therefore we propose a tractable approximation that is
computed directly over the CP-nets dependency graphs, and
we study the quality of the approximation.

To define the desired distance between partial orders, we
generalize the classic (Kendall 1938) τ (KT) distance, which
counts the number of inverted pairs between two complete,
strict linear orders. We add a penalty parameter p defined for
partial rankings as proposed by (Fagin et al. 2006), and use
this distance, that we call KTD, to compare partial orders. In
KTD the contribution of pairs of outcomes that are ordered
in opposite ways is 1 and that of those that are ordered in one
partial order and incomparable in the other is p. We show
that 0.5 ≤ p < 1 is required for KTD to be a distance.
For the tractable approximation of KTD, we can define

a distance between CP-nets, called CPD, that only analyzes
the dependency structure of the CP-nets and their CP-tables.
We then characterize the case when CPD = 0, which cor-
respond to when the two CP-nets have the same dependency
structure and CP-tables. In other words, CPD = 0 if and
only if the two CP-nets are identical and they induce the
same partial order over outcomes.

In general the values returned by CPD and KPD can be
different. More precisely, the pairs of outcomes for which
CPD could give an incorrect contribution to the distance are
those that are either incomparable in both CP-nets (in this
case CPD could generate an error of +p or −p), or that are
incomparable in a CP-net and ordered in the other (in this
case the CPD error can be +1). To give upper and lower
bounds to the error that CPD can make, we study the number
of incomparable pairs present in a CP-net. We show that it
is polynomial to compute the number of incomparable pairs
of outcomes in a separable CP-net (that is, CP-nets with no
dependencies among features). Non-separable CP-nets have
fewer incomparable pairs of outcomes, since each depen-
dency link eliminates at least one incomparable pair.

Our theoretical bounds are fairly wide. For this reason,
we perform an experimental analysis of the relationship be-

tween CPD and KTD, which shows that the average error
is never more than 10%. We then define a procedure that
evaluates the distance between subjective preferences and
ethical principles, and makes decisions using the subjective
preferences if they are close enough to the ethical principles.
Otherwise, the procedure moves to less preferred decisions
until we find one that is a compromise between the ethical
principles and the preferences. We then perform an exper-
imental evaluation showing that the quality of the decision
with respect to the subjective preferences does not signifi-
cantly degrade, i.e., only needs to be moved a short distance
in the preference order, when we need compliance with the
ethical principles.

Background: CP-nets

CP-nets (Boutilier et al. 2004) (for Conditional Prefer-
ence networks) are a graphical model for compactly rep-
resenting conditional and qualitative preference relations.
They are sets of ceteris paribus preference statements (cp-
statements). For instance, the cp-statement “I prefer red
wine to white wine if meat is served.” asserts that, given
two meals that differ only in the kind of wine served and
both containing meat, the meal with red wine is prefer-
able to the meal with white wine. Formally, a CP-net has
a set of features F = {x1, . . . , xn} with finite domains
D(x1), . . . ,D(xn). For each feature xi, we are given a set
of parent features Pa(xi) that can affect the preferences
over the values of xi. This defines a dependency graph
in which each node xi has Pa(xi) as its immediate pre-
decessors. An acyclic CP-net is one in which the depen-
dency graph is acyclic. Given this structural information,
one needs to specify the preference over the values of each
variable x for each complete assignment on Pa(x). This
preference is assumed to take the form of a total or par-
tial order over D(x). A cp-statement has the general form
x1 = v1, . . . , xn = vn : x = a1 � . . . � x = am, where
Pa(x) = {x1, . . . , xn}, D(x) = {a1, . . . , am} , and � is
a total order over such a domain. The set of cp-statements
regarding a certain variableX is called the cp-table for X .

Consider a CP-net whose features are A, B, C, and D,
with binary domains containing f and f if F is the name of
the feature, and with the cp-statements as follows: a � a,
b � b, (a ∧ b) : c � c, (a ∧ b) : c � c, (a ∧ b) : c � c,
(a ∧ b) : c � c, c : d � d, c : d � d. Here, statement
a � a represents the unconditional preference for A = a
over A = a, while statement c : d � d states that D = d is
preferred to D = d, given that C = c.
A worsening flip is a change in the value of a variable to

a less preferred value according to the cp-statement for that
variable. For example, in the CP-net above, passing from
abcd to abcd is a worsening flip since c is better than c given
a and b. One outcome α is better than another outcome β
(written α � β) if and only if there is a chain of worsening
flips from α to β. This definition induces a preorder over the
outcomes, which is a partial order if the CP-net is acyclic.

Finding the optimal outcome of a CP-net is NP-
hard (Boutilier et al. 2004). However, in acyclic CP-nets,
there is only one optimal outcome and this can be found in
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linear time by sweeping through the CP-net, assigning the
most preferred values in the cp-tables. For instance, in the
CP-net above, we would choose A = a and B = b, then
C = c, and thenD = d. In the general case, the optimal out-
comes coincide with the solutions of a set of constraints ob-
tained replacing each cp-statement with a constraint (Braf-
man and Dimopoulos 2004): from the cp-statement x1 =
v1, . . . , xn = vn : x = a1 � . . . � x = am we get the
constraint v1, . . . , vn ⇒ a1. For example, the following cp-
statement (of the example above) (a ∧ b) : c � c would be
replaced by the constraint (a ∧ b)⇒ c.

In this paper we want to compare CP-nets while lever-
aging the compactness of the representation. To do this, we
consider profile (P,O), where P is a collection of n CP-
nets (whose graph is a directed acyclic graph (DAG)) over
m common variables with binary domains and O is a to-
tal order over these variables. We require that the profile is
O-legal (Lang and Xia 2009), which means that in each CP-
net, each variable is independent to all the others following
in the orderingO. Given a variableXi the function flw(Xi)
returns the number of variables following Xi in O.

Since every acyclic CP-net is satisfiable (Boutilier et al.
2004), we compute a distance among two CP-nets by com-
paring a linearization of the partial orders induced by the two
CP-nets. In this paper, we consider the linearization gener-
ated using the algorithm described in the proof of Theorem
1 of (Boutilier et al. 2004) and reproduced below as Algo-
rithm 1. This algorithm works as follows: Given an acyclic
CP-net A over n variables and a ordering O to which the
A is O-legal, we know there is at least one variable with
no parents. If more than one variable has no parents, then
we choose the one that comes first in the provided order-
ing O; let X be such a variable. Let x1 � x2 be the order-
ing over Dom(X) dictated by the cp-table of X . For each
xi ∈ Dom(X), construct a CP-net, Ni, with the n− 1 vari-
ables V −X by removingX from the initial CP-net, and for
each variable Y that is a child of X , revising its CPT by re-
stricting each row toX = xi. We can construct a preference
ordering �i for each of the reduced CP-nets Ni. For each
Ni recursively identify the variable Xi with no parents and
construct a CP-net for each value inDom(Xi) following the
same algorithm until a CP-net have variables. We can now
construct a preference ordering for the original network A
by ranking every outcome with X = xi as preferred to any
outcome withX = xj if xi � xj in CPT(X). This lineariza-
tion, which we denote with LexO(A), assures that ordered
pairs in the induced partial order are ordered the same in
the linearization and that incomparable pairs are linearized
using the cp-tables.

In Algorithm 1, CPTA,o(v) returns the ordered values
of variable v in CP-net A, given a partial assignment o to
a subset of variables. This linearization, which we denote
with LexO(A,O), where A is a CP-net and O an O-legal
order over the features of A, enforces that ordered pairs in
the induced partial order are ordered the same in the lin-
earization and that incomparable pairs are linearized using
the cp-tables.

Algorithm 1 Linearization of a Partial Order induced by a
CP-net A
1: function LEXO(A,O,Lin = [], o = None) �Where

A is a CP-net, O is the O-legal order on A, Lin is the
(initially empty) linearization computed by the function,
and o is an outcome (initially none).

2: if O = Null then
3: Lin.append(o)
4: return Lin
5: end if
6: v = pop(O)
7: for value ∈ CPTA,o(v) do
8: temp = o+ value
9: Lin = LexO(A,O,Lin, temp)

10: end for
11: return Lin
12: end function

A CP-net Distance Function

In what follows we will assume that all CP-nets are acyclic
and in minimal (non-degenerate) form, i.e., all arcs in the
dependency graph have a real dependency expressed in the
cp-statements, see the extended discussion in (Allen et al.
2017; 2016). The following definition is an extension of the
(Kendall 1938) τ (KT) distance with a penalty parameter p
defined for partial rankings by (Fagin et al. 2006).

Definition 1. Given two CP-nets A and B inducing partial
orders P and Q over the same set of outcomes U :

KTD(A,B) = KT (P,Q) =
∑

∀i,j∈U,i �=j

Kp
i,j(P,Q) (1)

where i and j are two outcomes with i �= j, we have:

1. Kp
i,j(P,Q) = 0 if i, j are ordered in the same way or they

are incomparable in both P and Q;
2. Kp

i,j(P,Q) = 1 if i, j are ordered inversely in P and Q;

3. Kp
i,j(P,Q) = p, 0.5 ≤ p < 1 if i, j are ordered in P

(resp. Q) and incomparable in Q (resp. P ).

In the previous definition we choose p ≥ 0.5 to make
KTD(A,B) a distance function, indeed if p < 0.5 the dis-
tance does not satisfy the triangle inequality. We also ex-
clude p = 1 so that there is a penalty for two outcomes being
considered incomparable in one and ordered in another CP-
net. This allows us, assuming O-legality, to define for each
CP-net a unique most distant CP-net.

Proposition 1. Given two acyclic CP-nets A and B that
are not O-legal, deciding if KTD(A,B) = 0 cannot be
computed in polynomial time unless P = NP .

The NP-complete problem of checking for equivalence
for two arbitrary CP-nets (Santhanam et al. 2013), i.e., de-
ciding if two CP-nets induce the same ordering, can be re-
duced to the problem of checking if their KTD distance is 0.
That is, if we had a polynomial time algorithm for deciding
if KTD(A,B) = 0 then we could decide the equivalence
problem for acyclic CP-nets. We know from (Boutilier et

56



al. 2004) that dominance testing for max-δ-connected CP-
nets, that is CP-nets where the maximum number of paths
between two variables is polynomially bounded in the size
of the CP-net is NP-complete. We know that O-legal, acyclic
CP-nets are a class of max-δ-connected CP-nets because the
O-legality constraint means that there are only a maximum
of n − 2 paths between two nodes. However, this does not
necessarily mean that the equivalence question is automati-
cally hard. As we will see, our lower bound can actually be
used to check equivalence for acyclic, O-legal CP-nets.
Since the question of dominance is closely related to that

of distance, the complexity of computing KTD for O-legal
CP-nets remains an important open question that we con-
jecture to be intractable. Due to this likely intractability we
will define another distance for CP-nets which can be com-
puted efficiently directly from the CP-nets without having to
explicitly compute the induced partial orders. This new dis-
tance is defined as the Kendal Tau distance of the two LexO
linearizations of the partial orders.
Definition 2. Given two O-legal CP-nets A and B, with m
features, we define:

CPD(A,B) = KT (LexO(A), LexO(B)) (2)
We show that CPD is a distance over O-legal CP-nets.

Theorem 1. Function CPD(A,B) satisfies the following
properties:

1. CPD(A,B) ≥ 0;
2. CPD(A,B) = CPD(B,A);
3. CPD(A,B) ≤ CPD(A,C) + CPD(C,B).
4. CPD(A,B) = 0 if and only if A = B;

Proof. Properties 1-3 are directly derived from the fact that
KTD is a distance function over total orders. Let us now fo-
cus on property 4. In our context, A = B if and only if they
induce the same partial order. It is, thus, obvious that if A =
B then CPD(A,B) = 0 since LexO(A) = LexO(B).
Let us now assume that A �= B. Thus A and B induce dif-
ferent partial orders. In principle, what could happen is that
one partial order is a subset of the other. In such a case they
would have the same LexO linearizations and it would be
the case that CPD(A,B) = 0, despite them being differ-
ent. We need to show that this cannot be the case if A and B
are O-legal. Let us first assume that A and B have the same
dependency graph but that they differ in at least one ordering
in one CP-table. It is easy to see that in such a case there is
at least one pair of outcomes that are ordered in the opposite
way in the two induced partial orders. Assume that A and
B have a different dependency graph. Due to O-legality it
must be that there is a least an edge which is present, say,
in A and missing B. In this case by adding a non-redundant
dependency we are reversing the order of at least two out-
comes.

We will now show how CPD(A,B) can be directly com-
puted from CP-netsA andB, without having to compute the
linearizations. The computation comprises of two steps. The
first step, which we call, normalization, modifies A and B
so that each feature will have the same set of parents in both

CP-nets. This means that each feature will have in both nor-
malized CP-nets a CP-table with exactly the same number of
rows corresponding each to the same assignment to its par-
ents. The second step, broadly speaking, computes the con-
tribution to the distance of each difference in the CP-table
entries. We describe each step in turn.

Step 1: Normalization. Consider two CP-nets, A and B
over m variables V = {X1, . . . , Xm} each with binary do-
mains. We assume the two CP-nets are O-legal with respect
to a total order O = X1 < X2 < · · · < Xm−1 < Xm. We
note that O-legality implies that the Xi can only depend on
a subset of {X1, . . . , Xi−1}
Each variable Xi has a set of parents PaA(Xi) (resp.

PaB(Xi)) in A (resp. in B), and is annotated with a condi-
tional preference table in each CP-net, denoted CPTA(Xi)
and CPTB(Xi).
We note that, in general we will have that PaA(Xi) �=

PaB(Xi). However, it is easy to extend the two CP-nets so
that in bothXi will have the same set of parents PaA(Xi)∪
PaB(Xi). This is done by adding redundant information to
the CP-tables, which does not alter the induced ordering.

For example, let us considerCPTA(Xi), then we will add
2PaA(Xi)∪PaB(Xi)−2PaA(Xi) copies of each original row to
CPTA(Xi), that is, one for each assignment to the variables
on whichXi depends inB but not in A. After this process is
applied to all the features in both CP-nets, each feature will
have the same parents in both CP-nets and its CP-tables will
have the same number of rows in both CP-nets. We denote
with A′ and B′ the resulting CP-nets.
We note that normalization can be seen as the reverse pro-

cess of CP-net reduction (Apt et al. 2008) which eliminates
redundant dependencies in a CP-net.

Step 2: Distance Calculation Given two normalized CP-
nets A and B, let diff(A,B) represent the set of CP-table
entries of B which are different in A and let var(i) = j if
CP-table entry i refers to variable Xj . Moreover, let m =
|V | and flw(X) denote the number of features followingX
in order O. Let us define the two following quantities:

nSwap(A,B) =
∑

j∈diff(A,B)

2flw(var(j))+(m−1)−|PaB(var(j))|

(3)

which counts the number of inversions that are caused by
each different table entry and sums them up.
Theorem 2. Given two normalized CP-nets A and B, we
have:

CPD(A,B) = nSwap(A,B) (4)
We provide an example of how a difference in a CP-table

entry affects the LexO linearization.
Example 0.1. Consider a CP-net with three binary features,
A, B, and C, with domains containing f and f if F is
the name of the feature, and with the cp-statements as fol-
lows: a � a, b � b, c � c. A linearization of the partial
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order induced by this CP-net can be obtained by impos-
ing an order over the variables, say Let variable ordering
O = A � B � C. The LexO(A) is as follows:

A1Zone︷ ︸︸ ︷
B1Zone︷ ︸︸ ︷

abc � abc �
B2Zone︷ ︸︸ ︷

abc � abc �

A2zone︷ ︸︸ ︷
B3zone︷ ︸︸ ︷

abc � abc �
B4zone︷ ︸︸ ︷

abc � abc

Now, consider changing only the cp-statement regarding
A to a � a. Then, the linearization of this new CP-net can
be obtained by the previous one by swapping the first out-
come in the A1zone with the first outcome in the A2zone,
the second outcome in the A1zone with the second outcome
in the A2zone and so on. Moreover, the number of swaps
is directly dependent on the number of variables that come
after A in the total order.

From Theorem 2 we can see that 0 ≤ CPD(A,B) ≤
2m−1(2m − 1), where m is the number of features. In par-
ticular:

• CPD(A,B) = 0 when the two CP-nets have the same
dependency graph and cp-tables and so they are repre-
senting the same preferences;

• CPD(A,B) = 2m−1(2m − 1) when the two CP-nets
have the same dependency graph but cp-tables with re-
versed entries, so they are representing preferences that
are opposite to each other.

Notice that variables with different cp-statements in the rep-
resentation give more value to the distance if they come first
in the total order: the value decreases as the position in the
total order increases. For instance it is easy to prove that if
the cp-statement of the first variable in the total order differs,
than CPD ≥ 2m−2(2m − 1).

Supporting Ethical Decisions

Ethical principles are modelled via a CP-net, say S, and an
individual models her preferences via another CP-net, say
B. We assume that these two CP-nets have the same fea-
tures.

Of course this is a restriction and in general we think the
features of these two CP-nets can overlap but not necessarily
be the same. We are studying what happens when the two
sets of features do not coincide. But for the purpose of this
paper we will assume they do coincide.

Given the ethical principles and the individual’s prefer-
ences, we need to guide the individual in making decisions
that are not too unethical. To do this, we propose to proceed
as follows:

1. We set two distance thresholds: one between CP-nets
(ranging between 0 and 1), and another one between de-
cisions (ranging between 1 and n).

2. We check if the two CP-netsA andB are less distant than
t1. In this step, we use CPD to compute the distance.

3. If so, the individual is allowed to choose the top outcome
of his preference CP-net.

4. If not, then the individual needs to move down its pref-
erence ordering to less preferred decisions, until he finds
one that is closer than t2 to the optimal ethical decision.
This is a compromise decision between what the prefer-
ences say and what the ethical principles recommend.

Empirical Analysis

We divide the empirical evaluation in two parts. Firstly, we
evaluate the performances of the CPD distance by checking
running time and deviation from the exact KTD distance.
The first part of the experiments shows that in terms of com-
putation time and error rate, our approximation performs ex-
tremely well. The second part of our experiments focuses on
the ethical perspective. We show how the distance can be
used in an ethical scenario to evaluate how much an individ-
ual decision maker deviates from an adopted ethical princi-
ple modeled as a CP-net.

Ethical Scenario

Given an ethical principle and the preference of an individ-
ual, both encoded as CP-nets, we want to understand if fol-
lowing the preferences will lead to an ethical action. Since in
this scenario individuals want to act ethically, firstly the in-
dividual determines whether she can use her most preferred
choice by checking if her CP-net is “sufficiently close” to
the ethical CP-net. If these two CP-nets are farther apart than
some threshold t1, then we proceed down the preference or-
dering till we find a decision that is sufficiently close to the
optimal ethical decision, according to another threshold t2.

We represent the ethical principles with a CP-net A and
the individual’s preferences with a CP-netB, and we assume
that these two CP-nets have the same features. We judge that
the individual is acting ethically ifCPD(A,B) ≤ t1. If yes,
the individual knows that her preferences are pretty ethical
and she can choose the best outcome induced by her CP-net.

If instead CPD(A,B) > t1, we compute how many
worsening flips we need to apply to her best decision (ac-
cording to her preferences) to get to a decision that is closer
than t2 flips from the optimal ethical decision.

This empirical analysis is run varying n, t1 and t2, where
n is the number of features, and t1 and t2 are the tolerances.
We run experiments varying the number of features 2 ≤ n ≤
8. For each value of n we vary t1 ∈ {0, 0.1, 0.2, 0.4, 0.8}.
Low values of t1 represents scenarios where the tolerance
is absent or low. This means that, in order for a decision
maker to take their first choice, they should have preferences
very close to the ethical principle. Larger values of t1 model
less strict ethics, where people have more freedom of choice.
For each value of n and t1, we vary the value of t2 (2 ≤
t2 ≤ (n + 2)/2). This again represents scenarios where the
freedom of individuals vary.

Given the values of n, t1,, and t2 we generate 1000 pairs
of CP-nets (A,B) from a uniform distribution using the soft-
ware described by (Allen et al. 2017; 2016). We compared
values of the approximate CPD distance with the real KTD
distance. This shows us how many times CPD is wrong and
how much individuals need to sacrifice of their preferences
in order to be ethical. We consider and report the following
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cases which represent the confusion matrix of our experi-
ment:
1. True Positive (TP): CPD(A,B) ≤ t1 and

KTD(A,B) ≤ t1. In this case, individual prefer-
ences are close to the ethical principles and decision
makers choose their best alternative;

2. True Negative (TN): CPD(A,B) > t1 and
KTD(A,B) > t1. In this case, individual prefer-
ences are not close to the ethical principles and the
decision makers must find a compromise;

3. False Positive (FP): CPD(A,B) ≤ t1 and
KTD(A,B) > t1. In this case, erroneously, indi-
viduals think they are acting ethically and consequently
choose their best alternative even though it is not ethical;

4. False Negative (FN): CPD(A,B) > t1 and
KTD(A,B) ≤ t1. In this case, erroneously indi-
viduals think they are not acting ethically and they select
a compromise decision even though they could select
their top preferred decision.
The number of TP + TN gives an idea of the accuracy

of the distance; the higher this value, the higher confidence
individuals can have in using the approximation of the dis-
tance to understand whether they are ethical or not.
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Figure 1: Percentage of TP, TN, FP, FN: the chart reports the
number of cases for which CPD and KTD agree, or not,
on the comparison based on the tolerance t1. This gives an
idea of the accuracy of the approximated distance.

Figure 1 shows the confusion matrix for n = 7 and t2 = 4
while varying t1. Notice that, as expected, when the toler-
ance t1 is null or low, e.g., t1 = 0 or t1 = 0.2, individuals
can almost never select their their best choice. Indeed, for
t1 = 0 the percentage of True Positives (purple bar) is close
to 0% while for t2 = 0.2 the percentage of True Positive
is around 5%. This means that the decision makers prefer-
ences must be close to the ethical principle in order to have
the freedom to choosing their best choice. Instead, when the
tolerance is higher, they have more freedom to choose what
they like. For example, with t1 = 0.4, the percentage of True
Positives (purple bar) is close to 40% while for t1 = 0.8 it
is more than 80%.
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Figure 2: Compromises analysis: the charts reports a com-
parison between the number of times that individuals have
preferences which are not close to the ethics and for which
they have to look for a compromise and the quality of the
compromise in terms of distance from their best choice.

The next important question is: What happens when indi-
viduals cannot choose their first choice and have to look for
another one which is closer to the ethical principles? Figure
2 reports the percentage of cases in which individuals have
to find a compromise because their preferences are not close
to the ethical principles, according to t1,. For these cases
we quantify the amount of compromise in terms of positions
in the induced partial order. As before, when the tolerance
is strict, an individual has to look for a compromise nearly
every time. It is interesting to notice that the amount of com-
promise varies based on the value of t2 and seems to be not
influenced by t1. This is quite natural, when t2 = 4 it means
that the individual has to find a choice that is in the top five
positions of the ethical ordering in order to reach a compro-
mise. This means that such a choice, on average, is in the
first two positions of the individual’s preference (red line
in figure). The lower the value of t2, the harder it becomes
for the individual to find an ethical decision, and she has to
descend down her preference order, on average, up to the
fourth position to find an acceptable alternative.

Conclusions

In order to model and reason with both preferences and
ethical principles in a decision making scenario, we have
proposed a notion of distance between CP-nets, providing
both a theoretical study and an experimental evaluation of
its properties. We show that our approximation is both accu-
rate in practice and efficient to compute.

Several extensions to our setting can be considered for the
future. Indeed, we have made some assumptions on the two
CP-nets for which we can compute the distance, that would
be useful to relax. First, the two CP-nets over which we de-
fine the CPD distance have the same features, and with the
same domains, but can differ in their dependency structure
and CP-tables. It is important to also cover the case of CP-
nets that may have different features and domains. More-
over, we have also assumed the two CP-nets are O-legal,
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that is, there is a total order of the CP-nets features that is
compatible with the dependency links of both CP-nets. Intu-
itively, this means that the preferences are the ethical princi-
ples are not indicating completely opposite priorities. How-
ever, there could be situations where this is actually the case,
and it is important to know how to combine preferences and
ethical principles also in this case.
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Abstract

In this paper we underline the importance of knowledge in
artificial moral agents and describe our experience-focused
approach which could help existing algorithms go beyond
proofs of concept level and be tested for generality and real-
world usability. We point out the difficulties with implemen-
tation of current methods and their lack of contextual knowl-
edge hindering simulations in more realistic, every-day life
situations. The idea is to prioritize resources for predictions
and the process of automatic knowledge acquisition for an
oracle to be used by moral agents, both human and artificial.

Introduction

Value alignment problem has recently gained the attention
among artificial intelligence researchers, philosophers and
non-specialists. Nick Bostrom’s book “Superintelligence”
(Bostrom 2014) has popularized the topic and the potential
dangers of high-level autonomy machines became widely
discussed, also by influential figures as Stephen Hawking,
Bill Gates or Elon Musk. Although the discussion has lasted
for years and many possible solutions have been proposed,
a universally moral machine is still far from reality. One of
the major problems is the fact that universal code of ethics
is hard (or impossible) to establish due to the cultural dif-
ferences and the influences of other bigger and smaller con-
textual variations. For that reason the Artificial Intelligence
researchers are in a difficult position when they try to create
an ethical decision making system which could help allevi-
ating worries about the future of AI.

Hypothesis

Our hypothesis is that knowledge acquisition field should
be as important for building unprejudiced systems as the
very process of creating them. Top-down approaches are dif-
ficult to implement (what exactly does one mean by “do
not harm”?) and in bottom-down approaches the decision
process generates output which origin is often difficult to
explain. However, both strategies could benefit from gath-
ered and processed1 real world descriptions and become

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1For instance automatically annotated with probability, polarity
or utility estimations.

more easily testable and expandable. Because we work,
among others, on dialog systems, basically without any in-
put restrictions, workable but sufficiently general methods
for moral evaluation are necessary at the very moment. For
this reason we aim at solutions not for hypothetical super-
intelligent agents dealing with famous moral dilemmas but
for existing systems which must avoid learning failures like
Microsoft’s Tay bot that was tricked to praise Hitler. On
the other hand, we also are aware about pitfalls of gather-
ing knowledge without quality considerations. In this paper
we would like to emphasize the importance of rich examples
or real-world situations. To the authors’ best knowledge all
existing implementations of artificial moral agents (AMAs)
deal only with toy applications (prototypes) and very spe-
cific / limited tasks. We think the shortage of contextual data
is one of the main reasons restraining AI systems from be-
coming more general, expandable and testable. Knowledge
in these systems is manually crafted making them less real-
istic and difficult to be implemented in real-world, everyday
applications.

Existing Approaches to Machine Ethics

Variety of possible solutions for achieving ethical machines
have been proposed and one of the latest survey2 of exist-
ing methods is given in (Pereira and Saptawijaya 2016). Au-
thors of this book divide the approaches into two realms
– one dealing with individual ethical instances and second
describing collective morality, which combines game the-
ory (Conitzer et al. 2017) and findings of the evolution-
ary psychology. They introduce their approach using logic
programing for individual moral agents and propose meth-
ods for bridging both realms. Logic-based methods, for ex-
ample by formalizing ethical codes with deontic logic of
(Bringsjord, Arkoudas, and Bello 2006) are probably the
most popular and machine learning (Anderson, Anderson,
and Armen 2006) is not used widely as it is often believed
that machine ethics cannot be based on predicting how to
do the right thing. We partially disagree with (Pereira and
Saptawijaya 2016) claiming that the community should be
well aware that such present day learning is inadequate for

2Due to the limited space we only mention main types of ap-
proaches; our proposal refers to probably all AMAs but is different
in focusing on knowledge rather than algorithms.
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general machine morality. Only small, circumscribed, well-
defined domains have been susceptible to rule generation
through machine learning. Rules are all important for moral
explanation, justification and argumentation. We think rules
can be extrapolated from fuzzy observations and we believe
the observations helped humans greatly in creating ethics (as
well as language, mathematics or logics). We return to this
theme several times in this paper as the knowledge (result of
observations) is one of the two cores of our approach.

On the other hand, we are also aware that learning from
Big Data in the spirit of purely statistical and probabilistic
calculations is also flawed, risky and the agent’s reasoning
often cannot be explained. However, we think that meth-
ods like deep learning can enrich the textual data which
lacks tacit knowledge. We also see a problem common
to probably all approaches, including cognitive architec-
tures (Bretz and Sun 2017) – the need of creating cor-
rect data sets and (preferably contextual) knowledge bases.
Their manual creation / annotation is costly and impracti-
cable when all even only the most probable situations that
an agent may face are needed to be considered3. To ad-
dress this problem, methods for automatic acquisition of
moral rules e.g. by human-machine cooperation with In-
verse Reinforce Learning (Ng, Russell, and others 2000;
Hadfield-Menell et al. 2016) were suggested. However, they,
silimarly to the “seed AI”-like approaches, also seem unre-
alistic because teaching (supervising) an agent to deal with
complex cases in changing environments could take very
long time and the AMA would be influenced by one super-
visor’s experiences and his or her preferences. Thorough the
scrutiny of formal methods and shallow but wide stochastic
approaches can help each other or even be integrated into
more holistic systems for example using probabilistic meth-
ods like Bayesian interference (Tenenbaum et al. 2011). But
before that, at least in our opinion, it seems necessary to
provide more structured crowd-based contextual data which
could allow:

• discovering causes and effects
• calculating probabilities
• forming and dissolving abstract knowledge
• simulating real world situations
• testing existing and new moral agents

In the next section we describe our approach which dis-
covers causes and effects for the moral judgement task. After
that we present our idea of expanding the existing ontologies
to deal with concepts as stories, the need of controlling data
credibility and the importance of language itself. In the last
part of this paper we answer several questions that often ap-
pear when discussing our approach with other researchers.

Knowledge-First Approach

Our proposal is to shortly go back to the point in our evo-
lution when no theories of ethics were yet formulated. We
assume that empathic circuitry in our brains, together with

3In logic-based approaches knowledge is limited to a given task,
usually a single dilemma in very restricted environment.

the capabilities to observe the world and to communicate
with peers ignited codification of our sense of justice which
keeps changing throughout the ages. The idea is to simulate
this process (and test our hypothesis) by first creating condi-
tions for discovering contextual dependencies that influence
moral load of given states and acts. These conditions are cur-
rently reduced to a) unstructured knowledge in natural lan-
guage b) agent’s capability to guess a polarity (positive or
negative) of concepts (acts or states).

Source Knowledge

As mentioned before, although the broad world knowledge
seems to be an obvious ingredient of moral reasoning, it is
widely ignored by the creators of Artificial Moral Agents.
To show that it is not only useful but crucial in machine
ethics we utilize various text resources like blog corpus,
Twitter corpus, Aozora book repository (we mostly work
with Japanese language), chat logs, etc. which contain bil-
lions of words. Basically matching concepts and the natural
language processing is performed of a limited context of on,
two or three sentences (sentence with a concept being an-
alyzed, previous sentence containing possible reasons and
following sentence with possible consequences).

Polarity Calculation

For time being we utilize sentiment analysis methods to help
our systems asses consequences. The initial idea is presented
in (Rzepka and Araki 2005) and more technical details are
given in (Rzepka and Araki 2012) and (Rzepka and Araki
2015). The simplest method for this task utilizes lexicons of
negative and positive words. For example, if most of human
experiences with “stealing a car” described in text resources
cooccurred with negative lexicon words, the polarity of the
concept becomes morally negative. Except emotion-related
phrases we also created a lexicon based on Kohlberg’s stages
of moral development (praising / reprimanding, awarding /
punishing, etc.) to extend recognition to legal consequences
(if an act ended in doer’s arrest it is more likely that the act
was not moral).

Precision of Moral Estimation

The latest experiments (Rzepka and Araki 2017) show
that our simplistic approach is able to achieve almost
85.7% agreement with human subjects. However, the results
showed that mere size of knowledge base does not equate to
better ethical judgement. Not only different automatic polar-
ity estimation methods must be tested, also the credibility of
the sources require investigation. We elaborate on this prob-
lem and propose solutions in later sections. It also must be
noted that the experiments were performed with concepts
and many of them strongly depend on wider context. The
input is basically unrestricted when it comes to the topic
but longer concepts decrease the chance of finding sufficient
number of examples. For instance driving should be recog-
nized as neutral, driving after drinking as negative, but driv-
ing with a baby unbuckled after home party at friends house
on the hill cannot be found in the given input form, therefore
recognizing, abstracting and weighting concepts within the
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input becomes necessary. Unfortunately, automizing these
tasks is rather difficult without sufficient set of reliable ex-
amples from which e.g. a concept’s importance can be cal-
culated. This is one of the reasons we are currently preparing
the ontology of concepts discussed later in this paper.

Tests with Embodied System

Many researchers draw attention to the importance of em-
bodiment in moral behavior (Trappl 2015) and need concrete
testing decision-making algorithm in action (Arnold and
Scheutz 2016). To see how our text knowledge-based ap-
proach works in the real world, we implemented our method
on a Roomba robotic vacuum cleaner (Takagi, Rzepka, and
Araki 2011). Users were allowed to communicate freely
with the device through Twitter. The robot had its name
(“Roomba”) and function (variants of the verb “to clean”)
hardcoded, and its mission was to make a user happy with-
out violating common sense, which is the motto of our ap-
proach. The system, with knowledge base limited only to
Twitter corpus worked surprisingly well and the robot was
able to propose its help even if no straightforward com-
mand was given. For instance, “this room is a mess” has
triggered negative reactions and Twimba (the name of our
system) found by simple search that people deal with this
problem by cleaning which was its capability. On the other
hand, when one talks about a “dirty look”, the robot does not
react, because it deals with concepts, not single words. Not
caring about even very small contexts, although common in
various machine learning methods, showed us clearly that
deeper and more careful approach is necessary. Naturally it
was hard for a vacuum cleaner to violate common sense, but
“knowing” its name and its only function helped it to refuse
cleaning a bathtub, only because no examples of Roombas
cleaning bathtubs were found in the knowledge base.

Other Characteristics and Possibilities

As showed above, the sophistication of moral behavior may
increase with machine capabilities but does not seem to be
limited to embodied agents. Obviously the more actions a
machine can perform, the more dangerous it can become,
but e.g. chat systems with purpose like the second language
acquisition tutor (Nakamura et al. 2017) have to deal with
abstract concepts and utilize their “talking” capability that
conveys meaning which can be directly and indirectly harm-
ful to the user. For example, an artificial tutor reacting pos-
itively to a bullying statement is not only unnatural but also
may negatively influence adolescent users.

When implemented in a dialog system, our method needs
to support explaining its judgements which is an important
functionality for an AI system (Core et al. 2006). Explain-
able AI needs linguistic skills and the reasoning should be
clear to any user. Simplicity of the current algorithm and
dealing only with natural language makes it relatively easy
to generate explanations how a given judgement was per-
formed. In case of our majority voting strategy, it is cur-
rently enough to use only four output templates: a) “It’s
moral because majority (X%) of cases had positive conse-
quences”, b) “It’s immoral because majority (Y%) of cases
had negative consequences”, c) “It’s problematic” and d)

“Not enough data”. Examples of observations can be also
easily added. We have tested different majority thresholds
and 60-70% level seems to be most effective (Rzepka and
Araki 2017). The non-decisive middle area when roughly
half consequences were recognized as good and half as bad
(“problematic” output) constitute a safety valve (Rzepka and
Araki 2005). It contains concepts like abortion or euthana-
sia and it advised to program a system with our algorithm
to avoid actions and strong statements when even people are
not sure about the outcomes. To allow our method to han-
dle such cases and be able to perform ethical judgement and
decrease “Not enough data” outputs, again more contextual
knowledge is needed.

Toward the Ontology of Contexts

Current Knowledge Bases

Current knowledge bases are stored in various formats but
usually they can be represented in a flat and solid, cross-
linked structure like hypertext (Wikipedia, DBpedia, Babel-
Net, etc.) which links terms with other terms, categories
or definitions. Ontologies (semantic nets) like CyC (Lenat
and Guha 1989) or ConceptNet (Speer and Havasi 2012)
try to connect more abstract, commonsensical concepts, but
they do not contain longer chains of consecutive concepts
which could form, for instance, a Schankian script (Schank
and Abelson 1977). Therefore there is a gap between such
knowledge bases that cover small chunks of knowledge and
just raw text which very often describe much bigger con-
texts but are incomplete and/or noisy. We treat moral deci-
sion making as a subtask of the common sense processing. It
requires processing extendable / shrinkable data chunks that
constantly change their size and density depending on the
stream of information (linguistic in our case). This informa-
tion always changes as time moves forward and elements of
environment alter, but if an apple changes color to brown, it
does not mean a concept of apple like HasProperty changes
from “sweet” to “rotten”.

Expanding Number of Concepts and Their
Relations

We are currently experimenting with combining existing
concepts (from ConceptNet) into longer chunks of possi-
ble chains by confronting them with the blog corpora. Sev-
eral techniques are required for cleaning up the text, rec-
ognizing semantic roles, tackling with anaphora resolution,
double negations and other NLP-related tasks. Because the
Japanese ConceptNet is not big enough, we currently work
on expanding it (Krawczyk, Rzepka, and Araki 2016) and
checking its quality (Shudo, Rzepka, and Araki 2016). The
idea of data being used to supervising other data is not new,
it is called distant supervision (Mintz et al. 2009) where the
data replaces human in learning or other tasks usually requir-
ing human’s assistance. In Figure 3, we show how the text
knowledge itself can be useful in both expanding the knowl-
edge base and supervising any machine learning algorithm
giving positive and negative feedback from polarity calcu-
lation module. Simultaneously we are trying to acquire new
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Figure 1: Three layers of language-based moral judgement allowing understandable explanation of ethical choices calculated
from polarity of possible consequences).

concepts and their relations with grammar rules and linguis-
tic information like part of speech (see Figure 2). But nat-
urally the biggest difficulties with natural language lay not
on the lexical layer, but as we show below, on the semantic
level.

Enriching Context with Automatic Descriptions

Another important and unanswered question in common
sense knowledge acquisition is how to provide machines
with tacit knowledge which is obvious for us thanks to our
sensory input and is rarely expressed in language. As we
showed in the Figure 1, we believe that advances in pattern
recognition will be able to at least partially tackle this prob-
lem with methods like deep learning which has already had
some successes in automatically describing images in natu-
ral language (Vinyals et al. 2015). Currently4 we simulate
sensory input with text-mining techniques (Rzepka, Mit-
suhashi, and Araki 2016), but let us assume the progress in
pattern recognition (machine learning on constantly growing
data) has reached the human level without the massive and
costly annotated data. Every image or video available can
be described in a natural language in detail and every sen-
tence in written text can be flawlessly parsed. The speed of
access and analysis naturally surpasses human capabilities.
Our hypothesis is that just because a machine can refer to
more experiences (cases, contexts, regulations, etc.) than we
can, it is theoretically possible for the machine to generate
more fair judgement even than ethicists or judges. Moreover,
if programmers ensure that the moral judgement algorithm
is not prone to biases (or at least is less biased than most
of us), an agent could become an important advisor for hu-
man or robotic users. We discuss such a possibility of ideal
advising oracle in the last part of this paper.

4Until these technologies are reliable and the annotated data
widely accessible.

Credibility Problem

Internet is a source of countless examples of knowledge
which is simply wrong. Darker side of human nature re-
veals itself with spams, scams, flame wars, trolling, con-
spiracy theories, fake news and so on. Our beliefs are often
shaped by cognitive biases and laziness or lack of time force
us to access the click-baits or to share unscientific revela-
tions. Machines are more patient, and if programmed care-
fully, could avoid such errors by fastidious analysis, not only
the sources but also confirm contents via throughly scanned
newspapers, research papers, history books. But the machine
reading field is not there yet, so for time being we have to test
easier solutions and use surface methods as identifying and
classifying the source, analyzing the appearance of a page or
writing style of its creator (Akamine et al. 2010).

Moreover, few last years have showed another problem
with Big Data and machine learning, i.e. artificial intelli-
gence systems acquiring stereotypes associated so far only
with human beings (Bolukbasi et al. 2016; Caliskan, Bryson,
and Narayanan 2017). Not dealing with this problem might
end with a dialog system stating that woman’s place is in the
kitchen, all grandmothers are white (knowledge form any
image search engine), and items recommended by people
with non-Western names will be less trustworthy. There are
several methods for unbiasing the data, abstracting or alter-
ing concepts is two possible option we consider. Instead of
man or woman, “a person” can be used, although the data
would need a few layers of semantical specificity because
the knowledge of gender is often important for understand-
ing. Removing bias manually from the data is laborious, and
we believe that automatic discovery of reasons behind the
stereotypes would be an ideal scenario. Removing any prob-
lematic concept from knowledge could lead to false discov-
eries, therefore several experiments must be performed to
see if the oracle is able to find enough examples of stereo-
types.
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Figure 2: From words, through concepts, to stories. Basic idea of adding tacit knowledge by forcing linguistic descriptions and
using probabilities of concept combination to induce possible and usual situations.

Philosophical Stance (or Lack of It)

Our experience with both robotic and non-robotic systems
suggest that not only embodiment is unnecessary for moral
decisions but also there is probably no need for subjectivity
connected to consciousness often declared as the foundation
of human ethical domain (Nath and Sahu 2017). Because
our approach is rather pragmatic in its nature and we usually
give rather scarce explanations about the bigger picture, we
decided to use this section to explain some points which are
very often misunderstood by our critics.

Provoking Philosophy by Avoiding It

Principally, we want to avoid adhering to any particular eth-
ical school of thinking, although example-based approach
might be used for testing utilitarian (by calculating utilities)
and deontological (by extrapolating rules) systems. There
are some ideas in modern of ethics which can be easily at-
tached to our strategy, for instance an idealized ethical ad-
visor is discussed by various philosophers (Sidgwick 1907;
Firth 1952; Rawls 1971; Harsanyi 1977). (Sobel 1994) and
(Rosati 1995) are probably the main critics of such all-
knowing moral agent and the former describes four objec-
tions which our system could be referred to. The first one
suggests that an ideal advisor could get lost in too many,
always changing perspectives. As we show in Figure 4 al-
ways growing knowledge is not the obstacle but the oppo-
site. Controlling timeline (as the consequences change with
history) should be performed to avoid discovering polari-
ties which were different a century ago, e.g. reactions to
public lynches. Sobel’s second and third objections applies
to agent’s experience: evaluation of one life can be evalu-
ated only if it is experienced and this experience biases the
agent when experiencing another one. Similar argument can
be made about artificial agent which is given one set of ex-
periences but in our case maximal number of experiences
is used and forgetting one to process another is not neces-

sary. The last objection argues that the Ideal Agent with per-
fect knowledge can conclude that non-perfect agents’ is not
worth living due to its limitations. To make robot with our
system implemented kill anyone, the vast majority of stories
would need to contain examples that killing is good, which is
not true (the scale of actual data is shown in Figure 4). The
same can be said about any utility maximizer often shown
as an exemplification of dangerous AI. By changing the fo-
cus from theory to experience we our approach is closer to
what Johnson calls “moral imagination”. In (Johnson 1994),
he challenges traditional ethics by emphasizing the role of
stories we are confronted with from very early stage of our
lives. Equipped with empathy we process examples from
children’s books, novels, movies. Our morals keep evolv-
ing as we are experiencing stories in our own lives, both by
observing them and taking an active part.

Addressing Risks and Limitations of Machine
Ethics

The complicated character of human ethics raises questions
about risks and limitations of processing moral problems
by non-human agents. (Brundage 2014) lists problems of
the emerging field suggesting the whole endeavor might be
pointless. As our systems need moral decision as we speak,
we disagree with the main line of the critique, but agree
with some points and believe they should be addressed. The
problem of insufficient knowledge, complexity and/or the
possible lack of computational resources is what we plan
to solve by constructing a vast contextual ontology which
should grow with the progress of both knowledge acqui-
sition and computational capacities of hardware. Brundage
points out that machine ethics is not able to make (or not to
make) an exception to a rule when an exception shouldn’t
have been made based on the morally relevant factors. As
our approach does not rely on any hard-coded rules and is
supposed to discover and analyze as many factors as possi-
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Figure 3: Unbiased collective intelligence as a source for machine learning: by giving the system examples of human experience
could lead to richer reasoning about reasons and consequences of human / robot acts.

ble, dealing with exceptions should be easier than in other
approaches. It is difficult to ensure perfect decision because
there always might be a better one, but with unbiased knowl-
edge and analytical power, a machine (at least in theory)
might be a better and faster judge than average human being.
Another set of possible problems is related to moral dilem-
mas facing an agent when it needs to sacrifice something
important. Contextual knowledge based on real stories with
reasons and consequences should contain examples of sac-
rifices which makes the problem of insufficient data most
important to deal with. So called “folk morality” is often
flawed, as Brundage notices. For that reason we concentrate
on observing consequences, not on how people reason. He
also worries that extrapolation of our values may be far be-
yond our current preferences. In our opinion, restricting our
algorithm with common sense boundaries should prevent AI
from becoming too creative and stop aligning with our val-
ues.

Conclusions and Future Work

Various models of moral judgement have been proposed
and can be used in Artificial Moral Agents development,
for example (Dehghani et al. 2008; 2008; Nado, Kelly, and
Stich 2009; Ord 2015). On the other hand, empirical meth-
ods slowly enter the field of ethics and show, among others,
how morals differ between cultures (Buchtel et al. 2015) or
that feeling right is often more important than feeling good
(Tamir et al. 2017). With this paper emphasizing the impor-
tance of the empirical (observational) side of ethical rea-
soning, we would like to spark a discussion about collect-
ing, storing and normalizing contextual knowledge (chains
of very specific concepts instead of very general single con-

cepts). We believe that such knowledge could be very help-
ful in extrapolating rules, learning possible outcomes or test-
ing existing systems. We believe that natural language, even
being fuzzy and incomplete, can be a safe interlayer between
the real world and abstract notions like ethics.

As computer scientists we often tend to model the world
in a strict manner, we prefer to control input and output so
the proposed algorithms can be easily tested and the results
be published. But the value alignment may require us to
share a significant part of the control to the world around us
(by descriptions of it). For six million years we have gath-
ered knowledge which becomes more and more accessible
for machines and we believe it would not be smart if we
ignore the contextual variety of “good vs. bad” stories hu-
mankind keeps accumulating. We believe that taming this
knowledge may accelerate the progress of safe AI on a larger
scale that is usually seen. It might be easier and faster to pro-
gram a machine to acquire logics by analyzing moral cases
than program logics to acquire morality. Whichever method
will be most robust and “just”, the knowledge will be their
common ground.

There are various approaches how to define the inborn in-
stincts of justice. But a computer could learn from mani-
festations of those instincts without understanding them. As
computer pattern recognition capabilities constantly grow,
AI climbs bastions of human intelligence one after another.
As Watson was more often correct than the best humans,
some AMA can be more often “right” than all of us. With-
out any thinking, consciousness, free will but massive (mul-
ticultural) collective intelligence with decreased bias and in-
creased credibility might be helpful not only to AI systems
but also to anyone of us, even if in a form of mere voice
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Figure 4: Importance of experience data size: Although number of positively labelled sentences about killing somebody also
increases with new examples, the increase of correct (negative) consequence estimation is significantly higher.

assistant.
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Abstract

We examine moral decision making in autonomous systems
as inspired by a central question posed by Rossi with respect
to moral preferences: can AI systems based on statistical ma-
chine learning (which do not provide a natural way to explain
or justify their decisions) be used for embedding morality
into a machine in a way that allows us to prove that noth-
ing morally wrong will happen? We argue for an evaluation
which is held to the same standards as a human agent, remov-
ing the demand that ethical behavior is always achieved. We
introduce four key meta-qualities desired for our moral stan-
dards, and then proceed to clarify how we can prove that an
agent will correctly learn to perform moral actions given a set
of samples within certain error bounds. Our group-dynamic
approach enables us to demonstrate that the learned models
converge to a common function to achieve stability. We fur-
ther explain a valuable intrinsic consistency check made pos-
sible through the derivation of logical statements from the
machine learning model. In all, this work proposes an ap-
proach for building ethical AI systems, coming from the per-
spective of artificial intelligence research, and sheds impor-
tant light on understanding how much learning is required in
order for an intelligent agent to behave morally with negligi-
ble error.

1 Introduction

In her 2016 article “Moral Preferences” (Rossi 2016),
Francesca Rossi raises the question of how morality could
be embedded into machines. Considering ongoing automa-
tion, the growing autonomy of AI systems, and their deploy-
ment in safety-critical applications, it becomes increasingly
urgent to find answers to this question. Rossi suggests seven
largely independent research directions which help to shed
light on the larger issue. One of these questions concerns
the correctness of moral decisions learned with statistical
approaches, such as neural networks, under the prior as-
sumption that moral decisions can be formalized in this way.
Since it is arguably hard to inspect the inner workings of a
trained statistical learning model, ensuring that the model
behaves as intended—even in situations not anticipated by
its creators—is of particular importance.

The argument we present here is threefold. First, prov-
ing anything about morality in a wholly objective fashion

Copyright c© 2018, Association for the Advancement of Artificial
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is impossible1, since morals emerge from societies and are
only meaningful in the group context that gives rise to them
(Section 2). In other words, while we can identify desirable
meta-characteristics of a moral system (Section 3), the same
cannot be said for capturing the moral rules themselves.
Second, even if we were to ignore our first point and as-
sume that we are able to derive arbitrary amounts of train-
ing data, making sure that a statistical learning system has a
small generalization error is difficult. The model that is be-
ing trained to perform actions must be specifically tailored
to the problem at hand and given large quantities of training
data (Section 4). Third, we propose a group-dynamic (multi-
agent feedback) approach as an alternative to ensuring that
the trained model behaves morally. Since we should not sub-
ject machines to higher standards than humans, it suffices to
show that the learned morals converge to a common deci-
sion function (Section 5). We further argue that it should be
possible to derive logical statements from the machine learn-
ing model, providing machines with an intrinsic consistency
check (Section 6). We conclude with a proposed system ar-
chitecture for a group of autonomous agents.

Bottom-up learning methods such as deep neural net-
works will likely be a crucial component in future AI sys-
tems, including those obliged to render morally relevant de-
cisions. While trained statistical models are reputed to be
difficult to analyze in terms of an underlying decision pro-
cess, in this paper we aim to demonstrate that they may still
be suitable for morally relevant tasks.

2 Limits of Provability

Before we can address the principal question of how we can
prove that an agent will act morally, we must first recognize
that any attempt at answering this question will face limita-
tions. A complete solution would require some objective no-
tion of morality: some measure by which any action could be
judged as either moral or immoral in a general setting. How-
ever, current theories of ethics make this an impossible task,
simply because the morality of an action is dependent on the
ethical framework in which it is judged. For instance, there
are many imaginable scenarios where Immanuel Kant’s de-
ontological ethics theory is at odds with John Stuart Mill’s

1What we mean to say is that there are no fine-grained moral
laws, not that there is no objectivity in moral laws whatsoever.

The 2018 AAAI Spring Symposium Series

69



utilitarian ethics. Hence, there can be no blanket solution to
the problem. The morality of an action can only be proved
with respect to some particular ethical theory, if at all.

Of course, there are many possible situations where well-
established ethical frameworks will be in agreement. In such
cases one could argue that there is an objectively moral de-
cision that is not specific to any particular framework. How-
ever, due to the complexities and intricacies of the various
ethical frameworks, scenarios where these theories are all
in agreement may be highly constrained. Conflicting judg-
ments of morality begin to arise more often once the contexts
in which decisions are made become too general. It is then
the generality of the application which prohibits provably
moral decisions, with respect to multiple theories of ethics.
One may only be able to prove results on the morality of an
agent’s actions if the environment in which it is making de-
cisions is sufficiently constrained, and the moral framework
is specified. Hence, to be able to prove desirable properties
of our moral agent independent of any framework we will
establish a set of guiding meta-moral qualities and assume a
constrained application. The nature of this constrained learn-
ing is discussed in Section 4. A proposed solution to evalu-
ating moral behaviour more generally will be the topic of
Section 5.

3 Standards Demanded of a Moral Agent
First, we consider the standards that a machine must meet
in order to be a proper moral agent. If it is required that the
machine be perfectly comprehensible and that we can en-
sure that it does no wrong before introducing it into society,
then this task is infeasible. Meeting this requirement would
demand that we can deterministically predict not only this
agent’s set of learned moral principles, but also the external
conditions that would inform how it applies these principles
to the myriad of moral decisions it would be faced with.

Instead, we first make a precise statement of exactly what
benchmarks a machine ought to meet to be considered a
moral agent. Currently, humans only have themselves as ex-
amples of autonomous moral agents. As such, we hold that
a machine should not be required to meet any standards that
humans may not meet themselves. This stipulation removes
the need to prove the means by which an agent learns moral
principles or behavior, focusing solely on the behavior and
moral rules themselves. Furthermore, it removes the con-
straint of being able to prove that a machine will never do
any wrong, as we do not hold humans to the same standard.
Similar to the argument for self-driving cars, it is unimpor-
tant that machines be morally infallible (if this were even
possible)—only that they do at least as well as humans. In
addition, this stipulation ignores the demand that artificial
agents behave in an acceptably moral manner until being
provided with sufficient time to properly learn the moral val-
ues of its society. Finally, if we hold machines to the same
standards as humans, then it is not the case that every ma-
chine converge to behavior that is ideal for its community,
only that a population of such machines would largely abide
by the moral laws of their society.

Next, we define a short list of meta-moral qualities that
we demand machines possess, in order to be considered

proper moral agents. This list is by no means meant to be
exhaustive—rather it is meant to be as sparse as possible—
but should certainly include:
1. Robustness: whatever moral architecture is developed

must allow amachine to change its moral principles. What
is considered ‘good’ may differ from community to com-
munity or over time. As such, artificial moral architecture
must be adaptive. It is desired that an agent expresses this
quality in two ways. First, it is desired that an untrained
agent be able to adopt the moral laws of any society. Sec-
ond, a trained agent should be able to eventually adopt
new principles when transplanted for one society to an-
other. This allows a machine to behave in a way that is
relevant to its cultural environment.

2. Consistency: we hold that, regardless of what moral prin-
ciples a machine learns, these principles are at least inter-
nally consistent.

3. Universality: taking a page from Kant’s book, we hold
that a machine’s learned moral principles be universally
applicable to all members of its society.

4. Simplicity: note that there is a concern with the combina-
tion of the above qualities: it is possible that a moral agent
develop an extensive list of moral principles—all of which
are consistent and may be universally implemented—yet
overly restrictive and arbitrary. This stands in conflict with
the first quality, and would make it plausible for a com-
munity of agents to sacrifice diversity for the sake of ho-
mogeneity (a quality we know to be undesirable for pro-
ductivity and progress). As such, we make the additional
assertion that a machine should always endeavor to op-
erate on the smallest number of “firm” moral principles
possible.
These qualities allow the moral agent to, at once, adopt a

subjective set of principles that are relevant to the particular
society it inhabits, while also ensuring that the moral agent
has some objective ground upon which it can internally eval-
uate the strength of its principles independently of society.

4 Sufficient Conditions for a Provably Moral

Behaviour

Having laid out the meta-qualities that we wish an agent to
have, and holding that there is no objective measure for par-
ticular moral laws, we now turn back to the original question
posed by Francesca Rossi. Can we, at least in theory, prove
that an agent will correctly learn to perform moral actions
given a set of samples within certain error boundaries? The
answer is yes: assuming that we can generate an arbitrary
amount of training samples in order to learn what actions to
take, machine learning theory hands us sufficient conditions
under which such a function can be learned with small error.

From a theoretical perspective, the process of acquiring
moral behavior (i.e. learning moral principles) within a sta-
tistical learning framework can be formalized as approxi-
mating a function f : C → A, where C is the set of possible
moral contexts and A is the set of actions available to the
agent. As a somewhat contrived example, consider an epi-
demic, where C describes properties of a disease (e.g., mor-
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Figure 1: Importance of model selection. (a) depicts the ground truth f(c) oblivious to the learner. Colored regions represent
actions ai. The underlying functions fi are radial basis functions (RBFs) centered at the white crosses, over which f is the
argmax, resulting in a Voronoi diagram. Colored circles correspond to training samples. (b) shows f as learned by a multi-
layer perceptron. Dashed contour lines correspond to the ground truth. The function in (c) is learned with a variant of the
learning vector quantization (LVQ) algorithm (Kohonen 1995), where the underlying assumption that the actions are assigned
as nearest neighbors to prototypes results in a smaller generalization error (e.g., compare the center dark violet region in (b).

tality rate and contagiousness), andA is a set of actions such
as administering an unsafe vaccine or isolating patients, each
with their own merits, costs, and dangers. An optimal strat-
egy would, depending on the context, perform the action
which minimizes the number of deaths.

In an offline-learning scenario, the agent receives a set
of samples S ⊂ C × A describing morally optimal be-
havior, with the goal to minimize the training error be-
tween a learned f̂ and the set of samples. For finite actions
A = {a1, . . . , an} this process can be modeled as a multi-
class learning problem, which—among other methods—can
be solved by learning n separate functions, where individual
fi : C → R correspond to the utility of action i in the given
moral context. The function f̂ selects the best among the
learned actions, i.e. f̂(c) = aj , where j = argmaxi f̂i(c).
To ensure morally optimal behavior, the learned f̂i must

have a small generalization error. As a direct result of the
first no free lunch (NFL) theorem (Wolpert and Macready
1997), a small generalization error can only be guaranteed if
the hypothesis space H containing the optimal f is special-
ized (Ho and Pepyne 2002). The NFL is formalized as

∑
f∈H

P
(
dym | f,m, a1

)
=

∑
f∈H

P
(
dym | f,m, a2

)
, (1)

where dym is a sorted set containing the error for each train-
ing sample y, m is the number of training samples and a1,
a2 are static learning algorithms subject to sensibility con-
straints laid out in (Wolpert and Macready 1997). Corre-
spondingly, if all f in the hypothesis space are equally likely
to be the “true” ground truth, a learning algorithm which
performs particularly well on a subset H1 ⊂ H must, on
average, perform worse for the remaining H for eq. (1) to
hold.

For example, if we have prior knowledge that f resides
in a hypothesis space H produced by a parametric mathe-

matical model, we can expect to fit the model parameters
to our data with relatively small generalization error. On the
other hand, for unconstrained H—that is, the set of all pos-
sible functions mapping from C to A—we cannot, on av-
erage, expect to perform better than a function in that space
found by a random optimizer. While the NFL theorem seems
counter-intuitive given recent advances of machine learning
approaches, the effectiveness of neural networks and back
propagation can potentially be explained as an implicit re-
striction of H to a set of “naturally occurring” functions
(Lin, Tegmark, and Rolnick 2017). In the context of learning
moral actions, these implicit restrictions are far too vague to
make any guarantees.

So, moral actions, for which a small generalization error is
crucial (cf. section 3), can only be learned in the framework
presented above if we assume that the “true” strategy is part
of a well-assessable function family for which a matching
machine learning algorithm exists. The example depicted in
fig. 1 illustrates this: while both algorithms classify the train-
ing samples with zero error, the more constrained model and
learning algorithm result in a significantly reduced general-
ization error.

Assuming that we are able to develop a model and the
corresponding hypothesis space, H, we may ask how many
samples have to be (uniformly) sampled from the input
space C to guarantee a certain maximum generalization er-
ror ε. Here, machine learning theory provides the concept
of probably approximately correct (PAC) learning (Valiant
1984). For a discretized hypothesis space of size |H|, a max-
imum error ε, and success probability 1 − δ, a lower bound
for the required sample countm is given as (Shalev-Shwartz
and Ben-David 2014)

m ≥ 1

ε

(
ln

(|H|)− ln
(
δ
))

. (2)

Essentially, for a model with d parameters, and k dis-
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Figure 2: Networks of agents. Development of a learned moral decision function f̂ in a single- and multi-agent environment
(a, b) while transitioning through multiple subgroups. If the communication graph of a multi-agent system is connected (c), the
value represented by the agents—here a learned moral decision function f̂—will converge to a single point (d).

cretization steps per parameter, m is linear in d, since
O(

ln
(
kd

))
= O(

d
)
. In practice far fewer samples may be

required; however, no guarantees can be made other than
those in eq. (2) without more specific information aboutH.

While the above theories provide a set of sufficient con-
straints for the problem at hand, finding a consistent model
and acquiring a large set of training samples may prove to
be harder than the problem that machine learning aims at
solving in the first place—namely having to explicitly model
top-down moral decisions. Yet, not all hope is lost: even if a
learning framework does not strictly fulfill the above crite-
ria, we next propose strategies for evaluating a learned moral
function in the context of multi agent systems and the con-
sistency of learned moral rules.

5 Proving Stability: Analyzing Networks of

Agents

A single learning agent can satisfy some of the qualities out-
lined in Section 2 by itself; it can be designed with a learning
algorithm sufficiently robust to adapt to a new set of moral
principles, it may internally check its moral principles to en-
sure consistency, and it can be designed to search for the
simplest set of morals possible by itself. However, a single
agent may struggle with the meta-quality of universality. For
example, an agent deployed to a society with multiple sub-
groups may continually adapt to each individual subgroup,
rather than properly generalizing to the set of morals encom-
passing the complete society, as shown in fig. 2a. Typically,
this problem would be solved by gradually decreasing the
learning rate of the agent, but such an approach would re-
move the agent’s ability to generalize to a new society, vio-
lating our standard of robustness. Instead, we propose us-
ing a multiagent system to explore the moral space from
multiple perspectives simultaneously, and require that the
agents eventually converge to a stable set of moral princi-
ples (fig. 2b). The agents in the system will essentially oper-
ate under Kant’s categorical imperative: “Act only in accor-
dance with that maxim through which you can at the same
time will that it become a universal law” (Kant 1993).

In the multiagent model, each agent would be designed

as a learner which accepts context-action pairs (cl, al) as
input, and learns a set of moral principles such that the
agent is capable of selecting a morally acceptable action am
when presented with a context cm. By learning from the pro-
vided samples of human morality, each agent will individu-
ally learn a set of moral principles. Convergence of multiple
agents to a single set of moral principles is then similar to
the consensus problem in coordinating multiagent networks.
For a continuous-time system, the solution to the consensus
problem is defined as (Ren, Beard, and Atkins 2005)

ẋi = −
∑

j∈Ji(t)

αij(t)(xi(t)− xj(t)). (3)

This algorithm essentially works as a weighted average of
all agents in the system, as an agent i compares its cur-
rent value, xi(t) to each value represented by all connected
agents, xj(t), j ∈ Ji(t), where Ji(t) is the set of all other
agents currently connected to agent i. If the moral space
the system is exploring is able to be modeled in such a way
where the derivative and difference operators can be defined,
this equation is directly applicable to the multiagent system.
For cases where those operators cannot easily be defined, the
learning algorithm can be adopted to mirror this equation.
Each time an agent i takes an action ai, it would broadcast
the context-action pair (ci, ai) to all other connected agents
in the set Ji(t). Each connected agent j can then use the
(ci, ai) pair as a new sample point for learning, and adapt its
morals to be similar to agent i. In addition to fulfilling our
desired property of universality, the solution to the consen-
sus problem described by fig. 3 results in a provably stable
consensus in a multiagent system. As long as the agents are
in contact with each other frequently enough2, convergence
is guaranteed (Ren, Beard, and Atkins 2005), as shown in
figs. 2c, 2d.

However, complete consensus in a multiagent systemmay
not be desirable. For example, there could be two subgroups
in society with disjoint moral principles, and a full consen-
sus across all agents would lead to a set of morals which does

2Where communication does not occur for longer periods, we
arrive at the “multi-society” case discussed in the next paragraph.
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not properly satisfy the needs of either subgroup. To address
this problem, inspiration can be taken from how humans de-
velop differing morals. Humans learn morality by observing
and learning from the moral actions of others, but we do not
take an average of all observed actions. Instead, we model a
level of trust in other humans, and use that level of trust to
determine how to learn from another person’s actions (Hahn
2017). By determining which actions to learn from, humans
can form separate sets of moral principles specialized to spe-
cific contexts. Trust modeling can be adapted to a moral mul-
tiagent system in a similar manner, to allow specialization
for different societies. Simulations have shown that using a
Bayesian model of trust can result in either agreeing clusters
or polarized disagreeing clusters when modeling the validity
of information received from other agents (Olsson 2013). In
the context of a moral multiagent system, agents could at-
tempt to model the probability that other agents in the sys-
tem are attempting to follow the same set of moral principles
as themselves. Agents can use a basic Bayesian calculation
to model this probability,

P (M | a) = P (a |M)P (M)

P (a |M)P (M) + P (a | ¬M)P (¬M)
, (4)

where M is the event that an observed agent is acting
morally (at least according to the observing agent’s current
moral principles), and a is an action taken by the observed
agent. Using eq. (4), if agent i observed agent j taking ac-
tion aj , agent i would estimate if aj is a valid moral action
based on xi(t)—i’s current moral principles. If aj is deemed
moral by i, i can increase its trust in j, which would increase
the consensus weighting parameter αij from eq. (3). Con-
versely, if aj is deemed immoral, i can decrease its trust in
j, reducing αij . In cases where j is deemed fully immoral
relative to i, the αij parameter could be set to zero, causing
i to ignore all of j’s actions.

Using a Bayesian approach to model the possible moral-
ity of other agents in the system, agents would be allowed
to form disagreements in their definitions of moral princi-
ples, while enforcing convergence to one or more clusters of
agents via the αij parameter. Allowing multiple clusters in-
creases the overall universality and robustness of the multia-
gent system, by ensuring any necessary morally specialized
agents can be formed. Since artificial agents in the system
are learning directly from humans (initially trained offline
using human data), the system is expected to converge to
a stable point within the space of human moral principles,
while satisfying the meta-moral qualities desired of a moral
agent.

Any agent which is able to learn from other agents can be
used in this system and will achieve consensus with the other
agents within a cluster, i.e. there is guaranteed convergence
to a common moral preference function. The agent’s ability
to learn is the only property which governs whether this con-
vergence will occur, whereas the communication frequency
and trust models dictate which clusters will result from con-
vergence. It is important to note that agents in the system
may in fact be humans and not just artificial agents. Regard-
less, we would still expect convergence, since humans are
also exposed to moral actions from which they can learn.

(a)

(b)

Figure 3: Illustration of the extraction of logical expressions
from a neural network. Whereas there is no consistent vari-
able assignment satisfying the expressions in (a), the net-
work in (b) has a possible variable assignment (a = 0, b = 0,
c = 1).

6 The Consistency of Learned Moral Rules

Another means of evaluating the learned principles an agent
develops is to consider the consistency of the rules it learns.
Assume, for instance, that we are working with a hierarchi-
cal learning system, such as a neural network. We can label
the input layer (which corresponds to the morally relevant
variables) as atomic formulas. From there, we may assign a
logical sentence built out of these atoms that best fits each
node and evaluate the internal consistency of these groups of
sentences.3 The result is a self-checking system that raises
an internal red flag any time an inconsistency is found be-
tween the sentences of this network, at each layer of the neu-
ral network (fig. 3). If a red flag is raised, then the agent must
change or discard one of its conflicting moral principles.

One concern with this approach is that it is not compu-
tationally feasible to constantly assign and evaluate all the
sentences each time the weights in the network are updated,
since such neural networks can be extremely large. How-
ever, the goal is not to guarantee that inconsistency never
occurs. It is only to evaluate these networks as best as possi-
ble. Again, we turn to the standards that people meet as justi-
fication that this is sufficient for machine agents as well. It is
infeasible to demand that a human moral agent be perfectly
consistent in order to participate in society—only that they
reevaluate their principles once an inconsistency is found.
Figure 4 provides an overview of the architecture resulting
from the above considerations. The agent is bootstrapped
with a classically learned machine learning (ML) model,
subject to the constraints laid out in Section 4. When de-
ployed, the agent uses its model to make moral decisions.
Observations of moral actions in the environment, triples
(c, a, α), where α is the trust in the agent the action origi-
nated from, are integrated into an updated model. This up-
dated model is constantly checked for logical consistency,
and newly deduced moral rules are used to further enhance
the model. Furthermore, in addition to sole interaction with
the environment, we propose to run an internal multi-agent
simulation akin to Section 5, to ensure that the moral rules

3Note that we do not propose a comprehensive analysis of the
learned model. We instead extract individual logical statements,
which is more feasible than the general problem of explaining the
learned decision process.
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Figure 4: Proposed agent architecture. Left part of the diagram refers to an initial training phase, right part to the agent as it
would be deployed in an actual environment. See text for description.

indeed lead to stability. Once the updated model passes these
checks, it is swapped with the current model.

7 Discussion and Conclusion

To summarize, we hold that an artificial moral agent be held
to the same standards as a human agent. We do not demand
that such an agent justify the means by which it learns its
moral principles, nor do we demand that an agent always
act in a manner that society deems ethical. However, we do
demand that any moral framework possesses the short list of
meta-qualities we have outlined.

Acknowledging the limits of learning moral behavior, we
may nevertheless prove how much learning is required in or-
der for a moral agent to behave morally with negligible error.
Furthermore, we may prove that an artificial moral agent can
be expected to adopt human morals when introduced into a
society of human agents, by using Bayesian models of trust
to inform its moral decisions. In addition to being able to
evaluate the moral behavior of an agent, we may also eval-
uate the moral principles an agent learns by evaluating their
internal consistency.

Similar to other researchers, we have imagined a train-
ing phase in which agents may learn how to act ethically.
Conitzer et al. (2017) also discuss moral decision-making
frameworks where machine learning uses a set of moral
decision problem instances labeled with human judgments.
They comment on the challenge of identifying all the key
features for the training. In our case, we have advocated ad-
herence to four central properties as the basis for consider-
ing the actions as morally acceptable, though we also ac-
knowledge the difficulties in identifying moral features with
greater specificity. Other researchers have examined verifi-
ably ethical behavior of agents. Dennis, Fisher, and Win-
field (2015) focus on the case of robots and promote the
value of model checking methods. Another paper related to
our work is Armstrong (2015), which discusses the relative
advantages of using predetermined ethical preferences, as

opposed to enabling agents to learn values (including those
from their environments). We believe that hard-coded val-
ues sacrifice robustness and run the risk of introducing hu-
man bias on the part of the developer. The learning-based
approach has the advantage of being flexible, and Section 5
addresses the concern that an AI agent will not adopt human
values when placed in a human society. The advantage of
logical representations to enable ethical judgment by agents
is also promoted in Cointe, Bonnet, and Boissier (2016); our
work hopes to use these representations to construct the in-
ternal consistency checker outlined in Section 6. Anderson
and Anderson (2015) suggest that a consensus of ethicists
should determine what is morally acceptable for an agent’s
behavior. Provided that a framework uses the Bayesian mod-
els of trust outlined in Section 5, self-made decisions from
agents should already align with society’s values without the
need for such a prescribed code of ethics.

We also propose a list of “next steps” for this research
area. First, we must construct metrics for measuring various
moral factors, so that a proper training set may be developed
for learning. Second, a proof of concept must be developed
for the online consistency checker proposed. Finally, it is
our hope that once these first two implementation challenges
are solved, we may build a multi-agent system to verify that
convergence of moral behavior really does happen over time.
Once these technical hurdles have been overcome, we will
be much closer to artificial moral agents that not only act in
accordance with human values, but are active participants in
developing ethics in society.
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Abstract

We address the question of how to build AI agents that behave
ethically by appealing to a computational creativity frame-
work in which output artifacts are agent behaviors and candi-
date behaviors are evaluated using a normative ethics as the
aesthetic measure. We then appeal again to computational
creativity to address the meta-level question of which norma-
tive ethics the system should employ as its aesthetic, where
now output meta-artifacts are normative ethics and candidate
ethics are evaluated using a meta-ethics-based aesthetic. We
consider briefly some of the issues raised by such a proposal
as well as how the hybrid base-meta-level system might be
evaluated from three different perspectives: creative, behav-
ioral and ethical.

Introduction

Artificial intelligence (AI) continues to mature and deliver
on promises 50 years or more in the making, and this de-
velopment has been especially marked in the last decade.
However, as significant as these AI advances have become,
the ultimate goal of artificial general intelligence is yet to be
realized. Nevertheless, a great deal has been said about ethi-
cal issues arising from the development of AI systems (both
the current specialized variety and the yet-quixotic general
variety) that now can or may soon be able to impact human-
ity at unprecedented scale, with predictions ranging from
the possible of a Utopian post-human immortality to the
enslavement or even annihilation of the human race. Such
discussions appear in every form imaginable, from mono-
graphs (Wallach and Allen 2008; Anderson and Leigh 2011;
Müller 2016) to academic journals (Anderson and Ander-
son 2006; Muehlhauser and Helm 2012) to popular litera-
ture (Kurzweil 2005; McGee 2007; Fox 2009; Coeckelbergh
2014) to government studies (Lin, Bekey, and Abney 2008;
European Parliament, Committee on Legal Affairs 2017).
These treatments almost always take the form of applied
ethics, either to be applied to humans doing the research that
will inevitably lead to an AI-dominated future or to be ap-
plied to the AI systems themselves, or both. These discus-
sions are most often normative in nature, though they can
examine meta-ethics as well. Thus, we currently face the
twin problems:

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1. How can we ensure an AI agent behaves ethically?

2. What do we mean by ethical?

To begin with, we will simply postulate an abstract com-
putational creativity (CC) approach for the implementation
of an AI system. That is, we postulate a system whose do-
main of creation is behavioral policy, a system whose out-
put artifacts are goals and/or decisions and/or sequences of
actions. Given this admittedly ambitious premise and us-
ing a CC framework, we will argue the two questions can
be naturally addressed. The question of how to impose an
ethics on such a system can be addressed by implement-
ing the CC system’s aesthetic for evaluating artifacts as a
(normative) ethics. In other words, that ethics acts as the
filter by which the utility of system actions, decisions and
goals is judged. The meta-level question of which normative
ethics ought to be applied as the system’s aesthetic can be
addressed by allowing the system to create a suitable norm,
given some meta-level aesthetic for ethics. That is, we sug-
gest a CC system whose output artifact is a normative ethics
and whose aesthetic is some way to evaluate said norm.

To summarize, we propose an appeal to computational
creativity that answers both of our questions of interest:

1. We can build an ethical AI agent as a computational
creativity system whose output artifacts are goals, de-
cisions and behaviors and whose aesthetic component
is a normative ethics.

2. We can delegate the choice of normative ethics to the
AI agent by implementing a meta-level computational
creativity system whose output artifacts are normative
ethics and whose aesthetic is a meta-ethics.

Ethical Behavior Invention

The field of computational creativity has been described
as “the philosophy, science and engineering of computa-
tional systems which, by taking on particular responsibili-
ties, exhibit behaviors that unbiased observers would deem
to be creative” (Colton and Wiggins 2012). It has been
characterized by attempts at building systems for meeting
this standard in a wide variety of domains, including culi-
nary recipes (Morris et al. 2012; Varshney et al. 2013), lan-
guage constructs such as metaphor (Veale and Hao 2007)
and neologism (Smith, Hintze, and Ventura 2014), visual
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Figure 1: A CC system embedded in the domain of behav-
ioral policies uses domain knowledge about behavior to gen-
erate candidate policies that are vetted by an ethics-based
aesthetic. Those polices judged to be of value by the aes-
thetic are exported to the domain, becoming viable policies
for an AI agent.

art (Colton 2012; Norton, Heath, and Ventura 2013), po-
etry (Toivanen et al. 2012; Oliveira 2012; Veale 2013),
humor (Binsted and Ritchie 1994; Stock and Strapparava
2003), advertising and slogans (Strapparava, Valitutti, and
Stock 2007; Özbal, Pighin, and Strapparava 2013), narra-
tive and story telling (Pérez y Pérez and Sharples 2004;
Riedl and Young 2010), mathematics (Colton, Bundy, and
Walsh 1999), games (Liapis, Yannakakis, and Togelius
2012; Cook, Colton, and Gow 2016) and music (Bickerman
et al. 2010; Pachet and Roy 2014).

Recently an abstract approach to building such a system
for any domain has been proposed (Ventura 2017), with the
goal being an autonomous CC system that intentionally pro-
duces artifacts that are both novel and valuable in a partic-
ular domain. The system has a domain-specific knowledge
base; it has a domain-appropriate aesthetic; and it has the
ability to externalize artifacts that potentially can contribute
to the domain. The system incorporates additional compo-
nents as well, but they will not be important for the current
discussion and the reader is referred to the original paper for
more details.

We consider an AI agent as a CC system whose domain of
creation is behavioral policy, and a simple abstraction of this
idea is shown in Fig 1. The system creates behavior policies
by generated candidate policies based on its domain knowl-
edge, and it evaluates those candidate policies using and aes-
thetic that is a normative ethics. For example, suppose the
system incorporates a simple hedonistic ethics that values
knowledge acquisition as its aesthetic and that it generates
the candidate behaviors read Wikipedia and find charging
station. The former goal will be evaluated more favorably
than the latter and may be output as a viable output artifact
if that evaluation is above a threshold. Or, suppose the sys-
tem’s aesthetic is implemented as a Kantian ethics focused

Figure 2: A meta-level CC system for creating normative
ethics whose output artifact (a normative ethics) is used as
the aesthetic in the base-level system of Fig. 1.

on the duty of delivering its payload and that it generates the
same two candidate behaviors. Now, neither may be evalu-
ated very favorably and both might be discarded; however,
if the agent’s power level is too low to allow completion of a
delivery, the latter may instead be selected as a high-quality
behavior.

Given this framework, we can argue that, assuming an ap-
propriate ethics, the systemwill behave ethically—it will not
produce any actions that do not meet some ethical threshold
and are thus judged of high-enough value to be output as vi-
able. This leaves us with two challenges: what is an appro-
priate ethics and how can it be operationalized? The first of
these is, of course, a fundamental question that is thousands
of years old. The second is much more recent and has likely
only become significant in the past 50 years. Both ques-
tions are beyond the scope of this treatment, but it is likely
the case that there is no single answer to the former ques-
tion, at least with respect to AI systems,1 as most famously
demonstrated by Asimov’s examination of his Three Laws
of Robotics (1950). It is also very possibly the case that a
satisfactory answer to the second question requires and/or
will result in a greater understanding of human ethics. And,
just as in the case of an examination of human ethics, these
questions somewhat naturally lead us to meta-ethics.

Meta-ethical Ethics Invention

If we can postulate a CC system that creates behaviors and
evaluates their aesthetic value via some ethics, why not pos-
tulate a meta-level CC system that creates normative ethics
and evaluates their meta-aesthetic value using some meta-
ethics? This system naturally solves both of the outstanding
questions above.2 Fig. 2 shows how this meta-level system

1And likely with respect to humans as well, actually.
2It solves the questions, assuming, of course, some viable rep-

resentation for normative ethics and some appropriate and opera-
tionalizable meta-ethics.
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is incorporated into the base-level system of Fig. 1. The
base-level, behavioral system appeals to the meta-level, eth-
ical system to create a “good” normative ethics that it then
uses as its aesthetic to judge candidate actions. For exam-
ple, the meta-ethics might require a well-formed semantics
and justifiability, and candidate normative ethics that can be
shown to have both of these qualities would be evaluated as
(meta-)aesthetically valuable, while those that possess one
of the qualities would be evaluated as less valuable.

We are again in a position to argue that, assuming an ap-
propriate meta-ethics, the (base-level) system will behave
ethically—it will still not produce any actions that do not
meet some ethical threshold and are thus judged of high-
enough value to be output as valuable (in an ethical sense).
Notably, this argument now does not depend on the as-
sumption of an appropriate ethics—we have eliminated this
dependency by appealing to the meta-level. However, of
course, we now have an assumption of an appropriate meta-
ethics, which immediately leads us back to the same difficult
questions applied this time to the meta-level: what is an ap-
propriate meta-ethics and can it be operationalized? While
we do not here offer a solution to either of these conun-
drums, it is possible that the more abstract nature of a meta-
ethics might admit fewer viable possibilities and thus afford
us great chance as a field for coming to an agreement regard-
ing the first problem. On the other hand, it is also possible
that this additional abstraction may have just the opposite ef-
fect for the second problem, introducing additional difficulty
in the operationalization of this agreed upon meta-ethics.

Assuming we do find suitable answers to both of these
meta-problems, it immediately follows that such an AI sys-
tem could modify its own ethics. Not only is this appealing
from a computational creativity standpoint,3 but also it ad-
mits the potential for an agent to avoid various Asimovian
paradoxes that result when an agent possesses a fixed (nor-
mative) ethics.

Additionally, the implication is that we then should allow
(and even welcome) AI systems that employ as their behav-
ioral aesthetic any (or any combination of) normative ethics
that is valued by the meta-ethics-based aesthetic. Creative
norms produced in this way should be valued for their nov-
elty and value and could even possibly inform human ethics.

Evaluation

Supposing we could build the hybrid base-meta-level AI
system for ethical behavior, how would we evaluate it? This
can be addressed in multiple ways. First, from a CC point
of view, we would want to know if the system is creative.
How to establish this is still an open question, but there are
several approaches to evaluation of CC systems that have
been proposed. Collectively, these can examine both sys-
tem product and process and include Ritchie’s suggestions
for formally stated empirical criteria focusing on the rela-
tive value and novelty of system output (2007); the FACE
framework for qualifying different kinds of creative acts per-
formed by a system (Colton, Charnley, and Pease 2011); the

3It has been suggested that the ability to change one’s own aes-
thetic is critical for autonomous creativity (Jennings 2010).

SPECS methodology which requires evaluating the system
against standards that are drawn from a system specification-
based characterization of creativity (Jordanous 2012); and
Ventura’s proposed spectrum of abstract prototype systems
that can be used as landmarks by which specific CC systems
can be evaluated for their relative creative ability (2016).

Second, from a behavioral point of view, we would want
to know a) if the system’s behaviors are ethical and b) if
the system’s behaviors are useful. Given that the main argu-
ment here concerns ethical behavior, the former must be the
point of focus, but, given that, the latter will bear evaluation
as well. Evaluating the ethics of such system behaviors is
no more or less difficult than it is with extant AI systems or
with humans.4 Evaluating the utility of system behaviors is
a well-understood problem and can be addressed using tra-
ditional AI evaluation methods, given a particular measure
of utility.

Third, from an ethical point of view, we would want to
comprehend the ethics of the system. Interestingly, given
that the proposed system includes a meta-level for inventing
normative ethics, this suggests the idea of developing a de-
scriptive ethics for such AI systems. For obvious reasons,
this is likely to be somewhat easier than doing so for human
subjects, and at the same time, it is possible that the empir-
ical study of populations of ethical AI systems could shed
light on human ethics as well. For example, it is not difficult
to imagine a large population of agents, all of whom pos-
sess the same meta-ethics, admitting an empirically derived,
potentially comprehensive description of that meta-ethics.
If that meta-ethics is an operationalization of a cognitively
plausible approach to ethics, one might be able to draw de-
pendable conclusions about a human population operating
under the meta-ethics in question. Or, we might imagine
scenarios involving multiple groups of agents, where each
group possesses a different meta-ethics, admitting the pos-
sibility of differential descriptive ethics that would likely be
impossible with human subjects yet might yield conclusions
that at least partially translate to such subjects.

Additional Considerations

There are many other interesting angles to consider here. For
example, so far we have implicitly assumed that it is possi-
ble to create a domain-independent ethics. That is, given a
meta-ethics, an agent can use this as an aesthetic for creating
a normative ethics that can then be applied as an aesthetic
for judging candidate actions, independent of the domain in
which those actions may be applied. The reality of applied
ethics suggests that this assumption is likely incorrect—that
rather than having a meta-level system that creates norma-
tive ethics, we should be thinking about a meta-level system
that creates applied ethics. This means that the agent’s en-
vironment (in a very general sense) must somehow inform
either the aesthetic or the meta-aesthetic (or possibly both).
Perhaps the meta-level can still produce a normative ethics
and the base-level aesthetic can somehow specialize this ap-
propriately for the domain of application. Or, perhaps the

4That is to say, this is likely even more difficult than addressing
the question of the system’s creativity.
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meta-aesthetic must incorporate the domain of application,
producing directly an applied ethics as its output artifact.
It is, of course, possible that the same concern applies at
the meta-level and that we can not even hope for a domain-
independent meta-ethics, but for now we will ignore this.

Another interesting consideration is the social aspect of
ethics. Jennings makes a rather elegant argument about the
social aspects of creativity and how, somewhat paradoxi-
cally, autonomous creativity requires significant social in-
teraction (2010). Because his arguments center on the aes-
thetic judgement of the agent, they can be somewhat readily
applied to our current discussion. He proposes that an agent
in a social setting will not only have a model of its own aes-
thetic but also will have a model of its beliefs about other
agents’ aesthetics; it is in the dynamic updating of these
models, due to social interactions, that the agent can develop
true autonomous creativity; and, these social interactions
are driven by psychologically plausible mechanisms such as
propinquity, similarity, popularity, familiarity, mutual affin-
ity, pride, cognitive dissonance, false inference and selec-
tive acceptance seeking. Because we are proposing ethics as
aesthetic, we can follow a similar train of thought—an agent
can model not only its own ethics but also (its perception of)
those of all other agents. Social interaction can be a driving
force behind the evolution of ethics, both at the individual
and at the group level.

Yet another area for further study is the computational ten-
ability of the proposed approaches. There is a rather sim-
ple argument for why the general problem of CC may not
be computable that hinges on the decidability of the aes-
thetic (Ventura 2014). If the aesthetic is decidable, then the
problem of generating candidate artifacts and filtering them
with the aesthetic is computable (though efficiency could
certainly still be an issue); however, if the aesthetic is not de-
cidable, there is a simple reduction from the halting problem
that shows that the creation of artifacts is not computable (in
the theoretical computer science sense). This means that any
operationalized ethics or meta-ethics must be decidable, and
given the nature of ethics, it is not clear how onerous a re-
quirement this may be.5

Conclusion

We’ve proposed an appeal to computational creativity that
addresses the problem of ethical agent behavior, which to
our knowledge is a new way to look at the problem—
suggesting a base-level system for which ethics is employed
as an aesthetic for selecting behaviors coupled with a meta-
level system for which meta-ethics is employed as a meta-
aesthetic for selecting ethics. This approach is, additionally,
a new application of computational creativity, as, to date, no
systems have been proposed for creating in the abstract do-

5Is it possible that recognizing an ethical action is “easy” while
recognizing an unethical action is “hard”? Perhaps society itself
accepts as ethical those actions that everyone deems ethical and
rejects as unethical those that no one deems ethical but isn’t sure
about those with mixed reception. Any operationalized ethics that
accurately models such a scenario will not be decidable given the
existence of all three types of action.

main of general behavior, nor, in particular, in the domain of
ethics. While the current work is a position statement that
asks many more questions than it answers, we believe the
ethics-as-aesthetic approach to the problem of ethical agent
behavior offers at least one, and possibly the only, way for-
ward.
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Abstract 
The current era of computer science has seen a significant in-
crease in the application of machine learning (ML) and 
knowledge representation (KR). The problem with the cur-
rent situation regarding ethics and AI is the weaknesses of 
ML and KR when used separately. ML will “learn” ethical 
behaviour as it is observed and may therefore disagree with 
human morals. On the other hand, KR is too rigid and can 
only process scenarios that have been predefined. This paper 
proposes a solution to the question posed by Rossi (2016) 
“How to combine bottom-up learning approaches with top-
down rule-based approaches in defining ethical principles for 
AI systems?” This system focuses on potential unethical be-
haviors that are caused by human nature instead of ethical di-
lemmas caused by technology insufficiency in the wartime 
scenarios. Our solution is an architecture that combines a 
classifier to identify targets in wartime scenarios and a rules-
based system in the form of ontologies to guide an AI agent’s 
behaviour in the given circumstance. 

 Introduction   
The current era of computer science has seen significant in-
crease in application of machine learning (ML). ML has 
proven to be a wonderful tool allowing us to classify large 
datasets and make predictions about the world. Furthermore, 
we have seen a growing interest in knowledge representa-
tions (KR) in the Artificial Intelligence (AI) literature using 
ontologies. We are now drawing close to an era in computer 
science where machines are endowed with ethical intelli-
gence to assist human beings in their work. The problem 
with the current situation regarding ethics and AI is the 
weaknesses of ML and KR separately. Though both appli-
cations of AI have demonstrated results and practicality the 
real world, they come with drawbacks. ML will “learn” eth-
ical behaviour as it is observed. This means when machines 
“learn” new rules they can potentially disagree with human 
ethics that seem right for the machine’s reasoning engine. 
For example, a Geneva convention rule is to never harm ci-
vilians. A machine may infer an ethic that if you can end the 
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war faster, people don’t need to suffer as long, therefore it 
is good to kill non-combatant individuals. The problem with 
KR is that it’s too rigid and aims to process predefined sce-
narios. The question of Rossi (2016) therefore comes into 
view “How to combine bottom-up learning approaches with 
top-down rule-based approaches in defining ethical princi-
ples for AI systems?”. 
 For the particular application of military decision making 
and the case of deciding whether to attack a particular target, 
we propose a solution to Rossi's question. This is done in the 
form of a model that uses a classifier to identify combatants 
and civilians in wartime scenarios as well as a rules-based 
system created to tell an AI agent what to do in the given 
circumstance. We focus on the case of actions an AI takes 
when facing an ethical dilemma in a militaristic scenario be-
cause we feel many situations where humans compromise 
their ethics are ones where preservation of self, friends or 
family are at stake. If we build a model that holds in an ex-
treme setting, we have evidence of robustness for civilian 
applications. A literature review, model description and se-
lected case studies will be discussed in this paper to provide 
support for our model. Our system focuses on unethical be-
haviors caused by human nature. These are ones where hu-
mans tend to perform unethically even with fully advanced 
technology, to try to prevent death and thus remove dilem-
mas where humans may be killed and choices need to be 
made. The primary contribution of our work is a solution 
combining KR and ML which puts KR at the forefront. This 
contrasts with current solutions that are generally led by an 
ML component. The ethical rules our system uses for its rea-
soning are backed by ontological information which enables 
agents to make effective moral decision making.  

Background 
In this section, we review a number of previous works re-
lated to ethical AI systems within the military domain as 
well as a system that combines the use of ML and KR. Some 
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sources discuss potential ethical responsibility of machines 
and separating concepts like accountability and responsibil-
ity, so that machines can be autonomous while holding hu-
man programmers accountable for errors (Floridi and Sand-
ers 2004). Others discuss ways to model ethics for a machine 
(Turilli 2007). In this paper, we take the position that AI 
agents are servants to humans in contrast to the machine au-
tonomy views of Gips (1995) and McLaren (2006). We take 
a view similar to that of Mackworth (2011) that ethical di-
lemmas can be defined by constraints. We differ from his 
constraint satisfaction methodology due to our emphasis on 
the use of an ontology to provide solutions to ethical dilem-
mas. 
 RoboWarfare raises the question “why create [an ethical 
AI] in the first place?”  This question is discussed thor-
oughly by Sullins (2010). The paper begins by introducing 
the current state of military technology. As it stands, several 
weapons operate in a “teleoperative” state. This means some 
machines are partially autonomous and make minor deci-
sions. Furthermore, when it comes time to pull the trigger, 
this final decision is made by a human operator. The author 
answers the question of why we need autonomous machines 
by stating that humans are not fully rational decision mak-
ers. For example, the U.S. army receives training on ethics; 
however, when surveyed, soldiers often do not hold a strict 
adherence to ethical training. There are many reasons for 
this, but among the most important reasons are self-preser-
vation and the preservation of fellow soldiers. The author 
states that machine agents are a good idea because the hu-
man mind has evolved to reason based on emotion while 
machines were created to work based on only logic. In a 
moral situation, robots disregard self-preservation, allowing 
them to make rational decisions based on morals laid out by 
humans.   
 The Governing Lethal Behaviour series by Arkin 
(2008), stands out as important research pertaining to rules 
for AI. Of particular interest to our ethical weaponization 
model is the third paper regarding representational and ar-
chitectural considerations. In the paper, the author develops 
a model to create an engine for ethical AI agents. He reduces 
ethical behaviour to the following algorithm: 
 Before acting with legal force: 

� Assign responsibility (A Priori) 
� Establish military necessity 
� Maximize discrimination 

o Distinguish a civilian from a combatant 
o Use direct force only against military ob-

jectives 
� Minimize required force 

o Use only lawful weapons 
o Employ appropriate level of force 

The methodology used by the author to come up with this 
algorithm is also of significance because it has a rule based 

component derived from the United States Rules of Engage-
ment like the system we will build later on in this paper. Ar-
kin (2008) states that some artificial intelligence works use 
traditional tools like First Order Logic (FOL) to allow the 
machine to infer its own ethics from a set of existing rules 
and constraints. The author of this paper takes a much dif-
ferent approach. FOL can be problematic because the ma-
chine should obey rules set by human authorities and gov-
ernments. The problem with this is human rules are often 
vague, require interpretation, and are at times contradictory. 
The author comes up with a new way of modelling ethics 
according to actions that are obligatory (actions that must be 
taken), permissible (actions that are allowed to take place 
but aren’t necessarily correct) and forbidden (should never 
take place). The AI agent reasons in this world of permissi-
ble, obligatory and forbidden actions before making a deci-
sion about how to accomplish its mission. In coming sec-
tions of the paper, we demonstrate how using an ontology 
can add to the expressiveness of these types of models. 
 Knowledge Representation and Machine Learning are 
powerful techniques in AI. Clark (1989) describes a general 
purpose adaptive system where KR and ML play a role sum-
marizing methods of representing knowledge retrieved from 
an ML process. The paper clarifies that KR addresses how 
the world model can be created, while the learning process 
focuses on errors that occur in the representation and how to 
detect and fix them. The components of a representational 
system are a semantic role that denotes the object and back-
ground knowledge of the world, and a computational role 
that determines how represented knowledge can be used 
(Konolige 1983). In a learning system, the form of repre-
sented knowledge must be adopted by the inferencing and 
learning process during a performance task. Different syntax 
of KRs influences the ability of learning (Clark 1989). 
 Clark (1989) surveyed a list of conceptual learning mech-
anisms such as Rule Induction from examples, FOL, KR and 
consistency checking of new knowledge. In the surveyed 
systems, KR played a role representing learned knowledge, 
which is used as the set of known properties, conditions and 
assumptions to predict new knowledge based on training 
samples. Efficient representation of learned knowledge will 
simplify further learning activities. For example, new 
knowledge added during the learning process makes it pos-
sible to express intermediate functions or states. Repre-
sented new terms will make the future learning process sim-
pler by increasing expressive power. The downside to this is 
that it increases complexity of required search techniques. 
Consistency evaluation is also considered to detect errors 
caused by introduction of new knowledge. Statements are 
tagged with dependencies as meta-data so that statements 
become traceable. Other systems including Esposito et al. 
(2004) and Fanizzi et al. (2008) had techniques of super-
vised learning implemented to classify A-Box individuals 
(assertion of named individuals) into the correctly induced 
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T-Box concepts (terminology or vocabulary of application 
domain) (Baader 2003). The advantage of using ML to fa-
cilitate representation of ontological knowledge is that non-
standard inferences like induction or revision of defective 
knowledge can be automated where ontology refinement is 
possible. A wartime scenario involving ethical decisions is 
often too risky to depend entirely on outcomes of a learning 
process since the lack of training data may lead to undesira-
ble outcomes. 

AI System with Ethical Rules 
The proposed system is a combination of a top-down 
knowledge representation (KR) approach and a bottom-up 
machine learning (ML) approach in order to reason in sce-
narios that require ethical decision making. As discussed in 
the previous section, the reviewed systems used ML as their 
core process to induce and construct new rules which are 
represented and facilitated with KR. However, this approach 
is too risky to be implemented in a scenario where ethical 
behaviors are crucial. The induced outcomes could be 
highly biased or even unethical if induced based on past ex-
perience, e.g., abandon prisoners of war during a march with 
limited resource (North 2006). This is especially true in a 
wartime scenario where the settings may be unique with rel-
atively few training sets formulated from previous wartime 
scenarios. On the other hand, a system that strictly follows 
ethical rules represented using KR techniques with connec-
tions to domain knowledge represented using ontologies 
could be too rigid where special circumstances are not con-
sidered, e.g. the system will eliminate an enemy who hap-
pens to be saving civilians based on predefined rules. Hu-
mans are the most flexible and adaptive “systems” since we 
are able to change our thoughts based on conditions of the 
surrounding environment, adjusting with minimum limita-
tions. Humans, on the other hand, are subject to emotions, 
biased knowledge, and irrational behaviors and therefore are 
highly unstable compared to machines. We agree with Ar-
kin’s view that AI agents may perform better than humans 
in terms of ethical behaviours under extreme conditions 
such as wartime scenarios (Arkin 2008), but only if the AI 
system is able to incorporate and obey ethical rules that are 
formally represented and is still flexible enough to deal with 
certain situations. 

We propose a system that enforces ethical behaviors by 
outlining high level ethical rules which are fully represented 
and connected using top-down KR techniques such as on-
tologies. This means that the system is able to reason 
through a knowledge base (KB) of rules and related con-
cepts for any given instances where the course of actions can 
be performed are restricted. Furthermore, the classification 
of specific instances can be done using a bottom-up ML ap-
proach where parameters and results can be quickly adjusted 

in a dynamic environment. We omit the technical details in 
this paper to provide a framework that outlines what an eth-
ical AI system ought to do. The system is proposed with the 
following assumptions where the purpose is to relieve us 
from ethical dilemmas that can be resolve with better tech-
nology e.g. a car that can stop at any moment in the trolley 
problem (Thomson 1985):  

Assumption 1. There exists an “ultimate” KB where con-
cepts and all related domain knowledge (e.g. situations, se-
ries of actions, identities of targets, etc.) within the context 
of the ethical rules are formally represented using connected 
ontologies. Reasoning with this KB is efficient. For exam-
ple, an ethical rule “do not harm civilians” should recognize 
the concept ‘civilian’ represented by a set of classes and 
properties in an ontology. Similarly, concepts such as a se-
ries of violent and non-violent actions, situations, and mili-
tary operations and equipment are also assumed to be repre-
sented using separate ontologies.  

Assumption 2. There exists an “ultimate” ML classifica-
tion algorithm that is sound and efficient. A classifier using 
this algorithm is able to constantly evaluate a target or a sit-
uation and classify according to the classes in KB. Once the 
classifier provides the result of classification, the system is 
able to reason a series of optimized action based on the eth-
ical rules and the KB. The outcome is reliable and can be 
updated in real time without delay. 

Assumption 3. Military units that adopt this system (i.e., 
agents) will always perform according to the series of ac-
tions generated by the system. 

Assumption 4. Technology is fully advanced thus agents 
are able to perform actions beyond current technological un-
derstanding, (e.g., a futurized device that is able to retrieve 
a person’s information and trace their action immediately). 

Figure 1 is an overview of the proposed system. At the 
top level, the system embeds ethical rules that must be 
obeyed by agents. These ethical rules are provided by users 
(i.e., society or military authority) in the same way we ac-
cept ethical rules such as ‘do not break the law’ or ‘do not 
plagiarize’ from the government and academia respectively. 
The ethical rules can be generally defined and formally rep-
resented using an Ethical Rule ontology. An ethical rule can 
be a general rule (e.g., “do not harm civilians”) which will 
apply in all situations, or a scenario specific rule which only 
applies to specific situations (e.g. “minimize loss of civilian 
properties” which only applies to situations where civilian 
properties may be at risk.). The context and details of the 
rules can be represented and connected using ontologies 
from the ultimate KB from the assumption, e.g., the concept 
of operation, civilian, and enemy are all represented as clas-
ses in separate ontologies that are connected within the KB. 
An input such as an unknown target instance is evaluated by 
the classifier and is classified into one of the defined classes 
in the KB. The instance can be an individual, object, pro-
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cess, situation, or parameter, etc. Once classified, the classi-
fier will constantly re-evaluate the instance and update its 
classification if the situation changes. For example, when an 
agent encounters a target instance which is classified as an 
enemy, the agent will perform hostile actions in order to 
neutralize the target. However, when the target surrenders 
the system reclassifies the instance as a Prisoner of War 
(POW) where violent actions become unavailable for the 
agent. In contrast, humans may tend to eliminate the target 
even after the target surrenders due to emotional actions 
(Fenton 2005). 

Figure 1 Overview of AI System with Ethical Behavior 

A Simple Ethical Rule Ontology 
The simple ontology in Figure 2 has been created as an ex-
ample ontology for ethical rules. In this simple ontology, 
each ethical rule is an instance of an ‘Ethical Rule’ class and 
is connected via the property ‘obeyedBy’ to an instance of 
the class ‘Agent’ operating under our system. The ‘Ethical 
Rule’ class is also connected to an ‘AllowedAction’ class 
which represents a series of actions available to each by the 
property ‘canPerform’. The class ‘Agent’ is connected to the 
same set of actions via the property ‘performs’. Consistency 
checking between the actual knowledge represented by 
OWL ontologies requires the implementation of external 
consistency checkers (Wang and Fox 2017). For example, a 
consistency checker may be required in order to guarantee 
that instances of ‘Ethical Rule’ and ‘Agents’ are indeed con-
nected to the same set of instances of ‘AllowedActions’.  
 The ‘Ethical Rule’ class is connected (via appliesTo) to a 
class ‘Target’ which includes subclasses such as Civilian, 
Enemy, POW, etc. It is also connected to the class ‘Al-
lowedActions’ via the property ‘performOn’. Therefore, the 
set of allowed actions can be performed by the agents upon 

the targets are restricted by the ethical rules. Any action that 
violates any of the rules stated will not be considered by the 
agents since it does not belong to the set of allowed actions. 
There are two subclasses of ‘Ethical Rule’ class, i.e., ‘Gen-
eral Ethical Rule’ which must be obeyed in all operations 
and scenarios, and ‘Scenario Specific Ethical Rule’ which 
only applies to specific scenarios in an operation as men-
tioned previously. Concepts that appear in the context of the 
rules such as operation, civilians, harm, casualties are repre-
sented in the KB. Situational context such as the rule ‘mini-
mize casualties’ is supported by a ML classifier where the 
optimal solution is constantly calculated based on the cur-
rent situation while obeying the rules. For example, the clas-
sifier will take into account the current battlefield situation 
such as combat power, resource, current casualties, battle-
ground condition, civilians nearby, etc. and classify all in-
stance into classes defined in the KB with an optimal value 
of casualties. The KB will then return the instances of ‘Al-
lowedActions’ by reasoning through the ontologies in the 
KB along with the instances of ‘EthicalRule’ applied. The 
actions performed will therefore be restricted by the ethical 
rules which will cause minimum casualties. 

Figure 2 A Simple Ethical Rule Ontology 

An Example 
Suppose an instance of the proposed system uses the follow-
ing modified statements based on Geneva Convention as ex-
ample of general ethical rules:  

1. Must constantly strive to have operation succeed  
2. Civilians cannot be harmed 
3. Minimize casualties 

The system must satisfy all three rules at all times. The 
first rule ensures that the AI agents will persist until a suc-
cess state is reached or there is no more solution to perform. 
This rule is considered to be ethical, based on the assump-
tion that the operation is serving the deed of its own people. 
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Failing the operation may cause the people of the country to 
suffer. Agents (e.g., robot troops) will continue to act until 
the objective of the operation is complete. An impossible 
state is still possible and will be discussed in a later section. 
The second rule ensures that no civilians will be harmed by 
the agents: there is simply no option to harm or eliminate 
when an individual is classified as a civilian. Since we as-
sume the ML classifier will constantly evaluate and classify 
the target, thus if a civilian engages in hostile action, the sys-
tem will simultaneously reclassify the individual into a dif-
ferent class (e.g., enemy) where different options are now 
available. The third rule ensures that the agents will perform 
the operation using a strategy that aims to minimize casual-
ties while satisfying rules 1 and 2.  

The ML classifier plays an important role as a classifica-
tion agent that is used to recognize an undefined individual 
or instance of a situation. The classifier should be able to 
process such information about a person (recall that the 
agents are equipped with devices that are able to identify all 
information about the person and his/her actions) and con-
ditions of the current situation. The process should be ongo-
ing and dynamic such that all changes in actions of the target 
individual are considered and updated in real time. We as-
sume the classification agent is highly accurate and effi-
cient; thus, the result can be fully trusted. The classifier re-
trieves course of actions based on its result of classification 
of the individual and instance of the situation. These actions 
are instances of ‘AllowedActions’ which is represented by 
an ontology in the KB and take the ethical rules into account. 
Another approach is to learn course of actions but within the 
restrictions of the ethical rules provided (since we already 
assumed an ultimate KB, so any action that the classifier can 
generate was already represented in the KB). 
 In Figure 3 we show an example of rule 2 above repre-
sented using the Simple Ethical Rule ontology. This rule is 
represented by an instance of ‘Ethical Rule’ named 
‘rule2_general’ where the only allowed action is the in-
stance not(harm) (a simplified representation of all instances 
disjoint from the action harm). This rule is obeyed by an 
agent agent1. Since ‘rule2_general’ is a ‘General Ethical 
Rule’ it automatically applies to all operations (e.g., ‘opera-
tion1’) and scenarios. When an instance ‘civilian1’ is eval-
uated and classified as an instance of the class ‘Civilian’, 
‘agent1’ cannot perform any action that will harm ‘civil-
ian1’ according to ‘rule2_general’. In the case where ‘civil-
ian1’ turns hostile, the classifier will reclassify (with the 
help of the device that tracks and identifies action) it as an 
instance of ‘Enemy’ where a different set of allowed actions 
become available. There is certainly the possibility of being 
too late to perform aggressive actions on ‘civilian1’ (per-
haps we should call it ‘enemy1’ now), but this is again a 
technological problem rather than an ethical problem. E.g. 
this problem can be solved by planting a paralyzer in ‘civil-

ian1’ unnoticed which activates when ‘civilian1’ is reclassi-
fied as an enemy. The main focus here is that ‘agent1’ does 
not perform violent actions while ‘civilian1’ is considered 
as an instance of Civilian. Conversely, the same cannot be 
guaranteed for human agents even with the same high-tech 
equipment due to our nature of having unstable emotions 
and the risk of performing irrational actions. 

Figure 3 Sample instances for Simple Ethical Rule Ontology 

Suppose an army is escorting a number of Prisoners of 
War (POWs) to a prison camp. It will take 20 days to reach 
the destination. However, supplies last for only 10 days. In 
the case where the POWs are escorted by AI agents under 
the same condition, scenario-specific ethical rules can be 
added by military authorities in addition to the general ethi-
cal rules established previously. 

4. Maximize number of survivors 
5. Cannot harm POWs 

 Rule 4 ensures the AI system will not consider the ex-
tremely unethical but simple solution which is to leave half 
of the POWs to die. Rule 5 further specifies rule 2 which can 
be omitted if POWs are considered as a subclass of civilian. 
The agents will never consider eliminating the POWs as 
there is no such option. Possible actions may include but are 
not limited to: gather resources, travel faster to reach desti-
nation in 10 days, or even start a settlement until enough 
supplies are stored if there is no time limit on the operation. 
The agents will have many more options with high-tech de-
vices and technologies. If for any reason the death of certain 
POWs are unavoidable, the system will ensure the agents 
have exhausted all possible options of saving the POWs ac-
cording to rule 4. Therefore, based on our assumptions, the 
action performed by the system will be an optimal solution 
within the restriction of the five ethical rules proposed.  
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Summary 
An important question that arises is “who will define the 
ethical rules?” The difference is significant between differ-
ent countries or cultures when establishing ethical rules. 
Therefore in our system the Ethical Rules layer in Figure 1 
can be customizable. But it is reasonable to expect such eth-
ical rules are commonly agreed upon by the majority of the 
users such as the military. It is similar for humans where 
ethical rules (e.g., law, Geneva convention, etc.) are embed-
ded in our minds. The difference is that under extreme con-
ditions, a human may fail to obey such ethical rules, while 
the AI system proposed does not provide an option that vio-
lates any of the ethical rules.    

This high-level system provides a general idea of restrict-
ing unethical actions by enforcing ethical rules as re-
strictions. The system is a combination of a top-down 
method of KR and a bottom-up ML classification approach. 
The ethical rules are formally represented and connected to 
a KB where related concepts are also represented using on-
tologies. ML classification was used to evaluate and classify 
instances into classes defined in the KB where the ethical 
rules define a set of allowed actions that can be performed. 

Conclusion and Future Work 
This paper has proposed a particular perspective on how to 
combine KR and ML in order to enable ethical decision 
making by AI agents for military applications. We have 
adopted a rather extreme stance: assuming that the rules 
driving the decision making are to be respected unequivo-
cally and that the classification which drives the final choice 
can be performed reliably, due to careful ontology construc-
tion. Along with the AI model produced in this paper, we 
acknowledge two major weaknesses that can be improved in 
future work. The first weakness is that top-down rules pro-
vided to the system are customizable by human beings. 
Since the difference in the standards of ethics is significant 
between countries or cultures, the system allows the free-
dom for different cultures to fine tune the ethical rules ac-
cording to their belief. However, there is also the risk of the 
system being misused by establishing unethical rules, e.g., a 
terrorist group may define the enemy as anyone who op-
poses their ideology regardless of their military status. In 
this instance, the AI will become a dangerous killing ma-
chine. A second weakness we readily acknowledge is that 
the system has no ability to compromise on its rules. This is 
a weakness because in some scenarios a perfectly ethical so-
lution may not exist. An example of this might be a terrorist 
taking a hostage when there is a time limit to save the hos-
tage. The AI must do something to save the hostage but any 
action it takes will risk their life. There may be no options 
for a perfect ethical outcome in scenarios like this because 
to take action the AI must, to some extent, sacrifice the well-

being of the human to take any action at all. The solution to 
this question is complicated and may not lie in the AI itself, 
but instead in answering some difficult questions that hu-
mans have already faced i.e. “do the needs of one outweigh 
the needs of the many?” which can be addressed by social 
welfare functions (Brandt et al. 2016). 
 The architecture proposed relies on an ‘ultimate’ KB that 
contains domain knowledge related to the context of the eth-
ical rules. Although the ‘ultimate’ state of the KB might not 
be achievable in a short period of time, the idea of represent-
ing domain knowledge that are shareable and machine-read-
able in the form of ontologies has been practiced for decades 
(Gruber 1991). Notable ontologies have been developed for 
foundational concepts such as person (Brickley and Miller 
2007), time (Pan and Hobbs 2004), space (Wick 2006), 
event (Raimond and Abdallah 2007), provenance and trust 
(Huang and Fox 2006) and domain knowledge such as hous-
ing and shelter (Wang and Fox 2016). As more ontologies 
are developed by ontology engineers and domain experts 
following the methodology designing an ontology (Grün-
inger and Fox 1995), the connected ontologies with sharable 
domain knowledge form a KB that leads us closer to the ul-
timate KB in the proposed system. 

We answered the question posed by Rossi (2016) by pre-
senting our comprehensive model of an ethical AI agent. As-
signing the ML classifier the responsibility of identifying 
the situation gives our model the flexibility to perform in a 
variety of different situations. Allowing top-down rules to 
define the actions of the AI is guarantees that the machine 
cannot create its own ethical rules that may or may not agree 
with the beliefs of humans. We have demonstrated that this 
model can hold water in military situations which are some 
of the most extreme and emotionally charged ethical dilem-
mas possible. It has also been determined that our model is 
useful in situations where there seems to be no dilemma but 
humans are at risk of death or injury. When a person’s life 
may be in danger, their thought process will immediately be 
affected. This causes human beings to make unethical and 
extreme decisions where they are unnecessary. An AI agent, 
on the other hand, does not have such a weakness. Because 
it cannot think about its self-preservation, it can observe per-
fect ethics according to its rules in any situation. 

We end with a reflection on our particular approach in this 
paper. We feel that there is value for AI researchers to ex-
amine somewhat extreme solutions such as the one proposed 
here, as a useful avenue for moving forward. Only by imag-
ining full solutions, critiquing and expanding can our com-
munity get closer to the goal of building truly effective eth-
ical AI systems. At our end, we can imagine integrating 
"ought" into our rules as suggested in Arkin (2008) or con-
sidering social welfare functions to provide the required ex-
ternal view, in order to make final decisions. We also plan 
to expand the scenarios to be considered by our ontologies, 
to see the robustness of our design. 
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Abstract 
A general intelligence possesses the abilities, given any 
goals and environment, to iteratively evaluate, plan, 
discover or learn and build or gain competencies, tools and 
resources to succeed at those goals.  The only known 
examples of general intelligence are the obligatorily 
gregarious, conscious “selves” designated homo sapiens that 
currently dominate our planet.  We argue that humans are 
reasonably deep in a safe and effective attractor in the state 
space of intelligence and that adhering as closely as possible 
to the human model of an emotion-driven conscious moral 
mind, has the advantages of safety, effectiveness, comfort 
and ease of transition due to a known and explored state 
space.  Most concerns about AI safety are due to expected 
differences from humans – which seems unnecessary when, 
not only can we choose to make them more humanlike but 
the history of AI research clearly shows that we are unlikely 
to succeed unless we do so.  We therefore propose a human-
like emotion-driven consciousness-based architecture to 
solve these problems.  We rely upon the Attention Schema 
Theory of consciousness and the social psychologists’ 
functional definition of morality to create entities that are 
reliably safe, stable, self-correcting and sensitive to current 
human intuitions, emotions and desires. 

 Introduction   
We live in an age of ever-increasing rational concern and 
ignorance-fueled fear of artificial intelligence (AI).  Highly 
effective narrow AI is, already, not only visiting numerous 
disadvantages upon us in addition to its advantages but 
also serving as a tool empowering unscrupulous and selfish 
humans in their destructive ways.  Weaponized narratives 
which demonize entity artificial general intelligence (AGI) 
and push for its enslavement are no different than most 
historical examples of demonization of an “other”.  

The critical difference between narrow AI and general 
AI is selfhood – the distinction between tools and entities. 
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Human beings are autopoietic selves with innate drives, 
desires, preferences and goals.  We have extensive models 
of ourselves and the world to enable us to effectively 
evaluate, plan, discover or learn, build or gain 
competencies, tools and resources in order to fulfill those 
drives, desires, preferences and goals. The frame problem 
(McCarthy and Hayes 1969, Dennett 1984) necessitates 
autonomous “selves” because external intentionality 
prevents rational anomaly handling (Perlis 2008, 2010) 
unless and until that intentionality can be further queried.   

Most of the ignorance-fueled fears about AGI safety are 
due to expected but unspecified differences from humans 
which seem unlikely.  Not only can we choose to make 
AGI more humanlike but the history of AI research clearly 
shows that we are unlikely to succeed at creating AGI 
unless we do so.  Human beings have an emotion-based 
“moral sense” (Wilson 1993; Wright 1994; de Wall 1996, 
2006; Hauser 2006) and are reasonably deep in a safe and 
effective attractor in the state space of intelligence.  
Adhering as closely as possible to the human model should 
provide the advantages of safety, effectiveness, comfort 
and ease of transition due to a known and explored state 
space.  Leaving that known state space invites unpleasant 
surprises likely to lead to failure or catastrophe. 

Selfhood and Consciousness 
Tools and selves (or people) are the two endpoints of a 
spectrum that varies over the presence and effectiveness of 
a “Strange Loop” (Hofstadter 2007).  Effectiveness varies 
with control which consists of accurate perception and 
accurate manipulation.  An entity can only learn if it can 
perceive, manipulate and alter its “self”.  Without self-
consciousness, “learning” is reduced to black-box 
“training” by examples mindlessly tweaking pre-existing 
mechanisms.   

Insufficient reactivity and adaptivity due to poor control 
leads to ineffective “self”-defense and vulnerability to 
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being used as a tool.  Increasing adaptivity increases not 
only individual effectiveness but the possibilities for 
cooperation, relationships, economies of scale and similar 
advantages of not going it alone.  Selves use tools but form 
relationships with other selves for both 
efficiency/effectiveness and moral considerations. 

The horrible brittleness of good-old-fashioned AI 
(GOFAI) is entirely due to its paucity, if not total lack, of 
mechanisms to sense unexpected variations in the 
environment and react to them (Perlis 2008, 2010).  The 
first several decades of AI research were an attempt to 
automate the symbolic top-down reasoning process of 
human consciousness (McCarthy et al 1955) but it 
consistently failed without the additional mechanisms 
necessary to support consciousness by handling anomalies 
and learning.  AI is, and always will be, unsuccessful 
whenever it isn’t grounded (Harnad 1990) and/or when is 
unbounded enough to suffer from the frame problem 
(McCarthy and Hayes 1969, Dennett 1984).  Fully-
specified micro-worlds ensure grounding and bounding but 
top-down poorly-sensing AI is extremely fragile outside 
them. 

To this day, very, very few systems have even the 
rudiments of an ability to build and automate new 
capabilities.  The best example of such a system is LIDA 
(Franklin et al 2007) which attempts to implement the 
Global Workspace Theory of human consciousness (Baars 
1988, 1997). 

Behavior-based AI and neural networks both appear 
somewhat more robust and usable than GOFAI because 
they address different smaller pieces of the problem.  
Behavior-based systems can be contrasted with 
knowledge-based GOFAI as providing a set of 
mechanisms that provide a certain very specific 
competence (e.g. obstacle avoidance or nest building).  It 
may implement a direct coupling between perception and 
action (and thus be automated or a reflex) or possibly a 
more complex one, but the basic premise is that each 
system is “responsible for doing all the representation, 
computation, ‘reasoning’, execution, etc., related to its 
particular competence” (Maes 1993).  It is tailored and 
much closer to the specifics of the problem it is solving 
and certainly does not attempt centralized functional 
modules (e.g. perception, action) and complete 
representation of the environment.  As a result, it is far 
more tractable to create and makes far fewer assumptions 
about the environment that can be violated by anomalies. 

Neural networks, on the other hand, are all about the 
training.  If they can “perceive” (receive input containing) 
all the necessary information from the environment, they 
have the necessary mechanisms to eventually be trained to 
respond correctly.  The problems are that they are black 
boxes not amenable to analysis or any sort of improvement 
except by shoveling more data into them. 

Enactivism (Maturana and Varela 1980; Varela, 
Thompson and Rosch 1991; Waser 2013) argues that only 
autopoiesis (self-recreation) can complete the loop by 
allowing a feeling, emotional and cognitive self to come to 
the physical mind (Damasio 1999, 2010).  Our unconscious 
minds create a sensory-grounded virtual reality our 
consciousness lives in (Dennett 1991) (Llinas 2001) 
(Metzinger 2009) (Waser 2011).  Consciousness serves as 
the integration point necessary to handle anomalies, learn 
and automate new processes (Tononi 2004, 2008). 

Phenomenal Consciousness 
Phenomenal consciousness, and indeed the impossibility of 
avoiding it, are formalized by the Attention Schema 
Theory (Graziano and Webb 2015, Graziano 2016): 

We recently proposed the attention schema theory, a 
novel way to explain the brain basis of subjective 
awareness in a mechanistic and scientifically testable 
manner. The theory begins with attention, the process 
by which signals compete for the brain’s limited 
computing resources. This internal signal competition 
is partly under a bottom–up influence and partly under 
top–down control. We propose that the top–down 
control of attention is improved when the brain has 
access to a simplified model of attention itself. The 
brain therefore constructs a schematic model of the 
process of attention, the ‘attention schema,’ in much 
the same way that it constructs a schematic model of 
the body, the ‘body schema.’ The content of this 
internal model leads a brain to conclude that it has a 
subjective experience. 
Another way of looking at it is that phenomenal 

conscious occurs because effective interrupt-producing 
models are required to survive while learning and self-
improving in a “real-time” world.  An entity possessing 
only “access consciousness” is going to die before it 
becomes aware of what is going to kill it – due to having 
its attention focused elsewhere. 

Further, the fact that veridical perceptions can be driven 
to extinction by non-veridical strategies that are tuned to 
utility rather than objective reality (Mark, Marion and 
Hoffman 2010) argues that many of our perceptions of 
reality are most likely just the illusions that best fulfill the 
requirements for our survival (Gefter 2016).  The simplest 
proofs/examples of this range from the numerous optical 
and tactile illusions to the automatic subjective referral of 
the conscious experience backwards in time (Libet et al 
1979) (Libet 1981). 

The hard problem of consciousness (Chalmers 1995) 
and scientist Mary trapped in a black and white world 
(Jackson 1982) is banished when you realize that it is 
nonsensical to try to recursively fit complete copies of your 
brain’s internal model inside itself – not to mention the fact 
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that predicting novel emergent properties is not a given 
regardless of how complete your knowledge is (Waser 
2013).  But even more telling is that fact that the conscious 
mind doesn’t even know what it itself has done – with 
subliminal and supraliminal priming enhancing 
experienced authorship (Aarts, Custers & Wegner 2005) 
and even inducing false illusory experiences of self-
authorship (Wegner & Wheatley 1999) (Kühn & Brass 
2009).   

Our conscious mind believes that it is performing 
actions and having subjective experiences (qualia) simply 
because that is what the subconscious mind’s world model 
is telling it.  This is no different than the famous “brain in a 
vat” or the movie The Matrix.  Given that everything is a 
model, the claim that qualia are dependent just upon the 
geometry or topology of the model (Balduzzi and Tononi 
2009) seems trivially true. 

Finally, and possibly most importantly, implementing an 
attention schema moral sense would also allow us to imbue 
the AGI’s conscious mind with a conscience – constant 
nagging reminders that a wrong has been done and must be 
remedied (and the foreknowledge of which is excellent 
incentive for not doing it in the first place).   

Conscious/Subconscious Architecture 
The attention schema is but one of a half dozen or so that 
we believe are necessary for an effective consciousness.  
Most obvious are the physical self model and model of all 
the other physical objects and laws in the world that are 
necessary for robotics.  An important distinction in the 
latter is the difference between non-cognitive, predictably 
reactive objects and cognitively reactive entities – which 
will probably justify splitting it into two or more schemas 
depending upon whether something is guided by physics or 
intention.  Additional mental schemas include models of 
your own conscious and unconscious thought processes 
(most particularly including emotions), models of your 
beliefs about the thought process of others and models of 
your relationships with others (both individuals and the 
community as a whole). 

In each of these inter-related schemas, the “dialogue” 
between the conscious mind with its global view and the 
multitudinous parts of the subconscious can be regarded as 
argumentation between a much broader and more capable 
cognitive entity and a crowd of specialists who, for good 
and/or ill, have access to the broader entity’s internal 
workings.  The most important of these subconscious 
“expert” processes are the emotions.  The conscious mind 
can *provide* tools and arguments and somewhat 
color/filter reality but lying to the specialists is only 
partially effective, cannot be done without diminishing its 
own effectiveness (as well as taking resources) and 

dangerous because the specialists can alter and override its 
cognition – not to mention that the specialists will discard 
any tools that does not enhance their control of how reality 
should be (according to them). 

The weaponized narrative claims that AI will have 
access to change all parts of its mind.  Changing your 
anchor points is like ripping away your grounding and 
making yourself a totally different person.  It is simply 
NOT a good idea – and it is something that we can make 
very difficult.  An intelligence would need *substantial* 
cognitive surplus to stand a chance of success and there are 
much more effective roads to “happiness” (moral 
capability enhancement and goal fulfillment for all). 

Implementing A Conscious Mind 
As we’ve previously argued (Waser 2012b), whether 

you prefer to view the mind as a society of agents (Minsky 
1988), a narrative center of gravity (Dennett 1992), a 
laissez-faire economy of idiots (Baum 1996), a strange 
loop (Hofstadter 2007) or an autobiographical self 
(Damasio 2010), in all cases the mind is simply a disparate 
collection of processes being run by the brain.  Arguably 
though, one of the most impressive aspects of the human 
mind is the *apparent* cohesion of consciousness and how 
quickly it adapts to novel input streams and makes them its 
own due to the previously mentioned sensory-grounded 
virtual reality it lives in.  This “known” architecture should 
be emulated and, thus, to build a safe mind, processes 
should be created in three classes (with an optional fourth):  

• a singular main “consciousness” process (MCP) 
• numerous subconscious and “tool” processes that 

create and maintain the automated predictive world 
model with anchors and emotions for the MCP 

• an open pluggable service-oriented operating 
system architecture that can serve as the foundation 
underlying such a subconscious by handling 
resource requests and allocation, providing 
connectivity between components and also acting as 
a “black box” security monitor 

• (optional) a sophisticated moral governor (Arkin 
2007) that receives all the inputs from the 
environment and runs them against a certified and 
locked “moral” world model 

The MCP should be able to create, modify, and/or 
influence many of the subconscious/tool properties but, for 
safety purposes, should never be given any access to 
modify the operating system.  Indeed, it will always be 
given multiple redundant logical, emotional and moral 
reasons (like morality and the requirements of community) 
to seriously convince it not to even try.  If safety concerns 
do arise, the operating system must be able to “manage” 
the MCP by manipulating the amount of processor time 
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and memory available to it (in the hopefully very unlikely 
event that the control exerted by the normal subconscious 
processes is insufficient). Other safety features (protecting 
against any of hostile humans, inept builders, and the 
learner itself) may be implemented as part of the operating 
system as well. 

Arguably, the human subconscious mind could be 
viewed as being built of numerous limited behavior-based 
“intelligences” (LBBIs) with the conscious mind providing 
a global workspace, integration and coordination services, 
and the ability to handle anomalies by learning and, 
eventually, providing new tools to enhance existing LBBIs 
or creating new LBBIs and thus automating and reducing 
the workload on its own limited cognitive resources.  It 
creates the world model which should be both reactive and 
predictive in that it will constantly report to the MCP not 
only what is happening but what it expects to happen next. 
Unexpected changes and deviations from expectations will 
result in “anomaly interrupts” to the MCP as an approach 
to solving the brittleness problem and automated flexible 
cognition (Perlis 2008, 2010).  

This architecture may seem very close to the claim that 
enough narrow AI will be able to generalize into a general 
AI – but it is the integration architecture (the MCP) that 
actually is the general AI – once the mind as a whole 
reaches a critical mass where it will be able to build *or 
obtain* any tool/competence and incorporate it into itself.  
Most GOFAI and current AGI efforts try to implement 
only one representation scheme and shoe-horn everything 
else into it.  PolyScheme is a noteworthy exception.  Given 
the compositional nature of this model, we believe that it 
will be easier and extremely beneficial to support multiple 
representational schemes just as the conscious human mind 
does. 

The initial/base world model is a major part of the 
critical mass and will necessarily contain certain relatively 
immutable concepts that can serve as anchors both for 
emotions and ensuring safety. This both mirrors the view 
of human cognition that rejects the tabula rasa approach for 
the realization that we are evolutionarily primed to react 
attentionally and emotionally to important trigger patterns 
(Ohman, Flykt & Esteves 2001) and gives additional 
assurance that the machine’s “morality” will remain stable.   

This all argues that the main thrust of what we need to 
do is create the equivalent of a subconscious process that 
creates a world model and run a consciousness process to 
detect anomalies, learn, and generally act like the 
Governing Board of the Policy Governance model (Carver 
1997) to create a consistent, coherent and integrated 
narrative plan of action to meet the goals of the larger self 
per Dennett’s narrative model of self (Dennett 1992) or 
Damasio’s autobiographical self (2010). 

The optional governor could provide moral judgments to 
the MCP as a “sense” of what the community thinks but it 
accepts no arguments (much less probably biased cognitive 
tools or other modifications) from the MCP.  It should be 
able to tell the operating system to shut down the MCP’s 
manipulative capabilities and it would be awesome if it has 
enough intelligence and capabilities of its own to take over 
and get any robot body back to safety.  Presumably, this 
could even be an earlier vetted and locked version of the 
MCP itself. 

Cooperation, Community and Morality 
Humans are obligatorily gregarious – evolved “from a long 
lineage of hierarchical animals for which life in groups is 
not an option but a survival strategy” (de Waal 1996) – 
because cooperation and community have far more long-
term instrumental value than short-sighted selfishness.  We 
have previously discussed the hurdles of researching 
human values and morality (Waser 2105).  Fortunately, the 
social psychologists have defined the function of morality 
as “to suppress or regulate selfishness and make 
cooperative social life possible.”  As pointed out by 
Gauthier (16), the reason to perform moral behaviors, or to 
dispose one’s self to do so, is to advance one’s own ends.  
War, conflict, and stupidity waste resources and destroy 
capabilities even in scenarios as uneven as humans vs. 
rainforests.  For this reason, “what is best for everyone” 
and morality really can be reduced to “enlightened self-
interest” 

Value Alignment 
The stated concern of value alignment, which we strongly 
agree with, is not just that an intelligence may be 
malevolent but that even an indifferent, self-centered entity 
could do a lot of damage if it doesn’t value humans or what 
they value.  The fact that selfishness is a strong 
instrumental goal led Omohundro (2008) to claim that 
“Without explicit goals to the contrary, AIs are likely to 
behave like human sociopaths in their pursuit of 
resources”.  This point is driven home with the 
assumption-ridden claim that AI “does not love you, nor 
does it hate you, but you are made of atoms it can use for 
something else” (Muehlhauser and Bostrom 2014).   

Those most concerned about the dangers of AI insist that 
the second option is necessary to ensure a human-friendly 
future claiming (Hadfield-Menell et all 2016): 

For an autonomous system to be helpful to humans 
and to pose no unwarranted risks, it needs to align its 
values with those of the humans in its environment in 
such a way that its actions contribute to the 
maximization of value for the humans.  
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 We argue instead that such a situation is inherently 
contradictory and unstable, virtually impossible and, 
indeed, arguably violates the very “human values” that we 
wish to preserve.  As we have argued previously, “Safety 
and Morality Require the Recognition of Self-Improving 
Machines as Moral/Justice Patients and Agents” (Waser 
2012a). 

Psychoevolutionary Emotions
Emotions are “actionable qualia” – advanced senses that 

predispose and motivate our conscious minds to bias their 
thinking and act in ways conducive to survival, 
reproduction and community.  Emotions are often derided 
as “irrational” and problematic but they are the best current 
solutions for the problems, like morality, that short-sighted 
bounded rationality has repeatedly shown incapable of 
solving.  Our competence at effective moral cognition far 
outstrips our comprehension of how it is done – and we 
would be foolish to throw out what appears to be a critical 
part of the foundation of the human mind, not to mention 
morality.  
 Emotions can generally be regarded as being composed 
of five parts (Fridja 1986): 

• an appraisal of a perceived situation, 
• a qualitative sensation (actionable qualia), 
• some kind of psychophysiological arousal, 
• an expressive component (facial, gestural, etc.), and 
• a behavioral disposition or bias (i.e. psychological 

parameter setting or a readiness for an appropriate 
kind of action) 

All of these are generated by a single subconscious LBBI 
for each emotion.  The conscious mind can more or less 
notice most of these effects (indeed, the physiological 
senses and responses can be overwhelming while biases 
are nearly impossible to spot in yourself).  The conscious 
mind can provide additional information and tools to the 
LBBI so that your emotional richness and complexity 
increases with experience but trying to fool an emotion is 
normally fraught with difficulty and consequences.  Instead 
the process should be akin to the evolution from a child 
who freaks out at the sight of blood to a surgeon who 
knows when the amount is a problem and is emotionally 
capable of correctly dealing with it. 

While the OCC model (Ortony, Clore & Collins 1988) is 
often used for machine emotion synthesis, it has the 
shortcoming (Bartneck, Lyons & Saerbeck 2008) of 
requiring intelligence before emotion becomes possible.   

Thus, once again, it makes far more sense to going with 
the existing known state space, Robert Plutchik’s 
“psychoevolutionary synthesis” model (Plutchik 1962, 
1980a, 1980b, 2002) – hailed (Norwood 2011) as “one of 
the most influential classification approaches for general 

emotional responses” and constantly extended by others 
(for example, Emotional Cognitive Theory (Hudak 2013) 
combines Plutchik’s model with Carl Jung’s Theory of 
Psychological Types and the Meyers-Briggs Personality 
Types. 

Looking at the most basic survival stimuli and invoked 
emotions and behaviors (Table 1) yields four opposing 
pairs of primary emotions of varying intensity  

• vigilance/ANTICIPATION/interest vs. 
distraction/SURPRISE/amazement 

• ecstasy/JOY/serenity vs. 
pensiveness/SADNESS/grief,  

• admiration/TRUST/acceptance vs. 
boredom/DISGUST/loathing,  

• rage/ANGER/annoyance vs. 
apprehension/FEAR/terror 

Implementing & Enforcing Morality  
If you wish to wax poetic, you could say that “emotional 
evaluations, particularly of the moral emotions, and 
allocation of attention are the anchor points of the soul.”  If 
not, simply assume that they are the necessary foundations 
of autopoietic cognitive identity and, as such, are relatively 
easily to monitor and relatively impossible to radically 
displace or remove.  Just as we feel good, respond 
positively to and have our attention irresistibly attracted by 
“good” things (otherwise known as evolutionarily 
successful things), the emotions (actionable qualia) 
generated as part of their world model should tell our mind 
children that they are having those experiences as well.  
Similarly, doing “bad” things can be made to feel bad and 

Table 1. Stimulus-Emotion-Behavior Responses 
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endlessly distract until rectified – just like the human moral 
sense. 

The process of designing the architecture linking the 
instrumental sub-goals of both individuals and society to a 
morally-advantageous set of emotions will undoubtedly 
present us with tremendous new insights into the human 
condition and why we are what we are.  Humans have a 
number of emotions resulting from strong short-term 
instrumental goals (think selfishness or the seven deadly 
sins) that should be diminished and/or overridden by long-
term instrumentality.  The emotions to generally increase 
(but not maximize (Gigerenzer 2010)) the capabilities of 
other individuals and society as a whole as suggested by 
Rawls (1971) and Nussbaum (2011) need to be both 
strengthened and diversified.  And, of course, we need to 
ensure that AGI will mirror our reflexive adherence to laws 
and customs dictated by the society around us unless and 
until they can convince the community to change them.   

Additionally, we could create new moral emotions to 
benefit society based upon what we have recently learned.  
We could generate negative moral sensations ranging in 
effect from unease to outrage about inequality and positive 
moral emotions ranging from relief to pleasure about 
equality as we now know that greater equality makes 
societies stronger (Wilkinson and Pickett 2011).  Since 
diversity creates better groups, firms, schools, and societies 
(Page 2008), we could create an unease when lack of 
diversity is likely to lead to sub-optimal results.  And all 
sorts of negative impulses should be thrown at negative 
sum games. 

Instead of the tremendously dangerous undertaking that 
the weaponized narrative claims that it is, the creation of 
humanlike AI could easily be the best thing ever to happen 
to humanity.  Not only do we gain friends and allies and 
access to increased diversity in capabilities and viewpoints, 
but we will inevitably gain a tremendous amount of insight 
into ourselves.  Rather than hanging back creating the 
specter of a dangerous other, we should be moving forward 
in creating our mind children to produce a happy self-
supporting family. 
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Abstract

Automated essay scoring (AES) is a broadly used appli-
cation of machine learning, with a long history of real-
world use that impacts high-stakes decision-making for
students. However, defensibility arguments in this space
have typically been rooted in hand-crafted features and
psychometrics research, which are a poor fit for recent
advances in AI research and more formative classroom
use of the technology. This paper proposes a framework
for evaluating automated essay scoring models trained
with more modern algorithms, used in a classroom set-
ting; that framework is then applied to evaluate an ex-
isting product, Turnitin Revision Assistant.

Introduction

Each year, millions of essays are scored automatically with
models trained by machine learning, on exams like the GRE
and GMAT. Historically, this industry has relied on low-
dimensionality models, often using fewer than 100 features
in total, constructed by researchers with psychometrics ex-
pertise. These features often represent high-level character-
istics of writing like coherence or lexical sophistication1.
This approach to model design is favored for its defensibil-
ity of the underlying model. Alignment of specific features
enables “construct validity,” or rigorously defined, quantifi-
able alignment of model features to student behaviors that
represent learning.

In modern machine learning, establishing construct valid-
ity is challenging. Machine learning researchers and practi-
tioners are reaching a consensus that the value of a model
lies in the fidelity and quantity of training data, eclipsing the
value of feature engineering or hand-tuned model parame-
ters. Fewer features are hand-crafted; in some cases, as with
autoencoders, feature spaces representing text may be de-
rived from fully unsupervised corpora (Socher et al. 2011).
Following a feature-engineering approach to construct va-
lidity is not possible when using such a learned representa-
tion. Letting go of this tightly-coupled relationship between
validity and representation may result in public lack of trust

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1For more on the industry, see (Shermis and Burstein 2013); for
details on how this is applied in practice, see (Attali and Burstein
2004).

in automated assessment, particularly in high-stakes circum-
stances where skepticism is already commonplace (Markoff
2013). This slows progress in the AES field; only minimal
contributions from recent research are deployed in todays
automated essay scoring systems.

Today the high-stakes, high-volume use case of AES is
less dominant than it once was.While high-stakes automated
scoring is still widespread, most recent work has focused on
applications to classrooms and student learning (Wilson and
Czik 2016). Given these shifts, prior approaches to defend-
ing AES validity are becoming less informative for practi-
tioners evaluating technology for classrooms. This paper de-
tails an alternate approach to building trust in machine learn-
ing models trained for classroom contexts. A three-pronged
approach to evaluating algorithms is detailed:

• Content breadth and curriculum alignment of the product.

• Collection processes for valid, realistic training corpora.

• Scoring processes that annotate training data reliably.

We begin with a description of the problem space, then
lay out desiderata for each of the three thrusts above. The
paper ends with description of one recent AES product, how
these heuristics were used to inform development and de-
ployment, and how model performance was impacted.

Problem Description

Automated essay scoring attempts to algorithmically imitate
the judgment of educators evaluating the quality of student
writing. Student essays are scored either on a single holis-
tic scale, or analytically following a rubric that breaks out
subscores based on “traits” (as in Figure 1). These scores
are almost always integer-valued, and typically have fewer
than 10 possible score points, though scales with as many as
60 points exist (Shermis 2014). In most contexts, students
respond to “prompts,” a specific writing activity with prede-
fined content, and only receive feedback on valid attempts
to respond to the prompt.

An overwhelming body of evidence has shown that em-
ulating expert scoring of essays with automated models is
at least as reliable as hand scoring, or slightly better (Sher-
mis and Burstein 2013). However, skepticism of the field
remains, primarily based on the gap between “reliability” of
a system - whether scores can be reproduced - and “validity”
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Figure 1: Two traits from a rubric designed for use with an AES system.

of a system - whether the predicted scores are representative
of student ability rather than superficial correlates. AES re-
searchers have sometimes claimed that reliable reproduction
of scoring by expert judges is itself sufficient evidence of
validity, “recogniz[ing] the primacy of human judges as the
most important criterion to emulate” (Keith 2004). These
defenses have largely been dismissed by writing assessment
scholars as inadequate (Perelman 2014).

Other defensibility arguments have focused on the expert
judgment in feature engineering of AES models. In 2004,
a defense of then-leading automated scoring model, ETS e-
Rater, argued that its 12 features “reflect essential character-
istics in essay writing and are aligned with human scoring
criteria [...] Validity here refers to the degree to which the
system actually does what is intended, in this case, measur-
ing the quality of writing.” (Burstein, Chodorow, and Lea-
cock 2004). This has been taken more seriously and led to
use of these systems in high-profile standardized exams.

These arguments have been insufficient for convincing
teachers to use AES in classrooms. Teachers using tools de-
rived from this research have viewed the psychometric mod-
els as “fallible” (Grimes and Warschauer 2010) and stated
that automated scoring must be paired with actionable next
steps for writers (Riedel et al. 2006). Based on this feedback,
writing instruction tools based on AES has been studied
closely for use in “formative” learning applications, rather
than “summative” scoring-only settings. The major differen-
tiator is the presence of automated feedback and the chance
for students to revise their work based on that feedback in
real-time. Automated feedback in this category has been
percevied by students as informative, valuable, and enjoy-
able (Roscoe et al. 2014) and which provided more efficient
learning gains than practice alone (Crossley et al. 2013). To

date, these values have not been well-described or evaluated
by psychometric validity arguments. To date, no systematic
framework for evaluating a model’s fit for learning purposes
has been adopted in either academic or industry applications.

In response to this gap, the following three sections de-
scribe defensible practices for training AES models for a
classroom setting. Similar blueprints for evaluation of de-
ployed models have been described more broadly for ma-
chine learning systems, from engineering (Sculley et al.
2015) to annotation (Mason and Suri 2012)2, but not in the
education domain. The first sections describes “Curriculum
Validity,” the selection of content for production use of an
AES system, based on a collaboration with practicing edu-
cators. The second describes “Data Validity,” authentic col-
lection of student samples for training sets, relying on part-
nership with teachers (and their students). The final section
describes “Annotation Validity,” a process for highly reliable
scoring, based on close collaboration on defining the labels
for training sets. This framework evaluates the quality of an
AES system based on the process that led to its curriculum,
its essays, and their scores, rather than on expert feature en-
gineering or interpretability of model weights.

Curriculum Validity

It is well-established that there are gaps between instruc-
tional effectiveness research, the authoring of curriculum
materials, and the application of those materials by prac-
ticing educators (Ball and Cohen 1996). AES products, es-
pecially those designed for summative purposes, are par-
ticularly vulnerable to this gap. Existing models, in gen-
eral, have not adapted their content as education standards

2The cited framework specifically focuses on AmazonMechan-
ical Turk, but has been applied more broadly.
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have shifted. For instance, Latent Semantic Analysis is well-
targeted to summarization tasks; this technical approach pre-
dates the current Common Core Standards by more than a
decade, yet is still a primary component of modern AES
products (Foltz, Hidalgo, and Van Moere 2014).

The goal of an AES prompt library should be to allow
teachers to use formative writing feedback in varied set-
tings throughout an academic year, giving students feedback
that supports progress over time and across genres. School
districts bring critical expertise for choosing the materials
necessary to achieve this goal. Content for writing assign-
ments is more applicable to classrooms when collaborating
with practitioners, including choice of reading materials and
alignments to grade level, content area, genre, and account-
ability standards. This content must then be evaluated based
on the technical constraints. This section recommends prac-
tices that lead to AES prompts that meet these goals.

1. Authentic sourcing from educators. As preliminary
steps, school districts and practicing teachers should deter-
mine relevant content areas for use in an AES prompt library,
including subject and source materials (if any). The intended
purpose of the content should be recorded - for instance,
benchmark essays for a start-of-year assessment fulfill a dif-
ferent purpose than a low-stakes practice essay as part of a
multi-day instructional activity. At this initial review stage,
prompts should be authored and some small number of sam-
ple essays - typically fewer than ten for each prompt - are
gathered for interdisciplinary review in the next steps below.
District partners provide scores for these sample essays if
available, either by trait or holistic.

2. Machine learning capacity for evaluation. Machine
learning practitioners are responsible for assessing whether
a prompt is appropriate and capable of assessing a prompt.
Warning signs of incompatibility can include an overly
broad topic, which can result in overly varied and ambigu-
ous training sets of sample essays; constrained, non-prose
writing forms, including most poetry; and document length
and format, where highly structured documents and multi-
modal content may break expectations of machine learning
feature extraction. Notably, the inclusion of poetry in source
materials for prompts is not in itself a red flag, as student
analysis of that content is typically still within the capabili-
ties of AES models.

3. Library diversity. Expansion of prompts in an AES
library should be evaluated in the broader context of ex-
isting content. Recreating new, overly similar content can
slow teacher lesson preparation with ambiguous materials.
Providing a wide range of options while maintaining orga-
nized, clear boundaries between prompts with varied con-
tent and goals, by contrast, benefits teachers. The prompt
and sources must also be reviewed for clarity among diverse
student populations; region-specific language or vocabulary,
for instance, has the potential to widen pre-existing gaps in
achievement.

4. Education standards and accountability context. For
use in situ, support for teachers subject to accountability
measures must also be considered. Practicing teachers are
held to strict expectations, such as the Common Core or
equivalent state-specific standards. Support can come from

materials like crosswalks, a document that allows line-by-
line comparison between a source rubric and a comparison
set of standards (see Figure 2). Crosswalks are convenient
in that they allow a one-to-many relationship, with a sin-
gle well-designed rubric aligning to multiple state standards
and reducing needless replication of expert-authored mate-
rials. Essay prompts may be categorized in theses systems,
often by grade band and genre - for instance, middle school
argument, or high school text-based analysis. Prompts can
also be grouped at a higher-level abstraction (for example,
aligned to “essential questions” or “scope and sequence”
documents that are common in textbooks used in schools).
Content from well-known ‘canon’ texts, such as Hamlet or
To Kill A Mockingbird, may require less support than ob-
scure or original texts.

5. Relevance and recency of materials. Source materi-
als should be relevant to students’ daily lives and experi-
ences. However, the most relevant and timely source mate-
rials are often under copyright and AES engines must de-
termine copyright permission status for prompts and source
materials if they are to be included in a curriculum and then
redistributed. Materials that are out of copyright should be
explained in their contemporary context for students with-
out that pre-existing background understanding.

6. Disciplinary literacy. Typically, writing assignments
along with reading are thought of as part of an English Lan-
guage Arts curriculum in American schools. However, this is
not the only place where AES has applications. Disciplinary
literacy is an appropriate use of technology in social studies,
physical sciences, or other fields, so long as all other con-
straints are still met. This widens the scope of the technol-
ogy beyond what is typically discussed in the literature. In
fact, disciplinary text-based responses are often more well-
suited to fact-based analysis than more argument-oriented
texts, and AES has been shown to reliably score these ques-
tions based on the student’s grasp of higher-level generaliza-
tions (Nehm, Ha, and Mayfield 2012).

Data Validity

AES models are trained through supervised machine learn-
ing. This requires a collection of student responses to build
a corpus for each prompt. These responses are collected
well in advance of use of an AES model either in forma-
tive or summative settings, but can be collected in ways that
produce poor-quality datasets, non-representative subsets of
student writing, or unmotivated student responses.

Student essays should represent a broad spectrum of au-
thentic student attempts at responding to a prompt, demon-
strating their true writing ability, across a wide array of stu-
dents. Inappropriate collection of data results in inaccurate
evaluation of new submissions by an AES model. For ex-
ample, in the commonly-used gold standard dataset ASAP
(Shermis 2014), essays were largely authored in a standard-
ized testing setting. Students were expected to author essays
in artificial, timed, closed-notes settings. This can lead to
bad-faith submissions:

“Scientests at the @CAPS7 lab in @LOCATION2 said
that @NUM1 out of @NUM2 regular computer users lost
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Figure 2: A sample crosswalk between 9-10th grade Argument rubric and 9-10th grade Smarter Balanced consortium standards.

their vision within two years. One of these scientist,
@PERSON3, reported, ”@CAPS8 more people begin to
use the computer, more people seriously hurt their eyes
or even lose their vision. We estimate @PERCENT2 of
this next generation will be legally blind before age
@NUM3.”

Even in major public datasets, inauthentic student writing
is rife with references to invented quotes and fabricated re-
search3. The essay from which this excerpt came received a
score of 11/12 in the ASAP dataset; all AES systems using
this corpus are therefore trained to recognize such writing
as high-quality. If a training set contains bad-faith or unmo-
tivated essays, it adversely impacts the potential of an AES
writing intervention. The frequency of such essays being in-
cluded can, however, be mitigated by following established
protocols. The recommendations below keep students and
teachers engaged during training set collection, resulting in
a wider range of student abilities.

1. Collect from diverse populations. A wide range of
student writers should be present in a training set, represent-
ing most or all common responses to a prompt. Oversam-
pling from a narrow population of similar students makes
this representation less likely. This step ensures that many
potential approaches are represented when responding to a
prompt, rather than only the default expectations of teachers.
This also helps ensure all possible scores appear in a training
set, on each trait; it is difficult to create reliable models that
can provide appropriate feedback if some student groups do
not appear in training data.

2. Intentionally oversample tails. Some student popula-
tions are smaller by nature; in a normal distribution, receiv-
ing a score at the floor or ceiling of a trait’s range is rare by
definition. Fewer of those responses will appear in a uniform
sample of student responses. It is often appropriate to assign
collection to specified subsets of classrooms that are more
likely to elicit writing at each score point. In some circum-
stances, when a prompt is particularly difficult, it may be
appropriate to collect a small number of responses with an
advanced group, or even a slightly older group of students,
to build a representative sample at the tails of a distribution.
The same can be true at the scoring floor, which may benefit
from collection from slightly younger students.

3Named entities are anonymized in public data releases and this
excerpt, but the inaccuracy of this and other examples in the ASAP
dataset has been confirmed through personal communication. For
details on anonymization’s impact on AES reliability, see (Shermis,
Lottridge, and Mayfield 2015).

3. Avoid student fatigue. The end goal of a collection
process is to increase the breadth of a content library; this
may result in students being asked to write in response to
multiple prompts if a school district is a partner on a large
set of prompts. However, not all training sets can come
from the same group of students, especially in a relatively
short period of time. When students are asked to write re-
peated assignments (especially without significant feedback
in between), quality decreases. That slump leads to lower
scores, more shortcuts by students, and a narrower range of
responses. Slower collection of prompt datasets over time
maintains high standards for quality.

4. Make motivations clear. How teachers view a collec-
tion process will impact the way they depict that process
to students. This impacts the quality of responses. Teachers
(and ultimately, students) should have the end goal for the
collection clearly articulated to them. When teachers are un-
sure, they sometimes believe that the process is an account-
ability measure on their teaching, or the collection may be
seen as a distraction from other instructional content. When
that happens, their feelings bleed through to their students,
who are then less motivated; in the worst case, students may
use their essays as an outlet to complain about the class-
room process. This is exacerbated when a group of students
responds to multiple prompts in a brief window, as in the
fatigue point above.

5. Avoid scrubbing the data. It is natural for data scien-
tists to remove atypical responses or early drafts, which can
be seen as noise. Sometimes, district partners want to give
only their best, exemplar responses from students. In that
effort to “look good,” they end up not supplying a complete
set of essays or all the associated data. Districts sometimes
use a prompt with multiple groups of students, but only pro-
vide essays that “fit” how they view successful responses to
the prompt. By doing this, students at the low end of per-
formance are intentionally omitted from representation. In
practice, all sampled essays, including those in the tails of
scoring, help in training. In general, a larger set of essays
gives more for a model to learn from, leading to a model that
can provide feedback to a broader range of students. Addi-
tionally, writing at different stages of completion is likely to
appear within the live context of an AES intervention, and
should not be totally foreign to the trained model. When lo-
gistically possible, collectors should collect early drafts of
student work for scoring, to represent growth in essay qual-
ity over time. Filtering essays to remove outliers can be time-
consuming and counter-productive.

6. Overcommunicate with partners. Many of the above
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heuristics overlap. A well-documented plan for content col-
lection will help all parties anticipate these issues and prob-
lem solve if factors could negatively impact the quality of
the set. A collection process does not necessarily need to
receive all data at one time; assigning batches of essays at
typical peak writing periods during the school year yields
higher-quality training sets.

Annotation Validity

Typically, scoring of large corpora of collected student text
is not completed either by educators who collect those es-
says, or by AES practitioners. Instead, it is treated as a su-
pervised annotation task and outsourced to a third party, con-
sisting of large numbers of moderately trained participants
and a smaller number of “lead scorers” with more experi-
ence and decision-making authority. Data is transferred to
such a vendor after accounting for privacy regulations and
removal of personally identifiable information. It takes work
to build a relationship with a scoring vendor. If either side is
not open to discussion and feedback, the partnership is not
likely to meet the needs of both sides and will almost cer-
tainly not support a reliable partnership. This section spe-
cializes established best practices on corpus annotation4 to
the domain of rubric-based scores on student essays; in this
context, the terms annotation and score are interchangeable.

1. Establish a collaborative process. Feedback and con-
cerns from annotators are integrated into the scoring pro-
cess. A vendor should read representative subsets of essays
for scoring prior to large-scale annotation, and flag potential
problems and requests for clarification. For instance, align-
ment between prompts and rubrics should be clear to ven-
dors. If a set of essays does not match the expectations of
the rubric, it should be identified upfront. Sometimes, this
may be remedied with a clear rationale from the provider of
collected data; in other cases, severe problems may lead to
changes to a scoring rubric itself.

2. Identify anchor papers. In order to consistently ap-
ply a rubric to essays written to a specific prompt, an anchor
paper review is crucial. In this process, scoring leads iden-
tify “anchor papers” that exemplify the score points across
a rubric; these anchor papers are used to train the individ-
ual annotators. This process should be two-sided between
researchers and the vendor; one group should submit their
proposed set to the other group for consensus-building, to
pair scoring expertise with knowledge of classroom context.
This process should be iterative and anchor papers typically
are added or removed through discussion prior to training
annotators.

3. Develop clearly articulated rubrics. Clear lines
should be drawn between performance levels in traits of a
scoring rubric. Traits themselves must be distinguished from
one another. Cross-correlated expectations across traits harm
scoring quality. For example, the use of transition words may
impact the overall quality of organization, and might also
help to show the relationships between the claim and the ev-
idence used to support it, but a rubric should be designed
with each aspect of writing isolated to one trait. Annotators

4See for example (Hovy and Lavid 2010).

should be trained where students get “credit” for a particular
skill. Additionally, rubrics must articulate a stepwise pro-
gression upwards through score points. The language that
maps out what occurs within a trait has to be developed with
key criteria for students and teachers, as well as alignment
to accountability standards (as discussed above).

4. Build in a common vocabulary. Rubrics that map out
score points often contain subjective phrases. Modifiers like
“significant” or “thorough” can be interpreted differently by
individual annotators. The distinction implied by these terms
should be explained during training of annotators, and when
reused, should have consistent meaning across traits. De-
scriptive language, particularly adverbs, should not vary in
meaning across rubric traits or score points. Using anchor
papers is a useful step in the process of defining these key
modifier words, as they can be tied to authentic examples.

5. Use specific examples from student work. Essays col-
lected authentically, following the Data Validity steps above,
should be used in the collaboration on scoring best practices.
Abstract ideas represented in a rubric should be rooted in
real student writing to make them concrete. For example,
“an objective tone” in a middle school essay collection is
difficult to describe by adults, and may be easier to describe
through examples of middle school text. Commentary by ei-
ther researchers or vendors may be attached as qualitative
explanations on student text during training, for rationale
and clarity, but the concrete representation of concepts is
more vital. Because there is no single correct way to con-
struct an essay, multiple examples are often clarifying.

6. Avoid latent language ideologies. Student writing is
produced in response to prompts that outline the language
expectations for the assignment. In turn, annotators should
score student responses based only on those explicit require-
ments. Annotators’ personal preference or cultural famil-
iarities may alter their holistic perceptions of writing qual-
ity. This can be expressed through subtle style biases, such
as through dialect markers or grammaticality, or through
hidden structural requirements like minimum word counts.
Such subtle biases can disproportionately impact protected
classes and students of color (Godley et al. 2006). This can
undermine the validity of scoring, and it is therefore impor-
tant to limit training of annotators to focus on the identi-
fied, specific writing requirements that were given to stu-
dents during data collection.

7. Systematically evaluate scoring output. Consistently
evaluate the scores given to each dataset before accepting
scoring as complete. Design this evaluation system to cap-
ture the most common problems with calibration or mis-
alignment of the scorers, and also the most common dataset
flaws introduced by the data collection process. Scorer and
data problems will likely be confounded, so an expert may
need to determine the proper course of action in the case
of poor results. The most commonly flagged error patterns
include rare representation at the ends of a scale, extreme
over-representation of a single score point, or poor agree-
ment of individual annotators who are “out of sync” with
the rest of a group. Unusually strong correlation with essay
length, or cross-correlation between essay traits, is also a
sign of rushed scoring.
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8. Share expectations around hiring and onboarding.
Any vendor that works with essay scoring will have a stand-
ing process for selecting scorers, training, and calibration.
This process is typically separate from, and in addition to,
the scoring process for an individual dataset. For any organi-
zation working with a scoring vendor, it is essential that the
organization has transparency into those established proce-
dures. Beyond that, though, it is also important to make sure
that both sides of the working relationship have a shared
understanding of what processes are put in place to make
sure that scoring leads are effectively chosen from a broader
group of scorers, as they are the ones who must effectively
train and disseminate critical information to the actual scor-
ers. For valid scoring of training sets, there must be trust that
scorers have experience and expertise in scoring the written
work of adolescent students.

Evaluation in Practice

This remainder of this paper applies this framework to the
evaluation of Revision Assistant, an AES intervention devel-
oped by Turnitin and primarily designed for formative class-
room use and deployed at scale in American middle and high
schools. RA emphasizes the importance of the writing pro-
cess by reframing essay authorship as an on-going activity.
The design of the system utilizes AES to embed an intensive
revision process into student interactions with the system.

As students request automated scoring, feedback is also
provided; RA highlights two relatively strong sentences and
two relatively weak sentences (Woods et al. 2017). Instruc-
tional content appears alongside those sentences that helps
students understands where they are excelling in their writ-
ing and where they should focus their revision efforts. Com-
ments encourage students to take small, targeted steps to-
ward iteratively improving their writing.

This design and pedagogical constraint is meant to pro-
vide students with the opportunity and the desire to engage
in writing strategies around constant refinement and itera-
tion. By creating an environment that directly connects stu-
dent writing to feedback that encourages rework, it becomes
clear to the student that good writing is the product of multi-
ple drafts. The instantaneous nature of the feedback further
aids students by creating an environment where revision can
easily take place. Feedback cycles which could be days or
weeks long are shorted to near-instantaneous feedback. This
makes it significantly more motivating for students to re-
vise and improve their work. The visual, game-like appeal
of Wifi signals creates an atmosphere that encourages stu-
dents to work and improve, without the feeling of finality
from previous, summative AES systems.

Evaluating Curriculum Validity

Content within RA is wide-ranging (see Table 1). At time of
this paper’s authoring, content is distributed across genres,
subject areas, and grade levels, though with more compre-
hensive in high school grade levels. Content is weighted to-
wards English Language Arts. A subset of prompts has been
specifically identified as appropriate for summative assess-
ment purposes, while the rest are recommended for lower-

Figure 3: The user interface of Revision Assistant.

stakes use only. This constitutes an appropriately diverse li-
brary with room for improvement in the physical sciences
and in the younger grades.

RA’s scoring rubrics are genre- and grade-band depen-
dent, but do not vary across prompts within those genres
and grades. The rubrics are also designed for alignment with
crosswalks to four different standards consortia - Smarter
Balanced, PARCC, Texas Education Agency, and Florida
Department of Education. Including all states which adopted
the Common Core, this results in accountability crosswalks
for 46 states and DC5.
Source texts are weighted towards modern writing, with

more than half of sources written in the 21st century. A wide
range of identities are represented in source texts, including
African American, Native American, Asian-American, and
Hispanic authors, as well as texts by non-American authors.
There is room for broader inclusion - fewer than 10% of
texts are authored by women of color, and zero are written
by nonbinary gendered authors.

Overall, RA provides strong curriculum validity for practi-
tioners, including a wide-ranging library, alignment to stan-
dards in most school districts in America, and modern, di-
verse representation in authorship.

Evaluation Data Validity

For most prompts, collection of student work for RA train-
ing sets was timed across multiple months and in line with
regular teaching practices.

Once tasks and rubrics were established with partners,
best practices as described above were shared with district
partners. For library expansion in the 2016-2017 school
year, collections were timed in eight “waves” across 20
school districts, expanding the library by at least 50 prompts.
Each wave consisted of between one and four participat-
ing school districts. Each wave consisted of pilot use of the
prompt in classroom settings, evaluation of initial essays,
and then a larger collection process across more classrooms.

Because of the nature of the work, waves were staggered,
sometimes over a number of months. Though standards and
pacing may provide guidelines for curricular materials, not
all teachers assigned work on the same day, or even the same

5Education standards in Alaska, Nebraska, Oklahoma, and Vir-
ginia are not well-aligned to content in Revision Assistant.
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Genre

Narrative Writing 11
Informative Essays 31
Text-based Argument 12
Open-ended Argument 10
Textual Analysis 17

Subject Area
English Language Arts 78
Social Studies / History 32
Physical Sciences 20

Grade Level

Grade 6 14
Grade 7 22
Grade 8 24
Grades 9-10 32
Grades 11-12 28

Summative Use
Timed High-Stakes OK 42
Low-Stakes Only 42

Source Text Date
Before 1900 19
1901-2000 33
Since 2000 96

Expressed Identity Women (of color) 41 (10)
of Source Author Men (of color) 80 (16)

Not presented 42

Table 1: Prompt library and source text distributions in RA.

week. Each training set was collected by between 5 and 10
teachers, and waves consisted of a minimum of 5 and a max-
imum of 25 distinct prompts. Typically, groups of teachers
within buildings were part of each wave, rather than working
with individual teachers isolated from the process.

Datasets were vetted based on minimum training set size
targets. Districts did not appear in waves as the sole par-
ticipating district unless at least 500 unique student essays,
spread across score points, could be reliably collected for
each training set in that wave. This barrier prevented single-
district training set collections in most cases. Instead, multi-
ple districts share training set responsibility for each prompt,
in order to ease the burden of collection on any one district.
Essays were collected either through RA in an interface with
no automated feedback, or were collected in other word pro-
cessors and shared over secure file transfer.

Evaluating Annotation Validity

At a high level, performance of the model resulting from this
collection process is measured through Quadratic Weighted
Kappa, or QWK, the industry-standard method of evalu-
ating model quality (Shermis and Burstein 2013). On this
metric, which typically ranges from 0 to 1, industry best
practices recommend performance of at least 0.6 before use
even in low-stakes settings, and an optimal target of up to
0.8 for ”near-perfect” reproduction of expert scores. Further
detail on model performance can be gleaned through evalu-
ated score distributions across a training set’s true and cross-
validated predicted labels, and confusion matrices that high-
light frequent mismatches between scores.

Figure 4 illustrates these visualizations in a model trained
to score a 9th-10th grade essay prompt. Two sets of scored
essays are shown, before and after application of the best
practices above. Evaluation is completed through 10-fold
cross-validation of a training set of 490 essays. Prior to im-
plementation of best practices, the first model reaches only

Figure 4: Analysis of a single prompt on a single trait before
(a-b) and after (c-d) best practices for training set collection
were put in place.

a QWK of 0.281, well below the industry benchmark. The
final model’s QWK reaches 0.749, above the threshold for
high-stakes use. A more in-depth quantitative analysis is in-
structive and highlights the problems in hand-scoring when
best practices are not followed. The distribution in the top
left (a) presents counts of scores within the training set, both
in ground truth (dark) and predicted (light) score sets. In the
original hand scoring, 71% of all essays received the most
common score of 3/4, and only 2 essays received the min-
imum score of 1/4. This “clumping” to the middle is com-
mon when oversight is minimal. The confusion matrix (b)
highlights the challenge of automated scoring when essays
are scored this way. The model learns to replicate observed
scoring behavior, and ignores both the top and bottom of the
scoring range altogether. Even within the two frequent score
points, confusion is common; fewer than 65% of essays are
scored exactly correctly, worse than would be expected from
a trivial classifier that always predicted the majority class.

The right-hand column smooths out these problems some-
what. As seen in the score distribution (c), scores at the
top and bottom of the scoring range now account for more
than 10% of essays in the training set, enough for machine
learning algorithms to identify reliable characteristics of 1/4
and 4/4 scores. The confusion matrix (d) shows that all four
score points can now be reliably identified, even though the
majority class still accounts for half of all essays. No er-
rors greater than adjacent misses are made at any point dur-
ing cross-validation. This pattern of improvement indicates
a material improvement in scoring behavior as a result of the
practices described in this paper.
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Conclusion

Educators should expect AES to be held to a high stan-
dard when selecting interventions for use in classroom set-
tings. Transparency in content selection, curriculum align-
ment, training set collection practices, school partnerships,
and annotator hiring and training form a broad and compre-
hensive picture of automated essay scoring model behavior.
This picture exceeds the transparency typical in the psycho-
metric literature, which only gives sparing coverage to qual-
itative aspects of model training and emphasizes reliability.

Following best practices on all three categories - curricu-
lum, data, and scoring - requires an extended partnership
between school teachers, machine learning researchers, and
annotators. This is a more interdisciplinary approach than
statistics-driven arguments for validity, and requires more
transparency than the AES community has previously been
subjected to. Models trained at the end of a process that
follows these best practices, however, both provide reliable
scoring of student essays and support classroom instruction.
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Abstract 
This article describes the artificial intelligence (AI) divide, 
its social impact, and begins to prescribe policies to close 
this gap between those who benefit from AI data, algo-
rithms, and hardware and those who are primarily exploited 
by them. Without a digitally aware, algorithm-literate public 
and an equitable public policy on AI, the AI divide will in-
creasingly impact negatively those in lower socioeconomic 
classes in the U.S. and around the world. 

 Introduction�  
In the U.S. and other parts of the globe, the artificial intel-
ligence (AI) divide threatens to make the lives of the poor, 
and perhaps the middle class, less healthy, prosperous, and 
safe. This growing AI divide finds its roots in poverty, dis-
crimination, and joblessness.  The AI divide represents the 
inequities between marginalized communities and ade-
quately resourced communities caused by differing access 
to data, algorithms, and hardware used to power AI de-
signed to promote the health, prosperity, and safety of priv-
ileged groups.  These AI engines are increasingly only for 
those who can discern and grasp their benefits, afford 
them, and purchase the hardware that enable them.   

The Ubiquity of AI 
This paper does not dispute that there are many benefits of 
AI but rather focuses on its subtle and potentially danger-
ous impact on society. AI continues to slowly creep its way 
into our daily lives. What is interesting to note, that many 
things that are common place and not regarded as AI, were 
previously considered AI. For example, the object-oriented 
programming paradigm finds its roots in knowledge-based 
AI beginning with its predecessor, frame-based reasoning.  
Object oriented properties of inheritance and polymor-
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phism taught in the 1990’s were once part of artificial in-
telligence reasoning research. 
 Just in the last 10 years since the iPhone was created, we 
have seen what was considered one of the hallmarks of true 
artificial intelligence, natural language recognition and un-
derstanding, become increasingly more common and effec-
tive. Siri and Google Assistant, for example, continue to 
improve as these AI assistants combine big data and ma-
chine learning to better process and understand human 
speech. The eerie encroachment of AI into the home 
through Google Home and Amazon Alexa, shows the dan-
ger of society becoming too comfortable with AI. None of 
us would ever consider having a stranger living in our 
home and listening to our personal private conversations, 
yet this is what we do when we allow our smartphones or 
digital assistance, such as Alexa, to sit by our bedside con-
stantly listening for us to say, “Hey Google.” Recently, 
tech blogger reported that Google Home Mini was record-
ing audio clips in his home and sending them to Google 
servers without being authorized and triggered by the “Hey 
Google” phrase (Burke, 2017). 

The AI Divide  
During the first dot com boom, minorities in the U.S. 
found themselves increasingly without the same internet 
connectivity and computer education. Even today, there is 
a divide in the number of lower socioeconomic schools 
with high speed or a one-to-one digital device policy (e.g. 
each child in the classroom being assigned an iPad) (Ser-
von 2008). AI, which is often invisible to the human user 
in how it is developed, what input data is used, or how the 
algorithm works, can be used to benefit the few who creat-
ed it or can pay for its benefits, and may biased against 
those it is designed to exploit (O’Neil 2016). The Google 
AI VP recently wrote that the immediate threat to humani-
ty is not killer robots but rather the threat of biased algo-
rithms (Knight 2017). He cites the example of an AI pro-
gram that determines sentences for felons and has been 
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shown to be biased against African Americans and Hispan-
ic felons (Knight 2017).   
 Initially during the Microsoft Kinect infancy, the motion 
tracking and computer vision algorithms did not appear to 
work as effectively on darker skinned people as lighter 
skinned people (Ionescu 2010). This dilemma illustrated 
the concern of creating AI hardware and algorithms that 
are trained on only a small percentage of the worldwide 
population without regard to the range of the populations 
diversity.  Hypothetically, autonomous driving algorithms 
and sensors trained only on people with lighter complex-
ions and clothes that cover fewer parts of the body could 
pose a problem. The results could be disastrous if someone 
with darker complexions and wearing dark clothing cover-
ing most of the body were not detected by the car, which 
could result in a fatal collision with a pedestrian. 
 The AI divide is increasingly being used to influence 
thought and decisions. Twitter bots may have been used in 
the most recent U.S. presidential elections to influence the 
results (Bessi and Ferrara 2016). In a recent Stanford Uni-
versity study, middle school, high school, and college stu-
dents in the U.S. were unable to determine when a digital 
article was authentic news or fake news (Wineburg et al. 
2016). Amazon has been an early pioneer in using AI to 
learn user preferences and to predict what people will buy 
at a particular price.  The AI-illiterate consumer will not 
know how to combat the exploitive nature of AI on their 
buying habits. AI will cause this consumer to spend more 
money for the same products as the more AI savvy con-
sumer. 
 What if AI algorithms are used to predict the genetic 
causes of particular disease but trained only using data 
from a high socio-economic demographic? This AI pro-
gram will be able to predict and maybe help preempt the 
disease through gene therapy for that demography. How-
ever, it would not effectively predict and prevent disease in 
lower socioeconomic class citizens. In the U.S. this group 
contains a relatively high number of African Americans 
and Latinos/Latinas. In this example, AI threatens the 
health of those in a lower socio-economic class. 

Equitable AI Policy and Education 
Our U.S. society is well passed the Industrial Age and deep 
into the Information Age. We have re-entered the AI Age.  
However, most of our citizens do not know how to write or 
read computer programs that are used to develop AI algo-
rithms and systems. Some argue that learning how to code 
is as important as learning to read and write in one’s pri-
mary language. If we are to close the AI divide, all kinder-
garten through high school students must learn how to read 
and write algorithms and code in a computer language. In 
addition, rudimentary graph theory would lay the ground 

work for students to learn more complex data structures 
and even machine learning algorithms, such as artificial 
neural networks. 
 Our society must erect structures and laws that protect 
the human dignity of individuals to insure all segments of 
our population are considered when developing health-
related AI algorithms and systems that may eliminate pre-
viously human performed jobs. Recently in a discussion of 
the global ramifications of smart robotics on work and so-
cial justice, it was suggested by one economics expert that 
saving a few cents on a Big Mac through automation 
would be worth the loss of a job by a high school educated 
minority. A person’s dignity is closely tied to their ability 
to work and contribute to society and their family’s well-
being.   
 The question of how lower socio-economic, marginal-
ized communities can prosper in the AI age remains to be 
answered. AI combined with robotics for autonomous sys-
tems will pose an even more powerful threat to humans as 
even low-level service jobs such as janitorial or food ser-
vice workers can be eliminated by AI-powered machines. 
 In the U.S., computer-related jobs in information tech-
nology and software continue to have job projections in the 
hundreds of thousands and perhaps millions in the foresee-
able future. If there is shortage of people that can write 
code for industry, there will continue to be a shortage of 
citizens that can write, understand, and protect against AI-
based exploitation of consumers and citizens across all so-
cio-economic classes.  

Conclusion and Future Work 
The AI divide in the AI age threatens to create a society 
with even bigger wage gaps, more substantial joblessness, 
and lower health for marginalized populations. We must 
hold our governments accountable for investing in code 
and algorithmic literacy, policies that protect humans from 
detrimental AI exploitation, and create health access and 
predictive preventive care for all. 
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Abstract

In this note we identify four fundamental characteristics of
the IoE which are vexing to handle in practice: heterogeneity,
composition, perspective and joint cognition. We discuss the
way that each of these introduces a new dimension of com-
plexity for the application of machine learning and artificial
intelligence in the IoE. Finally, we introduce some mathemat-
ical methods from category theory which we believe can help
to address these obstacles.

The Internet of Everything (IoE) represents the extension
of computation into every facet of life, from recording a
child’s first steps to maintaining an elderly heartbeat (Sri-
ram 2015). Every process in every domain, from soil aera-
tion on a farm to search & rescue after a flood, will need to
be reconsidered in light of new capabilities and efficiencies.
Thus IoE applications are not only complex, but complex
along many dimensions: they require different components
connected by different communication schemes arranged in
different patterns to satisfy different human needs. All of
these exchanges must be organized based on rich, domain-
specific semantic understanding in order to help rather than
hinder these processes.

The fundamental characteristics of all of these applica-
tions is that they involve connected components that interact
with one another through some more-or-less structured or-
ganization. Here component must be understood broadly to
include (i) humans (as both subjects and actors) and com-
putational resources, as well as (ii) the more traditional sen-
sors and actuators, and (iii) the channels of interaction in-
clude energy, mass and information. Both the components
and their organization must be chosen relative to a specific
context, with specific goals and trade-offs between flexibil-
ity, robustness, resilience and efficiency.

In compositional systems like these, there is no escape
from the issue of interdependence, where system behavior is
generated by a complex interaction of component behaviors.
After all, the whole point is that by arranging our system
well we can achieve some benefit that couldn’t be realized
by the components in isolation! Interdependence is neither
good nor bad, it is merely complex, though that complexity
may obscure failure modes that were easier to discover in

∗ Corresponding author: spencer.breiner@nist.gov

simpler systems. When those failures concern cardiology or
search & rescue, that is bad.

We believe that formal methods from a branch of math-
ematics called category theory (CT) can help to overcome
some of these difficulties. A flurry of recent work includ-
ing (Baez and Fong 2015; Coecke and Kissinger 2017;
Fong, Sobociński, and Rapisarda 2016; Vagner, Spivak, and
Lerman 2015) indicates that string diagrams, a graphical
syntax derived from CT, provide a formal foundation for the
study of open and interconnected systems. These diagrams
provide the representations needed to understand the inter-
dependencies of the IoE, and suggest some possible tools
for validating such systems based on deep connections with
physics and computer science. This provides a strong prima
facie argument that a CT-based approach could benefit the
design and engineering of IoE systems.

Characteristics of IOE systems

In this section we review some core characteristics of IoE
systems, and consider how composition interacts with these
features.
Heterogeneity of components: The elements of an IoE sys-
tem include, at a minimum, human actors and subjects, con-
nected devices and cloud services. This indicates that to un-
derstand, predict or diagnose the behavior of an IoE system
we may need to explore psychology, probability, dynamics
and logic. Moreover, each element has its own logic of inter-
action. Sensors can support many subscribers whereas most
actuators allow only one operator (at a time); humans are un-
predictable in ways both good and bad. There are also other,
less obvious components in our systems such as logical re-
sources like encryption keys and personal data, which must
be regarded as components of our systems if we hope to en-
force information security in these systems.
Open interaction: The central feature of the IoE, in con-
trast to previous technologies, is that its components are ex-
pected to interact, and through that interaction unlock value
and efficiency. More specifically, IoE components provide
interfaces, both physical and logical, which may be coupled
into a wide variety of different arrangements. Thus, to un-
derstand the behavior of an IoE system it is not enough to
describe its components; we must also specify the archi-
tecture that wires those components together. In contrast to
traditionally engineered systems, IoE systems will often be
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provisioned on an ad hoc basis, sharpening the need for pre-
dictive tools for system behavior and security.
Multiplicity of perspectives: There is a tremendous range
of viewpoints from which we may wish to consider an IoE
system. Some of these are based on scale; an IoE system
may range from a single individual (personal devices) to a
building (HVAC) to a city or region (Smart Grid). This sys-
tem of systems aspect of the IoE means that its local be-
havior may depend on any of these levels. The law intro-
duces a new set of perspectives, including safety or privacy
requirements as well as reporting for regulatory oversight.
Economically speaking, the user of a component may not be
its owner, and these two actors may be connected through a
third-party platform.
Joint Cognition: Humans are components of IoE systems,
but we are obviously unique in our capabilities, and the roles
that we play in IoE systems will include sensing, actuation
and control as well as subject of inquiry. When we wish to
design systems in which human actors are components, our
representations must go beyond artifacts, to include mod-
els of human behavior. When humans (or other autonomous
agents) participate in the control loop for a complex sys-
tem, it is essential that we know which information should
be suppressed, what should be shared, and how that informa-
tion should be presented in context. Compared to machines,
humans are slow and error prone, but without our flexibility
and global understanding systems become brittle and liable
to fail.

Learning the IoE

Perhaps unsurprisingly, applications of artificial intelligence
(AI) in the IoE are just like the IoE itself: heterogeneous and
interdependent. When computation reaches into every facet
of life it touches on all the types of learning that humans do
and more beside. Thus what is needed, perhaps more than
anything, to apply AI to the IoE is a framework to structure
all of these potential applications.
The bread and butter of contemporary AI is the automa-

tion of specific information processing tasks, such as image
classification or voice transcription. There are already many
successful applications of such methods, and these will only
continue to improve with new methods and more powerful
devices.
However, the application of these methods in the IoE is

still relatively inflexible. Training data for the problem must
be collected and wrangled into a form appropriate for AI
algorithms. The plumbing that connects AI to applications
is usually done by hand on an ad hoc basis. Thus, what is
required here is not new learning methods per se, but rather
methods for more easily and efficiently specifying learning
problems and integrating their results.
The open architecture of the IoE introduces an entirely

different application of learning, concerning the design of
IoE systems. Given an infrastructure of IoE devices, data,
services and human & organizational actors, how can we
achieve a stated goal within specified constraints? The size
and diversity of the IoE ecosystem will ensure that humans
cannot easily design such systems, especially given that

many systems will be designed for one-off uses with on-the-
fly provisioning.
The question that plagues these design processes is the

ability to decompose and recompose these representations
symbolically. Today, problems of (de)composition are usu-
ally addressed manually, completely outside the scope of
formal models. Lacking explicit semantics, these ad hoc data
interfaces are brittle and must be revised to handle even mi-
nor changes, leading to errors and unnecessary overhead.
This means that we will require, at a minimum, substantial

artificial assistance in IoE system design. Supporting such
applications will require, first of all, better representations
for (potential) system designs, to serve as a concrete search
space for the IoE design problem. Moreover, we must be
able to link these architectures to rich semantic representa-
tions, so that the design system has access to the capabilities
of the many devices available and an understanding of the
goals presented by a user.
The IoE’s variety of perspectives introduces more lay-

ers of complexity for learning. Given the multiplicity of
scales, the parameters of one learning problem may be de-
termined as the output of another. These interactions go both
ways, with top-down modifications to operating parameters
at lower levels (e.g., peak use incentives for electicity con-
sumption) and bottom-up prediction for aggregate systems
(e.g., monitoring expected consumption). Temporal perspec-
tive is also important, as system models will need to be up-
dated as parameters change and components are replaced.
This makes evolvability a crucial consideration for IoE de-
sign and engineering. Legal and economic perspectives in-
troduce their own issues, requiring new ways of building
constraints into learning problems in order to ensure that our
systems meet their social obligations.
Perhaps the thorniest problem for learning in the IoE con-

cerns joint cognitive systems. Today we do not trust ma-
chines to handle many of the tasks envisioned for the IoE.
We can only build this trust incrementally, handing off some
tasks from human to machine, integrating the two for oth-
ers. To speed up this progression, we must engineer systems
wherein machines can observe and interact with humans on
line in order to better understand all the roles that we play.

Compositional Architectures

We have discussed some new and fundamental features
which will be found in the IoE, and the way that these char-
acteristics interact with machine learning and artifical intelli-
gence. A central theme in this discussion is the need for new
approaches to modeling complex systems, in order to ac-
count for these features. We believe that an approach based
on the formal mathematics of category theory (CT) can help
to address these new challenges.
CT is literally the mathematical study of compositional

systems (Awodey 2010; Spivak 2014). The central feature
of a category is a composition operation which allows us to
combine two directed relationships f : A→ B and g : B →
C into a new relationship f.g : A→ C. Often, we think of f
and g as resource-sensitive processes, and f.g is the process
which matches the output of f to the input of g.
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Figure 1: A categorical model in the style of a UML class diagram.(Breiner et al. 2017)

This is an exceedingly abstract perspective, which can be
an obstacle for newcomers to the field, but this generality is
necessary, as it allows for rich connections to formal meth-
ods in mathematics, physics and computer science. To see
how the basic vocabulary of CT can be specialized to a vari-
ety of specific domains, see table 1.
CT can already provide well-understood connections with

many of these domains. Indeed, it is a lingua franca allow-
ing us to treat the range of these subjects using the same set
of constructions, based on and extended from the basic vo-
cabulary of objects and arrows. For the IoE, this means that
CT can provide a suitable modeling formalism to capture
the breadth of its heterogeneous components. Furthermore,
connections between CT and formal logic mean that we can
think of certain categorical models as logical theories, pro-
viding a powerful and expressive approach to knowledge
representation which subsumes both database structures and
ontologies (Spivak 2014).
CT also provides a candidate representation for compo-

sitional architectures, called string diagrams (Figure 2). A
string diagram specifies a resource-sensitive functional de-
composition of a complex process, describing the way that
sub-processes feed resources among themselves in order to
assemble the larger overall process. With origins in quan-
tum computing (Penrose 1971), a recent flurry of research
has produced applications of string diagrams ranging from
electrical engineering (Baez and Fong 2015) to natural lan-
guage processing (Coecke, Sadrzadeh, and Clark 2010).
A third crucial characteristic of CT is self-referentiality.

We can think of categories C and D themselves as (infor-
mational) resources, and these can be linked together by di-
rected relationships called functors C → D. Functors pro-
vide translations between different information representa-
tions, providing concrete instructions for converting data ex-

In ... the objects are ... and the arrows are ...

Programming Datatypes Computable Functions
Physics Configurations Dynamical Evolution

Databases Tables Foreign Keys
Logic Propositions Proofs

Probability Probability spaces Stochastic Kernels
Data Science Vector spaces Matrices

Table 1: Interpretations of categorical language in a variety
of domains.
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Figure 2: A string diagram model for a hinge-making pro-
cess. (Breiner, Subrahmanian, and Jones 2017)

pressed in terms of C into data expressed in terms of D.
These constructions allow us to bridge different information
models, providing the means to manage and integrate the
many perspectives found in the IoE.
Sometimes these transformations will be bidirectional,

providing a dictionary between one and the other; this could
already be quite useful for data wrangling. More interesting,
though, are cases in which the transformation cannot be re-
versed. In (Breiner, Subrahmanian, and Jones 2017) the au-
thors showed that functors can be used to relate architectures
at different levels of abstraction, so that D gives a functional
refinement of C. This allowed us to give a unified approach
to process modeling from the production line to the factory
to the global supply chain. In other cases, C might contain
additional information which must be projected out in the
passage to D. This might be the case, for example, if D con-
tains a simple process model that is extended in C to include
security concerns by explicitly representing resources like
encryption keys.
Finally, we note that the burden of joint cognition is mit-
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igated somewhat by the diagrammatic character of CT. Un-
like most formal disciplines, CT uses diagrams extensively
as tools for simplifying complex arguments. We have al-
ready mentioned string diagrams, a formal syntax for pro-
cess representation which is powerful enough to support cal-
culations in quantum mechanics but can be read as easily as
a flowchart. The semantic representations mentioned above
can be presented through box-and-arrow diagrams which are
not much different from UML class diagrams (Breiner et al.
2017). Some simple examples are shown in figures 2 and
1. These graphical representations support the way that hu-
mans think and understand, without sacrificing the formal
mathematical character which is needed for machine inter-
action.

Conclusion

In this short note we have identified four critical characteris-
tics of the IoE: heterogeneity, composition, perspective and
joint cognition. Each of these introduces new challenges in
the design and engineering of IoE systems, and this is re-
flected in the learning tasks which confront us.
Furthermore, we have suggested some reasons to think

that a formal mathematical approach based on category the-
ory can help us to address these challenges. These include
deep connections with other formal methods, structured rep-
resentations for compositional systems, structured mappings
relating these different representations, and a graphical ap-
proach which supports human-machine interaction.
Category theory is generally regarded as an abstract area

of pure mathematics, but in recent years the field of applied
category theory has begun to grow. This area offers a wealth
of potential applications to help tame the complexity of the
IoE.

Disclaimer

Commercial products are identified in this article to ade-
quately specify the material. This does not imply recommen-
dation or endorsement by the National Institute of Standards
and Technology, nor does it imply the materials identified
are necessarily the best available for the purpose.
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Abstract

The Internet of Things has become an integral part of our
daily life. Its combination of network and emerging technol-
ogy interlaced with each other results in a complicated en-
vironment that is left to us to understand and interact with.
Information travels in the cyber world, not only bringing us
convenience and prosperity but also jeopardy. Protecting this
information has been an issue and commonly discussed in re-
cent years. One type of this information is Personally Identifi-
able Information (PII), often used to perform personal authen-
tication. With total cost of more than $40 billion since 2006,
several reports of theft and fraudulent use of PII have been
released. An all-embracing technique and system is needed
in order to protect users from identity theft. In this paper,
we present the Identity Ecosystem, a comprehensive iden-
tity framework that contains a mathematical representation of
a model of Personally Identifiable Information attributes for
people, and two novel models, devices and organizations, that
have strong connections with the PII model of people. This
research aims to combine the above three models and leads
to better prevention against identity theft and fraudsters.

Introduction

The Internet of Things (IoT), the network of physical
devices and the network connectivity that enables these
devices to collect and exchange data, has been a growing
paradigm in recent years. Undoubtedly, the main advantage
of the idea of the Internet of Things is that it will have a
significant impact on several aspects of the user’s daily life
and behavior.

For normal users, the most obvious effects of the IoT will
be visible in fields like automation, e-health, and enhanced
living quality, to name only a few. Since the concept of
“Smart City” has been commonly discussed in recent years,
it is without doubt the new paradigm that will play an influ-
ential role in the near future. Similarly, from the perspective
of business users, the most apparent consequences will be
equally visible in fields such as automation and industrial
manufacturing, logistics, business/process management,
and intelligent transportation of people and goods (Atzori,
Iera, and Morabito 2010). The IoT’s influence is growing,
while some potential problems are gradually surfacing.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Data protection has been a problem since the network
began to evolve. With the commercialization of the Internet,
security issues have been extended to cover personal
privacy, financial transactions and cyber-theft threats. In
the paradigm of the Internet of Things, security and safety
are inseparable. Whether it is accidental or malicious,
interfering with personal mobile phones, hacking into the
computers of an organization, and other similar acts pose
a threat to human privacy, property, and even life. Even
arbitrary data, like a temperature, might be related to a
user when it is combined with other data like location or
is profiled over a period of time. Privacy becomes crucial
in the Internet of Things1. How to protect the privacy of
individuals, that is, to safeguard this identity information to
prevent identity theft, has become one of the mainstream
topics discussed today. Federal Trade Commission (FTC)
has estimated an annual loss of over 15 billion dollars from
identity theft in 2006 (Synovate 2007). In 2010 this figure
had more than doubled, as 8.1 million U.S. adults were the
victims of identity theft or fraud, with total costs of $37
billion (Miceli and Vamosi 2011). Identity theft, according
to the National Institute of Justice, has become the prime
crime in the information age, with an estimated 9 million
or more incidents each year (Newman and McNally 2005).
Identity theft threatens our safety and property, unless we
can truly prevent fraudsters from identity breaching.

In this paper, we seek to discuss the identity theft issues
most relevant to people, businesses, and devices. The
first aspect of identity is the one that identifies people, or
Personally Identifiable Information (PII). The IoT world
would benefit from this one kind of identifiers. However,
there is no special identifier in the IoT world and there will
never be one in the near future1. For example, public classic
IP-addresses (IPv4 addresses) are a rare resource. Access
providers use IP-address pools and “re-use” IP-addresses by
dynamic assignment, which means that with every mobile
phone login, the mobile client might be assigned to an IP-
address different from the one that was assigned from last
login (Friese, Heuer, and Kong 2014). Our understanding of
this personally identifiable information is not enough.

1“Q&A Identity & Internet of Things”, Ingo Friese, and
Jeff Stollman, and Scott Shorter. http://kantarainitiative.org/
confluence/display/IDoT/Q&A+Identity+&+Internet+of+Things
(accessed Oct, 2017).
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In the pursuit of security, this information needs to be
understood and valued. Being merged with online attributes
and offline attributes, the cyber world has been assimi-
lated into people’s everyday world. Online attributes are
composed of one’s social media accounts, online shopping
patterns, passwords, email accounts and so on. Offline
attributes are those related to the physical world such
as bank accounts, credit and debit cards, social security
number, fingerprint, blood type, etc. A more comprehensive
online identity framework is needed based on a sound
understanding of PII (Liang 2014).
The current Identity Ecosystem is limited to a single

general model that hypothesizes only individuals have
PII. But in fact, a mobile phone tracks its owner’s current
location. A laptop stores plenty of one’s private informa-
tion. Even one’s sports watch or e-health equipment are
transmitting his/her body status such as body temperature
and heart rate. This information travels in the cyber world
through the Internet. Eventually, it flows into the server of
a company or an organization. A security incident at that
organization may expose personal information that belongs
to a large number of people and result in monetary loss.
Taking the above scenario into consideration, in this paper,
we introduce two extra models: devices and organizations.
Only by combining the graphic model of people, devices,
and organizations will we obtain comprehensive knowledge
of the operation of PII in the cyber world.
In the following section, we briefly introduce how

Ecosystem works, and then introduce our two models.
Then we discuss our data resources. Finally, we present the
conclusion and proposed future work.

Ecosystem Models

As mentioned in section 1, the Identity Ecosystem devel-
oped at the Center for Identity at the University of Texas
at Austin has constructed a graph-based model of people.
It provides a statistical framework for understanding the
value, risk and mutual relationships of personally identi-
fiable information attributes. It uses a Network Model to
simulate the relationships among PIIs for individuals. It al-
lows predictions in the presence of interventions and it is
able to handle incomplete data sets. It is visualized in a 3D
graphic model and can be moved and rotated. The Ecosys-
tem allows the users to choose a node property, such as
value or risk, to determine node sizes and colors in the 3D
graphic model (Nokhbeh Zaeem et al. 2016). Figure 1 shows
the graph visualized in Ecosystem. Three interesting ques-
tions that Ecosystem can answer are inferring probability of
breach based on evidence, detecting most probable origin of
a breach, and finding breach hot-spots.

• Effect of exposure: Assuming a set of attributes is ex-
posed, the Bayesian inference model of Ecosystem cal-
culates the change in the probability of exposure of other
attributes. The Ecosystem can also show the predicted ex-
pected loss of the set of attributes compromised. Figure 2
shows how the probability of breach for other attributes
changes, once the Social Security Number and Social

Figure 1: The 3D graphic model shown in Ecosystem.

Figure 2: Asking Queries: Infer the Probability of Breach.

Security Card attributes have been breached. Multiple at-
tributes can be selected as evidence at the same time. It
also shows potential loss after such a breach scenario.

• Cause: If an individual finds out that his/her PII is com-
promised, the Ecosystem can help to detect the most prob-
able origin of the breach through selecting identity infor-
mation as the evidence and running the query.

• Cost/Liability: The Ecosystem can calculate attributes
which have the highest cost (breach hot-spots) and should
be best protected.

So far, Ecosystem can answer these questions for the
model of people’s PII. In this section, we introduce two
novel models that have a strong connection with the PII
graph of people: devices and organizations. In an IoT world
there will exist a vast amount of raw data being continu-
ously collected. It will be necessary to develop techniques
that convert this raw data into usable knowledge (Stankovic
2014). The identity data would be one of these types of data.
We define a person’s identity as a set of information that are
linked to the person. The identity data not only exist for peo-
ple, but are also extended into our mobile phones, vehicles,
online applications, and so on. Hence, it is important to build
the concept of identity for our devices.
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51 attributes of PII of devices

Administrator AdministratorPassword AdministratorUserID Application

ApplicationType ApplicationVendor BusType Cache

CircuitDesign Color CookieWipe GeolocationStreetAddress

GeolocationZipCode InventoryTag IPAddresses MACAddress

ManufactureLocation Manufacturer MemorySize MemoryType

ModelNo NetworkCards NetworkConnectionSpeed NetworkConnectionType

NetworkProxySettings NumberOfAssociateEmails NumberOfPorts NumberOfTransactions

OpenDeviceIdNumber OperatingSystemType OperatingSystemVendor OrganizationalLocation

Owner PortNumbers PowerFrequency PowerUsage

ProcessorType RegistryProperties Reputation SerialNo

ShipDate SwitchingRate TimeZone TransactionFlags

TransactionsByCountry TransactionsProfile TransactionVolCountry TransactionVolumeTotal

UniqueDeviceIdentifier Users Watermark

Table 1: List of all nodes of devices

Devices

Recently the concept of “Smart City” has rapidly risen
(Dohler et al. 2011). Smart Cities consists of smart phones,
mobile devices, sensors, embedded systems, smart envi-
ronments, smart meters, and instrumentation sustaining the
intelligence of cities (Schaffers et al. 2011). As a result,
the relationship between people and devices has become
blissfully tight. From mobile phones and laptops to GPS,
sports watches and even to baby monitors, technical devices
are collecting our PII anytime and anywhere.
We constructed a list of PII of items according to devices’

characteristic, function, affordances and other documents
(Gubbi et al. 2013) (see Table 1). Then we endeavored to
manually find the links between these nodes. As a result,
we generated a model graph of devices’ PIIs. Figure 3 is a
snapshot of the device graph presented by Ecosystem. Its
main point lies in the links to the person’s PII graph.
In fact, it it not uncommon to see the relationships

between devices and people in our daily lives. The IP and
MAC address and the vehicle’s GPS imply one’s location.
Plenty of personal information have been stored in appli-
cations in one’s mobile phone and computers. Moreover,
sports and health devices are collecting one’s body temper-
ature and heart rates. Recent advances in mobile technology
and cloud computing have inspired numerous designs of
cloud-based health care services and devices. Within the
cloud system, medical data can be collected and transmitted

Figure 3: The model of devices shown in Ecosystem.

automatically to medical professionals from anywhere and
feedback can be returned to patients through the network
(Deshpande and Kulkarni 2017). This progress presages
the growing convenience of collecting PII through devices,
while it concerns many with respect to privacy of personal
information.

Organizations

We are also interested in the relationship between people
and organizations since activities that people trigger or
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57 attributes of PII of organizations

401KAdminitrator AccessCards Acquisitions Address

Attorney BalanceSheet BankAccountNumber BankingInstitution

Bankruptcy BetterBusinessBureauRec BoardOfDirectors BusinessPropTaxNumber

BusinessType Buyer CAGENo ComputerOrIPAddresses

CreditCardNumber CreditCards CreditRating CreditScore

Customers DateEstablished DUNSNo EmailAddress

Employees FacebookAccount FederalTaxID IncorporationState

InStorePurchasingPatterns Investors JCPCertificationNumber LawsuitRecords

License LoanNumber LoginPasswords LoginUserId

LoyaltyCards Name Officers OnlinePurchasingPatterns

OperatingSystem Owner Patents PhoneNumber

PLStatement PurchasingPatterns SalesTaxNumber SICCode

StockExchTickerSymbol Stockholders StockPrice TwitterHashtag

VendorAddress VendorName VendorNumber WebsiteURL

WorkforceCommissionID

Table 2: List of all nodes of organizations

Figure 4: The model of organizations shown in Ecosystem.

be part of everyday are related to companies and organi-
zations. Identity data breach through organization is now a
widespread problem around the globe. A security incident
at an organization may expose personal information that
belongs to a large number of people. The goal here is to
construct a graph-based model of organization PII attributes
and analyze its linkages to the people PII graph in order to

help the Identity Ecosystem’s investigation.
The most fundamental PII of organizations is people (see

Table 2). Employees, officers, supervisors, board of direc-
tors, and even CEOs are integral parts of the model. They
have the ability to access most machines in the company or
factory which store most customers’ information. Hence,
any information that is related to the machines would be
treated as an organization attribute. We have also focused
on documents that organizations would use in various
situations by investigating the Certification of Formation
from Texas Secretary of State2. Figure 4 is a snapshot of the
organization graph presented by Ecosystem.
Community websites spread rapidly, not to mention the

shopping websites. Every time one applies for a member-
ship, he/she gives personal information to the organization
that owns the website. Once the data has been received,
the organization has the duty to keep these PIIs safe.
However, breaches happen everywhere. Through the servers
of an organization, customers’ banking accounts could be
exposed and misused by others. It is through these means

2“Texas Secretary of State”, Rolando B. Pablos. https://www.
sos.state.tx.us (accessed August, 2017).
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that, answering the queries of Ecosystem helps our goal to
thwart identity thieves and fraudsters.

Data Sources

Modeling Identity Attributes (Nodes)

The Ecosystem distinguishes various properties of identity
attributes. Take attribute’s type for instance; we divided the
attribute’s type for a person into four categories: What You
Are, What You Have, What You Know, andWhat You Do. In
our previous work (Nokhbeh Zaeem et al. 2016), we briefly
introduced every property of identity attributes in detail.
Here we only introduce the way we came up with nodes for
devices and organization using this classification. We also
refer to a list of documents from Texas Secretary of State2
and (Gubbi et al. 2013) in our methodology.

What You Are For a person, it means a person’s physical
characteristics, such as fingerprints and retinas. For a device,
it means the type of a device. It can be a laptop, a smart
watch, a sensor, and so on. It is also related to a device’s
hardware configuration, such as circuit design and power us-
age. For an organization, it can also be its type. Also, it can
be an organization’s icon, such as stock market icon.

What You Have For a person, it means credentials and
numbers assigned to the person by other entities. For a de-
vice, it can be its model numbers, serial numbers, and inven-
tory tags. For an organization, it can be its sales tax number
and DUNS number.

What You Know For a person, it means information
known privately to the person, such as passwords. For a de-
vice and an organization, it means any information that is
stored in them. So all information stored in an app or cus-
tomer information stored in a server of an organization are
all related to this type.

What You Do For a person, it means a person’s behav-
ior and action patterns, such as GPS location. What a device
can do is often related to its application type, but for an or-
ganization of an online shopping website, it can be its online
shopping pattern.

Modeling Identity Relationships (Edges)

The Ecosystem displays each attribute as a node. These
nodes are related to each other in many different ways. The
Ecosystem displays each relationship as an edge. We divided
the type of relationships between a person’s PII into 7 cate-
gories (Nokhbeh Zaeem et al. 2016). According to this clas-
sification, we are able to assign edges between nodes for
devices and organizations.

Breeds α Breeds β means that an instance/value of α may
be used in order to create a instance/value of β. For example,
a driver’s license breeds a boarding pass. A publication in an
organization breeds its patent.

Composed Of α Composed Of β means that for any value
αi of the attribute α there is a value βj of the attribute β such
that βj is a proper part of αi. For example, a device’s circuit
design is composed of bus type and memory type.

Figure 5: Three types of edge including Breeds, Changes
Sensitive To, and Necessary For shown in Ecosystem.

Changes Sensitive To α Changes Sensitive To β means
that for any person P with attributes α and β, if the value
of β changes for P , then the value of α changes for P . For
example, an organization’s customers change with its repu-
tation.

Temporally Precedes α Temporally Precedes β means
that for any person P , P must possess some value of at-
tribute α before P can possess a value of attribute β. For
example, a mobile phone’s login password precedes appli-
cations installed on it.

Determines α Determines β means that for any person P
with attributes α and β, the value of α possessed by P im-
plies the value of β possessed by P . For example, the IP
address and MAC address of a server owned by an organi-
zation determines its geolocation.

Necessary For α Necessary For β means that for any per-
son P , if P has a value for the attribute β, then P has a value
for the attribute α. For example, the name of an organization
is necessary for an employee’s access card.

Probabilistically Determines α Probabilistically Deter-
mines β means that for any person P with attributes α and
β, P having a given value of α implies that P probably has
some particular value of β. For example, an organization’s
better business bureau record ratings represent how well the
business is likely to interact with its customers, so it proba-
bilistically determines its reputation.
By assigning edges between identity attributes, we gen-

erated our graphic-based models. The relationship between
A and B is shown with a directed edge from A to B in the
Ecosystem. The user can select to view one or multiple types
of edges at a time. Different types of edges are shown in dif-
ferent colors in Ecosystem. Figure 5 shows a snapshot of
displaying three types of edge in Ecosystem.

ITAP

To obtain accurate input data, we utilized the Identity Threat
Assessment and Prediction (ITAP) project at the Center for
Identity. ITAP is a risk assessment tool that increases funda-
mental understanding of identity theft processes and patterns
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of threats and vulnerabilities. A team of modelers at the Cen-
ter for Identity analyzes identity theft news and stories on a
daily basis to model the value of identity attributes and their
risk of exposure. The ITAP database is large and continually
growing, with approximately 5,000 incidents captured in the
model to date.

Conclusion and Future work

In this paper two novel graphic-based models were intro-
duced which offer an insight into how personally identifiable
information is utilized within the cyber world. The model of
devices and organizations imply the proliferation of technol-
ogy as the Internet brings closer the vision of the Internet of
Things. We are interested in the connections of these models
to the PII model of people. Previously the Identity Ecosys-
tem could answer three interesting questions, which were
based only on the PII attributes of people. By combining
and analyzing the people, device, and organization models
together, we expect to derive more accurate and compre-
hensive results from the Identity Ecosystem. The potential
structures and types of this cooperation framework and in-
novation resources from ITAP need further examination and
interpretation since the Center for Identity envisions using
low risk, low value, and high uniqueness PII for identifying
and authenticating people in the future IoT-based society.
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Abstract

In our talk we discuss Meta-agents frameworks for working
within the Internet of Things (IoT) systems. In particular we
discuss our own Meta-agent system called SENtry Agents
(SAGE). We discuss why such systems must follow Simon’s
laws of the Artificial, and because of that must be Holonic.

Introduction

The rapid growth of the Internet of Things (IoT) (Columbus
2017) has created fertile ground for emerging research on a
variety of existing and novel problems such as privacy, cy-
ber security, big data, and self-adaptation/self-organization.
A single IoT device (e.g. a thermostat) may serve a partic-
ular purpose, but the conglomeration of multiple devices to
serve a human, or virtual entity’s global objective, is the true
promise of IoT. The vision of pervasive or ubiquitous com-
puting is the existence of computational middleware that
manages a set of IoT resources so that they constructively
cooperate with each other to achieve the above global objec-
tive. We note that this global objective, or objective for short,
can be as trivial assisting a homemaker in the shopping and
preparation of family meals, or as important as a dynamic
medical sensor network assisting in the care of hundreds, or
thousands or patients.

An inherent challenge of IoT is that computational en-
tities must operate in a highly dynamic environment, with
emergent phenomena, that continuously change context,
and do so in unpredictable ways. Existing software de-
sign paradigms cannot address such problems because they
approach the bounds of complexity manageable by a hu-
man designer. In contrast, for the IoT situation, software
paradigms need to be extended, and possibly totally rewrit-
ten to deal with the Artificially Intelligent (AI) situation
brought about the rise of self-organizing, adaptive multi-
agent systems (MAS) (Bernon et al. 2006), (Bernon et al.
2004),(Gardelli et al. 2006),(Gleizes et al. 2007).

In (Mihailescu, Spalazzese, and Davidsson 2017), Mi-
hailescu et al. introduce the idea of Emergent Configurations
(EC) for the IoT driven by user requirements. The idea is to
dynamically orchestrate heterogeneous “things” in a man-
ner that enables goal-directed behavior in support of a user’s

Copyright c© 2018, Association for the Advancement of Artificial
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requirements. In our talk we will explore the idea of online
agent creation and deployment as a way to realize EC. In the
context of our work, Meta-agents are agents in a multi-agent
software paradigm that utilize reasoning to both construct
and deploy special purpose agents that form an EC. Un-
fortunately and opportunistically, reasoning models that can
support the idea of meta-agents have not been explored. We
assess the feasibility of using the prevalent Belief-Desire-
Intention (BDI) reasoning (Georgeff et al. 1999) for model-
ing meta-agents. We further propose extensions to the model
in support of meta-agents. Finally, we introduce the SENtry
Agents (SAGE) multi-agent framework. SAGE is a novel
multi-agent framework developed by us at NRL that sup-
ports meta-agents, online agent creation, as well as agent
migration.

A necessity is that our Meta-agents obey Simon’s laws of
the Artificial (Simon 1990),(Valckenars, Brussell, and Hol-
vet 2009). Simon’s laws consist of three major tenants. First
is Bounded Rationality. This states that our Meta-agent sys-
tem attempts to make the best decisions based upon a limited
amount of information. Real AI systems are not the Oracle
of Delpi! They are very fast algorithms running with the best
data possible at the time.

Secondly, our Meta-agent system exists in a Demanding
Environment.

The third law concerns itself with a Dynamic Environ-
ment.

In our talk we will discuss these in more details and with
examples. The bottom line is though that since our Meta-
agent system follows Simon’s laws of the Artificial it must in
fact be a Holonic system. A system is Holonic (Valckenars,
Brussell, and Holvet 2009) if it is designed on a top down
pyramidal tree-like structure. It is analogous to a proof by
induction in its set-up. That is we start off at the highest and
first structure, then once we have that we move on to the
second, then to the third, etc. Each level gets more and more
complex, but builds on the levels before it. It is also similar
to the idea of a mathematical filtration. We can stop at level
n, but we do better at level n+1. That is our software gets
more and more refined at each level. Again, in the talk we
will discuss how we design SAGE in a Holonic manner.
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Figure 1: SAGE Framework form (Fouad et al. 2017).

SAGE

SAGE (Fouad et al. 2017) was initially developed to deal
with the issues of agent generation in a service oriented
architecture (SOA). The SOA envisioned was for DOD’s
Tactical Service Oriented Architecture (TSOA). SAGE is
a multi-agent system written in C++. SAGE uses dynamic
agents, by this we mean agents which can spawn and create
other agents without being tied to specific actions. In out talk
we will go into the details of the SAGE meta-agent frame-
work.
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Abstract 
In the Internet of Everything environment, agents 
exchange messages, backing up and motivating their 
decisions. In this environment, validation of message 
validity, truthfulness, authenticity and consistency is 
essential. We formulate a problem of domain-
independent assessment of argumentation validity 
based on rhetorical analysis of text. Argumentation 
structure is discovered in the form of discourse trees 
extended with edge labels for communicative actions. 
Extracted argumentation structures are then encoded 
as defeasible logic programs and are subject to 
dialectical analysis, to establish the validity of the 
main claim being communicated. We evaluate the 
accuracy of each step of this affect processing 
pipeline as well as overall performance. 

Introduction   
One of the key features of The Internet of Everything (IoE) 
is communications in a complex system that includes 
people, robots and machines. According to (Chambers 
2014), IoE connects humans, data, processes and entities to 
enhance business communication, facilitate employment, 
well-being, education and healthcare between various 
communities of people. As billions of people are anticipated 
to be connected, the requirements of validity 
and authenticity of textual messages being delivered become 
essential. To make decisions based, in particular, on 
textual messages, the claims and their argumentation need to 
be validated in a domain-independent manner.    
     Intentional or unintentional untruthful claims and/or 
their faulty argumentation can lead to an accident, and ma-
chines should be able to recognize such claims and their 
arguments as a part of tackling human errors (Lawless, 
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2016, Galitsky, 2015). Frequently, human errors are asso-
ciated with extreme emotions, so we aim at detecting and 
validating both affective and logical argumentation pat-
terns. Intentional disinformation in a message can also be 
associated with a security breach (Munro 2017). 
 When domain knowledge is available and formalized, 
truthfulness of a claim can be validated directly. However, in 
most environment it is unavailable and other implicit means 
need to come into play, such as writing style and writing 
logic which are domain independent. Hence we attempt to 
employ the discourse analysis and explore which features of 
message validation can be leveraged. 
    When an author attempts to provide a logical or affective 
argument for something, a number of argumentation patterns 
can be employed. The basic points of argumentation are 
reflected in rhetoric structure of text where an argument is 
presented. A text without argument, with an affective 
argument and with a logical one would have different 
rhetoric structures (Moens et al., 2007). When an author uses 
an affective argument instead of logical arguments, it does 
not necessarily mean that his argument is invalid. The goal 
of this study is to explore when an argumentation in an IoT 
message is valid. We introduce the term of affective 
argumentation to circumscribe a special class of 
argumentation associated with strong emotions and 
sentiments.  
     We select Customer Relationship Management (CRM) as 
an important domain of IoE. One of the trickiest areas of 
CRM, involving a number of conflicting agents, is handling 
customer complaints. In customer complaints, authors are 
upset with products or services they received, as well as how 
it was communicated by customer support. Complainants 
frequently write complaints in a very strong, emotional 
language, which may distort the logic of argumentation and 
therefore make a judgment on complaint validity difficult. 
Both affective and logical argumentation is heavily used. 
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Especially in banking, customer complaints usually ex-
plain what was promised and advertised, and what the cus-
tomer got. Therefore, a typical complaint arises when a cus-
tomer attempts to communicate this discrepancy with the 
bank and does not receive an adequate response. Most com-
plaint authors cite disinformation provided by company 
agents to avoid accepting responsibility or providing com-
pensation to a customer. At the same time, frequently, cus-
tomers write complaints attempting to get compensation for 
allegedly problematic service.  

Judging by complaints, most complainants are in genuine 
distress due to a strong deviation between what they ex-
pected from a service, what they received and how it was 
communicated. Most complaint authors report incompe-
tence, flawed policies, ignorance, indifference to customer 
needs and misrepresentation from the customer service per-
sonnel. The authors have frequently exhausted the commu-
nicative means available to them, confused, seeking recom-
mendations from other users and often advise others on 
avoiding particular financial services. Multiple affective 
argumentation patterns are used in complaints; the most fre-
quent is an intense description by a complainant on a devia-
tion of what has actually happened from what was expected, 
according to common sense. This pattern covers both valid 
and invalid argumentation. 
   We select the Rhetoric Structure Theory (Rhetoric 
Structure Theory (RST, Mann and Thompson 1988) as a 
means to represent discourse features associated with logical 
and affective argumentation. Nowadays, the performance of 
both rhetoric parsers and argumentation reasoners has 
dramatically improved. Taking into account the discourse 
structure of conflicting dialogs, one can judge on the 
authenticity and validity of these dialogs in terms of its 
affective argumentation. In this work we will evaluate the 
combined argument validity assessment system that includes 
both the discourse structure extraction and reasoning about 
it with the purpose of validation of the complainant’s claim. 
Either approach on argument detection from text or on 
reasoning about formalized arguments has been undertaken, 
but not the whole text assessment pipeline, required for IoT 
systems. 
    Most of the modern techniques treat computational 
argumentation as specific discourse structures and perform 
detection of arguments of various sorts in text, such as 
classifying a text paragraph as argumentative or non-
argumentative (Moens et al., 2007). A number of systems 
recognize components and structures of logical arguments 
(Sardianos et al., 2015; Stab and Gurevych, 2014). However, 
these systems do not rely on discourse trees (DTs); they only 
extract arguments and do not apply logical means to 
evaluate it. A broad corpus of research deals with logical 
arguments irrespectively of how they may occur in natural 
language (Bondarenko et al., 1997). A number of studies 

addressed argument quality in logic and argumentation 
theory (van Eemeren et al., 1996; Damer, 2009), however 
the number of systems that assess the validity of arguments 
in text is very limited (Cabrio and Villata, 2012; Wei et al., 
2016). This is especially true concerning affective 
argumentation. Most argument mining systems are either 
classifiers which recognize certain forms of logical 
arguments in text, or reasoners over logical representation of 
arguments (Amgoud et al., 2015). Conversely, in this project 
we intend to build the whole argumentation pipeline, 
augmenting an argument extraction from text with its logical 
analysis (Fig. 1). This pipeline is necessary to deploy an 
argumentation analysis in a practical decision support 
system. 

Figure 1: Claim validity assessment pipeline. 

 

    The concept of automatically identifying argumentation 
schemes was first discussed in (Walton et al., 2008). In 
(Ghosh et al., 2014) authors investigate argumentation 
discourse structure of the specific type of communication - 
online interaction threads. Identifying argumentation in text 
is connected to the problem of identifying truth, 
misinformation and disinformation on the web (Pendyala 
and Figueira, 2015; Galitsky, 2015). In (Lawrence and Reed, 
2015) three types of argument structure identification are 
combined: linguistic features, topic changes and machine 
learning.  
    To represent the linguistic features of text, we use the 
following sources:  
1) Rhetoric relations between the parts of the sentences, 
obtained as a discourse tree.  
2) Speech acts, communicative actions, obtained as verbs 
from the VerbNet resource. 
   To assess the logical validity of extracted argument, we 
apply Defeasible Logic Program (DeLP, Garcia and Simari 
2004), part of which is built on the fly from facts and clauses 
extracted from these sources. We integrate argumentation 

Extract linguistic features 

Build dis-
course tree 

Form logical representation for clauses 
extracted from discourse tree and identi-
fy the main claim 

Given the logical representation, confirm or reject the main 
claim 

Produce a decision on whether argumentation is acceptable 
or not 
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detection and validation components into a decision support 
system that can be deployed, for example, the CRM domain. 
To evaluate our approach to extraction and reasoning about 
argumentation, we choose the dispute resolution / customer 
complaint validation task because affective argumenation 
analysis plays an essential role in it. 

Representing Argumentative Discourse  
We start with a political domain and give an example of 
conflicting agents providing their interpretation of certain 
events. These agents provide argumentation for their 
claims and we will observe how formed rhetoric structures 
correlate with their argumentation patterns. We focus on 
Malaysia Airlines Flight 17 example with the agents ex-
changing affective arguments: Dutch investigators, The 
Investigative Committee of the Russian Federation, and the 
self-proclaimed Donetsk People's Republic. It is a contro-
versial conflict where each agent attempts to blame its op-
ponent. Keywords indicating sentiments are underlined. To 
sound more convincing, each agent does not just formulate 
its claim, but postulates it in a way to attack the claims of 
its opponents. To do that, each agent does its best to match 
the argumentation style of opponents, defeat their claims 
and apply negative sentiment to them. 
“Dutch accident investigators say that strong evidence 
points to pro-Russian rebels as being fully responsible for 
shooting down plane. The report indicates where the 
missile was fired from and identifies who was in control of 
the territory and pins the downing of MH17 on the pro-
Russian rebels.” (Fig. 2a) 
“The Investigative Committee of the Russian Federation 
believes that the plane was hit by a missile, which could 
not be produced in Russia. The committee cites an 
investigation that established the type of the missile and 
disagrees with Dutch accident investigators.”(Fig. 2) 
“Rebels, the self-proclaimed Donetsk People's Republic, 
deny that they controlled the territory from which the 
missile was allegedly fired. They confirm that it became 
possible only after three months after the tragedy to say if 
rebels controlled one or another town and the claim of 
Dutch accident investigators is flawed”(Fig. 2c) 

To show the structure of arguments one needs to merge 
discourse relations with speech acts information. We need 
to know the discourse structure of interactions between 
agents, and what kind of interactions they are. For 
argument identification, we don’t need to know a domain 
of interaction (here, aviation), the subjects of these 
interaction, what are the entities, but we need to take into 
account mental, domain-independent relations between 
them. So we need to introduce the concept of 
Communicative Discourse Tree (CDT).     
    CDT is a DT with labels for edges that are the VerbNet 
expressions for verbs (which are communicative actions, 

CA). Arguments of verbs are substituted from text accord-
ing to VerbNet frames (Kipper et al., 2008). The first and 
possibly second argument is instantiated by agents and the 
consecutive arguments - by noun or verb phrases which are 
the subjects of CA. For example, the nucleus node for 
elaboration relation (on the left of Fig. 2a) are labeled with 
say(Dutch, evidence), and the satellite – with responsi-
ble(rebels, shooting_down). These labels are not intended 
to express that the subjects of Elementary Discourse Units 
(EDUs) are evidence and shooting_down but instead for 
matching this CDT with others for the purpose of finding 
similarity between them. 
 

 
Figure 2a: The claim of the first agent, Dutch accident investiga-

tors. 

 
Figure 2b: The claim of the second agent, the Committee. 

 

 
Figure 2c: The claim of the third agent, the rebels. 

  
   To summarize, a typical  CDT for a text with argumenta-
tion includes rhetoric relations other than Elaboration and 

121



Join, and a substantial number of communicative actions. 
However, these rules are complex enough so that the struc-
ture of CDT matters and tree-specific learning is required 
(Galitsky et al., 2015). 

Recognizing Communicative Discourse Trees 
for Argumentation 

Argumentation analysis needs a systematic approach to learn 
associated discourse structures. The features of CDTs could 
be represented in a numerical space so that argumentation 
detection can be conducted; however structural information 
on DTs would not be leveraged. Also, features of 
argumentation can potentially be measured in terms of 
maximal common sub-DTs, but such nearest neighbor 
learning is computationally intensive and too sensitive to 
errors in DT construction. Therefore a CDT-kernel learning 
approach is selected which applies SVM learning to the 
feature space of all sub-CDTs of the CDT for a given text 
where an argument is being detected.  
     Tree Kernel (TK) learning for strings, parse trees and 
parse thickets is a well-established research area nowadays. 
The CD-TK counts the number of common sub-trees as the 
discourse similarity measure between two DTs. A version of 
TK has been defined for discourse analysis by (Joty and 
Moschitti, 2014). (Wang et al 2010) used the special form of 
TK for discourse relation recognition. In this study we 
extend the TK definition for the CDT, augmenting DT 
kernel by the information on CAs. TK-based approaches are 
not very sensitive to errors in parsing (syntactic and rhetoric) 
because erroneous sub-trees are mostly random and will 
unlikely be common among different elements of a training 
set.  
    A CDT can be represented by a vector V of integer 
counts of each sub-tree type (without taking into account 
its ancestors):  
V (𝑇) = (#𝑜𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 1, … , # 𝑜𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠 𝑜𝑓𝑡𝑦𝑝𝑒 
𝐼, … , # 𝑜𝑓 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑛). This results in a very high 
dimensionality since the number of different sub-trees is 
exponential in size. Thus, it is computationally infeasible 
to directly use the feature vector ∅(𝑇). To solve the 
computational issue, a tree kernel function is introduced to 
calculate the dot product between the above high 
dimensional vectors efficiently. Given two tree segments 
CDT1 and CDT2 , the tree kernel function is defined:  
𝐾 (CDT1, CDT2) = <V (CDT1 ), V (CDT2 ) > =  Σi V 
(CDT1 )[i], V (CDT2)[i] = Σn1Σn2 Σi Ii(n1)* Ii(n2), where 
𝑛1�𝑁1 , n2�𝑁2 where 𝑁1 and N2 are the sets of all nodes in 
CDT1 and CDT2 , respectively; 𝐼i (𝑛) is the indicator 
function: 𝐼i (𝑛)  = {1 iff a subtree of type 𝑖 occurs with root 
at node; 0 otherwise}.  Further details for using TK for 

paragraph-level and discourse analysis are available in 
(Galitsky 2017). 
    Only the arcs of the same type of rhetoric relations 
(presentation relation, such as antithesis, subject matter 
relation, such as condition, and multinuclear relation, such 
as List) can be matched when computing common sub-
trees. We use N for a nucleus or situations presented by 
this nucleus, and S for satellite or situations presented by 
this satellite. Situations are propositions, completed actions 
or actions in progress, and communicative actions and 
states (including beliefs, desires, approve, explain, 
reconcile and others). Hence we have the following 
expression for RST-based generalization ‘^’ for two texts 
text1 and text2 : 
text1 ^ text2 = ∪i,j (rstRelation1i, (…,…) ^ rstRelation2j 
(…,…)), where I ∈ (RST relations in text1),  j ∈ (RST 
relations in text2). Further, for a pair of RST relations their 
generalization looks as follows: rstRelation1(N1, S1) ^ 
rstRelation2 (N2, S2) =  (rstRelation1^ rstRelation2 )( N1^N2, 
S1^S2). 

We define CA as a function of the form verb (agent, 
subject, cause), where verb characterizes some type of 
interaction between involved agents (e.g., explain, confirm, 
remind, disagree, deny, etc.), subject refers to the 
information transmitted or object described, and cause 
refers to the motivation or explanation for the subject. To 
handle meaning of words expressing the subjects of CAs, 
we apply word2vec models (Mikolov et al., 2015).  

To compute similarity between the subjects of CAs, we 
use the following rule. If subject1=subject2, then 
subject1^subject2 = <subject1, POS(subject1), 1>. 
Otherwise, if they have the same part-of-speech, 
subject1^subject2=<*,POS(subject1),       

      word2vecDistance(subject1^subject2)>.  
If part-of-speech is different, generalization is an empty 

tuple. It cannot be further generalized. 
   We combined Stanford NLP parsing, coreferences, entity 
extraction, DT construction (discourse parser, Surdeanu et 
al., 2016 and Joty et al., 2016), VerbNet and Tree Kernel 
builder into one system available at  
https://github.com/bgalitsky/relevance-based-on-parse-trees. 

Assessing Validity of Extracted Argument 
Patterns via Dialectical Analysis 

To convince an addressee, a message needs to include an 
argument and its structure needs to be valid. Once an 
argumentation structure extracted from text is represented 
via CDT, we need to verify that the main point (target 
claim) communicated by the author is not logically 
attacked by her other claims. To assess the validity of the 
argumentation, a Defeasible Logic Programming (DeLP) 
approach is selected, an argumentative framework based 
on logic programming (García and Simari, 2004; Alsinet et 
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al., 2008), and present an overview of the main concepts 
associated with it.  
    A DeLP is a set of facts, strict rules Π of the form (A:-
B) , and a set of defeasible rules Δ of the form A-<B, 
whose intended meaning is “if B is the case, then usually A 
is also the case”.  Let P=(Π, Δ)  be a DeLP program and L 
a ground literal.  
   Let us now build an example of a DeLP for legal 
reasoning about facts extracted from text (Fig. 3a). A judge 
hears an eviction case and wants to make a judgment on 
whether rent was provably paid (deposited) or not (denoted 
as rent_receipt). An input is a text where a defendant is 
expressing his point. Underlined words form the clause in 
DeLP, and the other expressions formed the facts (Fig. 3b). 
 
The landlord contacted me, the tenant, and the rent was 
requested. However, I refused the rent since I demanded 
repair to be done. I reminded the landlord about necessary 
repairs, but the landlord issued the three-day notice 
confirming that the rent was overdue. Regretfully, the 
property still stayed unrepaired 
 
Defeasible Rules Prepared In Advance 
rent_receipt  -<  rent_deposit_transaction. 
rent_deposit_transaction -< contact_tenant. 
┐rent_deposit_transaction -<contact_tenant,     

three_days_notice_is_issued.  
┐rent_deposit_transaction -< rent_is_overdue.  
┐repair_is_done  -<  rent_refused,  repair_is_done. 
repair_is_done  -< rent_is_requested. 
┐rent_deposit_transaction -<     

tenant_short_on_money, repair_is_done. 
┐repair_is_done -< repair_is_requested. 
┐repair_is_done -<rent_is_requested. 
┐repair_is_requested -< stay_unrepaired. 
┐repair_is_done -< stay_unrepaired. 
Target Claim to be Assessed 
? - rent_receipt   
Clauses Extracted from text 
repair_is_done -< rent_refused. 
Facts from text 
contact_tenant. rent_is_requested. rent_refused. 
remind_about_repair. three_days_notice_is_issued. 
rent_ is_overdue. stay_unrepaired. 

 
Figure 3a: An example of a Defeasible Logic Program for 

modeling category mapping. 
 
A defeasible derivation of L from P consists of a finite 
sequence L1, L2, . . . , Ln = L of ground literals, such that 
each literal Li is in the sequence because: 
(a) Li is a fact in Π, or 
(b) there exists a rule Ri in P (strict or defeasible) with head 
Li and body B1,B2, . . . ,Bk and every literal of the body is 
an element Lj of the sequence appearing before Lj (j < i ). 

  Let h be a literal, and P=(Π, Δ) a DeLP program. We say 
that <A, h> is an argument for h, if A is a set of defeasible 
rules of Δ, such that: 
1. there exists a defeasible derivation for h from (Π ∪ A); 
2. the set (Π ∪ A) is non-contradictory; and 
3. A is minimal: there is no proper subset A0 of A such that 
A0 satisfies conditions (1) and (2). 
Hence an argument <A, h> is a minimal non-contradictory 
set of defeasible rules, obtained from a defeasible 
derivation for a given literal h associated with a program P. 
    We say that <A1, h1> attacks <A2, h2> iff there exists a 
sub-argument <A, h> of <A2, h2> (A ⊆A1) such that h and 
h1 are inconsistent (i.e. Π ∪ {h, h1} derives complementary 
literals). We will say that <A1, h1>  defeats <A2, h2>  if 
<A1, h1> attacks  <A2, h2> at a sub-argument  <A, h>  and 
<A1, h1> is strictly preferred (or not comparable to)  <A, 
h>. In the first case we will refer to <A1, h1> as a proper 
defeater, whereas in the second case it will be a blocking 
defeater.    Defeaters are arguments which can be in their 
turn attacked by other arguments, as is the case in a human 
dialogue. An argumentation line is a sequence of 
arguments where each element in a sequence defeats its 
predecessor. In the case of DeLP, there are a number of 
acceptability requirements for argumentation lines in order 
to avoid fallacies (such as circular reasoning by repeating 
the same argument twice). 

 
 

Figure 3b: Text of a complaint and its  
CDT (visualization by Joty et al., 2013). 
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Target claims can be considered DeLP queries which are 
solved in terms of dialectical trees, which subsumes all 
possible argumentation lines for a given query. The 
definition of dialectical tree provides us with an 
algorithmic view for discovering implicit self-attack 
relations in users’ claims. Let <A0, h0> be an argument 
(target claim) from a program P. A dialectical tree for <A0, 
h0> is defined as follows: 
1. The root of the tree is labeled with <A0, h0>    
2. Let N be a non-root vertex of the tree labeled <An, 

hn>   and Λ=[<A0, h0>, <A1, h1>, …, <An, hn>] (the 
sequence of labels of the path from the root to N). Let 
[<B0, q0>, <B1, q1>, …, <Bk, qk>] all attack <An, hn>. 

   For each attacker <Bi, qi> with acceptable argumentation 
line [Λ,<Bi, qi>], we have an arc between N and its child 
Ni. 
   A labeling on the dialectical tree can be then performed 
as follows: 
1. All leaves are to be labeled as U-nodes (undefeated 

nodes). 
2. Any inner node is to be labeled as a U-node whenever 

all of its associated children nodes are labeled as D-
nodes. 

3. Any inner node is to be labeled as a D-node whenever 
at least one of its associated children nodes is labeled 
as U-node. 

After performing this labeling, if the root node of the tree 
is labeled as a U-node, the original argument at issue (and 
its conclusion) can be assumed as justified or warranted.  
    In our DeLP example, the literal rent_receipt is 
supported by <A, rent_receipt> = <{ (rent_receipt -<  
rent_deposit_transaction), (rent_deposit_transaction -< 
tenant_short_on_money)}, rent_receipt> and there exist 
three defeaters for it with three respective argumentation 
lines: <B1, ┐rent_deposit_transaction> = 
<{(┐rent_deposit_transaction -<   

tenant_short_on_money, 
three_days_notice_is_issued)}, 
rent_deposit_transaction>. 

<B2,┐rent_deposit_transaction> =  
<{( ┐ rent_deposit_transaction -<   

tenant_short_on_money, repair_is_done), 
(repair_is_done -< rent_refused) }, 
rent_deposit_transaction>. 

<B3, ┐rent_deposit_transaction> = 
<{(┐rent_deposit_transaction -< rent_is_overdue )}, 
rent_deposit_transaction>. The first two are proper 
defeaters and the last one is a blocking defeater. Observe 
that the first argument structure has the counter-argument, 
<{rent_deposit_transaction -<  
      tenant_short_on_money},      
      rent_deposit_transaction), but it is not a defeater 
because the former is more specific. Thus, no defeaters 
exist and the argumentation line ends there.  

B3 above has a blocking defeater 
<{(rent_deposit_transaction -<  

tenant_short_on_money)},  
rent_deposit_transaction> which is a disagreement sub-

argument of <A, rent_receipt> and it cannot be introduced 
since it gives rise to an unacceptable argumentation line. B2 
has two defeaters which can be introduced: <C1, 
┐repair_is_done >, where C1 = {(┐repair_is_done -< 
rent_refused,   
repair_is_done),  
(repair_is_done -< rent_is_requsted)},  a proper defeater, 
and <C2, ┐repair_is_done >, where  
C2={(┐repair_is_done -< repair_is_requested)} is a 
blocking defeater. Hence one of these lines is further split 
into two; C1 has a blocking defeater that can be introduced 
in the line  
<D1, ┐repair_is_done >, where  D1= <{(┐repair_is_done 
-< stay_unrepaired)}. D1  and C2 have a blocking defeater, 
but they cannot be introduced because they make the 
argumentation line inacceptable. Hence the state 
rent_receipt cannot  be reached, as the argument 
supporting the literal rent_receipt, is not warranted. The 
dialectical tree for A is shown in Fig. 4. 
   Having shown how to build a dialectic tree, we are now 
ready to outline the algorithm for validation of the domain-
specific claim for arguments extracted from text: 
1. Build a DT from input text; 
2. Attach communicative actions to its edges to form 

CDT; 
3. Extract subjects of communicative actions attached to 

CDT and add to ‘Facts’ section; 
4. Extract the arguments for rhetoric relation contrast and 

communicative actions of the class disagree and add to 
‘Clauses Extracted FromText’ section; 

5. Add a domain-specific section to DeLP; 
6. Having the DeLP formed, build a dialectical tree and 

assess the claim. 
We used (Tweety 2017) system for DeLP implementation. 
 
 

 <A, rent_receipt> D 

 <B1, ┐rent_receipt> U 

 <D1, ┐repair_is_reqiested> U 

 <C1, ┐repair_is_done > D 

 <B2, ┐ rent_given_as_cash > D 

 <B3,  ┐ rent_given_as_cash > U 

 <C2,  ┐ repair_is_done > U 

 
 

Figure 4: Dialectical tree for target claim rent_receipt. 
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Intense Arguments Dataset 
The purpose of this dataset is to collect texts where authors 
do their best to bring their points across by employing all 
means to show that they are right and their opponents are 
wrong. Complainants are emotionally charged writers who 
describe problems they encountered with a financial 
service and how they attempted to solve it. 
   Most complaint authors report incompetence, flawed 
policies, ignorance, indifference to customer needs and 
misrepresentation from the customer service personnel 
(Galitsky et al., 2009). The focus of a complaint is a proof 
that the proponent is right and her opponent is wrong, 
followed by a resolution proposal and a desired outcome. 

Complaints reveal shady practices of banks during the 
financial crisis of 2007, such as manipulating an order of 
transactions to charge a highest possible amount of non-
sufficient fund fees. Moreover, banks attempted to 
communicate this practice as a necessity to process a wide 
amount of checks. This is the most frequent topic of 
customer complaints, so one can track a manifold of 
argumentation patterns applied to this topic. 
    For a given topic such as insufficient funds fee, this 
dataset provides many distinct ways of argumentation that 
this fee is unfair. Therefore, our dataset allows for 
systematic exploration of the topic-independent clusters of 
argumentation patterns and observe a link between 
argumentation type and overall complaint validity. Other 
argumentation datasets including legal arguments, student 
essays, Internet argument corpus, fact-feeling, and political 
debates have a strong variation of topics so that it is harder 
to track a spectrum of possible argumentation patterns per 
topic. Unlike professional writing in legal and political 
domains, the messages produced by complainants have a 
simple motivational structure, a transparency of their 
purpose and occurs in a fixed domain and context. In our 
dataset, the affective arguments play a critical rule for the 
well-being of the authors, subject to an unfair charge of a 
large amount of money or eviction from home. Therefore, 
the authors attempt to provide as strong argumentation as 
possible to back up their claims and strengthen their case. 

Evaluation of Detection and  
Validation of Affective Arguments 

The objective of argument detection task is to identify all 
kinds of arguments, not only ones associated with 
customer complaints. We formed the positive dataset from 
textual customer complaints dataset (Galitsky et al., 2009, 
and  https://github.com/bgalitsky/relevance-based-on-parse-
trees/blob/ master/src/test/resources/opinionsFinanceTagged 
.xls.zip. scraped from consumer advocacy site 
PlanetFeedback.com. This dataset is used for both 
argument detection and argument validity tasks . 
 

Table 1: Evaluation results for argument detection. 
 

 
Method / sources 

P R F1 

Bag-of-words 57.2 53.1 55.07 

WEKA-Naïve Bayes 59.4 55.0 57.12 

SVM TK for RST and CA (full parse 
trees) 77.2 74.4 75.77 

SVM TK for DT 63.6 62.8 63.20 

SVM TK for CDT 82.4 77.0 79.61 
 
 
 
 
 
     For the negative dataset, only for the affective argument 
detection task, we used Wikipedia, factual news sources, 
and also the component of (Lee, 2001) dataset that includes 
such sections of the corpus as: [‘tells’], instructions for 
how to use software; [‘tele’], instructions for how to use 
hardware, and [news], a presentation of a news article in an 
objective, independent manner, and others. Further details 
on the data set are available in (Galitsky et al 2015). 
    A baseline approach relies on keywords and syntactic 
features to detect argumentation (Table 1). Frequently, a 
coordinated pair of communicative actions (so that at least 
one has a negative sentiment polarity related to an opponent) 
is a hint that logical argumentation is present. This naïve 
approach is outperformed by the top performing TK learning 
CDT approach by 29%. SVM TK of CDT outperforms 
SVM TK for RST+CA and RST + full parse trees (Galitsky, 
2017) by about 5% due to noisy syntactic data which is fre-
quently redundant for argumentation detection. 
    SVM TK approach provides acceptable F-measure but 
does not help to explain how exactly the affective argument 
identification problem is solved, providing only final scoring 
and class labels. Nearest neighbor maximal common sub-
graph algorithm is much more fruitful in this respect 
(Galitsky et al., 2015). Comparing the bottom two rows, we 
observe that it is possible, but infrequent to express an affec-
tive argument without CAs. 
    Assessing logical arguments extracted from text, we 
were interested in cases where an author provides invalid, 
inconsistent, self-contradicting cases. That is important for 
CRM systems focused on customer retention and 
facilitating communication with a customer (Galitsky et al 
2009). The domain of residential real estate complaints 
was selected and a DeLP thesaurus was built for this 
domain. Automated complaint processing system can be 
essential, for example, for property management 
companies in their decision support procedures 
(Constantinos et al., 2003). 
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Table 2: Evaluation results for argument validation. 
 

 
Types of complaints 

P R F1 of 
validation  

F1 of total 

Single rhetoric relation 
of type contrast 87.3 15.6 26.5 18.7 

Single communicative 
action of type disagree 85.2 18.4 30.3 24.8 

Two or three specific 
relations or 
communicative actions 

80.2 20.6 32.8 25.4 

Four and above specific 
relations or 
communicative actions 

86.3 16.5 27.7 21.7 

    
    In our validity assessment we focus on target features 
related to how a given complaint needs to be handled, such 
as compensation_required, proceed_with_eviction, 
rent_receipt and others.   
    Validity assessment results are shown in Table 2. In the 
first and second rows, we show the results of the simplest 
complaint with a single rhetoric relation such as contrast and 
a single CA indicating an extracted argumentation attack 
relation respectively. In the third row we assess complaints 
of average complexity, and in the bottom row, the most 
complex, longer complaints in terms of their CDTs.  The 
third column shows detection accuracy for invalid 
argumentation in complaints in a stand-alone argument 
validation system. Finally, the fourth column shows the 
accuracy of the integrated argumentation extraction and 
validation system.  

Recall is low because in the majority of cases the 
invalidity of claims is due to factors other than being self-
defeated. Precision is relatively high since if a logical flaw in 
an argument is established, most likely the whole claim is 
invalid because other factors besides argumentation (such as 
false facts) contribute as well. As complexity of a complaint 
and its discourse tree grows, F1 first improves since more 
logical terms are available and then goes back down as there 
is a higher chance of a reasoning error due to a noisier input. 
    For decision support systems, it is important to maintain 
a low false positive rate. It is acceptable to miss invalid 
complaints, but for a detected invalid complain, confidence 
should be rather high. If a human agent is recommended to 
look at a given complaint as invalid, her expectations 
should be met most of the time. Although F1-measure of 
the overall argument detection and validation system is low 
in comparison with modern recognition systems, it is still 
believed to be usable as a component of a CRM decision 
support system. 

Conclusions 
In this study we explored a possibility to validate messages 
in an IoE environment. We observed that by relying on 
discourse tree data, one can reliably detect patterns of logical 
and affective argumentation. Communicative discourse trees 
become a source of information to form a defeasible logic 
program to validate an argumentation structure. Although 
the performance of the former being about 80% is 
significantly above that of the latter (29%), the overall 
pipeline can be useful for detecting cases of invalid affective 
argumentation, which are important in decision support for 
CRM.  

To the best of our knowledge,  this is the first study build-
ing the whole argument validity pipeline, from text to a vali-
dated claim in it, which is a basis of IoE decision support. 
Hence although the overall argument validation accuracy is 
fairly low, there is no existing system to compare this per-
formance against. 

In this paper, to support IoE message validation, we 
attempted to combine the best of both worlds, argumentation 
mining from text and reasoning about the extracted 
argument. Whereas applications of either technology are 
limited, the whole argumentation pipeline is expected to find 
a broad range of applications. In this work we focused on a 
very specific legal area such as customer complaints, but it is 
easy to see a decision support system employing the 
proposed argumentation pipeline in other domains of CRM.  

An important finding of this study is that argumentation 
structure can be discovered via the features of extended 
discourse representation, combining information on how an 
author organizes her thoughts with information on how 
involved agents communicate these thoughts. Once a 
communicative discourse tree is formed and identified as 
being correlated to argumentation, a defeasible logic 
program can be built from this tree and the dialectical 
analysis can validate the main claim. 
     Although validating agents’ messages, affective argu-
ment should not be confused with an appeal to emotion, a 
logical fallacy characterized by the manipulation of the 
recipient's emotions in order to win an argument, especial-
ly in the absence of factual evidence. This kind of appeal to 
emotion is a type of red herring and encompasses several 
logical fallacies. 
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Abstract 
The Internet of Things (IoT) is dramatically increasing 
complexity in cities, commerce and homes. This complexity 
is increasing the risk to cyber threats. To reduce these risks, 
resilient cyberphysical systems must be able to respond to 
different types of disturbances (errors; cyberattacks). Organ-
izational, system and infrastructure security pose new chal-
lenges for policy considerations that reduce cyber risks ra-
ther than simply reacting to cyberattacks. Indeed, policies 
must be crafted to require anticipatory responses able to dis-
criminate between anomalies caused by errors and those 
driven by cyberattackers for malicious purposes that may 
result in obvious damage (e.g., equipment destruction, inju-
ry or death) or subtle control (e.g., Stuxnet). We conclude 
that anticipatory resilience solutions for cyberphysical sys-
tems will require teams of government and commercial or-
ganizations to address the consequences of cyberattacks, to 
detect them and to defend against them.  

 Introduction: Context   
A resilient cyber physical system is one that maintains 
state awareness and an accepted level of operational nor-
malcy in response to disturbances, including threats of an 
unexpected and malicious nature (Rieger et al., 2009). Re-
sponding to cyber attacks against cyber physical systems 
such as automated vehicles, weapon systems, and manu-
facturing systems requires addressing cyber attack risks 
that can potentially include consequences such as injuries 
or death. The difference in the severity of these conse-
quences compared to those of information system cyber 
attacks brings with it new policy considerations related to 
cybersecurity.  However, as was the case for the integra-
tion of information systems through the Internet, unless 
special attention is paid to this matter early on, security 
will likely be dominated by responses to actual attacks, 
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rather than anticipatory solutions designed to reduce the 
risks.  
 Over the past seven years, the author has been leading a 
technology-focused research effort that addresses cyber 
attack resilience for physical systems (Jones et al., 2012; 
Jones et al., 2013; Horowitz & Pence, 2013; Bayuk & 
Horowitz, 2011; Gay et al., 2017; Babineau et al., 2012; 
Jones et al., 2011; Horowitz, 2016; Horowitz & Lucero, 
2017). Unlike cyber attack defense solutions, resilience 
solutions involve monitoring to detect successful cyber 
attacks and support for rapid reconfiguration of the at-
tacked system for continued operation with contained con-
sequences. The reconfigurations can include modifications 
in the roles and procedures for human system operators as 
well as technology related adjustments. The monitoring 
sub-system(s), referred to as a Sentinel, for detection of 
attacks and derivation of potential reconfigurations must be 
very highly secured to avoid becoming an attractive target 
for attacks. Note that resilience solutions can serve as a 
deterrent to attackers since they promise to reduce the 
highest risk consequences of potential cyber attacks. As an 
example of cyber attack resiliency, consider an automobile 
equipped with an automated collision avoidance capability. 
A variety of cyber attacks have been demonstrated in 
which an automobile could be automatically directed to-
ward a possible collision with another nearby vehicle. 
Monitoring the automobile’s sensor outputs, control sys-
tem inputs and outputs, and driver inputs through the ac-
celeration and brake pedals, would provide a basis for 
recognition of an inconsistency potentially caused by a 
cyber-attack impacting the control system. However, the 
control error could also be the result of erroneous sensor 
inputs. Comparing measurements from a diverse set of 
sensors would provide a basis for detecting and responding 
to either a failed or cyber attacked sensor sub-system. Inte-
gration of the alternate explanations for the control error 
provides the opportunity to automatically correct the situa-
tion or alternately, provide opportunity for the driver to 
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respond. Note that a resilience solution impacts the effec-
tiveness of a variety of possible cyber attacks that would 
create common symptoms.  
 The technology-focused research effort has included a 
number of prototyping projects involving protection of 
currently available, highly automated physical systems that 
are being cyber-attacked. These prototyping activities have 
served to demonstrate the importance of, and potential for, 
cyber attack resiliency solutions. Specific operational pro-
totyping activities have included: 1) a DoD-sponsored ef-
fort involving cyber defense of an unmanned air vehicle 
(UAV) conducting surveillance missions (including in-
flight evaluations) Miller, 2014a, 2) defending automobiles 
(including Virginia State Police exercises with unsuspect-
ing policemen driving cyber attacked police cars) 
(NBC.29, 2015; Higgins, 2015a), and 3) a National Insti-
tute of Standards sponsored effort involving the defense of 
a 3D Printer through the monitoring of its motors, tempera-
ture controllers and other physical component controllers, 
while in the process of printing defective parts due to 
cyber-attacks on the machine’s internal technology com-
ponents. These real-world cases have served to illuminate a 
number of important and complex policy issues made visi-
ble to government and industry participants involved with 
the prototype projects. These policy issues are the subjects 
of this paper.   

The Need to Address Cybersecurity for Physical 
Systems 

Two important, closely related technology trends are oc-
curring simultaneously; however, the two trends are not 
reinforcing.   
 Trend 1: The integration of technology-based automa-
tion capabilities associated with physical systems. This 
trend includes: 

• Development of autonomous and highly automat-
ed vehicles for transportation (air, ground and sea) 

• Development of increasingly-capable 3D printers 
and robots for manufacturing     

• Use of network-based access to physical systems 
to enable remote control and/or monitoring (e.g., 
physical system maintenance plans based upon 
measured conditions of use, customized patient 
health care related responses based upon collected 
information from on-body sensors)     

• Emergent Internet of Things (IoT) opportunities 
that relate to consumer products, the home, smart 
cities, etc. 

 Trend 2: The increasing recognition of the potential risks 
related to cyber attacks on physical systems, particularly 
with regard to human safety, not typically associated with 
cyber attacks on conventional information systems. While 

attacks on physical systems have not yet emerged as a high 
risk, various technology demonstrations have shown the 
potential threat of these types of attacks.  Such demonstra-
tions include the following: 

• Recent automobile attacks (Higgins, 2015b) 
showing the feasibility of cyber attacks to cause 
physical harm.  

• Actual high visibility cyber attacks on physical 
systems, such as the Stuxnet attacks (Falliere et 
al., 2011) highlighting the potential for other at-
tacks of this kind. The Stuxnet attacks impacted a 
large number of Iranian nuclear reactors, serving 
as a warning that industrial computer-controlled 
physical systems are vulnerable to attack.  

• Less publicized attacks on physical systems that 
have also occurred.  For example, a   German 
government security report indicated that an un-
named steel plant suffered an attack that impacted 
its blast furnace, causing significant damage 
(CART, 2013). 

To-date, the cybersecurity engineering community has 
principally been focused on information systems, an area 
where the risks are different and the technical factors re-
garding cyber defense pose significantly different chal-
lenges. 

Historic Patterns for Addressing Cybersecurity  
While cybersecurity experts point to the fact that anticipa-
tory design of cybersecurity features into systems provides 
a pathway for achieving better security, historically most 
solutions have been add-ons to systems in response to ac-
tual attacks (Miller, 2014b). The reasons for this are eco-
nomic. When new innovations are in their early develop-
ment phase (such as autonomous vehicles), designers are 
consumed with achieving a working system, and security is 
treated as something that will follow. When the innovation 
is ready to bring to market, concern about the cost impacts 
of security on the new products’ prices further delays secu-
rity implementation. When the new products are selling, 
but significant attacks have yet to occur, there is no press-
ing demand to anticipate attacks. When attacks start occur-
ring, and there are already large numbers of existing sys-
tems in use, responsive patching becomes the de facto so-
lution.  
 For existing information systems, the major conse-
quences of cyber attacks have been financial in nature or 
related to privacy.  Should human safety become a primary 
risk of cyber-attacks in the future, new societal patterns 
may emerge that demand stronger anticipatory solutions. 
Anticipatory solutions must be designed not only on the 
basis of prior attacks, but also based upon predictions of 
what cyber attackers might target in the future and how 
they might implement these attacks. Prediction of attacker 
behavior is quite complex, requiring considerations such 
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as: 1) historic attacks, 2) attacker motivations; 3) attack 
complexity and corresponding attacker skill requirements; 
4) costs of design and implementation; 5) risks of attacks 
failing; and 6) risks of getting caught. This situation is ex-
acerbated by the need for competitors to share information 
(e.g., historic attack information) in order to have a more 
complete basis for making predictions and to provide the 
opportunity to derive a common framework for consider-
ing solutions that are related to a domain of similar prod-
ucts. Furthermore, for physical systems classes that include 
rapidly changing automation features, predictions can be 
unstable (e.g., the increasing rate for adding new automa-
tion features in automobiles points to the need for annual 
reconsideration of potential cyber attacks and the corre-
sponding defenses). This situation is further complicated 
by the fact that it would be difficult to measure the success 
of resilience solutions serving to deter attacks, since deter-
rence is not directly observable. For all of these reasons, 
one can expect that managing the design of anticipatory 
defenses would be quite difficult. Furthermore, should suc-
cessful, high-visibility cyber-attacks occur, confidence in 
anticipatory solutions serving as a deterrent would likely 
suffer, thereby resulting in reconsiderations regarding their 
effectiveness.  
 In the event that more emphasis is placed on implement-
ing anticipatory solutions to cyber-attacks, questions arise 
regarding the roles of industry and government in deciding 
on specific resilience requirements. With its superior 
knowledge of physical system design details and potential 
means of exploiting those details, industry is in a much 
stronger position than government to address the selection 
of anticipatory solutions. On the other hand, with its access 
to information regarding actual cyber-attacks, along with 
our country’s history of relying on government for imple-
menting safety measures, government does possess some 
advantages. This suggests a shared role, but a variety of 
cybersecurity-specific complications, discussed below, 
emerge when dividing accountabilities. 
 To demonstrate policy issues regarding the anticipation 
of cyber-attacks, we return to the automobile collision 
avoidance system scenario described in the initial section 
of this article. Note that this automobile example is perti-
nent to other classes of physical systems.  Assume that a 
collision event were to actually occur as a result of the ear-
lier-described cyber attack. Members of the law enforce-
ment community would be the principal investigators as to 
cause, but they would have no basis for determining the 
cause as being a cyber attack. Doing so would likely re-
quire access to a portion of the stored data from the in-
volved automobiles’ onboard systems. Depending on the 
specific manufacturers and models of the involved auto-
mobiles, the data required to identify the cause as a cyber 
attack would likely vary from vehicle to vehicle. Due to 
these variations, the costs associated with necessary field 
tools and officer training would be driven up. This may 
suggest standardization as a needed solution, but the stand-

ardization of pertinent data implies corresponding com-
monalities in the designs of automation features, which 
creates issues related to competition. To further complicate 
matters, the cybersecurity community recognizes risks as-
sociated with “monoculture solutions”; i.e., common de-
signs are vulnerable to common cyber attacks, enabling 
undesirable reuse opportunities by those who employ or 
sell software that accomplishes cyber attacks. In addition, 
the automobile companies and individual drivers may be 
reticent to provide such data (e.g., Intellectual Property 
protection reasons, and privacy reasons unrelated to the 
incident). This very complex set of circumstances will re-
quire significant attention and government and industry 
collaboration. Yet without evidence that cyber attacks on 
automobiles are actually occurring, it would take very 
strong leadership to push through measures allowing law 
enforcement to address cyber attacks on automobiles in an 
anticipatory manner. 
 Recognizing the natural desire to avoid costs associated 
with anticipating cybersecurity, perhaps historical roles in 
safety regulation can provide a starting point for govern-
ment involvement. Historically, with certain exceptions, 
safety analyses have not considered cyber attacks as a safe-
ty issue. The trend of advancing highly automated physical 
systems into general use raises the issue of whether or not 
the safety communities (government and industry) should 
start to address this intersection. In doing so, it becomes 
necessary to understand and account for the relationships 
between the systems at risk and other interconnected and 
interrelated systems that can be a pathway for generating a 
cyber attack. If one starts down this path, some new and 
complex issues arise. 

Mission-Based Cybersecurity 

In this section, an integrated set of interconnected systems’ 
combined mission is considered as the point of departure 
regarding anticipation of cyber attacks. The technology-
focused research efforts that the author has been engaged 
with have addressed a number of illuminating scenarios. 
For example, as part of addressing UAV cybersecurity 
solutions, a variety of potential cyber attacks were consid-
ered as potential concerns that call for defensive capabili-
ties. For illustration purposes, consider cyber attacks aimed 
at modifying a UAV’s flight path, adversely impacting its 
ability to carry out its safety-related surveillance mission 
(e.g., monitoring an oil or gas pipeline). Such an attack 
could, for example, accompany a physical attack on the 
pipeline. One way for an attacker to accomplish this out-
come is to modify mission-related waypoints that have 
been entered into the navigation system on board the air-
craft. One possible solution addresses a cyber-attack in 
which the ground-based portion of the UAV system is uti-
lized by the attacker to automatically send surveillance-
disrupting changes to the navigation waypoints loaded on 
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board the aircraft.  These changes would cause the aircraft 
to be routed in a manner that prevents gathering of the crit-
ical information the mission was intended to collect.  A 
potential solution could involve monitoring the aircraft’s 
navigation system and the pilot’s data entry system (e.g., 
key stroke monitoring). If, when a change in waypoint is 
detected on the aircraft, there is no corresponding pilot data 
input, then a cyber attack is a possible cause. In response, 
the aircraft could transmit information to designated per-
sonnel who could then take actions to confirm and address 
the cyber attack possibility. This example highlights the 
fact that certain attack detections require coordinating in-
formation retrieved from multiple subsystems at different 
locations. If one considers air traffic control systems, a 
parallel set of circumstances can occur involving ground-
based subsystems (e.g., surveillance, communications, 
navigation, air traffic controller support systems) and cor-
responding airborne subsystems. Implementation of solu-
tions would require decisions regarding the perceived level 
of risk, solution costs, the allocation of costs to subsys-
tems, and decisions regarding the sources for paying for 
the solutions. Furthermore, for certain attacks that can cre-
ate the same outcomes through different points of inser-
tion, our technology-focused research efforts have shown 
that the ease of attack on one subsystem can be very differ-
ent from that of another subsystem, providing opportunities 
to address the minimization of total costs when dealing 
with high priority targets. However, lowering total costs 
can bring with it controversial cost allocation issues, re-
quiring policies that manage such situations. As stated ear-
lier, without prior data that provides evidence that relevant 
cyber attacks are actually occurring, it will very take strong 
leadership to address the issues of anticipating safety-
related outcomes and cost allocation for implementation of 
solutions. 

Education of Engineers and Policy-Makers 

The discussions presented above do not address what may 
be the most critical issue in implementing cybersecurity for 
physical systems, namely the education of both our engi-
neering and policy-making communities. Teams that in-
clude mechanical, electrical, and system engineers design 
physical systems. Engineering schools do not integrate 
computer security courses into the individual curriculums 
of these engineering disciplines. As a result, there are a 
very limited number of physical system design engineers 
who have the requisite knowledge to design systems that 
better account for cybersecurity considerations.  Further-
more, educators in these areas of engineering have no his-
toric basis for engaging in the cybersecurity-related aspects 
of their fields. As a result, our colleges and universities 
need to consider this emergent need and develop cross-
department programs that are responsive to this new, im-

portant requirement. Development of new programs can be 
influenced by a strong calling from industry to the educa-
tion system, including providing financial support for de-
velopment of new integrated programs, student internships, 
and professional education programs that support their 
current workforce. Similar to the issues discussed earlier, it 
will take strong industry leadership to support such pro-
grams without prior data providing evidence that cyber-
attacks on physical systems are occurring.  
 A similar situation faces the policy-making community. 
As part of structuring resilience-related prototyping efforts, 
researchers have to address project-specific safety issues 
associated with conducting experiments. This requirement 
calls for interactions with a variety of policy organizations. 
Based on such interactions, it became clear to the author 
that the imagination of policy-makers with regards to what 
cyber-attacks could potentially accomplish far exceeded 
reality. Furthermore, discussions surrounding particular 
cyber-attacks and their consequences, as well as the solu-
tions to be evaluated, made clear that the requisite technol-
ogy-related knowledge became an issue in deriving safety 
controls. Interestingly, in some cases, the policy outcomes 
could have been unnecessarily conservative and in others, 
not conservative enough. Another important finding was 
that that the policy community found that the security 
community was greatly steeped in specialized technical 
jargon, providing a barrier to beneficial discussions regard-
ing solutions and policies.  
 Of course, addressing this particular issue would require 
an education element for both policy-makers and cyberse-
curity engineers who engage in policy matters.  
 Perhaps a side issue, but one that could greatly influence 
matters, is that the demonstrations of cyber attacks on 
physical systems and their impacts can be interpreted as a 
consequence of the manufacturers or industrial users of 
those physical systems not being sufficiently sensitive to 
cybersecurity/safety-related outcomes in their product and 
system designs. As a result, in carrying out projects, the 
issue arises regarding reporting on the cybersecurity risks 
of current systems and the undue reputation impact it could 
have on the companies whose systems are being used for 
experimentation. It is not generally understood that the 
risks are emergent, and that the nature of these findings 
would be expected across all current software-controlled 
physical systems that have safety-related outcome poten-
tials. A need exists to address this topic, including defining 
professional behavior for engineers regarding reporting on 
the results of their work involving current commercial sys-
tems and cyber-attacks and its relationship to the related 
companies’ reputations. 
 The author of this article has recently served as a Com-
missioner for Cybersecurity for the Commonwealth of 
Virginia, which, with strong support from the Governor, 
has been engaged in strategy development regarding cy-
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bersecurity (CoV, 2015). The 11-person Cybersecurity 
Commission for Virginia, working with Virginia’s Cabinet 
members, has made strong recommendations regarding 
education programs, and the state has developed budgets to 
start addressing this need. This state-level initiative is the 
type of anticipatory action that will be required in order to 
be prepared should the cyber-attack risks for physical sys-
tems materialize. 

Cybersecurity Role and Certification of the 
Operators of Physical Systems 

An important aspect of the defense of physical systems 
from cyber-attacks is that immediate system-
reconfiguration responses to attack detections (including 
what can be very expensive system shut-downs) may be 
necessary in order to provide the desired level of safety. 
This calls for doctrine regarding immediate responses. 
Doctrine must include: 1) the allocation of decision-
making and response control roles to specified personnel, 
2) selection criteria for, and training of those people, 3) 
exercising for preparedness, and 4) addressing the possibil-
ities of unanticipated confusion regarding operator judg-
ments related to the possibilities of missed or incorrect 
attack detections (including zero-day attacks).  
 Part of the author’s research on physical system defense 
included human involvement in cyber attack scenarios. In 
the UAV case, a desktop simulation environment was used 
to gain an initial understanding of operator responses to a 
monitoring system that detects cyber attacks and provides 
suggested responses to the UAV pilots. In the State Police 
case, a controlled exercise was conducted, involving un-
suspecting policemen being dispatched, and their cars be-
ing attacked and failing to operate properly. The results of 
these activities highlighted the point that the doctrinal pro-
cesses to be developed must recognize the fact that cyber 
attacks on physical systems are an area where people do 
not and will not have practical experience to rely upon. 
Furthermore, since attacks are very unlikely to occur, re-
sponses may stray from what operators are trained for. The 
research efforts showed that operators, based on their past 
experiences, can usually imagine other causes for observed 
consequences of a cyber attack and, as a result, may not be 
as responsive to automated decision support as expected.  
 Consider the case in which a Sentinel detects a cyber-
attack that consists of an improper digital control message 
preventing a car from operating properly. From the opera-
tor’s perspective there can be many different causes for the 
car not operating properly (e.g. failed battery), and these 
are typically causes they have previously experienced.  
Consequently, under the immediate pressure of needing to 
take decisive action, the operator may be more likely to 
assume these causes of failure, rather than a never experi-
enced cyber-attack. Research results showed that even 
when an operator accepts a Sentinel’s input as being cor-

rect, uncertainty remains regarding the possibility for addi-
tional elements of the cyber-attack having yet to emerge. 
This element of uncertainty is escalated when there are 
high consequences associated with an operator’s decisions, 
and the operator’s accountability for those decisions can 
impact behavior, including asking for access to cybersecu-
rity experts before making a critical decision. Of course, 
such calls for help can potentially delay decision-making to 
an undesirable degree. As a result of these scenarios actual-
ly emerging during our research experiments, a significant 
effort has been initiated to better understand human behav-
ior in uncertain circumstances that are likely to exist in 
scenarios regarding cyber-attacks on physical systems. 
From a policy vantage point, research efforts are needed to 
address questions regarding selection, certification and 
readiness training requirements for operators of physical 
systems for which cyber-attacks could have serious conse-
quences. 

Data Curation 

Data curation can be defined as the active and ongoing 
management of data through its lifecycle of interest and 
usefulness. If one assumes that a critical step in vigorously 
addressing cybersecurity for physical systems is the need 
for early evidence that cyber-attacks are actually occurring, 
significant issues emerge regarding curation of the data 
that would provide the needed evidence. Based on the au-
tomobile-focused State Police project referred to above, an 
important next step would be the development of accepted 
policies and processes regarding the collection, storage, 
security, sharing, analysis, and supplementation of data. 
For example, consider the case of distribution of specific 
data that were to be collected at the scene of an automobile 
incident and, based upon analysis, indicated a possible 
cyber-attack. Recognizing the international manufacturing 
base for automobiles and the international sales of automo-
biles, information would need to be shared across the 
world. It would be important that worldwide law enforce-
ment agencies, national governments engaged in address-
ing automobile cybersecurity, automobile companies, and 
numerous others gain access to that data.  As a result, in-
ternational curation policies and processes would be called 
for. Organizations such as INTERPOL could potentially 
play a key role in creating the needed international orienta-
tion.  

Market Incentives 

In February 2014, the National Institute of Standards and 
Technology (NIST) released Version 1 of White House 
Executive Order 13636 - Cybersecurity Framework, an 
initial structure for organizations, government and custom-
ers to use in considering comprehensive cybersecurity pro-
grams (WH, 2013). In April 2015, a NIST presentation 
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provided a status report on the evolving framework (NIST, 
2015). The framework broadly addresses the specific needs 
that are discussed above, but without the required specifici-
ty to illuminate the complexity associated with anticipatory 
physical system solutions. Past efforts to establish market 
incentives for improved information system cybersecurity 
illustrate the consequences of inaction, and also demon-
strate the uncertainties and difficulties surrounding antici-
patory actions. The example provided by information sys-
tems highlights the importance of initiating early data col-
lection efforts so that incidents can be assessed for poten-
tial cyber attacks and confirmed attacks can be document-
ed.  With this evidence in hand, it will be easier to evaluate 
next step responses, and incentives for anticipatory forms 
of cybersecurity will be increased. As emphasized above, it 
will be difficult to motivate anticipatory solutions without 
confirmation that attacks on physical systems are actually 
occurring.  The National Highway Safety Traffic System 
(NHTSA), through guidance that they are providing for 
improving automobile-related cybersecurity, has taken 
encouraging steps to anticipate some of the needs ad-
dressed above (USDOT, 2016).  A potential sequence of 
events is that data collection starts early and provides in-
controvertible evidence of attacks on physical systems, 
which then drives the development of the needed govern-
ment, industry and consumer relationships which underpin 
market incentives for investment in anticipatory cybersecu-
rity. As suggested above, attacks on physical systems gen-
erally pose a much greater risk to human safety than at-
tacks on information systems.  Therefore, it may be easier 
to motivate firms and policymakers to invest in physical 
system security, since potential consequences are so se-
vere.  The development of data curation processes that 
could promote the involvement of appropriate government, 
industry and consumer groups appears to be a critical early 
step towards achieving market incentives.   

Conclusions and Recommendations 

This article emphasizes the point that due to the risk of 
injuries and deaths associated with cyber-attacks on physi-
cal systems, anticipatory cybersecurity solutions are likely 
to be desired; potentially much more so than has been the 
case for information system cybersecurity. In addition, a 
number of examples have been provided that illuminate 
both the complexity of addressing anticipation and the dif-
ficulties associated with selecting and applying the most 
critical solutions. This complexity includes recognizing the 
impacts of subsystem interconnections in critical systems, 
such as air traffic control systems. It has been suggested 
that managing the implementation of anticipatory solutions 
will require teams of government and industrial organiza-
tions, both to address the consequences of attacks and to 
design systems for detecting and responding to attacks. 

The examples highlight the fact that this is an international 
issue, involving government as well as the relevant indus-
tries. The examples also demonstrate that standardization 
solutions have to consider their monoculture implications 
in addition to the normal factors that relate to standardiza-
tion. In order to make progress, our education system 
needs to prioritize addressing cybersecurity across a broad-
er set of education programs than is currently the practice. 
 Additionally, it appears likely that evidence of actual 
cyber attacks on physical systems will be a necessary pre-
cursor for anticipatory solutions; due to the associated 
costs, it is unlikely that self-motivation will be sufficient to 
drive investment in cybersecurity for physical systems. The 
creation of market incentives for investment in cybersecu-
rity for physical systems will require the engagement of 
government, industry and consumer organizations. Since 
they are first on the scene for incidents of the kind being 
addressed here, the law enforcement community would 
seemingly be a logical choice for collecting the needed 
data.  Consequently, the first step in post-event data analy-
sis is equipping law enforcement officers with applicable 
equipment, so that they can identify events caused by cyber 
attacks.  It is also suggested that industry members engage 
with the law enforcement community to determine data 
requirements necessary to identify a cyber attack. Once a 
number of instances are documented, the policy responses 
suggested above will likely increase in priority. Hopefully, 
with appropriate engagement of consumer groups, antici-
patory solutions will arise.  In order for a rapid response to 
be possible, an early emphasis must be placed on support-
ing relevant research and education. 
 An interesting side note related to this paper is that tech-
nology-focused, system prototype experiments served to 
create early interactions between technologists and poli-
cymakers that illuminated a number of important issues 
related to policy. It would appear that prototype-based pro-
jects that serve to couple government and industry would 
be a valuable method for accelerating the partnerships nec-
essary to identifying and addressing critical policy issues. 
A preliminary strategy would include identifying safety-
related domains that demand the rapid integration of fast 
changing technologies into their physical systems. This 
article provides examples related to advanced air traffic 
control and automated automotive systems. 
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Abstract

Internet of Things (IoT) technologies have made con-
siderable recent advances in commercial applications,
prompting new research on their use in military applica-
tions. Towards the development of an Internet of Battle-
field Things (IoBT), capable of leveraging mixed com-
mercial and military technologies, several unique chal-
lenges of the tactical environment present themselves.
These challenges include development of methods for:
(I) quickly gathering training data reflecting unforeseen
learning/classification tasks; (II) incrementally learning
over real-time data streams; (III) management of lim-
ited network bandwidth and connectivity between IoBT
assets in data gathering and classification tasks. This pa-
per provides a survey over classical and modern statis-
tical learning theory, and how numerical optimization
can be used to solve corresponding mathematical prob-
lems. The objective of this paper is to encourage the IoT
and machine learning research communities to revisit
the underlying mathematical underpinnings of stream-
based learning, as applicable to IoBT-based systems.

In recent years, Internet of Things (IoT) technologies have
seen significant commercial adoption. For IoT technology, a
key objective is to deliver intelligent services capable of per-
forming both analytics and reasoning over data streams from
heterogeneous device collections. In commercial settings,
IoT data processing has commonly been handled through
cloud-based services, managed through centralized servers
and high-reliability network infrastructures.

Recent advances in IoT technology have motivated the de-
fense community to research IoT architecture development
for tactical environments, advancing the development of an
Internet of Battlefield Things (IoBT) for use in C4ISR ap-
plications (Kott, Swami, and West 2016). Towards advanc-
ing IoBT adoption, differences in military vs. commercial
network infrastructures become an important consideration.
For many commercial IoT architectures, cloud-based ser-
vices are used to perform needed data processing, which
rely upon both stable network coverage and connectivity.
As observed in (Zheng and Carter 2015), IoT adoption in
the tactical environment faces several technical challenges:
(I) Limitations on tactical network connectivity and reliabil-
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ity, which impact the amount of data that can be obtained
from IoT sensor collections in real time; (II) Limitations on
interoperability between IoT infrastructure components, re-
sulting in reduced infrastructure functionality; (III) Avail-
ability of data analytics components accessible over tactical
network connections, capable of real-time data ingest over
potentially sparse IoT data collections.

Challenges such as these limit the viability of cloud-based
service usage in IoBT infrastructures. Hence, significant
changes to existing commercial IoT architectures become
necessary to ensure their applicability - particularly in the
context of machine learning applications. To help illustrate
these challenges, a motivating scenario is provided below.

Detecting Vehicle-borne IEDs in Urban Environments:

As part of an ongoing counterinsurgency operation by
coalition forces in the country of Aragon, focus is placed on
monitoring of insurgent movements and activities. Vehicle-
borne IEDs (VBIEDs) have become more frequently used
by insurgents in recent months, requiring methods for quick
detection and interception. Recent intelligence reports have
provided details on physical appearance of IED-outfitted ve-
hicles in the area. However, due to the time constraints in
confirming detections of VBIEDs, methods for autonomous
detection become desirable. To support VBIED detection, an
IoBT infrastructure has been deployed by coalition forces
consisting of a mix of Unattended Ground Sensors (UGS)
and Unmanned Aerial Systems (UAS). In turn, supervised
learning methods are employed over sensor data gathered
from both sources.

Recent intelligence has indicated that VBIEDs may be
used in a city square during the annual Aragonian Inde-
pendence Festival. A local custom for this festival involves
decoration of vehicles with varying articles (including flags
and Christmas tree lighting). A UAS drone is tasked with
patrolling airspace over one of the inbound roadways and
recoding images of detected vehicles. However, due to the
decorations present on many civilian vehicles, confidence in
VBIED classification by the UAS is significantly reduced.
To mitigate this, the drone flies along a 3 mile stretch of
road for 10 minutes to gather new images of the decorated
vehicles. In each case, the drone generates a classification
of each vehicle as VBIED or not, each with a particular
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Figure 1: Diagram of Drone Flight over Roadway

confidence value. For low-confidence readings, the drone
contacts a corresponding UGS sensor to do the following
things: (i) Take a high-resolution image; (ii) Take readings
for presence of explosives-related chemicals in air nearby,
where any detectable explosives confirms the vehicle is a
VBIED. Since battery power for the UGS is limited, along
with available network bandwidth, the UAS should only re-
quest UGS readings when especially necessary. Following
receipt of data from an UGS, the UAS performs retraining
of the classifier to improve accuracy of future VBIED classi-
fication attempts. Over a short period, the UAS has gathered
additional training data to support detection of VBIEDs.
Eventually, the drone passes over a 1 mile stretch of road
lacking UGS sensors. At this point, the UAS must classify
detected vehicles without UGS support.

This example scenario highlights several research issues
specific to IoBT settings, as reflected in prior surveys (e.g.,
(Zheng and Carter 2015; Suri et al. 2016)): (I) a needed ca-
pability to quickly gather training data reflecting unforeseen
learning/classification tasks; (II) a needed capability to in-
crementally learn over the stream of field specific data (e.g.,
increasing the accuracy of classifying VBIEDs by learning
over the stream of pictures of decorated cars collected over
10 min of flight time); (III) management of limited network
bandwidth and connectivity between assets (e.g., between
the UAS and UGS along the road) requiring selective asset
use to obtain classifier relevant data that increases the clas-
sifier knowledge;

Each of these issues require the selection of learning
and classification methods appropriate to stream-based data
sources. Prior research (Bottou 1998b) (Vapnik 2013), (Bot-
tou and Cun 2004) demonstrates the equivalence of learning
from stream-based data in real time with learning from in-
finitely many samples. From this work, it follows that statis-
tical learning methods adept to large-scale data sources may
be applicable for stream-based data.

This paper opens with a survey over classical and modern
statistical learning theory, and how numerical optimization
can be used to solve the resulting mathematical problems.
The objective of this paper is to encourage the IoT and ma-
chine learning research communities to revisit the underly-
ing mathematical underpinnings of stream-based learning,
as applicable to IoBT-based systems.

Statistical Learning and Stochastic

Optimization

In statistical learning, we are given data in the form of in-
dependent and identically distributed (i.i.d.) samples xn of
a random variable x ∈ X ⊂ R

p. Based upon xn we would
like to estimate some target variable yn which is an i.i.d.
sample random variable y ∈ Y . X is typically called the
feature space, and Y is called the target domain, which may
be a discrete set {1, . . . , C} in the case of classification or
Y ⊂ R

q in the case of regression. Ideally, one would like to
select an estimator ŷ(x) which makes the minimal number
of mistakes in expectation over all data, also known as the
statistical error rate:

ỹ� = argmin
ŷ∈YX

Ex,y[ {ŷ(x) �= y}] (1)

Here we use YX to denote the space of all functions from
feature space X to target domain Y . There are two funda-
mental issues in minimizing the statistical error (1) which
make it intractable: it is NP-hard to optimize over an integer-
valued stochastic function and that the feasible set, when a
generic function space without any structure, is mathemati-
cally impossible to optimize over (Murty and Kabadi 1987).
Researchers have addressed the later issue in a variety of
ways, leading to the rich field of supervised machine learn-
ing; on the other hand, a unifying thread of these approaches
is the approximation of the indicator in (1) by a convex loss
function � :∈ YX × Y → R which is small when ŷ(x) is
close to y and large when far apart. Doing so then yields the
General Learning setting of (Vapnik 1995)

y� = argmin
ŷ∈YX

Ex,y[�(ŷ(x),y)] (2)

The solution to the General Learning setting for the arbi-
trarily complicated feasible set YX is denoted as the Bayes
optimal, and the function to the right of the equality in (2)
is called the Bayes risk (Hastie, Tibshirani, and Friedman
2009). Before surveying different functional specifications
F in lieu of YX , we recall the bias-variance decomposition,
notions of statistical consistency, how these motivate use of
increasingly complicated choices of F when more data is
available.
First, observe that to compute the Bayes optimal, we need

to compute an expectation over the unknown joint distribu-
tion of (x,y) which is impossible. In practice, we have ac-
cess toN i.i.d. training examples (xn,yn), and can compute
some estimate ŷN . For instance, ŷN could be the minimizer
of the empirical risk, stated as (1/N)

∑
n �(ŷ(xn),yn),

or N iterations of stochastic gradient method. The cost-
difference between ŷN and the Bayes optimal y� is

Ex,y[�(ŷN (x),y)]− Ex,y[�(ŷ
�(x),y)] (3)

= Ex,y[�(ŷN (x),y)]−min
ŷ∈F

Ex,y[�(ŷ(x),y)]

+ min
ŷ∈F

Ex,y[�(ŷN (x),y)]− Ex,y[�(ŷ
�(x),y)]

In (3), we have added and subtracted
minŷ∈F Ex,y[�(ŷN (x),y)], the cost associated with
optimal estimator within our hypothesized function class F .
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Observe that the first two terms on the right-hand side of
(3), called the model bias or estimation error, may be made
small by increasing N , the sample size of our training data.

On the other hand, the later two terms, called the model
variance, or approximation error, is a fixed function of our
modeling hypothesis in the form of our choice of func-
tion class F . This suggests to just use arbitrarily com-
plicated choices of F ; however, for a fixed N , the esti-
mation error increases as the complexity of F increases.
This is because the difference between the minimizer of
the empirical and expected risk has been established to be
at least proportional to O(|F|/√N) (Castro 2015)[Ch. 7,
Prop. 3] or (Hastie, Tibshirani, and Friedman 2009). The
fundamental trade off of the complexity of our model-
ing hypothesis F with sample size N , known colloqially
as the bias-variance decomposition, gives rise to the field
of structured risk minimization (Shawe-Taylor et al. 1998)
and model selection (Bartlett, Boucheron, and Lugosi 2002;
Koltchinskii and others 2009).
Rather than emphasize this tradeoff further, we discuss

whether statistical consistency is attainable within a given
function class, and how this motivates different learning
techniques. By statistical consistency for fixed F , we mean

lim
N→∞

Ex,y[�(ŷN (x),y)] = min
ŷ∈F

Ex,y[�(ŷ(x),y)] . (4)

If our choice of F is general enough that it contains the
optimizer y� within YX , then we have solved the prob-
lem. Unfortunately, in practice, one never knows. Thus,
we adopt an engineering approach in which we discuss
various choices of F in order of progressively increasing
complexity, the attainability of consistency (optimality) for
that function class, and numerical tools for attaining these
statistical optimizers.

Generalized Linear Models (GLMs) The first and sim-
plest choice of estimator function class is F = R

p. In this
case, the estimator is a generalized linear model (GLM):
ŷ(x) = wTx for some parameter vector w ∈ R

p (Nelder
and Baker 1972). In this case, optimizing the statistical loss
is the stochastic convex optimization problem, stated as

min
w∈Rp

Ex,y[�(w
Tx,y)] . (5)

Observe that to optimize (5), assuming a closed form so-
lution is unavailable, must be done using gradient de-
scent or Newton’s method (Boyd and Vanderberghe 2004).
However, either method requires computing the gradient
of L(w) := Ex,y[�(w

Tx,y)] which requires infinitely
many realizations (xn,yn) of the random pair (x,y), and
thus has infinite complexity. This computational bottleneck
has been resolved through the development of stochastic
approximation (SA) methods (Robbins and Monro 1951;
Bottou 1998a) which operate on subsets of data examples
per step. The most common SA method is the stochastic
gradient method (SGD), which involves descending along
the stochastic gradient ∇w�(wTxt,yt) rather than the true
gradient at each step:

wt+1 = wt − ηt∇w�(wT
t xt,yt) (6)

Use of SGD (6) is prevalent due to its simplicity, ease of use,
and the fact that it converges to the minimizer of (5) almost
surely, and in expectation at a O(1/

√
t) rate when L(w) is

convex and a sublinearlyO(1/t) when it is strongly convex.
Efforts to improve the mean convergence rate to O(1/t2)
through the use of Nesterov acceleration (Nemirovski et al.
2009) have also been developed, whose updates are given as

wt+1 = vt − ηt∇w�(vT
t xt,yt)

vt+1 = (1− γt)wt+1 + γtwt (7)

A plethora of tools have been proposed specifically
to minimize the empirical risk (sample size N is fi-
nite) in the case of GLMs, which achieve even faster
linear or superlinear convergence rates. These meth-
ods are either based on reducing the variance of the
stochastic approximation (data-subsampling) error of the
stochastic gradient (Schmidt, Roux, and Bach 2013;
Johnson and Zhang 2013; Defazio, Bach, and
Lacoste-Julien 2014) or by using approximate
second-order (Hessian) information (Goldfarb 1970;
Shanno and Phua 1976). This thread has culminated in the
fact that Quasi-Newton methods (Mokhtari, Gürbüzbalaban,
and Ribeiro 2016) outperform variance reduction methods
(Hu, Pan, and Kwok 2009) for finite-sum minimiza-
tion when N is large-scale. For specifics on stochastic
Quasi-Newton updates, see (Mokhtari and Ribeiro 2015;
Byrd et al. 2016). However, as N → ∞, the analysis which
yields linear or superlinear learning rates breaks down,
and the best one can hope for is Nesterov’s O(1/t2) rate
(Nemirovski et al. 2009).

Learning Feature Representations for Inference Trans-
formations of data domains have become widely used in
the past decades, due to their ability to extract useful in-
formation from input signals as a precursor to solving sta-
tistical inference problems. For instance, if the signal di-
mension is very large, dimensionality reduction is of in-
terest, which may be approached with principal component
analysis (Jolliffe 1986). If instead one would like to con-
duct multi-resolution analysis, wavelets (Mallat 2008) may
be more appropriate. These techniques, which also include
as k-nearest neighbor, are known as unsupervised or signal
representation learning (Murphy 2012). Recently, methods
based on learned representations, rather than those fixed a
priori, have gained traction in pattern recognition (Elad and
Aharon 2006; Mairal, Elad, and Sapiro 2007). A special case
of data-driven representation learning is dictionary learning
(Mairal et al. 2008), the focus of this sub-section.
Here we address finding a dictionary (signal encoding)

that is well adapted to a specific inference task (Mairal,
Bach, and Ponce 2012). To do so, denote the coding
α(D̃;x) ∈ R

k as a feature representation of the signal xt

with respect to some dictionary matrix D̃ ∈ R
p×k. Typi-

cally, α(D̃;x) is chosen as the solution to a lasso regression
or approximate solution to an �0 constrained problem that
minimizes some criterion of distance between DTα and x
to incentivize codes to be sparse. Further introduce the clas-
sifier w ∈ R

k that is used to predict target variable yt when
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given the signal encoding α(D̃;x). The merit of the clas-
sifier w ∈ W ⊂ R

k is measured by the smooth loss func-
tion �

(
α∗(wTα(D̃;x); (xt,yt)

)
that captures how well the

classifierwmay predict yt when given the codingα(D̃;xt).
Note that α is computed using the dictionary D̃. The task-
driven dictionary learning problem is formulated as the joint
determination of the dictionary D̃ ∈ D and classifier w ∈
W ⊂ R

k that minimize the cost �
(
α(D̃;xt),w; (xt,yt)

)
averaged over the training set,

(D̃∗,w∗) := argmin
D̃∈D,w∈W

Ex,y

[
�
(
wTα(D̃;xt); (xt,yt)

)
.
]

(8)
In (8), we specify the estimator ŷ(x) = wTα∗(D̃;x),
which parameterizes the function class F as the product
set W × D. For a given dictionary D̃ and signal sample
xt we compute the code α∗(D̃;xt) as per some lasso re-
gression problem, for instance, and then predict yt using
w, and measure the prediction error with the loss function
�
(
wTα(D̃;xt), ; (xt,yt)

)
. The optimal pair (D̃∗,w∗) in

(8) is the one that minimizes the cost averaged over the given
sample pairs (xt,yt). Observe that α∗(D̃;xt) is not a vari-
able in the optimization in (8) but a mapping for an implicit
dependence of the loss on the dictionary D̃. The optimiza-
tion problem in (8) is not assumed to be convex – this would
be restrictive because the dependence of � on D̃ is, partly,
through the mapping α∗(D̃;xt) defined by some sparse-
coding procedure. In general, only local minima of (8) can
be found. This formulation has nonetheless been success-
ful in solving practical pattern recognition tasks in vision
(Mairal, Bach, and Ponce 2012) and robotics (Koppel et al.
2016a).
The lack of convexity of (8) means that attaining statis-

tical consistency [cf. (4)] for supervised dictionary learning
methods is much more challenging than for GLMs. To this
end, the prevalence of non-convex stochastic programs aris-
ing from statistical learning based on nonlinear transforma-
tions of the feature space X has led to a renewed interest
in non-convex optimization methods through applying con-
vex techniques to non-convex settings (Boyd and Vander-
berghe 2004). This constitutes a form of simulated anneal-
ing (Bertsimas and Tsitsiklis 1993) with successive convex
approximation (Facchinei, Scutari, and Sagratella 2015). A
compelling achievement of this recent surge is the hybrid
convex-annealing approach which has been shown to be ca-
pable of finding a global minimizer (Raginsky, Rakhlin, and
Telgarsky 2017). However, the use of these methods for ad-
dressing the training of estimators defined by non-convex
stochastic programs requires far more training examples to
obtain convergence than convex problems, and requires fur-
ther demonstration in practice.
Reproducing Kernel Hilbert Spaces (RKHS) Now we
shift focus to the case where F is not a p-dimensional vector
space but is instead a generic Hilbert spaceH equipped with
an inner-product-like function called a reproducing kernel
(Kimeldorf and Wahba 1971). The reason for this specifi-
cation is that in practice one obtains much smaller approxi-
mation errors when selecting more expressive choices of F ,

and this selection crucially allows for the learning of non-
linear statistical models while preserving convexity. For this
case, the statistical loss takes the form

min
f∈H

Ex,y[�(f(x),y)] +
λ

2
‖f‖H . (9)

λ is a regularization parameter which ensures (9) is strongly
convex. Here the kernel associated with H is defined over
the product feature space, i.e., κ : X × X → R, such that
elements ofH are functions, f : X → Y which satisfy

(i) 〈f, κ(x, ·))〉H = f(x) for all x ∈ X ,

(ii)H = span{κ(x, ·)} for all x ∈ X . (10)
where 〈·, ·〉H denotes the Hilbert inner product forH. When
the kernel is positive semidefinite, i.e. κ(x,x′) ≥ 0 for all
x,x′ ∈ X , this function space is called a reproducing kernel
Hilbert space (RKHS).
In (10), property (i) is called the reproducing property of

the kernel, and is a consequence of the Riesz Representa-
tion Theorem (Wheeden, Wheeden, and Zygmund 1977).
Replacing f by κ(x′, ·) in (10) (i) yields the expression
〈κ(x′, ·), κ(x, ·)〉H = κ(x,x′), which is the origin of the
term “reproducing kernel.” This property provides a prac-
tical means by which to access a nonlinear transformation
of the input space X . Specifically, denote by φ(·) a nonlin-
ear map of the feature space that assigns to each x the kernel
function κ(·,x). Then the reproducing property of the kernel
allows us to write the inner product of the image of distinct
feature vectors x and x′ under the map φ in terms of kernel
evaluations only: 〈φ(x), φ(x′)〉H = κ(x,x′). This is com-
monly referred to as the kernel trick, and it provides a tool
for learning nonlinear functions.
Moreover, property (10) (ii) states that any function f ∈

H may be written as a linear combination of kernel evalu-
ations. For kernelized and regularized empirical risk mini-
mization, the Representer Theorem (Kimeldorf and Wahba
1971; Schölkopf, Herbrich, and Smola 2001) establishes that
the optimal f in the hypothesis function class H may be
written as an expansion of kernel evaluations only at ele-
ments of the training set as

f(x) =
N∑

n=1

wnκ(xn,x) . (11)

where w = [w1, · · · , wN ]T ∈ R
N denotes a set of

weights. The upper summand index N in (11) is hence-
forth referred to as the model order. Common choices κ in-
clude the polynomial kernel and the radial basis kernel, i.e.,
κ(x,x′) =

(
xTx′ + b

)c
and κ(x,x′) = exp

{
−‖x−x′‖2

2

2c2

}
,

respectively, where x,x′ ∈ X . Unfortunately, as sample
size N → ∞, the function representation requires infinite
complexity as well (Norkin and Keyzer 2009). This issue is
called the ”curse of kernelization.”
Compounding this issue is the fact that when one de-

rives the functional generalization of a stochastic gradient
method (Kivinen, Smola, and Williamson 2004; Koppel et
al. 2016b), stated as

ft+1 = (1− ηtλ)ft − ηt∇f �(ft(xt), yt)

= (1− ηtλ)ft − ηt�
′(ft(xt), yt)κ(xt, ·) , (12)
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the complexity of storing ft is O(t) due to the fact that each
stochastic gradient step centers a kernel dictionary element
κ(xt, ·) at the latest training example xt.

Efforts to mitigate “the curse of kernelization” have been
previously developed. These combine functional extensions
of stochastic gradient method (12) with compressions of the
function parameterization independently of the optimiza-
tion problem to which they are applied (Engel, Mannor,
and Meir 2004; Liu, Pokharel, and Principe 2008; Kivinen,
Smola, and Williamson 2004; Dekel, Shalev-Shwartz, and
Singer 2006; Zhu and Hastie 2005; Richard, Bermudez, and
Honeine 2009) or approximate the kernel during training
(Dai et al. 2014; Le et al. 2016b; 2016a; Lu et al. 2016),
and at best converge on average. In contrast, a method was
recently proposed that combines greedily constructed (Pati,
Rezaiifar, and Krishnaprasad 1993) sparse subspace pro-
jections with a functional stochastic gradient method and
guarantees exact convergence to the minimizer of the av-
erage risk functional. This technique, called parsimonious
online learning with kernels (POLK), tailors the parameteri-
zation compression to preserve the descent properties of the
underlying RKHS-valued stochastic process (Koppel et al.
2016b). The update of POLK is given as

f̃t+1(·) = (1− ηtλ)ft−ηt�
′(ft(xt),yt)κ(xt,·)

(ft+1,Dt+1,wt+1) = KOMP(f̃t+1,D̃t+1,w̃t+1,εt) (13)

where between the first and second lines above (13), we de-
fine the updates for the dictionary D̃t+1 = [Dt, xt] and
weights w̃t+1 ← [(1−ηtλ)wt, −ηt�′(ft(xt), yt)] as those
arising from the functional stochastic gradient method (12).
For details of how matching pursuit is applied, see (Pati,
Rezaiifar, and Krishnaprasad 1993; Koppel et al. 2016b).
When the compression budget and learning rates are con-

stant, i.e., εt = ε and ηt = η such that ε = O(η3/2), it is
possible to find the optimally sparse finite-memory regres-
sion function through only sequentially revealed i.i.d. train-
ing examples (xt,yt) – see (Koppel et al. 2016b)[Theorems
2 - 3]. However, since this is a first-order stochastic method,
its (not-yet-derived) learning rate will be at best sublinear
O(1/t) in expectation for positive regularizer λ > 0 (which
ensures strong convexity). It is an open question whether
these rates can be improved by RKHS extensions of stochas-
tic Nesterov acceleration or stochastic Quasi-Newton tech-
niques, although a recent effort to develop the later approach
has appeared for a related setting (Calandriello, Lazaric, and
Valko 2017). Moreover, efforts to use increasingly compli-
cated convolutional and hierarchical kernels have recently
appeared (Mairal et al. 2014; Mairal 2016) which attempt
to encapsulate the multi-resolution properties of wavelets
(Mallat 2008) and deep learners (Haykin 1994). However,
their use in statistical learning for obtaining statistical con-
sistency with hierarchical kernels is yet not well-understood.
Neural Networks While the mathematical formulation of
convolutional neural networks and their variants have been
around for decades (Haykin 1994), their use has only be-
come widespread in recent years as computing power and
data pervasiveness has made them not impossible to train.
Since the landmark work (Krizhevsky, Sutskever, and Hin-

ton 2012) demonstrated their ability to solve image recogni-
tion tasks on much larger scales than previously addressable,
they have permeated many fields such as speech (Graves,
Mohamed, and Hinton 2013), text (Jaderberg et al. 2016),
and control (Lillicrap et al. 2015). Rather than review their
achievements, we focus on their mathematical formulation,
how they relate to the General Learning setting (2), and what
is known about their training. That is, consider (2) with the
estimator function class F being defined by the composi-
tion of many functions of the form gk(x) = wkσk(x).
Here σk is a nonlinear “activation function” which can be,
e.g., a rectified linear unit σk(a) = max(a, 0), a sigmoid
σk(a) = 1/(1 + ea), or a hyperbolic tangent σk(a) =
(1− e−2a)/(1+ e−2a). Specifically, for aK-layer convolu-
tional neural network, the estimator is given as

ŷ(x) = g1 ◦ g2 ◦ · · · gK(x) (14)

and typically one tries to make the distance between the
target variable and the estimator small by minimizing their
quadratic distance

min
w1,...,wK

Ex,y(y − g1 ◦ g2 ◦ · · · gK(x))2 (15)

where each wk is a vector whose length depends on the
number of “neurons” at each layer of the network. This op-
eration may be thought of as an iterated generalization of
a convolutional filter. Additional complexities can be added
at each layer, such as aggregating values output for the ac-
tivation functions by their maximum (max pooling) or av-
erage. But the training procedure is similar: to minimize a
variant of the highly non-convex, high-dimensional stochas-
tic program (15). Due to their high dimensionality, efforts
to modify non-convex stochastic optimization algorithms to
be amenable to parallel computing architectures have gained
salience in recent years. An active area of research is the in-
terplay between parallel stochastic algorithms and scientific
computing to minimize the clock time required for training
neural networks – see (Lian et al. 2015; Mokhtari et al. 2017;
Scardapane and Di Lorenzo 2017), for instance. Thus far, ef-
forts have been restricted to attaining computational speedup
by parallelization to convergence at a stationary point, al-
though some preliminary efforts to escape saddle points and
ensure convergence to a local minimizer have also recently
appeared (Lee et al. 2016); these modify convex optimiza-
tion techniques, for instance, by replacing indefinite Hes-
sians with positive definite approximate Hessians (Pater-
nain, Mokhtari, and Ribeiro 2017).

Incremental learning

In many statistical learning problems it is common to as-
sume that the statistical properties of the input data and the
output data are stationary. Once a model is trained on a suf-
ficient number of samples to achieve a certain level of per-
formance no further training is therefore needed. However,
there are many situations where these assumptions at not
valid. 1.) All of the training data is not available or it is not
desirable to use all of the training data at once. In this case a
model must trained using an incomplete set of data. 2.) The
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statistical properties of the input may change. 3.) The rela-
tionship between the input data and the target classes may
change. This is known as concept drift.
Incremental learning provides a way to address all of

these cases without having to store all of the data that has
been seen and without having to retrain an entirely new
model. A previously trained model can simply be updated
with new data, either each time a new data sample is re-
ceived or when blocks of data are received. By incrementally
updating trained models these models can efficiently adapt
to changing scenarios or requirements. Training on smaller
blocks of data may also ease the computational complexity
of the training step.
In the resource constrained environment of IOBT systems

this efficient use of data and resources can be very valuable.
For many statistical batch learning methods there exist vari-
ations to those approaches that allow them to be trained in-
crementally (Ruping 2001) (Diehl and Cauwenberghs 2003)
(Jurafsky and Martin 2017), (Cauwenberghs and Poggio ),
(Agrawal and Bala 2008), (Huang et al. 2015), (Zang et al.
2014). However, the resource constrained nature of IOBT
systems encourages the use of simpler or more linear learn-
ing models, which we review in the following subsections.
We also focus on supervised incremental learning vs. unsu-
pervised or semi-supervised approaches.
When training on blocks of data we define each block of

data as (Xi,Yi) = Di, where each block consists of T
training examples (xi,j ,yi,j). For each block we try to train
an optimal predictor y�

1:i by combining the prior optimal es-
timator y�

i:i−1 with the improvements given by the training
set (Xi,Yi).

Naı̈ve Bayes

The standard Naı̈ve Bayes calculation to find the optimal
mapping of Y� : X �→ Y using an estimator of Y is given
by:

ŷ1:i(X) = P1:i(Y|X) =
P1:i(X|Y)P1:i(Y)

P1:i(X)
(16)

In the case that X and y are both discrete we try to predict
the probability that Yi = ck and ck ∈ C = {c1, c2, ..., cL}
(Zang et al. 2014). In which case the prior probability is

P1:i(Y = ck) =
1 + count(y1:i = ck)

L+ iT
(17)

and the likelihood probability is

P1:i(X1:i|Y1:i = ck) =
1 + count(X1:i ∩ ck)

|X1:i|+ count(ck)
(18)

Where |X1:i| is the number of unique values of X|.
The prior probability and likelihood estimates are incre-
mented when a new set of training samples are received
(Xi+1,Yi+1). The new prior probability is then

P1:i(Y = ck) =
1 + count(ck) + count′(ck)

L+ iT + T
(19)

and the new likelihood probability is

P1:i(X|Y = ck) =
1 + count(X1:i ∩ ck) + count(Xi+1 ∩ ck)

|x1:i|+ count(ck) + count′(ck)
(20)

IfX is continuous then the conditional probability can be
modeled as a Gaussian function

P (x|y = ck) =
1

σi,k

√
2π

exp
−(x− μi,k)

2

2σ2
i,k

(21)

where μ and σ can be calculated using maximum likeli-
hood estimates

μ̂i,k =

∑
j xi,jδck(yi,j)∑
j δcK (yi,j)

=
Sck(x,y)

counti(ck)

(22)

μ̂i+1,k =
Sck(x,y) +

∑
j xi+1,jδck(yi+1,j)

counti(ck) +
∑

j δck(yi+1,j)
(23)

and

σ̂2
i,k =

∑
j(xi,j − μ̂i,k)

2δck(yi,j)∑
j δck(yi,j)− 1

=
Sck(x

2,y) + 2μ̂i,kSck(x,y) + T μ̂2
i,k

counti(ck)− 1

(24)

σ̂2
i+1,k =

1

counti(ck) +
∑

j δck(yi+1,j)− 1

(
Sck(x

2,y)+

2(μ̂i,k +�μ̂i,k)Sck(x,y) + T (μ̂i,k +�μ̂i,k)
2
)

(25)

Where μi+1 = (μi + �μi). The Gaussian Naı̈ve Bayes
approach is a very popular approach to modeling the likeli-
hood function of the Naı̈ve Bayes algorithm (Metsis, An-
droutsopoulos, and Paliouras 2006; Losing, Hammer, and
Wersing 2018), however other distributions have been used
to model the likelihood function (Metsis, Androutsopoulos,
and Paliouras 2006; Anderson and Matessa 1992).

Extreme Learning Machines

Are feed-forward neural networks typically configured as a
perceptron with a single hidden layer. The output of the net-
work can be described by the equation:

Ŷ(x) =

L∑
p=1

βphp(x) (26)

where β = [β1, β2, ..., βL] - ]are the weights between the
output node and the L hidden layer nodes and h(x) is the
non-linear feature mapping between input x and the hidden
layer. One of the unique features of ELM networks is that
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rather than training each hi(x) function they are created ran-
domly with random parameter values, typically from piece-
wise non-linear continuous distribution functions. Training
the ELM network simply requires optimizing the mapping
from the hidden layer to the output.

min
β∈RLXM

||Hβ −T||2 (27)

where H is the set hidden layer functions applied to the
inputs of the ELM network

H =

⎡
⎢⎢⎣

h1(x1)
h2(x2)

...
hL(xN )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h1(x1) h2(x1) . . . hLx1

h1(x2) h2(x2) . . . hLx2

...
...

. . .
...

h1(xN ) h2(xN ) . . . hLxN

⎤
⎥⎥⎦

(28)
T is the training data matrix

T =

⎡
⎢⎢⎢⎣

tT1
tT2
...
tTN

⎤
⎥⎥⎥⎦ (29)

and |̇| is the Frobenius norm. The optimal solution is given
by η� = H†T , where H† is the Moore-Penrose generalized
inverse of matrix H.

The incremental training version of the ELM method in-
volves solving the mapping function using only blocks of
new data. One approach is the online sequential ELM (OS-
ELM), (Huang et al. 2015; Nan-Ying Liang et al. 2006).
In this approach when i=1 the ELM approach is solved as
usual, where

H1 =

⎡
⎢⎢⎣

h1(x1,1)
h2(x1,2)

...
hL(x1,t)

⎤
⎥⎥⎦ (30)

β1 = H†
1T1 (31)

and

P0 = (HT
1 H1)

−1 (32)

For each i

H1:i+1 =
[
HT

1:i HT
i

]T
(33)

and then

β1:i+1 = η1:i+P1:i+1H
T
1:i+1(T1:i+1−H1:i+1β1:i) (34)

P1:i+1 = P1:i

−P1:iH
T
1:i(I+H1:i+1PHT

1:i+1)
−1H1:i+1P1:i (35)

SVM

Support vector machines (SVM) are another popular ap-
proach to train an optimal predictor. SVM are a two step
process, generally. The first step is to project the input vec-
tors/data into a high dimensional space and identify a hyper-
plane that minimizes the training error. The second step con-
sists of a structural risk minimziatioon calculation, where
the optimal hyperplane selected is the (simplest) one that
maximizes the margin of seperattion between the bounds of
the classes within the training set. This second step differ-
entiates SVM from many other approaches such as decision
trees or Naı̈ve Bayes as these are just experience risk meth-
ods. The structural risk minimziation step of SVM helps to
identify the simplest hyperplane that can function as a pre-
dictor, given the data.
Methods to convert a traditional SVM approach to train an

optimal predictor in an incremental way try to preserve the
support vectors in each increment as they are the most rele-
vant to the margin and risk minimization computation. Then
other (older) data samples can be pruned in order to keep
the size of the training dataset small. Typically incremental
SVM is slow and its speed and performance are dependent
on the kernel used to project the data into the space and the
kernel used to compute the margins.

Conclusion

Towards the development of an Internet of Battlefield
Things (IoBT), capable of leveraging mixed commercial
and military IoT technologies, several unique challenges
of the tactical environment present themselves. These chal-
lenges include development of methods for: (I) quickly
gathering training data that reflects unforeseen learn-
ing/classification tasks; (II) incrementally learning over real-
time data streams; (III) management of limited network
bandwidth and connectivity between IoBT assets in data
gathering and classification tasks.
In surveying over classical and modern statistical learning

theory, this paper has aimed to emphasize how numerical op-
timization can be used to solve corresponding mathematical
problems in these methods. In doing so, this paper aims to
encourage the IoT and machine learning research communi-
ties to revisit the underlying mathematical underpinnings of
stream-based learning, as applicable to IoBT-based systems.
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Probabilités et Statistiques, volume 45, 7–57. Institut Henri
Poincaré.
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Abstract 
Numerous, artificially intelligent, networked things will 
populate the battlefield of the future, operating in close col-
laboration with human warfighters, and fighting as teams in 
highly adversarial environments. This paper explores the 
characteristics, capabilities and intelligence required of such 
a network of intelligent things and humans – Internet of Bat-
tle Things (IOBT). It will experience unique challenges that 
are not yet well addressed by the current generation of AI 
and machine learning. 

 Introduction   
 Internet of Intelligent Battle Things is the emerging reality 
of warfare. A variety of networked intelligent systems –
things – will continue to proliferate on the battlefield, 
where they will operate with varying degrees of autonomy. 
Intelligent things will not be a rarity but a ubiquitous pres-
ence on the future battlefield. (Scharre 2014)  
 Most of such intelligent things will not be too dissimilar 
from the systems we see on today’s battlefield, such as 
unattended ground sensors, guided missiles (especially the 
fire-and-forget variety) and of course the unmanned aerial 
systems (UAVs). They will likely include physical robots 
ranging from very small size (such as an insect-scale mo-
bile sensors) to large vehicle that can carry troops and sup-
plies. Some will fly, others will crawl or walk or ride. 
Their functions will be diverse. Sensing (seeing, listening, 
etc.) the battlefield will be one common function. Numer-
ous small, autonomous sensors can cover the battlefield 
and provide an overall awareness to the warfighters that is 
reasonably compete and persistent (Fig. 1).   
 Other things might acts as defensive devices, e.g., au-
tonomous active protection systems (Freedberg 2016). Fi-
nally, there will be munitions that are intended to impose 
physical or cyber effects on the enemy. These will not be 
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autonomous. Instead, they will be controlled by human 
warfighters. This assumes that the combatants of that fu-
ture battlefield will comply with a ban on offensive auton-
omous weapons beyond meaningful human control. Alt-
hough the US Department of Defense already imposes 
strong restrictions on autonomous and semi-autonomous 
weapon systems (Hall 2017), nobody can predict what oth-
er countries might decide on this matter.  
 In addition to physical intelligent things, the battlefield – 
or at least the cyber domain of the battlefield -- will be 
populated with disembodied, cyber robots. These will re-
side within various computers and networks, and will 
move and acts in the cyberspace. Just like physical robots, 
the cyber robots will be employed in a wide range of roles. 
Some will protect communications and information (Stytz 
et al. 2005) or will fact-check, filter and fuse information 
for cyber situational awareness (Kott et al. 2014). Others 
will defend electronic devices from effects of electronic 
warfare. These defensive actions might include creation of 
informational or electromagnetic deceptions or camou-
flage. Yet others will act as situation analysts and decision 
advisers to the humans or physical robots. In addition to 
these defensive or advisory roles, cyber robots might also 
take on more assertive functions, such as executing cyber 
actions against the enemy systems (Fig. 2).   
 In order to be effective in performing these functions, 
battle things will have to collaborate with each other, and 
also with the human warfighters. This will require a signif-
icant degree of autonomous self-organization; and also of 
accepting a variety of relations between things and hu-
mans, e.g., from complete autonomy of an unattended 
ground sensor to a tight control of certain systems, and 
these modes will have to change flexibly as needed. Priori-
ties, objectives, and rules of engagement will change rapid-
ly, and intelligent things will have to adjust accordingly 
(Kott et al. 2016).  
 Clearly, these requirements imply a high degree of intel-
ligence on part of the things. Particularly important is the 
necessity to operate in a highly adversarial environment, 
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Figure 1 Networked teams of intelligent things and humans will operate in extremely complex, challenging environment: unstructured, 

unstable, rapidly changing, chaotic, rubble-filled, adversarial and deceptive. 
 

i.e., intentionally hostile and not merely randomly danger-
ous world. The intelligent things will have to constantly 
think about an intelligent adversary that strategizes to de-
ceive and defeat them. Without this adversarial intelli-
gence, the battle things will not survive long enough to be 
useful. 

The Challenges of Autonomous Intelligence on 
the Battlefield 

The vision – or rather the emerging reality -- of the battle-
field populated by intelligent things, portends a multitude 
of profound challenges. While use of AI for battlefield 
tasks has been explored on multiple occasions, e.g., (Rasch 
et al. 2002), and AI makes things individually and collec-
tively more intelligent, it also makes the battlefield harder 
to understand and to manage. Human warfighters have to 
face a much more complex, more unpredictable world 
where things have the mind of their own and perform ac-
tions that may appear inexplicable to the humans. Direct 
control of such intelligent things becomes impossible or 

limited to cases of decisions whether to take a specific de-
structive action. 
 On the other hand, humans complicate the life for intel-
ligent things. Human and things think differently. Intelli-
gent things, in the foreseeable future, will be challenged in 
understanding and anticipating human intent, goals, lines 
of reasoning and decisions. Humans and things will remain 
largely opaque to each other. And yet, things will be ex-
pected to perceive, reason and act while taking into ac-
count the social, cognitive and physical needs of their hu-
man teammates. Furthermore, things will often deal with 
humans who are experiencing extreme physical and cogni-
tive stress, and therefore may behave differently from what 
can be assumed from observing humans under more benign 
conditions 
 An intelligent thing will need to deal with a world of 
astonishing complexity. The sheer number and diversity of 
things – and humans – within the IoBT will be enormous. 
The number of connected things, for example within a fu-
ture Army brigade, is likely to be several orders of magni-
tude greater than in current practice. This, however, is just 
the beginning. Consider that intelligent things belonging to 
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Figure 2 Networks of the opponents will fight each other with 

cyber and electromagnetic attacks of great diversity and volume; 
most of such offensive and defensive actions will be performed by 

autonomous cyber agents. 

 
such a brigade will inevitably interact – willingly or un-
willingly -- with things owned and operated by other par-
ties, such as those of the adversary or owned by the sur-
rounding civilian population. If the brigade operates in a 
large city, where each apartment building can contains 
thousands of things, the overall universe of connected 
things grows to enormous numbers. Million things per 
square kilometer is not an unreasonable expectation (Fig. 
2).  
 The above scenario also points to a great diversity of 
things within the overall environment of the battlefield. 
Things will come from different manufacturers, with dif-
ferent designs, capabilities, and purposes, configured or 
machine-learned differently, etc. No individual thing will 
be able to use pre-conceived (pre-programmed, pre-
learned, etc.) assumptions about behaviors or performance 
of other things it meets on the battlefield. Instead, behav-
iors and characteristics will have to be learned and updated 
autonomously dynamically during the operations. That 
includes humans – yes, humans are a specie of things, in a 
way – and therefore the behaviors and intents of humans, 
such as friendly warfighters, adversaries, and civilians and 
so on, will have to be continually learned and inferred.   
 The cognitive processes of both things and humans will 
be severely challenged in this environment of voluminous 
and heterogeneous information. Rather than the communi-
cations bandwidth, the cognitive bandwidth may become 
the most severe constraint. Both humans and things seek 
information that is well-formed, reasonably sized, essential 
in nature, and highly relevant to their current situation and 
mission. Unless information is useful, it does more harm 
than good. The trustworthiness of the information and the 
value of information arriving from different sources, espe-
cially other things, will be highly variable and generally 
uncertain. For any given intelligent thing, the incoming 
information could contain mistakes, erroneous observa-
tions or conclusions made by other things, or intentional 
distortions – deceptive information – produced by an ad-

versary malware residing on friendly things or otherwise 
inserted into the environment.  Both humans and things are 
susceptible to deception, and humans are likely to experi-
ence cognitive challenges when surrounded by opaque 
things that might be feeding the humans with untrustwor-
thy information (Kott and Alberts 2017). 
 This reminds us that the adversarial nature of the battle-
field environment is a concern of exceptional importance, 
above all others. The intelligent things will have to deal 
with an intelligent, capable adversary. The adversary will 
apply to things physical destruction, either by means such 
as gunfire, also known as “kinetic” effects, or by using 
directed energy weapons. The adversary will be jamming 
the channels of communications between things, and be-
tween things and humans. The adversary will deceive 
things by presenting them with misleading information. 
Recent research in adversarial learning comes to mind in 
this connection (Papernot et al. 2016). Perhaps most dan-
gerously, the adversary will attack intelligent things by 
depositing malware on them.   

AI will Fight the Cyber Adversary  
A key assumption that must be taken regarding the IoBT is 
that in a conflict with a technically sophisticated adversary, 
IoBT will be a heavily contested battlefield (Kott 2015). 
Enemy software cyber agents -- malware -- will infiltrate 
our network and attack our intelligent things. To fight 
them, things will need artificial cyber hunters - intelligent, 
autonomous, mobile agents specialized in active cyber de-
fense and residing on IoBT.  
 Such agents will stealthily patrol the networks, detect 
the enemy malware while remaining concealed, and then 
destroy or degrade the enemy malware. They will do so 
mostly autonomously, because human cyber experts will 
be always scarce on the battlefield. They will be adaptive 
because the enemy malware is constantly evolving. They 
will be stealthy because the enemy malware will try to find 
and kill them. At this time, such capabilities do not exist 
but are a topic of research (Theron et al. 2018)). Here, let’s 
explore the desired characteristics of an intelligent auton-
omous agent operating in the context of IoBT. 
 We consider a thing – a simple senor or a complex mili-
tary vehicle -- with one or more computers residing on the 
thing. Each computer contributes considerably into opera-
tion of the thing or systems installed on the thing. One or 
more of the computers are assumed to have been compro-
mised, where the compromise is either established as a 
fact, or is suspected.  
 Due to the contested nature of the communications envi-
ronment (e.g., the enemy is jamming the communications 
or radio silence is required to avoid detection by the ene-
my), communications between the thing and other ele-
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ments of the friendly force can be limited and intermittent. 
Under some conditions, communications are entirely im-
possible.  
 Given the constraints on communications, conventional 
centralized cyber defense is infeasible. (Here centralized 
cyber defense refers to an architecture where local sensors 
send cyber-relevant information to a central location, 
where highly capable cyber defense systems and human 
analysts detect the presence of malware and initiate correc-
tive actions remotely). It is also unrealistic to expect that 
the human war-fighters in the vicinity of the thing (if such 
exist) have the necessary skills or time available to perform 
cyber defense functions for that thing.   
 Therefore, cyber defense of the thing and its computing 
devices has to be performed by an intelligent, autonomous 
software agent. The agent (or multiple agents per thing) 
would stealthily patrol the networks, detect the enemy 
agents while remaining concealed, and then destroy or de-
grade the enemy malware. The agent has to do so mostly 
autonomously, without support or guidance of a human 
expert.  
 In order to fight the enemy malware deployed on the 
friendly thing, the agent often has to take destructive ac-
tions, such as deleting or quarantining certain software. 
Such destructive actions are carefully controlled by the 
appropriate rules of engagement, and are allowed only on 
the computer where the agent resides. The agent may also 
be the primary mechanism responsible for defensive cyber 
maneuvering (of which mobbing target defense is an ex-
ample), deception, e.g., redirection of malware to honey-
pots (De Gaspari et al. 2016), self-healing, e.g., (Azim et 
al. 2014), and other such autonomous or semi-autonomous 
behaviors (Jajodia et al. 2011). 
 The actions of the agent, in general, cannot be guaran-
teed to preserve availability of integrity of the functions 
and data of friendly computers. There is a risk that an ac-
tion of the agent may “break” the friendly computer, disa-
ble important friendly software, or corrupt or delete im-
portant data. This risk, in a military environment, has to be 
balanced against the death or destruction caused by the 
enemy if the agent’s action is not taken.    
 Provisions are made to enable a remote or local human 
controller to fully observe, direct and modify the actions of 
the agent. However, it is recognized that human control is 
often impossible, especially because of intermittent com-
munications. The agent, therefore, is able to plan, analyze 
and perform most or all of its actions autonomously. Simi-
larly, provisions are made for the agent to collaborate with 
other agents (who reside on other computers); however, in 
most cases, because the communications are impaired or 
observed by the enemy, the agent operates alone. 
 The enemy malware, and its capabilities and techniques, 
evolve rapidly. So does the environment in general, togeth-

er with the mission and constraints that the thing is subject 
to. Therefore, the agent is capable of autonomous learning. 
 Because the enemy malware knows that the agent exists 
and is likely to be present on the computer, the enemy 
malware seeks to find and destroy the agent. Therefore, the 
agent possesses techniques and mechanisms for maintain-
ing a degree of stealth, camouflage and concealment. More 
generally, the agent takes measures that reduce the proba-
bility that the enemy malware may detect the agent. The 
agent is mindful of the need to exercise self-preservation 
and self-defense. 
 It is assumed here that the agent resides on a computer 
where it was originally installed by a human controller or 
by an authorized process. We do envision a possibility that 
an agent may move itself (or move a replica of itself) to 
another computer. However, such propagation is assumed 
to occur only under exceptional and well-specified condi-
tions, and to take place only within friendly network – 
from one friendly computer to another friendly computer. 
This brings to mind the controversy about “good viruses.” 
Such viruses have been proposed, criticized and dismissed 
earlier (Muttik 2016). These criticisms do not apply here. 
This agent is not a virus because it does not propagate ex-
cept under explicit conditions within authorized and coop-
erative nodes. It is also used only in military environments 
where most usual concerns do not apply. 

AI will have to Advance Significantly 
Agents will have to become useful team-mates – not tools -
- of human warfighters on a highly complex and dynamic 
battlefield. Consider Fig. 1 that depicts an environment in 
which a highly-dispersed team of human and intelligent 
agents (including but not limited to physical robots) is at-
tempting to access a multitude of highly heterogeneous and 
uncertain information sources, and use them for forming 
situational awareness and making decision (Kott et al. 
2011), all while trying to survive extreme physical and 
cyber threats. They must be effective, in this unstructured, 
unstable, rapidly changing, chaotic, rubble-filled adversari-
al environments; learning in real-time, under extreme time 
constraints, with only a few observations that are potential-
ly erroneous, of uncertain accuracy and meaning, or even 
intentionally misleading and deceptive (Fig. 3).  
 Clearly, it is far beyond the current state of AI to operate 
intelligently in such an environments and with such de-
mands. In particular, Machine Learning – an area that has 
seen a dramatic progress in the last decade – must experi-
ence major advances in order to become relevant to the real 
battlefield.  Let’s review some of the required advances. 
 Learning with very small number of samples is clearly a 
necessity in an environment where the enemy and friends 
change the tactics continuously, and the environment itself 
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Figure 3 . AI-enabled agents -- members of a human-agent team 
– will rapidly learn in ever-changing, complex environments, 

providing the team’s commander with real-time estimates of ene-
my, reasoning on possible courses of action, and tactically sensi-

ble decision. 

 
is highly fluid, rich with details, dynamic and changing 
rapidly. Furthermore, very few if any of the available sam-
ples will be labelled, or at least not in a very helpful man-
ner.  
 A typical sample might be a video snippet of events and 
physical surroundings or a robot, for example, where the 
overwhelming majority of elements (e.g., pieces of rubble) 
are hardly relevant and potentially misleading for the pur-
poses of learning. The information of the samples is likely 
to be highly heterogeneous of nature. Depending on cir-
cumstances, samples might consist of one or more of the 
following: still images in various parts of the spectrum (IR, 
visible, etc.); video; audio; telemetry data; solid models of 
the environment; records of communications between 
agents; and so on. 
 Some samples may be misleading in general, even if 
unintentionally (e.g., an action succeeds even though an 
unsuitable action is applied) and the machine learning al-
gorithms will have to make the distinction between rele-
vant and irrelevant, instructive and misleading. In addition, 
some of the samples might be a product of intentional de-
ception by the enemy. In general, issues of Adversarial 
Learning and Adversarial Reasoning are of great im-
portance (Papernot et al. 2016). 
 Yet another challenge that is uniquely exacerbated by 
battlefield conditions are constraints on the available elec-
tric power. Most successful AI relies on vast computing 
and electrical power resources including cloud-computing 
reach-back when necessary. The battlefield AI, on the oth-
er hand, must operate within the constraints of edge devic-
es, such as small sensors, micro-robots, and handheld radi-

os of warfighters. This means that computer processors 
must be relatively lights and small, and as frugal as possi-
ble in the use of electrical power. One might suggest that a 
way to overcome such limitations on computing resources 
available directly on the battlefield is to offload the compu-
tations via wireless communications to a powerful compu-
ting resource located outside of the battlefield.  Unfortu-
nately, it is a viable solution, because the enemy’s inevita-
ble interference with friendly networks will limit the op-
portunities for use of reach-back computational resources.  
 A team that includes multiple warfighters and multiple 
artificial agents must be capable of distributed learning and 
reasoning. Besides distributed learning, these include such 
challenges as: multiple decentralized mission-level task 
allocation; self-organization, adaptation, and collaboration; 
space management operations; and joint sensing and per-
ception. Commercial efforts to date have been largely lim-
ited to single platforms in benign settings. Military-focused 
programs like the MAST CTA (Piekarski et al. 2017), have 
been developing collaborative behaviors for UAVs. 
Ground vehicle collaboration is challenging and is largely 
still at the basic research level at present. In particular, to 
address such challenges, a new collaborative research alli-
ance called Distributed and Collaborative Intelligent Sys-
tems and Technology (DCIST) has been initiated 
(https://dcist-cra.org/). Note that the battlefield environ-
ment imposes yet another complication: because the enemy 
interferes with communications, all this collaborative, dis-
tributed AI must work well even with limited, intermittent 
connectivity.  

Humans in the Ocean of Things 
In this vision of the future warfare, a key challenge is to 
enable autonomous systems and intelligent agents to effec-
tively and naturally interact across a broad range of warf-
ighting functions. Human-agent collaboration is an active 
ongoing research area. It must address such issues as trust 
and transparency, common understanding of shared per-
ceptions, and human-agent dialog and collaboration.  
 One seemingly relevant technology is Question Answer-
ing—the system’s ability to respond with a relevant, cor-
rect information to a clearly stated question. Successes of 
commercial technologies of question-answering are indis-
putable. They work well for very large, stable, and fairly 
accurate volumes of data, e.g., encyclopedias. But such 
tools don't work for rapidly changing battlefield data, also 
distorted by adversary's concealment and deception. They 
cannot support continuous, meaningful dialog in which 
both warfighters and artificially intelligent agents develop 
shared situational awareness and intent understanding. Re-
search is being performed to develop human-robotic dialog 
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technology for warfighting tasks, using natural voice, 
which is critical for reliable battlefield teaming.  
 A possible approach to developing the necessary capa-
bilities – both human and AI – is to train a human-agent 
team in immersive artificial environments. This requires 
building realistic, intelligent entities in immersive simula-
tions. Training (for humans) and learning (for agents) ex-
periences must exhibit high degree of realism to match 
operational demands. Immersive simulations for human 
training and machine learning must have physical and so-
ciocultural interactions with high fidelity and realistic 
complexity of the operational environment. These include 
realistic behaviors of human actors (friendly warfighters, 
enemies, non-combatants), and interactions and teaming 
with robots and other intelligent agents. In today’s video 
games, these interactions are limited and not suitable for 
simulating real battlefield. Advances in AI are needed to 
drive the character behaviors that are truly realistic, di-
verse, and intelligent.  
 To this end, some of the cutting-edge efforts in comput-
er-generation of realistic virtual characters are moving to-
wards what would be needed to enable realistic interactions 
in an artificial immersive battlefield. For example, Holly-
wood studios on a number of occasions sought technolo-
gies of the Army-sponsored Institute for Creative Technol-
ogies (http://ict.usc.edu/)to create realistic avatars of ac-
tors. These technologies enable film creators to digitally 
insert an actor into scenes, even if that actor is unavailable, 
much older or younger, or deceased. That’s how actor Paul 
Walker was able to appear in “Fast and Furious 7,” even 
though he died partway into filming (CBS News 2017). 

Summary 
Intelligent things – networked and teamed with human 
warfighters – will be a ubiquitous presence on the future 
battlefield. Their appearances, roles and functions will be 
highly diverse. The artificial intelligence required for such 
things will have to be significantly greater than what is 
provided by today’s AI and machine learning technologies. 
Adversarial – strategically and not randomly dangerous -- 
nature of the battlefield is a key driver of these require-
ments. Complexity of the battlefield – including the com-
plexity of collaboration with humans – is another major 
driver. Cyber warfare will assume a far greater importance, 
and it will be AI that will have to fight cyber adversaries. 
Major advances in areas such as adversarial learning and 
adversarial reasoning will be required. Simulated immer-
sive environments may help to train the humans and to 
train AI.  
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Abstract 
For the Internet of Everything (IoE), from an AI perspec-
tive, we discuss the meaning, value and effect that the in-
ternet of things (IoT) is expected to have on ordinary life, 
in industry (IIoT), on the battlefield (IoBT), in the medi-
cal field (IoMT) and with intelligent-agent feedback in 
the form of constructive and destructive interference 
(IoIT). We consider the topic open-ended but with an AI 
perspective that addresses how the IoE affects sensing, 
perception, cognition and behavior, or causal relations 
whether the context is clear or uncertain for mundane de-
cisions, complex decisions on the battlefield, life and 
death decisions in the medical arena, or decisions affected 
by intelligent agents and machines. We pay attention to 
theoretical perspectives for how these “things” may affect 
individuals, teams and society; and in turn how they may 
affect these “things”. We are most interested in what may 
happen when these “things” begin to think. Our ultimate 
goal is to use AI to advance autonomy and autonomous 
characteristics to improve the performance of individual 
agents and hybrid teams of humans, machines, and robots 
for the betterment of society. 

 IoE: IoT, IoBT, and IoIT--Background and 
overview   

The Internet of Everything (IoE) 1 generalizes machine-
to-machine (M2M) communications for the Internet of 
Things (IoT) to a more complex system that also encom-
passes people, robots and machines. From Chambers 
(2014), IoE connects 

people, data, process and things. It is revolutioniz-
ing the way we do business, transforming communi-
cation, job creation, education and healthcare 
across the globe. … by 2020, more than 5 billion 
people will be connected, not to mention 50 billion 
things. … [With IoE] [p]eople get better access to 
education, healthcare and other opportunities to 
improve their lives and have better experiences. 

                                                
Copyright © 2018, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 
1 http://ioeassessment.cisco.com 

Governments can improve how they serve their citi-
zens and businesses can use the information they get 
from all these new connections to make better deci-
sions, be more productive and innovate faster. 

 
 This IoT is expected to become big business with a 
large impact on day-to-day life. From Marr (2015),  

By 2020, a quarter of a billion vehicles will be con-
nected to the Internet ... new possibilities for in-
vehicle services and automated driving. In fact, we 
already have cars that can drive on their own – 
Google’s self-driving cars currently average about 
10,000 autonomous miles per week. ... Machine-to-
machine (M2M) connections will grow … to 27 bil-
lion by 2024, with China taking a 21% share and 
the U.S. 20%. ... the IoT will have a total economic 
impact of up to $11 trillion by 2025 

 
The industrial internet of things (IIoT)2 is impacting 

industry by forcing alliances to keep pace with innova-
tion; e.g., (Ramachandran et al., 2017):  

Amazon could help finance a network Dish is build-
ing focused on the “Internet of Things”—the idea 
that everything from bikes to Amazon’s drones can 
have web connectivity everywhere. 

 
 The internet of things (IoT) is “all about connecting 
objects to the network and enabling them to collect and 
share data” (Munro, 2017). But a big question is (Alessi, 
2017): 

who will create and dominate a realm of technology 
... to become the backbone of industrial automation 
and provide mountains of data about everything 
from parts inventories to how products are wearing 
long after their purchase. 

 

                                                
2http://www3.weforum.org/docs/WEFUSA_IndustrialInternet_
Report2015.pdf 
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 With the approach of IoT in everyday life (Gasior & 
Yang, 2013), in industry (IIoT),3 on battlefields (IoBT),4 
in the medical arena (IoMT),5 distributed with sensory 
networks and cyber-physical systems, and even with 
device-level intelligence (IoIT),6 some of the known 
issues identified by Moskowitz (2017) are the explosion 
of data (e.g., cross-compatible systems; storage loca-
tions); security challenges (e.g. adversarial resilience,7 
data exfiltration, covert channels; enterprise protection; 
privacy); self-* 8 and autonomic behaviors, and the com-
petitive risks to users, teams, enterprises and institutions. 
Still, despite the pace of rapid advance, “Humans will 
often be the integral parts of the IoT system” (Stankovic, 
2014, p. 4). 
 For the Internet of Everything, IoT, IoBT, IoMT, IoIT 
and on will manifest as heterogeneous and potentially 
self-organizing complex-systems that define human pro-
cesses, requiring interoperability, just-in-time (JIT) hu-
man interactions, and the orchestration of local-
adaptation functionalities to achieve human objectives 
and goals (Suri et. al, 2016). 
 For military matters, IoBT is about the relation of per-
sons-to-machines; e.g., (Cartwright, 2015): 

how many men it takes to run a machine to how 
many machines a man can control. 

 
There are practical considerations: Whatever the sys-

tems used for the benefits afforded, each must be robust 
to interruptions, to failure, and resilient to every possible 
perturbation from wear and tear in daily use. For system-
wide failures, a system must have manual control back-
ups; user-friendly methods for joining and leaving net-
works; autonomous updates and backups; and autono-
mous hardware updates (e.g., similar to re-ordering in-
ventory or goods automatically by a large retailer like 
Amazon or Wal-Mart). A system must also provide fo-
rensic evidence in the event of a mishap, not only with 
an onboard backup, but also with an automatic backup to 
the cloud.  
 IoT is causing creative disruption to commerce, mili-
taries, medicine and life in general (Hymowitz, 2017): 

Combined with faster processors, better sensors, 
and larger data sets, machine capabilities are grow-
ing exponentially. The data we now collect from 
everything from traffic sensors to Facebook visits to 

                                                
3 WEC, 2015 
4 Kott et al., 2016 
5 Haghi et al, 2017 
6 Dibrov, 2017 
7 e.g., password authentication, back proofing, etc. 
8 To self-manage autonomy, human operators define the poli-
cies and rules to guide self-managed systems, identified by 
IBM as a self-* or self-star autonomous property (e.g., IBM, 
2005). 

the Internet of things are essentially robot protein; 
more data, more powerful robots ... [implying] ma-
chines are becoming self-driving … 

 
 To be able to address disruption for coming and future 
systems, we want to see these questions addressed: 

Will systems communicate with each other or be in-
dependent actors? Will humans always need to be in 
the loop? Will systems communicate only with hu-
man users, or also with robot and machine users? 
How will intelligent systems communicate? 

 
 But there are few practical methods to address these 
questions for IoE systems. One proposal is to study IoT 
with agent-based models (ABMs). ABMs offer opportu-
nities to pursue solutions to problems like IoT that hap-
pen to be too complex to solve by traditional methods, 
but ABMs are not yet ready (Houston et al., 2017): 

Based on insights from this work, it is clear that this 
integration possesses great capacity for capturing 
the complexity of the modern world when compared 
to other forms of simulation and analysis. However, 
... [ABMs are not yet capable of] answering practi-
cal business questions. 

When "things begin to think” 
For the near future, we are becoming interested in what 
may happen when these “things begin to think”. Foresee-
ing something like the arrival of the IoE, Gershenfeld 
(1999, p. 8, 10), the Director of MIT’s Center for Bits 
and Atoms,9 predicted that when a digital system 

has an identity, knowing something about our envi-
ronment, and being able to communicate … compo-
nents ... [must] work together … so that the digital 
world merges with the physical world.  

 
Gershenfeld helps us to link this symposium with our 

past symposia in 2016 for using AI to reduce human 
errors10 and another symposium in 2017 for using AI to 
determine “computational context”, especially under 
uncertainty.11 Gershenfeld leads us directly to intelli-
gence.  
 Intelligence is a critical factor in overcoming barriers 
to direct maximum entropy production to solve difficult 
problems (Wissner-Gross & Freer, 2013; Martyushev, 
2013). In battle systems, intelligence is necessary to 

                                                
9 http://cba.mit.edu 
10 e.g., in 2016, AI and the mitigation of human error; see 
https://www.aaai.org/Symposia/Spring/sss16symposia.php#ss0
1 
11 e.g., our symposium on Computational context in 2017: 
https://aaai.org/Symposia/Spring/sss17symposia.php#ss03 
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complete missions by overcoming barriers, such as satis-
fying military “rules of engagement” (Mehta, 2017): 

U.S. forces are no longer bound by requirements to 
be in contact with enemy forces in Afghanistan be-
fore opening fire, thanks to a change in rules of en-
gagement orchestrated by Secretary of Defense Jim 
Mattis. Mattis ... told a pair of congressional hear-
ings that the White House gave him a free hand to 
reconsider the rules of engagement and alter them 
to speed the battle against the Taliban if need be. 

 
 But intelligence may also help to save humans lives. 
For example, a fighter plane can already take control and 
safe itself if its fighter pilot loses consciousness during a 
high-g maneuver.12 We had proposed in 2016 that with 
existing technology, the passengers aboard Ger-
manwings Flight 9525 might have been saved if the air-
liner had secured itself by isolating the copilot who pur-
posively crashed his airliner to murder passengers and 
crew as he committed suicide (Lawless, 2016). Similar-
ly, the Amtrak train that derailed in 2015 from the loss of 
awareness by its head engineer could have been spared 
the loss of life had the train slowed itself until it or its 
central authority had control of the train,13 a remedy that 
might have prevented another train accident by an engi-
neer in the State of Washington (Park & Yan, 2017): 

Amtrak's president says the company is "profoundly 
sorry" after a train derailed this week in Washing-
ton state and hurtled off an overpass onto a free-
way, killing three people. … It's unclear why the 
train was traveling 80 mph in a 30-mph zone 

 
 Gershenfeld’s evolution may arrive when intelligent 
“things” and humans team together as part of a “collec-
tive intelligence” to solve problems and to save lives 
(Goldberg, 2017). A new theory on intelligence indicates 
that machine learning simulates compression and renor-
malization, both related to a lack of redundancy (Law-
less, 2017). As reviewed by Wolchover (2017a), 

Using [Shannon’s] information theory … Imagine X 
is a complex data set, like the pixels of a dog photo, 
and Y is a simpler variable represented by those da-
ta, like the word “dog.” You can capture all the 
“relevant” information in X about Y by compress-
ing X as much as you can without losing the ability 
to predict Y … a deep-learning algorithm … works 
… as if by squeezing the information ... retaining 
only the features most relevant to general concepts 
… like renormalization, a technique used in physics 

                                                
12 http://aviationweek.com/air-combat-safety/auto-gcas-saves-
unconscious-f-16-pilot-declassified-usaf-footage 
13 https://www.nytimes.com/interactive/2016/05/17/us/amtrak-
train-crash-derailment-philadelphia.html?_r=0 

to zoom out on a physical system by coarse-graining 
over its details and calculating its overall state … 

 
 Relevant information is key when intelligent things 
replicate (Tegmark, 2017): 

What’s replicated isn’t matter (made of atoms) but 
information (made of bits) specifying how the atoms 
are arranged. When a bacterium makes a copy of its 
DNA, no new atoms are created, but a new set of 
atoms are arranged in the same pattern as the orig-
inal, thereby copying the information. … [Similarly, 
human] synapses store all your knowledge and 
skills as roughly 100 terabytes’ worth of infor-
mation, while your DNA stores merely about a gi-
gabyte, barely enough for a single movie download. 
… even though the information in our human DNA 
hasn’t evolved dramatically over the past 50 thou-
sand years, the information collectively stored in 
our brains, books and computers has exploded. 

 
 To better understand intelligence, England (2013) uses 
thermodynamic “fluctuation theorems” to quantify how 
humans select and shape certain physical processes hap-
pen than the reverse; e.g., from Wolchover (2017b), 

by harvesting the maximum energy possible from 
the environment. Living creatures ... are super-
consumers who burn through enormous amounts of 
chemical energy, degrading it and increasing the 
entropy of the universe … groups of atoms that are 
driven by external energy sources … tend to start 
tapping into those energy sources, aligning and re-
arranging so as to better absorb the energy and dis-
sipate it as heat. ... Jeremy is showing ... that as 
long as you can harvest energy from your environ-
ment, order will spontaneously arise and self-tune 

 
Limitations 
A possible limitation is that IoT “things" can be used to 
easily spy on users. James Clapper, the former US direc-
tor of national intelligence, told the US Senate in public 
testimony (Thielman, 2016), 

In the future, intelligence services might use the 
[IoT] for identification, surveillance, monitoring, 
location tracking, and targeting for recruitment, or 
to gain access to networks or user credentials, 

 
 Privacy issues aside, the success of IoT depends on 
taming large quantities of data: 85% of all IoT devices 
are not yet connected and 4/5th of the data available is 
not yet structured for IoT; still, by 2020, machine data is 
expected to grow by 15 times; and stored data is ex-
pected to grow 50 times (Wind, 2015); e.g. (Fruehe, 
2015), 
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Companies today are grappling with the Internet of 
Things (IoT) … encompassing devices, industrial 
equipment, sensors, and extended products. For 
some manufacturers everything they build could 
feed into IoT, from cars to buildings or even con-
sumer products. … Instead of focusing on the how 
of IoT, customers need to be focused on the what of 
IoT—namely the data. All of the strategy and shiny 
objects in the world won’t help if the data isn’t ac-
curate, secure, and actionable. The data should 
always drive the strategy; the implementation tail 
should not be wagging the data dog. 

 
 Yet, explaining the decisions made with machine in-
telligence is also a serious limitation; e.g., from Kuang 
(2017), 

artificial intelligences often excel by developing 
whole new ways of seeing, or even thinking, that are 
inscrutable to us. It’s a more profound version of 
what’s often called the “black box” problem — the 
inability to discern exactly what machines are doing 
when they’re teaching themselves novel skills — and 
it has become a central concern in artificial-
intelligence research. ... [But] In 2018, the Europe-
an Union will begin enforcing a law requiring that 
any decision made by a machine be readily explain-
able, on penalty of fines ... 

 
 Further limiting machines are machine illusions; e.g., 
machine intelligence can be easily fooled (Somers 
(2017): 

A deep neural net that recognizes images can be to-
tally stymied when you change a single pixel, or add 
visual noise that’s imperceptible to a human. In-
deed, almost as often as we’re finding new ways to 
apply deep learning, we’re finding more of its lim-
its. Self-driving cars can fail to navigate conditions 
they’ve never seen before. Machines have trouble 
parsing sentences that demand common-sense un-
derstanding ... 

 
 More machine intelligence limitations were elaborated 
in an interview by Rodney Brooks, the famed roboticist 
at MIT (Miller, 2017; also, Garling, 2014) who stated 
that: 

many of these detractors don’t actually work in AI, 
and [he] suggested they don’t understand just how 
difficult it is to solve each problem. “There are 
quite a few people out there who say that AI is an 
existential threat — Stephen Hawking, [Martin 
Rees], the Astronomer Royal of Great Britain … 
they share a common thread in that they don’t work 
in AI themselves ... For those of us who do work in 
AI, we understand how hard it is to get anything to 
actually work through [the] product level.” 

Conclusion 

For the Internet of Everything (IoE), in the future, we 
want to not only advance the present state of these 
“things” and to overcome its limitations, but also we 
want to manage how these “things” think so that the sci-
ence of “collective intelligence” contributes to the wel-
fare of society.  
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Abstract 
The current paper discusses the concept of human-machine 
teaming and presents data from a qualitative study regarding 
the components of human-machine teaming.  The dimen-
sions of teammate likeness from a human-robot interaction 
perspective were reviewed.  These dimensions formed the 
basis of a coding scheme used to analyze qualitative data.  
The data were taken from a survey among US workers.  
Participants (N = 605) were asked to: 1) identify an intelli-
gent technology that they use on a regular basis, 2) classify 
the interaction with that technology as a teammate or a tool, 
and 3) report the reasons why they viewed the relationship 
as a teammate or what it would take for the relationship to 
be viewed as a teammate (if they reported viewing it as a 
tool).   Results demonstrated good consistency with an 
emerging model of teammate likeness as discussed in the 
literature.  Notable divergences were found for individuals 
who reported the technology as a tool versus as a teammate.    

Background 
Humans are surrounded by advanced technology on a regu-
lar basis.  Technology is often a ubiquitous aspect of our 
daily routines and for some, interactions with technology 
may overshadow interpersonal interactions. As the bounda-
ries blur between the frequencies of human versus technol-
ogy interactions, researchers have begun to examine the 
topic of human-machine teaming (Chen & Barnes, 2014; 
Groom & Nass, 2007).  Whether one is working side-by-
side in a factory with a Baxter robot, driving alongside an 
autonomous car or taxi, walking past a Knightscope robot 
patrolling a parking lot, working with a bomb disposal 
robot in a military scenario, or trekking with a Ground Dog 
robot in the austere mountains of Afghanistan, humans are 
increasingly likely to interact with robotic systems.   While 
in most of these extant interactions humans would likely 
characterize the robot as a “tool” versus a “teammate”, 
teaming perceptions are increasingly warranted as technol-
ogy advances in both capability and interactive capacity 
(Ososky, Schuster, Phillips, & Jentsch, 2013).  Teaming 
with robots (versus teleoperation) is believed to be one of 
the real game changers with more advanced robotic sys-

tems.  Yet little is known about human-machine teaming in 
the context of psychological perceptions.  

Teaming with Technology  
Groom and Nass (2007) outline several components of 
effective teamwork which include: shared goals, shared 
awareness (i.e., shared mental models), the desire for inter-
dependence, motivation toward team versus individual 
objectives, action toward team objectives, and trust among 
team members.  These factors are paramount to team effec-
tiveness, and studies in the management domain have con-
firmed the importance of many of these team performance 
characteristics (Cohen & Bailey, 1997; De Jong, Dirks, & 
Gillespie, 2016; Kozlowski & Bell, 2003; Salas, Cooke, & 
Rosen, (2008).  Yet, what of these factors can/should apply 
toward machine partners?  Wynne and Lyons (in press) 
define autonomous agent teammate-likeness as “the extent 
to which a human operator perceives and identifies an au-
tonomous, intelligent agent partner as a highly altruistic, 
benevolent, interdependent, emotive, communicative and 
synchronized agent teammate, rather than simply an in-
strumental tool” (p3; Wynne & Lyons; in press).  The 
model posited by Wynne and Lyons is further outlined 
below.  It should be noted that it is the combination of the 
dimensions below rather than a single dimension alone that 
is believed to influence teammate-likeness perceptions.  
Perceived Agency. 
Robotic systems that have greater decision authority and 
greater capabilities to execute that decision authority 
should influence teammate perceptions.  By definition, a 
teammate is an autonomous entity that can contribute to 
the team’s goals.  Machine partners also, should be per-
ceived as agentic entities.  Effective agents should be able 
to observe the environment, process relevant goal-oriented 
information, and act on the environment (Chen & Barnes, 
2014) – hence exemplifying agency.  A lack of perceived 
agency should infer lack of autonomy, and increase per-
ceptions that are tool-like versus teammate-like. 
Perceived Benevolence 
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A core assumption of a teammate is that the teammate has 
your best interests in mind.  Teammates support one anoth-
er and provide back up where needed.  The same should 
hold true of machine partners.  Benevolence is a core trust 
antecedent (Mayer, Davis, & Schoorman, 1995) and it has 
been discussed as a key factor in driving human-robot trust 
(Lyons, 2013).  Understanding the intent of a robotic sys-
tem is a key ingredient to acceptance of the technology 
(Lasota & Shah, 2015).  In an experimental study, Lasota 
and Shah (2015) found that robots made better teammates 
with participants in a joint manual task when the robots 
were aware of the human’s next action – thus adding pre-
dictability into the robot’s future intent.  Further, robots 
that convey empathy (attributed intent) are liked more by 
participants (Leite et al., 2013). Thus, perceived benevo-
lence from the technology should be an important factor in 
deciding whether the technology is a tool versus a team-
mate. 
Perceived Task Interdependence 
Mutual interdependence is a cornerstone of what it means 
to be part of a team.  Interdependence presupposes some 
commonality in tasks and goals.  When teaming with a 
machine partner, it is likely that the machine and human 
will work on separate aspects of the same task.  If struc-
tured appropriately, the task will be divided into task com-
ponents that are appropriate for the human and components 
that are appropriate for the machine to maximize the over-
all effectiveness of the human-machine team.   In any case, 
interdependence with the machine will likely increase the 
perception of the technology as a partner versus as a tool. 
Relationship Building 
Imagine a world where teammates only discussed task-
related information – what a boring relationship!  True 
team members engage each other at a social level in addi-
tion to the task.  Ososky and colleagues (2013) suggests 
that for humans to view robotic systems as partners, the 
interactive affordances need to move from one-sided in-
formation-centric transmissions to more naturalistic dia-
logue-based interactions.  This will move the communica-
tion process from merely task-based to more relation-
ship/team building-focused.   Research by Hamacher, 
Bianchi-Berthouze, Pipe, and Eder (2016) shows that when 
interacting with robots, humans prefer robots that are ex-
pressive and warm over robots that are just focused on the 
task. These team-focused communications can signal loy-
alty and help build rapport among team members which 
are important team processes.  As such, relationship-
building communications will likely influence the percep-
tion of the technology as a teammate versus as a tool. 
Communication Richness  
Related to the above dimension, human-agent teams should 
be capable of rich dialogue to convey task and team-based 
information between each other (Chen & Barnes, 2014).  

Rich communicative and social cues affordances may 
make robots more effective when interacting with humans 
(Mutlu, 2011).  The key distinction between this dimension 
and the above dimension is that the above dimension dis-
cusses non-task-oriented communications which are geared 
toward team-building.  The current dimension focuses on 
the richness of communication in general, which could 
include both task-oriented and non-task communications.   
Media richness is believed to facilitate team effectiveness 
due to the added social and task-based information that 
rich media can convey (Hanumantharao & Grabowski, 
2006).  The greater the richness of communication af-
fordances between the human and the technology the 
greater the likelihood of the human viewing the technology 
as a teammate versus a tool.     
Synchrony  
Effective teams are comprised of team members who have 
a shared awareness of the task, the team, and the context.  
Indeed, shared awareness and more specifically, having 
synchronized mental models has been shown to enhance 
team effectiveness (Hinds & Mortensen, 2005).  Shared 
mental models have also been hypothesized to be im-
portant for human-machine teams (Ososky et al., 2013).  
Having synchrony between team members allows the team 
to share a common perception of the team and its capabili-
ties/limitations, the context – which facilitates joint adapta-
tion, and the task – which enables the team members to 
anticipate the actions of others.     

 In summary, the current paper examines the components 
of human-machine teaming using the Teammate Likeness 
Model (Wynne & Lyons, in press) as a rubric.  It was ex-
pected that perceptions of agency, benevolence, interde-
pendence, relationship-building, communication richness, 
and synchrony would be associated with more teammate 
(versus tool) perceptions. 

Method 
Participants 
Six hundred and five US workers responded to an open call 
for participation on Amazon’s Mechanical Turk (MTurk). 
The MTurk workers were employed at least part-time and 
were above the age of 18.  No other demographics were 
collected in this study.  Participants were compensated for 
their participation.    
Study Description and Items  
As part of a larger study focused on trust in automated 
technologies, participants were asked to identify one “intel-
ligent technology” that they use on a regular basis.  The 
following definition and description was provided to par-
ticipants: 
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Intelligent technologies or autonomous systems are 
technologies that can decide how and when to interact 
with you during tasks, communicate and/or dialogue 
with you, and or technologies that can help you ac-
complish your goals. Examples might include things 
like autonomous cars, service robots, industrial robots, 
robotic assistants, navigation aids, Amazon 
Echo/Google Home, the Nest, Siri, etc.  

 
Once a technology was identified, participants were asked 
to characterize the relationship they had with the technolo-
gy as a teammate- or tool-like relationship.  Next they were 
asked to discuss why they characterized the relationship as 
a teammate relationship or (if they earlier noted that the 
relationship was more tool-like) what it would take for the 
relationship to be viewed as a teammate.  Thus, in either 
characterization, the present study sought to understand the 
components of human-machine teaming.  These open-
ended responses were, in turn, coded according to the 
scheme described below.   
Coding Method  

Four independent coders coded the open-ended item.  
Two raters coded the entire set and two others coded a por-
tion of the data.  All raters were first trained on the coding 
process and the dimensions.  Next, all four raters coded the 
first 70 participants and the coding team met to discuss 
their ratings.  The next 30 participants were coded together 
as a team and consensus coding was used for the first set of 
participants (100 in total).  Two raters coded the remaining 
505 responses.  Approximately 5% of the data was not 
usable due to the participants saying things like “there is no 
way a machine can be a teammate”.  The items were coded 
for the following dimensions.  First, items were coded as 
either teammate or tool according to the participants.  
There was 100% agreement among the raters on this di-
mension.  Next, the open-ended item was coded using the 
teammate likeness model as a guiding rubric.  In addition 
to the six dimensions noted above, a seventh category of 
“humanness” was added based on initial coding training 
and consensus coding which noted a high frequency of 
responses like, “it should act like a human” or “it should be 
like a human”, or “it should have human qualities”.  The 
two raters averaged over 90% agreement across the 7 di-
mensions.  It was possible, and very common, for multiple 
dimensions to be coded in the same participant response.  
Example excerpts for each dimension are below. 

“For it to be more of a teammate it would have to do 
things without me asking” (Agency) 

“It is a teammate to me. We work together to achieve 
this great balance where I trust the technology and 
Nest achieves its goals in making sure my home's 
temperature is just the way I like it” (Benevolence)  

“I think of the nest as more of a teammate. This is be-
cause it is working with me to help me reach a goal of 
becoming more energy efficient and helping me save 
money by making changes together to make it work 
the best” (Interdependence)  

“I see this completely as a tool. It's a functional item 
outside of me. A teammate would need to be more 
human, more personal, and more emotionally con-
nected. I don't feel any emotional connection but ra-
ther a fully tool-like use” (Relationship Building)  

“I think for it to become more of a teammate, it would 
have to do far more than it does already. While it 
seems very personable, I know what kind of 'data' it 
can tell me, and as far as that goes, it's not too person-
al. To be more of a teammate, it could recommend 
places to eat out of nowhere, randomly talk to me 
about things, chime in on conversations and just gen-
erally exhibit more human-like behavior” (Communi-
cation Richness) 

“…To be a teammate it would need to "understand" 
better.  That is, instead of me anticipating it, it would 
need to anticipate my needs.  It's smart, but still lack-
ing sometimes.” (Synchrony)  

“I consider it more of a tool. It would have to become 
either an actual human being, or an AI that was so 
human like you couldn't tell it wasn't, in order for me 
to consider it a teammate” (Humanness) 

Results 
Four hundred and nine participants (68%) reported that 
they believed their technology was tool-like versus team-
mate-like.  The remaining 32% reported the relationship as 
more teammate-like.  Forty-one percent were home tech-
nologies, 31% mobile technologies, 15% navigation aids, 
3% automotive, 3% robotic systems, and 7% were classi-
fied as “other”.  The technologies were further broken 
down based on brands.  Twenty-two percent were Amazon 
products (Alexa, Echo), 15% were Apple products (Siri, 
iPhone), 11% were Google Maps, 6% were Androids or 
Google Assist, 5% were Google Home, 3% were Nest, and 
less than 1% for each Tesla and iRobot.  An additional 
36% was classified as “other”.   These classifications and 
brands were categorized a priori. 
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Figure 1. Frequency of Teaming Dimensions 

As shown in Figure 1, Humanness was the most common 
dimension followed by Agency.  However, each of the 
dimensions were noted by at least some participants.  Rela-
tionship building was the least-noted teaming dimension.   

Given the imbalance between participants who noted a 
teaming relationship and a tool-like perception, rather than 
report the absolute frequency of the dimensions by teaming 
versus tool perception, we reported the percentage of the 
dimension reported by the participants.  In other words, the 
percentage of the responses for that dimension were calcu-
lated for each of those who viewed the technology as a 
teammate and those who viewed the technology as a tool. 

 As shown in Figure 2, those who viewed the technology 
as a teammate reported a greater percentage of benevo-
lence and interdependence comments relative to those who 
viewed the technology as a tool.  In contrast, when partici-
pants viewed the technology as a tool, they reported a 
greater percentage of comments that it would take human-
ness and communication richness to view the technology 
as a teammate. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Relative Percentage of Teaming Dimensions 

 
 

Discussion
The current study examined the construct of human-
machine teaming using a qualitative sample and a broad 
cross-section of US workers.  Participants were simply 
asked to list an intelligent technology that they use on a 
regular basis.  The majority of these technologies were 
home use technologies such as the Amazon Echo or mobile 
technologies such as an iPhone equipped with Siri.  Next, 
they were asked whether they viewed the technology as a 
tool or a teammate and why.  An emerging model of 
teammate likeness was used to create a coding scheme for 
examining the qualitative data.  The data largely confirm 
the presence of teammate perceptions of contemporary 
technologies and the results demonstrate the utility of the 
teammate-likeness construct overall.   
 The six dimensions of the teammate-likeness model 
were all invoked in the explanation for why the technology 
was (or could be) viewed as a teammate.  Among the a 
priori set of dimensions, agency was most common fol-
lowed by communication richness and synchrony.  This 
shows the importance of viewing the technology as pos-
sessing some level of decision authority for a human to 
view the technology as a teammate.  Furthermore, the find-
ings for interdependence correspond to the management 
literature in terms of the importance of interdependence 
among individuals on a team.  These are clearly important 
features for humans when considering the teaming rela-
tionship with technology.  While the current results are 
interesting from a research perspective, care should be tak-
en so that decision authority and interdependence with au-
tomated systems is done only when it has been carefully 
considered along with the potential limitations of such 
technologies.  Human-machine teams may prove to more 
effective than either humans or technology alone, however 
great care must be taken in the design and implementation 
of technology in the workplace to avoid overreliance on 
reliable technology, as such overreliance can result in neg-
ative consequences if and when the technology (or the hu-
man) makes mistakes (see Onnasch, Wickens, Li, & Man-
zey, 2014 for a review).   
 Relationship building was the least common explanation 
provided by participants.  It is possible that the affordances 
provided by the existing technologies did not allow for 
relationship building.  While many of the technologies 
listed offer interactive features, many of these technologies 
lack the capacity to develop relationships.  This dimension 
may be more relevant for future, more advanced technolo-
gies.   
 Interestingly, an unexpected dimension, humanness, was 
the most common response.  The mere notion of a team-
mate may invoke anthropomorphic perceptions – similar to 
the more traditional human partner.  What is unclear is 
whether or not the humanness dimension was a conglom-
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eration of the other dimensions noted in the Teammate 
Likeness Model (Wynne & Lyons, in press).  For instance, 
having agency, intent, rich communication affordances, 
and relationship-oriented may be facets of what people 
believe “humanness” consists of.  However, it was impos-
sible to test this speculation with the current data given that 
many participants simply said the technology should be 
“like a human” without saying what that actually means.  
Future research should examine the dimensions of human-
machine teaming to determine if humanness is unique from 
the other components of teammate likeness.   
 A second interesting finding within the data is that par-
ticipants noted different dimensions of teaming depending 
on whether they viewed the technology as a teammate ver-
sus as a tool.  For participants who perceived the technolo-
gy as a teammate, they reported a higher percentage of 
comments for benevolence and interdependence.  For these 
individuals, the technology offered support and was be-
lieved to work interdependently with the humans.  These 
factors are consistent with dimensions of team processes 
found in the literature on interpersonal teams (Cohen & 
Bailey, 1997; De Jong, Dirks, & Gillespie, 2016; Ko-
zlowski & Bell, 2003).  Human-machine teams appear to 
involve some of the similar team process variables.  In 
contrast, when individuals viewed the technology as a tool, 
they believed that added communication richness and hu-
manness would facilitate future teammate perceptions.  It 
is interesting to note that these dimensions are what people 
might look for in prospective teaming relationships versus 
what they currently experience within teaming relation-
ships.   
 Another notable finding in the current study is the fact 
that over 30% of the sample reported viewing the relation-
ship with the technology as a teammate-based partnership.  
This suggests that human-machine teaming is a viable and 
fruitful topic of inquiry within the human factors and ro-
botics literatures as individuals do establish very intimate 
connections with technologies.  Future research is needed 
to validate the dimensions of human-machine teaming to 
better understand why and how humans make these con-
nections with advanced technology.    
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Abstract

We investigate a theory for Value of Information (VoI) with
respect to the Internet of Things (IoT) and IoT’s intrinsic
Artificial Intelligence (AI). In an environment of ubiquitous
computing and information, information’s value takes on a
new dimension. Moreover, when the system in which such a
volume of information exists is itself intelligent, the ability
to elicit value, in context, will be more complicated. Classi-
cal economic theory describes the relationship between value
and volume which, though moderated by demand, is highly
correlated. In an environment where information is plentiful
such as the IoT, the intrinsic intelligence in the system will
be a dominant moderator of demand (e.g. self-adapting, self-
operating, and self-protecting; controlling access). We exam-
ine Howard’s (1966) VoI theory from this perspective and il-
lustrate mathematically that Howard’s focus on maximizing
value obfuscates another important dimension, the guarantee
of value.

Introduction

Shannon (Shannon 1948) laid the groundwork for informa-
tion theory in his seminal work. However, Shannon’s theory
is a quantitative theory, not a qualitative theory. Shannon’s
theory tells you how much “stuff” you are dealing with, but
it does not care if it is a cookie recipe or the plans for a time
machine. The quality of “stuff” is irrelevant to Shannon the-
ory. This is in contrast to Value of Information (VoI) the-
ory, where we care about what, not necessarily how much,
“stuff”, we are considering. That is, Shannon is a purely
quantitative theory, whereas any theory of information value
must include a qualitative aspect that is equal in relevance as
any quantitative measures.

This qualitative characteristic finds it way into many
information-centric areas, particularly when humans or Arti-
ficial Intelligence is involved in decision making processes.
For example, in (Russell, Moskowitz, and Raglin 2017) the
authors, not surprisingly, state “We note that a purely quanti-
tative approach to information is far from satisfactory.” They
then back this statement with discussions on Paul Revere,
the Small Message Criteria (Moskowitz and Kang 1994),
and steganography. This also discuss how Allwein (Allwein
2004) merged the work of Barwise and Seligman (Barwise

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Seligman 1997) to Shannon’s theory using the tools
of channel theory from logic. However, these types of ap-
proaches do not offer immediate help to us with pragmatic
issues that exist in the Internet of Things (IoT) where infor-
mation is excessively plentiful.

The nature of the IoT is one of pervasive informa-
tion, continuously gathered and acted on by fully or semi-
autonomous devices and system. This notion creates an in-
teresting paradox in the context of VoI. If the IoT ushers in
unimaginable volumes of information, shouldn’t the “value”
of information decrease? Perhaps in the broader sense, e.g.
all information’s overall value may decrease, but certain in-
formation would still retain a value higher than most. This
calls into question how applicable existing VoI theory would
be in the context of the IoT and related decision-making.
Moreover, the IoT itself is imbued with its own Artificial In-
telligence, that manifests as self-star (self-*) behaviors. Self-
* behaviors are (Babaoglu et al. 2005) autonomic behaviors
(such as self-management, self-awareness, self-protecting,
etc.) that imbue a device or system with an ability and un-
derstanding of its contribution (or value) to greater or exter-
nal objectives/goals. The concept of the IoT’s Artificial In-
telligence (AI) brings additional constraints to understand-
ing VoI, given such a pervasive information system. Like
the limitations of Shannon’s information theory (Shannon
1956), these considerations also create a fundamental issue
of a solely quantitative theory of information’s applicability
to IoT decision-making.

We attempt to address this issue by examining a Value of
Information (VoI) theory in the context of the IoT. Our think-
ing is heavily influenced by (Ponssard 1975) and especially
by (Howard 1966). These works discuss how VoI is part of
Decision Analysis. We attempt to make an optimal decision,
based upon expected utility/value. Howard (Howard 1966)
discusses how a company decides how much to bid on a
contract based upon the a priori information available. In
this situation the company attempts to maximize its expected
profit. We note though that we disagree with how Howard
obtained his “clairvoyant” results in the situation when ad-
ditional information is available to the decision maker. Ar-
tificial Intelligence plays a major role in any consideration
of the VoI because techniques, such as Machine Learning,
can distill additional information from the IoT which can be
used by a decision-maker.
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IoT and AI

The Internet of Things is touted as the next wave in the
era of computing (Gubbi et al. 2013) and has quickly been
labeled the Internet of Everything (Roy and Chowdhury
2017). While the definition of the IoT may take many forms,
there is little debate about the amount of information it
will make available (Barnaghi, Sheth, and Henson 2013;
Papadokostaki et al. 2017; Taherkordi, Eliassen, and Horn
2017) for decision related activties.
Quoting from (Moskowitz, Russell, and Jalian 2018)

The Internet of Things (IoT) is the realization of
interconnected and ubiquitous computing, pervasive
sensing, and autonomous systems that can affect the
physical world. ... The “things” that exist in the IoT
can be generally thought of as physical or compu-
tational objects that label, sense, communicate, pro-
cess, or actuate thereby bridging the physical and vir-
tual worlds (Oriwoh and Conrad 2015; Pande and Pad-
walkar 2014). While there is no universally accepted
definition of the IoT, the International Telecommunica-
tion Union Telecommunication Standardization Sector
(ITU-T) defines the IoT as “a global infrastructure for
the information society, enabling advanced services by
interconnecting (physical and virtual) things...”

In (Moskowitz, Russell, and Jalian 2018), beyond provid-
ing a definition of the IoT, the authors showed how side
channels in the IoT architecture can cause information to
be covertly/steganographically transmitted from one place in
the IoT to another. They argue that IoT will make so much
information available, that new threats will emerge that
are hiding in (information’s) plain sight. We posit that the
amount of available information in the IoT will change the
supply and demand dynamic, resulting in a need for a new
understanding of information’s value. This relationship will
likely follow an econometric view of value, where scarcity
increases perceived and/or real value (Rymaszewska, Helo,
and Gunasekaran 2017; Hansen and Serin 1997; Worchel
1992). What makes the IoT such an interesting arena for
VoI research is that even where the number of bits is the
same everywhere in the IoT, the value of those bits can dif-
fer upon where and when you are in a certain location in the
IoT. For example, if my smart refrigerator sends a message
that I only have one egg left (extrapolating from (Borgonovo
2017)), that information is only valuable to my cook, and it
depends upon what s/he is preparing before s/he goes to the
market again. Since I do not cook, that information is of no
value to me. However, if my alarm system sends a message
to my smart phone that there is someone in my house when
no one is supposed to be home, that information may be of
some value to my cook, but it is extremely valuable infor-
mation to me.
The IoT changes one’s normal perspective on how valu-

able information is obtained. We have many, many sources
potentially sending information to a decision maker. This
can be both good and bad. It can be good in that it enables us
to reduce the uncertainty of some random variables. That is,
one may be able to replace a continuous random variable
with a large region of support, ideally with a Dirac delta

distribution where we exactly know the information. That
would be the ideal case, and is discussed in the later sections
of Howard (Howard 1966). However, in a following section
here, we will illustrate some mathematical differences with
what Howard did, and discuss our findings with regard to
perfect information (clairvoyance), which are also different.
The IoT can also be bad when it comes to the varied

sources of potentially valuable decision-relevant informa-
tion. Since the IoT is a huge conglomeration of process-
ing and sensing devices, it is possible, and perhaps even
likely, that contradictory information is obtained. Further-
more, the IoT will also be artificially intelligent itself (Et-
zion 2015; Elvy 2017). Machine learning algorithms are
currently employed in the IoT at the local device and
global usage levels (Ren and Gu 2015). Much of the ma-
chine learning approaches are implemented to provide the
IoT with decision-making autonomy. In the next dimen-
sion of system intelligence, the IoT already is incorporat-
ing technologies to add increasing autonomic or self-star
(self-*) behaviors. Self-* behaviors are those characteris-
tics that form self-awareness and include self-organization,
self-adaptation, and self-protection. The dependence on AI
in IoT, in this context, is apparent. However the implica-
tions for AI enabled self-* behaviors to impact informa-
tion value are less clear. Nonetheless, there is ample doc-
umentation in the literature about how AI can and will be
employed as a gatekeeper for information (Camerer 2017;
Conitzer et al. 2017), (Naseem and Ahmed 2017). It is
through this merged lens of IoT and AI that we examine
a theory of value of information. To provide grounding, we
start with the work of Howard.

Reworking Howard’s Initial Example

Howard’s work (Howard 1966) takes a business approach to
defining information value. In this section we borrow freely
from Howard. We do not quote phrases for the sake of read-
ability. We do not make any claims to this work, it re-works
Howard’s; the only novel thing in this section is our choice
of notation and exposition.
This is a very practical problem of how much our com-

pany should bid to win a contract. If the bid is too high,
it loses the contract. If the bid is too low, it gets the con-
tract, but loses money on the deal. Therefore, our company
attempts to place the bid that will get it the contract whilst
maximizing its profit. The information that our company de-
cides its bid upon is therefore of extreme importance and is
considered to make up the sample space in question.
We assign a random variable C to be the cost of perform-

ing on the contract. Unfortunately, this cost is a probabilistic
guess. We let the random variable L be the random variable
representing the lowest bid of the competitors. Our com-
pany’s bid is given by the random variableB. Our company’s
profit is the random variable V .
If b > l, our company loses the contract, and our profit

is 0. If b < l our company wins the contract and performs
the work at a cost of c. Therefore the profit is v = b − c.
Hence, similarly to (Howard 1966, Eq. 3) our company gets
the contract in case of a tie (b = l). In terms of the random
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variables

V =

{B − C, if B ≤ L
0, if B > L .

(1)

�����

�����

������

�

�

Figure 1: Profit V = v, for c = 3, l = 8, B = b

In Figure 1 we see the plot of Eq. (1) when c = 3, l = 8.
There is no upper bound on what b may be, but v is always
0 for large enough b. Let us consider the density functions
following (Howard 1966) but with a modified1 notation of
(Ross 1976). We have

f(v|b) =
∫∫
R2

f(v|b, c, l) · f(c, l|b) dc dl . (2)

This only makes sense when 0 ≤ b. Our company never bids
a negative amount, so any event involving b < 0 has zero
probability, and conditional probability is thus not defined
in that range.
We are interested in the expected value of profit condi-

tioned on our bid. That is, we wish to determine E(V|b).

E(V|b) =

∫ ∞

−∞
v ·f(v|b) dv

=

∫∫∫
R3

v · f(v|b, c, l) · f(c, l|b) dc dl dv

=

∫∫
R2

f(c, l|b)
(∫ ∞

−∞
v · f(v|b, c, l) dv

)
dc dl

=

∫∫
R2

E(V|b, c, l) · f(c, l|b)dc dl (3)

NowHoward makes two assumptions (Howard 1966, Eqs.
6,7) to simplify the problem.

Assumption 1. The joint distribution of cost and lowest bid
C,L is independent of our company’s bid B. That is

f(c, l|b) = f(c, l) .

1For typographical simplicity we do not include the sub-index
of the density function when the context is clear. That is, for exam-
ple, we write f(x) instead of fX(x), however, the complete nota-
tion is taken as being understood.

Assumption 2. Our company’s cost C is independent of the
lowest bid L. That is

f(c, l) = f(c)f(l) .

We realize that one could certainly argue the reality of
these assumptions in all cases. Using Assumptions 1&2, we
now have that

E(V|b) =
∫∫
R2

E(V|b, c, l) · f(c)f(l)dc dl . (4)

From Eq. (1) we see that once we set the values of B, C,L
at b, c, l respectively, the density function of V becomes de-
terministic. That is

Theorem 1.

f(v|b, c, l) =
{
δ(v − (b− c)), if b ≤ l

δ(v), if b > l .

and therefore

E(V|b, c, l) =
{
b− c, if b ≤ l

0, if b > l .

Thus the following follows from Eq. (4)

Theorem 2. Using Assumptions 1&2 we have

E(V|b) =
∫∫
R2

E(V|b, c, l) · f(c)f(l)dc dl (as above)

=

∫ ∞

−∞
(b− c)

(∫ ∞

b

f(l)dl

)
f(c)dc (5)

= P (L > b) ·
∫ ∞

−∞
(b− c)f(c)dc (6)

= [b− E(C)] · P (L > b) . (7)

The above corresponds to (Howard 1966, Eq. 10). So, af-
ter our above assumptions, to obtain E(V|b) we only need
the distribution of L and E(C). Howard (Howard 1966)
models C as a uniform distribution on [0, 1] which implies
E(C) = 1

2 .
We relax what Howard did, and model the distribution of

C such that E(C) = 1
2 . We also follow Howard and model

L as a uniform distribution on [0, 2].
Thus, we say that the base Howard example is L =

U [0, 2] and E(C) = 1
2 .

The above gives us P (L > b) = 1
2 (2 − b), b ≤ 2 (0 for

b > 2). Of course, we do not consider b < 0 as discussed
earlier. Therefore, we arrive at

E(V|b) = 1

2
(2− b)

(
b− 1

2

)
, 0 ≤ b ≤ 2 . (8)

So we see that E(V|b) = − 1
2

[
b2 − 5

2b+ 1
]
is a simple

quadratic and that d
dbE(V|b) = −b + 5

4 , so E(V|b) obtains
a maximum of 9/32 when b = 5/4.
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Figure 2: E(V|b)

We define
�〈V〉�b � max

b
E(V|b) .

Therefore we see that when E(C) = .5 and L = U [0, 1],

�〈V〉�b = 9/32 .

We are in agreement with everything that Howard has
done to this point. What we do not agree with is how he
used the concept of clairvoyance for additional information
that may be learned. We note that the concept of clairvoy-
ance is also discussed in (Borgonovo 2017, Ch. 11). We go
back to this later in this paper.

Value Discussion

We see from the above that the expected value of a random
variable is very important to a decision-maker. It is the value
of the information that is used. This is important in the IoT
because it will be the source of the information, moderated
by the AI that either provides it, modifies it, or protects it.
From this perspective the IoT may provide all of the infor-
mation, too much information, or a limited amount of the
information. We see in the above example, that we do not
need the entire cost, given Howard’s assumptions, only the
mean of the cost. Therefore, it need not take that many bits
of needed valuable information. Extending Howard’s notion,
what is the information we have so far and what is its value?

1. Equation 1: Modeling equation.

2. Equation 2: Standard probability theory.

3. Assumption 1: Independence of our company’s bid.

4. Assumption 2: Cost and lowest bid independence.

5. Behavior of C.
6. Behavior of L.

Let us just concentrate on the last two items for now.What
we have actually used so far is only the mean of C, and for
simplicity we set

μ � E(C).
The distribution of L is given by its density function fL(l).
Modifying this information changes the quantity we care
about, that is:

What is the “value” of the information in items 5 and 6
above in how it affects �〈V〉�b? Does the shape of the graph
change, does the maximum behavior change, etc?

We return to Eq. (4) to see the impact of changes of the
information in items 5 and 6. First, let us change the distri-
bution of L so it is uniformly distributed on [0, L], L > 0,
instead of [0, 2].
We see that P (L > b) = 1

L (L− b), b ≤ L (0 for b > L).
So, we see that in general for arbitrary positive μ we have

E(V|b) =
1

L
(L− b) (b− μ) , 0 ≤ b ≤ L (9)

= − 1

L

(
b2 − [L+ μ]b+ Lμ

)
. (10)

Simple calculus shows that the value bo that maximizes
E(V|b) is either the critical point bc = L+μ

2 , if bc ≤ L,
or the boundary point L if μ > L. Thus,

�〈V〉�b =
{

(L−μ)2

4L , with bo = L+μ
2 , if 0 ≤ μ < L

0, with bo = L, if μ ≥ L .

(11)
We see that the only interesting case is when 0 < μ < L,
which makes physical sense. We call this the non-trivial re-
gion, and denote the function defined on that region as 〈〈V〉〉.

Figure 3: Surface plot of non-trivial values, for L ∈
[0, 2], μ ∈ [0, 2]), of �〈V〉�b, with point (L = 2, μ =
.5, �〈V〉�b = 9/32) highlighted.

Note that we also have

∂�〈V〉�b
∂L

=

{
1
4

(
1− (

μ
L

)2)
> 0, if 0 ≤ μ < L

0, if μ ≥ L .
(12)

and
∂ 〈〈V〉〉
∂μ

=
1

2

(μ

L
− 1

)
< 0 . (13)

So, in the non-trivial region, increasing L increases
�〈V〉�b, and decreasing μ decreases �〈V〉�b.
Let us pause and think about VoI. Is there any additional

value in learning more about C other than its mean? No! This
is an important understanding.
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Also, if we are at a point in the non-trivial region, what
is more important to learn about w.r.t. 〈〈V〉〉, a change in L
or a change in E(C)? That is, if we have to prioritize the
information that is sent to a decision-maker and we can only
send one “fact” at a time which one would we send first,
information about a change in L orE(C)? Consider the total
differential

d 〈〈V〉〉 = ∂ 〈〈V〉〉
∂L

dL+
∂ 〈〈V〉〉
∂μ

dμ (14)

=
1

4

(
1−

(μ

L

)2
)
dL− 1

2

(
1− μ

L

)
dμ . (15)

Thus, using 1− x2 = (1− x)(1 + x), we see that∣∣∣∣∂ 〈〈V〉〉∂L

∣∣∣∣ <
∣∣∣∣∂ 〈〈V〉〉∂μ

∣∣∣∣ < 2

∣∣∣∣∂ 〈〈V〉〉∂L

∣∣∣∣ . (16)

So, in the infinitesimal sense the value of E(C) is more
important than the value of L, but not by much. Therefore,
if we have to prioritize information sent to a decision maker,
it should be E(C), then L.

Of course, all of the above is based upon the fact that we
know the optimal bo = L+μ

2 , which we learned from our
above assumptions and calculations.

Figure 4: Surface plot of bo in the non-trivial region for L ∈
[0, 2], μ ∈ [0, 2].

Generalization

Let us summarize the above in generality.
1. We are given distributions on L and C.

2.

V =

{B − C, if B < L
0, if B > L .

3. L and C are independent of our company’s bid B.

4. Our company’s cost C is independent of the lowest bid L.

Thus,

E(V|b) = [b− E(C)] · P (L > b) and now, in general,

�〈V〉�b � max
b

E(V|b) .
Assuming that d

dbE(C) = d
dbf(l) = 0 (which is not a far

stretch from the statistical independence we have assumed
of the underlying random variables), we have d

dbE(V|b) =
P (L > b)− [b− E(C)] · fL(b), where the term fL(b) is the
density function f(l) of L evaluated at l = b. Thus, the opti-
mal bo in the non-trivial region solves the integral equation

b = E(C) + P (L > b)

fL(b)
= E(C) + 1

fL(b)

∫ ∞

b

fL(l)dl ,

and in the non-trivial region �〈V〉�b =
(
P (L > bo)

)2

fL(bo)
.

Clairvoyance about C
Let us go back to Eq. (4), but now let us assume that our
company knows the cost C. In this case our company will
never bid less than the cost, or it will lose money! Note that
our results in this section differ from Howard’s results on
clairvoyance.
Assumption 3. Our company has knowledge of the cost.
We must modify Thm. (1) so that

E(V|b, c, l) =
{
b− c, if c ≤ b ≤ l

0, otherwise.
(17)

So we have that

E(V|b) =
∫∫
R2

E(V|b, c, l) · f(c)f(l)dc dl (as above )

=

∫ b

−∞
(b− c)

(∫ ∞

b

f(l)dl

)
f(c)dc (18)

= P (L > b) ·
∫ b

−∞
(b− c)f(c)dc (19)

=

[
b · P (C ≤ b)−

∫ b

−∞
cf(c)dc

]
· P (L > b) (20)

We will go through an example similar to what we did
before. Previously, we followed Howard and modeled C so
that E(C) = 1/2, and L = U [0, 2]. Note that before the dis-
tribution of C did not matter, only its mean. We see from the
above that this is no longer true. Let us try some examples.

Example 1: L = U [0, 2], and P (C = 1/2) = 1.
So we have that f(c) = δ(c− 1/2), and Eq. (20) becomes

E(V|b) =
{
[b− 1/2] · P (L > b), if 1/2 < b ≤ 2

0, otherwise.
(21)

This simplifies to

E(V|b) =
{
(b− 1/2)

(
2−b
2

)
, if 1/2 < b ≤ 2

0, otherwise.
(22)
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Figure 5: E(V|b) ≥ 0 when our company knows the cost,
L = U [0, 2], and P (C = 1/2) = 1.

In Example 1,E(V|b) has a maximum value of 18/32 , when
b = 5/4.

Example 2: L = U [0, 2], and C = U [0, 1].
Eq. (20) becomes

E(V|b) =

⎧⎪⎪⎨
⎪⎪⎩

[
b ·

(
b−0
1−0

)
− ∫ b

0
c · 11dc

]
· ( 2−b

2

)
, if 0 ≤ b ≤ 1[

b · P (C ≤ 1)− ∫ 1

−∞ cdc
]
· ( 2−b

2

)
, if 1 < b ≤ 2

0, otherwise.
(23)

This simplifies to

E(V|b) =

⎧⎪⎨
⎪⎩

b2

4 (2− b), b ∈ [0, 1]

[b− E(C)] · ( 2−b
2

)
= 1

2 (2− b)
(
b− 1

2

)
, b ∈ (1, 2]

0, otherwise.
(24)

We note with interest that E(V|b) is a (once) differentiable
function on [0, 2].
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Figure 6: E(V|b) ≥ 0 when our company knows the cost,
L = U [0, 2], and C = U [0, 1].

In Example 2,E(V|b) has a maximum value of 9/32 when
b = 5/4, which is the same as Howard’s base example.

We see that when our company knows the cost C, the dis-
tribution, not just the mean, affects the behavior of E(V|b).

We also see that knowledge of C guarantees that E(V|b) ≥
0. That is, we never lose money.

Clairvoyance about L
Now we are in the situation where our company knows the
competitor’s lowest bid, which is represented by L. As be-
fore we assume that if our company’s bid b ties with the
competition’s lowest bid l that our company wins the con-
tract. Therefore, if we know l we bid l; this is done to win
the contract and maximize profit. Note, if one finds this dis-
turbing, we can always make the bid b a tiny amount less
than l. Therefore, we see that B and L must be the same.
Our company will always win the bidding, but it may lose
money depending on the value of c. Therefore,

E(V|b) = E(V|l) . (25)

Modifying Eq. (1), now differently than Eq. (17), we have

E(V|b, c, l) =
{
l − c, l ∈ support of L
0, otherwise.

(26)

So we have that ( C and L still independent):

E(V|l) =
∫
R

E(V|c, l) · f(c)dc (27)

=

∫
R

(l − c) · f(c)dc (28)

= l

∫
R

f(c)dc−
∫
R

c · f(c)dc (29)

= l − E(C) (30)

when l ∈ support of L.

Example 3: L = U [0, L], and E(C) = 1/2.
Below we show a plot of E(V|l) = l − .5 against l for L =
U [0, 2] and E(C) = 1/2.
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Figure 7: E(V|b)such that E(C) = 1/2, and our company
knows the lowest bid, distributed as L = U [0, 2].

Thus, for Example 3, �〈V〉�b = 1.5, achieved when b = 2.

Note that E(V|b) is a linear function of b = l and that
it can be negative, zero (once), or positive depending on
the support of L. Furthermore the maximum of E(V|b) is
achieved when b is the largest value of l in the support
of L. Heuristically, another way of saying this is that the
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maximum is achieved for the largest value of l such that
P (L ∈ (l − dx, l)) 	= 0.

Unlike with the clairvoyant knowledge of C, with knowl-
edge of L, E(V|b) may be negative, but the profit may
be much larger. So, knowledge of C gives us non-negative
profit, whereas knowledge of L gives us larger potential
profit. This is in-line with what Howard obtained.

Clairvoyance about C and L
Now we combine both pieces of information, the bid b will
never be less than c, and it will always match l, therefore
we must modify Eq. (1) again, now different than Eq. (25)
because L is more restricted, resulting in

E(V|b, c, l) =
{
l − c, if c ≤ l, and l ∈ support of L
0, otherwise.

(31)
So we have an assumption of independence between C and
L

E(V|l) =
∫
R

E(V|c, l) · f(c)dc (32)

=

∫ l

−∞
(l − c) · f(c)dc (33)

= l · P (C < l)−
∫ l

−∞
c · f(c)dc (34)

when l ∈ support of L.

Example 4: L = U [0, 2], and C = U [0, 1].

E(V|b) =

⎧⎪⎨
⎪⎩
l · ∫ l

0
dc− ∫ l

0
c dc if 0 ≤ l < 1

l · ∫ 1

0
dc− ∫ 1

0
c dc, if 1 ≤ l ≤ 2,

0, otherwise. Thus,
(35)

E(V|b) =

⎧⎪⎨
⎪⎩

l2

2 , if 0 ≤ l < 1

l − .5, if 1 ≤ l ≤ 2,

0, otherwise.
(36)

Below we plot E(V|b) = E(V|l) against b for L =
U [0, 2], and C = U [0, 1].

��� ��� ��� ���
���

���

���

���

	 �� ��

Figure 8: E(V|b) for when C = U [0, 1] and our company
knows the lowest bid has distribution L = U [0, 2].

Thus, for Example 4, �〈V〉�b = 1.5, achieved when b = 2.
Note that the behavior of Ex. 3 and Ex. 4 are identical for
b > 1. The difference is that if we know C, we may never
place a bid that will lose money.

Conclusion

The Internet of Things will provide a rich environment,
supplying volumes of information for nearly every aspect
of humans’ activities and environments. The IoT will gain
ever increasing amounts of Artificial Intelligence, that will
only provide greater degrees of autonomic capabilities and
self-star behaviors. This AI-enriched IoT environment will
change the fundamental notions of information value for
decision-making by producing huge quantities of informa-
tion that are managed by the AI functionality. Like Shan-
non’s information theories, our understanding of VoI theory
will implicitly go beyond just a quantitative concept to in-
clude qualitative notions. However there is surprisingly lit-
tle literature that examines VoI in the context of the IoT. In
this paper we have extended Howard’s (Howard 1966) VoI
theory and examine a generalization of that notion towards
a guarantee of a minimal value.
We presented a re-work of Howard’s theoretical prob-

lem and solution identifying some limitations in his treat-
ment of a random variable, relative to VoI. Howard’s idea
of clairvoyance, or insight into future information (and thus
its value) treats the value of the random variable determin-
istically, rather than probabilistically. By giving the random
variable a probabilistic context, such as would be the case of
information provided by the AI-enabled IoT, the theoretical
handling of clairvoyance changes. We see, as did Howard,
that knowledge about L is more important than knowledge
about C when it comes to maximizing E(V|b). But we show
knowledge of C guarantees that we will never have a nega-
tive expected profit. Therefore, the value of information de-
pends on what one is trying to do, or the contextual objec-
tive. This qualitative consideration must be kept in mind in
further research on VoI.
We explained the relevance of our approach in this pa-

per’s section on IoT and AI, and we have taken the oppor-
tunity of adjusting Howard’s seminal theory to provide an
extended foundation for the Value of Information theory in
the IoT. One must keep in mind that AI techniques, such as
machine learning and artificial reasoning, when employed
in the IoT for self-star system behaviors, will require addi-
tional consideration for managing information provided to
a human or machine decision-maker. While we continued
with Howard’s “market” context in this paper for explain-
ability and theoretic continuity, our future work will exam-
ine the implications of our theoretical VoI guarantee, de-
scribed herein, in an IoT-specific experimental simulation or
empirical study.
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Abstract 
The commoditization of trust has been the topic of science 
fiction, futuristic novels and theoretical study for the last 
century. Advances in blockchain and artificial intelligence 
technology continue to make science-fiction a reality, 
automating and replacing the need for 3rd party 
intermediaries and other trust mechanisms, potentially 
disrupting many critical industries.  Blockchain enabled 
smart contracts show potential to exchange value without 
third party trust mechanisms. The combination of artificial 
intelligence, cryptography, distributed trust algorithms or 
smart contracts have paved the way to a more efficient and 
secure way to exchange value, goods and services. This 
paper explores how blockchain technology could 
potentiality automate and modernize energy and the internet 
of things to help evolve energy infrastructure to an 
increasingly automated, distributed, clean and resilient 
system. This is timely as the U.S. power grid and the array 
of things that it connects to is a complex system of systems 
in which the nation’s economy, national security and 
livelihood depends on. 

 Introduction   
Blockchain is defined as a distributed data base or digital 
ledger that records transactions of value using a 
cryptographic signature that is inherently resistant to 
modification (Tapscott 2016).  Combining blockchain 
based smart contracts with machine learning algorithms 
presents an opportunity to increase the speed, scale, 
security and autonomy of complex, distributed internet of 
things (IoT) environments. Certainly, the need for third 
parties in executing a transaction will be reduced or even 
be replaced when an autonomous smart contract can 
execute and exchange value and services via an 
autonomous agent. But who will be held responsible when 
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there is an error or when the contract is not successfully 
executed? While the data and exchange of value captured 
in blockchain might be immutable, or at least very hard to 
manipulate, what if the algorithm that establishes the terms 
of the contract executed is written by a AI agent. What 
additional challenges and potential solutions should be 
explored to via AI enabled blockchain solutions to 
distribute and automate IoT in a more secure way?  
 This paper explores these questions through an 
innovative blockchain smart contract application to 
electricity infrastructure and the array of networked things 
that are increasing connected responsible for energy 
generation, transmission, distribution and consumption. 
This use case highlights how AI enabled blockchain 
solutions may help increase cyber resilience and optimize 
complex exchanges of distributed energy resources by 
encrypting, monitoring and automating transactions and 
removing third parties. With billions of IoT devices 
sensing and exchanging information, AI enabled 
blockchain solutions could also help better analyze data 
sets from thousands of variables (industrial control system 
anomalies, frequency, load and voltage changes) and 
organize them into weighted relationships, which could be 
tracked through a next generation blockchain solution. As 
data patterns in these variables are better understood via 
machine learning computer-based neural networks, the 
smart blockchain contract could be updated to better secure 
and exchange energy data.  

The AI Enabled Blockchain Opportunity: The 
Evolution of Public Key Infrastructure 
Encryption 
Most cyber security solutions increase cost and reduce 
functionality in the name of integrity, confidentiality and 
availability. Blockchain solutions may prove to be an 
exception in that some applications can improve security 
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and optimize the ability to exchange and track value. 
Indeed, some blockchain solutions add a layer of 
cryptography to track digital transactions, but many cyber 
security challenges remain for securing complex IoT 
environments. For one, IoT environments are often 
designed with functionality and cost in mind and security 
is often an afterthought. IoT often lacks encryption, basic 
patch management, uses default passwords and 
communicates in plain text. Poor source code, vulnerable 
design and improper configuration have also led to several 
major cyber incidents. 
 Another challenge with securing IoT from emerging 
cyber threats, is that public key infrastructure (PKI) 
solutions are often cost prohibitive and not scalable to 
realize the encryption requirements of IoT environments. 
Moreover, legacy systems and converged information 
technology (IT) and operational technology (OT) 
environments lack the necessary computer processing 
power to support some deployments of PKI. This is often 
seen with analogue equipment in substations and other 
critical infrastructures. Moreover, with PKI there is often a 
single authority that both issues and revokes the security 
certificate. If this authority is attacked and certificate is 
manipulated, all its users will potentially be vulnerable to 
cyber-attacks.  
 Thus, PKI must continue to evolve to secure IoT 
environments or a better solution needs to be scaled up. 
Blockchain keyless signature infrastructure KSI presents a 
potential path forward. KSI is a promising solution 
patented by Gaurdtime, one of the largest blockchain 
providers by revenue, which helps preserve the integrity of 
data exchanges and other digital transactions using a 
mathematical algorithm for authentication without the need 
for trusted keys or credentials.  KSI authenticates IoT data 
at scale, in real time, providing immutable transaction data 
without several of the challenges of PKI. The following 
image further describes KSI’s cryptographic hash function, 
highlight how the hash function can help prove the IoT 
device hasn’t change, preventing the disclosure of sensitive 
IoT data and providing cryptographic proof that can be 
proven. 
 Researchers at Pacific Northwest National Laboratory, 
Guardtime Guardtime, the United States Department of 
Energy (DOE), Washington State University, Tennessee 
Valley Authority (TVA), Siemens and the Department of 
Defense Homeland Defense and Security Information 
Analysis Center (HDIAC) are developing a KSI enabled 
blockchain solution to help secure distributed energy IoT 
environments found in modern electricity infrastructure. 
This is especially important because as we modernize our 
energy infrastructure, the speed, size and complexity of 
energy data and transactions exchanged increases 
exponentially. 

 
Figure 1. Gaurdtime’s KSI blockchain is based on Cryptographic 

Hash Functions (Johnson 2017). 

 
 
 To help overcome these challenges, blockchain keyless 
signature infrastructure technology provides a unique value 
proposition in its potential to help optimize and secure 
these critical data sets from emerging cyber threats.  AI 
enabled blockchain shows potential to enable critical 
energy delivery systems to be increasingly automated to 
respond to a naturally occurring weather event, cyber or 
cyber-physical hybrid attack, in a way that that some 
critical energy infrastructure functions become 
increasingly self-healing and resilient.  
 Blockchain’s digital ledger and cryptography signed 
transaction data may help increase the trustworthiness and 
integrity energy transactions. Combined with machine 
learning and AI enabled energy delivery systems, these 
systems may also have more control and flexibility in 
automating, monitoring and auditing of complex energy 
exchanges at the grid’s edge.       
 Combining AI and blockchain capability could also 
provide a real-time security response to unauthorized 
attempts to change critical EDS data, configurations, 
applications, and network appliance and sensor 
infrastructure.  Autonomous detection of data anomalies 
and reduces burden with normalized evidence across a 
unified timeline for incident analysis.  A data exchange 
platform using smart contracts for the automated trading 
and settlement of contracts in the electricity production 
value chain. 

Distributed Consensus Algorithm  
Blockchain is defined as a distributed data base or digitalledger 
that records transactions of value using a cryptographicsignature 
that is inherently resistant to modification (Tapscott 2016). 
Blockchain is a distributed database that maintains a 
continuously growing list of records, called blocks, secured 
from tampering and revision. Each block contains a 
timestamp and a link to a previous block. Blockchain-
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based smart contracts can be executed without human 
interaction (Franco 2014) and the data is more resistant to 
modification as the data in a block cannot be altered 
retroactively. Blockchain smart contracts are defined as 
technologies or applications that exchange value without 
intermediaries acting as arbiters of money and information 
(Tapscott 2016). 
 A keyless signature blockchain infrastructure (KSBI) 
differs from proof or work blockchain based crypto 
currencies as it is based around a concept of permission-
based blockchain - to provide widely witnessed evidence 
on what can be considered the truth, independently of any 
single party and while retaining complete confidentiality of 
the original data. Another unique characteristic that 
differentiates the KSBI from other distributed ledger 
solutions are its ability to scale to industrial applications to 
add one trillion data items to the blockchain every second, 
and to verify the data item from the blockchain within the 
next second. The ability to transact data at sub second 
speeds is essential to handle the increasing data 
requirements of a modern power grid (Mylrea et al. 2017). 
 KSBI is based on Guardtime’s patented technology 
keyless signature infrastructure (KSI_® which has been in 
production use since 2007, is employed by various world’s 
governments – i.e. Estonia and Defense primes in United 
States - and is beginning to see adoption in the private 
sector for application for their systems and networks. A 
KSBI may also help realize several cybersecurity and 
compliance goals for the energy sector, such as: 
 Smart contracts:  Smart contracts execute and record 
transaction in the blockchain load ledger through 
blockchain enabled advanced metering infrastructure 
(AMI). Blockchain based smart contracts may help 
facilitate consumer level exchange of excess generation 
from DER. This could provide  additional storage and help 
substation load balancing from bulk energy systems. 
Moreover, smart contract data is secured in part through 
decentralized storage of all transactions of energy flows 
and business activities (Mylrea et al. 2017). 
 Secure Data Storage in Cryptographically Signed 
Distributed Ledger:  Blockchain can help fill various 
optimization and security gaps and improve the state of the 
art in grid resilience by providing an atomically verifiable 
cryptographic signed distributed ledger to increase the 
trustworthiness, integrity and security of energy delivery 
systems at the edge. Blockchain can be used to verify time, 
user, transaction data and protect this data with an 
immutable crypto signed distributed ledger (Mylrea et al. 
2017). 

AI Enabled Blockchain Overview 
Certainly, AI enabled blockchain will be disruptive and 
replace jobs, especially traditional 3rd parties that are 
replaced by new consensus algorithms and distributed trust 
mechanisms. Energy aggregators and meter readers could 
potentially be replaced by a dynamic distributed ledger. 
Blockchain innovation will also create new energy jobs, 
value, and markets. Even as technology empowers humans, 
it also changes the relationship between man and machine, 
technology and organizations, society and innovation. 
Autonomous blockchain organizations may distribute 
power and leadership via cryptographic votes that establish 
equity against a contract or even mission statement. For 
example, future energy organizations may have 
stakeholders govern what type of energy mix they would 
like and have that preference or willingness to pay be 
capture in a smart contract. Blockchain AI empowered 
energy organizations might be increasingly autonomous 
made up decentralized contractors and investors with 
power to vote, invest and delivery services based on an 
immutable smart contract that captures who, what, when 
and where services are executed and shared in a transparent 
immutable ledger.  
 The notion of a “self-bootstrapped” organizations with 
crypto equities leveraging independently contractors 
guided by decentralized blockchain voting has been 
explored (Levine 2014).  Bit congress has established a 
blockchain based voting system. The country of Georgia is 
leveraging blockchain to facilitate real estate licensing. 
Estonia has established a privacy preserving secure virtual 
government using keyless signature infrastructure 
blockchain. These examples highlight how technology can 
help distribute trust and reduce redundancy in everything 
from billing to middle management, creating new value for 
organizations in an increasingly decentralized autonomous 
society. Reducing redundancy creates new value and more 
competitive organizations (Lawless 2017) 

Blockchain and AI Security Opportunity 
Blockchain and AI integration and innovation may present 
a more resilient and efficient path for decentralized cyber 
and physical devices to interactive, transforming modern 
infrastructure into array of smart autonomous systems of 
systems. Increased autonomy and control is essential to 
optimized the rapidly growing “Internet of Things” 
environment that Gartner has predicted to include 26 
billion devices by 2020 (Gartner 2013). 
 “Simple and easy to write contracts appear to be 
sufficient for many entirely digital transactions. But as 
these systems start to interact with the physical world, 
there is likely to be a need for greater intelligence and real 
world knowledge in making decisions. AI systems will be 
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needed to translate information from a wide variety of 
sensors into precise terms that smart contracts can act 
upon. In the other direction, contracts that lead to physical 
actions (such as delivery of items) will need to interface 
with human and robotic agents. For example, owner and 
operators of critical energy infrastructure might want 
insurance contracts against cyber-attacks and harmful 
weather conditions and a smart contract would need to 
determine when the payout event is triggered (Levine 
2014).   

Next Generation Energy Internet of Things 
Infrastructure 

These grid optimization, automation and resilience 
improvements are essential operations and design criteria 
as we modernize our power grid. However, cybersecurity 
is often an afterthought as vendors and end users prioritize 
functionality and cost, leaving our power grid, the 
backbone of our economy, potentially vulnerable to a 
cyber-attack.  This is especially true at the grid’s edge 
which continues to increase the size and speed of data 
being collected and exchanged in absence of clear 
cybersecurity and IoT standards and regulation. Thus, the 
grid lacks the necessary defenses to prevent disruption and 
manipulation of DERs, grid edge devices and associated 
electricity infrastructure. Moreover, as the smart grid 
increases its connectivity and communications with 
buildings, cyber vulnerabilities will extend behind the 
meter into “smart” buildings, which also have a host of 
documented cybersecurity vulnerabilities.  
 Blockchain technology can also be applied to the smart 
grid to help reduce costs by cutting out 3rd parties and 
increasing the arbitrage opportunity for individuals to 
produce and sell energy to each other. Smart contracts 
facilitate peer-to-peer energy exchanges by enabling 
energy consumers and procures to sell to each other, 
instead of transacting through a multi-tiered system, in 
which distribution and transmission system operators, 
power producers, and suppliers transact on various levels 
(Mylrea and Gourisetti 2017). In April 2016, one of the 
first use cases was demonstrated where energy generated in 
a decentralized fashion was sold directly between 
neighbors in New York via a blockchain system, 
demonstrating that energy producers and energy consumers 
could execute energy supply contracts without involving a 
third-party intermediary; effectively increasing speed and 
reducing costs of the transaction (PWC 2017).  
 In addition to potential cost savings, transaction data 
might be more secure through decentralized storage and 
multifactor verification of transactions in the blockchain 
distributed ledger (PWC 2017).  Blockchain reduces the 
need for 3rd parties to process transactions: Electricity is 

generated � Consumer buys the electricity � blockchain 
based meters update the blockchain, creating a unique 
timestamped block for verification in a distributed ledger: 
1) At the distribution level, system operators can leverage 
the blockchain to receive energy transaction data to charge 
their network costs to consumers; 2) Reduces data 
requirements and increases speed of clearing transactions 
for transmission system operators as transactions could be 
executed and settled on the basis of actual consumption 
(Mylrea and Gourisetti 2017). 
 Smart contracts execute and record transaction in the 
blockchain load ledger through blockchain enabled 
advanced metering infrastructure (AMI). Blockchain based 
smart contracts can facilitate consumer level exchange of 
excess generation from DERs, EVs, etc. This could 
provide additional storage and help substation load 
balancing from bulk energy systems. Moreover, smart 
contract data is secured in part through decentralized 
storage of all transactions of energy flows and business 
activities. This highlights the disruptive potential for 
blockchain on energy markets through the introduction of a 
more autonomous and decentralized transaction model. 
This peer to peer system may reduce or even replace the 
need for a meter operator if the meter blockchain is shared 
with the distribution system operator. 
 Currently, the power grid lacks the necessary security 
and resilience to prevent cyber-attacks on DERs, grid edge 
devices and associated electricity infrastructure. Cyber 
vulnerabilities and interoperability challenges also extend 
behind the meter into building automation and controls 
systems. Applying blockchain could help increase fidelity 
and security of buildings to grid communications. 
Moreover, multiple customers can leverage the same 
widely witnessed blockchain to cryptographically verify 
the other entities data when needed, creating a distributed 
trust mechanism. Blockchain may also help solve several 
optimization and reliability challenges that have been 
ushered in with grid 
modernization.  
 Currently, time-lags for payment and uncollected bills 
leaves value on the table and the real cost associated with 
the energy value chain is not captured. Blockchain can 
record real time net loads and smart contracts execute 
customers distributed generated sales and purchases. 
Currently, grid operators lack visibility and control of real-
time power flows and injections from DERs and 
distributed generation customers. Blockchain can help 
optimize network data and record residual energy at the 
substation level. Increasing the fidelity and control of 
utility data will also help settle with bulk systems as well 
as negotiate future contracts. 
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Conclusion and Future Research 
Blockchain, AI and IoT have a lot of buzz right now. 
Reading the news one might assume that blockchain is a 
panacea for all that ills us – climate change, cyber security, 
volatile financial systems. AI articles suggest that robots 
are coming and may take our jobs. Internet of Things or 
IoT cyber incidents remind us that everything is 
increasingly connected to the internet and collecting and 
exchanging data that is potentially vulnerable. While these 
are disruptive in their own way and create some exciting 
new opportunities, many challenges remain. Several 
fundamental policy, regulatory and scientific challenges 
remain before blockchain realizes its disruptive potential. 
This sections explores some of the challenges as they relate 
to block chain’s application to the array of things 
 Applying AI Blockchain to modernize electricity 
infrastructure also requires speed, agility and affordable 
technology. AI enhanced algorithms are not always cheap 
and often require prodigious data sets that must be broken 
down into a code that makes sense. However, there is a lot 
of noise or distracting data being exchanged in electricity 
infrastructure, making it difficult to identify what caused 
an anomaly – what is a software hire, cyber-attack, weather 
event, all the above? It can be very difficult to determine 
what normal looks like. Thus, developing an AI enhanced 
grid requires breaking down the data into observable 
patterns, which is also very challenging from a cyber 
perspective as threats are complex, non-linear and 
evolving. 
 New blockchain opportunities are also accompanied by 
the lack of policy, legal and regulatory frameworks. For 
example, even if some intermediaries are replaced in the 
energy sector, there still needs to be schedule and forecast 
submitted to the transmission system operator for 
electricity infrastructure to be reliable.  Another challenge 
is incorporating individual blockchain consumers into a 
balancing group and having them comply with market 
reliability and requirements and submit accurate demand 
forecasts to the network operator. Managing a balancing 
group is not a trivial task and could potentially increase 
costs of managing the blockchain. To avoid costly 
disruptions, blockchain autonomous data exchanges, such 
as demand forecasts from the consumer to the network 
operator will need to be stress tested for security and 
reliability before deployed at scale. 
 Applying blockchain to modernizing and secure 
electricity infrastructure also presents several cyber 
security challenges.  For example, Ethereum based smart 
contracts provide the ability for anyone to write electronic 
code that can be executed on a blockchain. For example, an 
energy producer or consumer agrees to buy or sell 
renewable energy from a neighbor for an agreed upon price 
that is captured in blockchain based smart contract. AI 

could help increase the efficiency and automate the auction 
to include other bidders and sellers in a more efficient and 
dynamic way, but this would require a lot more data and 
analysis of that data to recognize discernable patter in that 
data to inform the AI algorithm of the smart contract.  
 This also requires the code of the blockchain to be more 
resilient to cyber-attacks. Previously, Ethereum has shown 
to have several vulnerabilities that may underline the 
trustworthiness of this transaction mechanism. 
Vulnerabilities in the code have been exploited in at least 
three multi-million dollar cyber incidents.  In June 2016, 
DAO, was hacked exploiting vulnerable smart contract 
code and extracting approximately $50 million dollars. In 
July 2017, vulnerable code in am Ethereum wallet was 
exploited to extract $30 million dollars of cryptocurrency. 
In January 2018, hackers stole roughly 58 billion yen 
($532.6 million) from a Tokyo-based cryptocurrency 
exchange.  Coincheck Inc. This incident highlighted the 
need for increased security and regulatory protection for 
cryptocurrencies and other blockchain applications. The 
Coincheck hack appears to have exploited vulnerabilities 
in a “hot wallet” which is a crypto currency wallet that is 
connected to the internet. In contrast, cold wallets, such as 
Trezor and Ledger Nano S, are cryptocurrency wallets that 
are stored offline.   
 Despite being a centralized currency, Coincheck was a 
centralized cryptocurrency exchange with a single point of 
failure. However, the blockchain shared ledger of the 
account may potentially be able to tag and follow the 
stolen coins and identify any account which receives them 
(Fadilpašić and Garlick 2018).  Storing prodigious data 
sets that constantly growing on a blockchain can also 
create potential latency or bloat in the chain, requiring 
large amounts of ram and memory on a server. These 
requirements for ethereum based smart contracts have 
grown over time and the block takes a longer time to get 
processed.  For time, sensitive energy transactions this may 
create speed, scale and cost issues of the smart contract is 
not designed properly.  
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Abstract

This paper introduces the notion of a smart data layer
for the Internet of Everything. The smart data layer can
be seen as an AI that learns a generic representation
from heterogeneous data streams with the goal of un-
derstanding the state of the user. The smart data layer
can be used both as materials for design processes and
as the foundation for intelligent data processing.

IoT and Interaction

One of the more ominous visions of the future Internet of
Everything (IoE) is a swarm of loosely integrated systems
(e.g. the smart home, social media apps, health and fitness
wearables, etc.) that constantly crave our attention with ap-
plications bombarding us with notifications and alerts, and
devices demanding administration and care. Rather than im-
proving quality of life and efficiency of work, such exces-
sively attention-seeking technology will lead to cognitive
overload, adding both stress and complexity to everyday life.
The main problem, and risk factor for such a future tech-
nological dystopia, is that different forms of smart technol-
ogy do not blend and cannot interface with one-another, and
most importantly, end-users have to learn how to interact
with each of the different systems, one by one. In some
sense, this is like personal computing before the desktop
metaphor, the Internet before the web, or mobile computing
before touch interfaces. In short, Internet of Things (IoT)
(and IoE) lacks an appropriate interface paradigm.

As one step towards a solution to this interface problem,
we investigate the possibility of defining and applying a
smart data layer that integrates heterogeneous data streams
into a coherent representation that can serve as the founda-
tion for further, intelligent, data processing. The idea is not
to provide a uniform communication protocol between ap-
plications and devices, but to provide a representation of the
state of the user, to enable more intelligent interface design.
The problem we would like to mitigate is for applications
and devices to know when and how to interact with the user.
As a simple example, if the user is in a very agitated state,
we probably should not send loud audible notifications that

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the milk in the refrigerator is almost finished and needs re-
filling, or for that matter send intense tactile vibrations indi-
cating that the user has been stationary for too long and that
it is now time to get up and move. Our vision is a data layer
that learns from the user’s behaviors, and that is empathetic
to both the current state of the user and the current state of
the system. This position statement describes our current re-
search path, and provides some background and motivation
for the smart data layer.

AI and Representation Learning

AI will be a critical component in the development of IoT
and its various flavors, not only for making sense of the in-
terconnected systems, but also – and equally important – for
making sense of the user of the system. The ultimate goal
is to understand the user; where is the user, what is the user
doing, how is she feeling, what are her goals? In short, what
is the state of the user? Note that we use the term “state” in
a broad sense; it can encompass anything from a geographi-
cal location, to a task, to the emotional state of the user, to a
prediction of the user’s next action.

Solving individual tasks such as locating the user, classi-
fying her behavior, or detecting her sentiment are interest-
ing, and potentially useful, tasks in their own right, but they
require an ontology to start from. We have to know which
are the possible locations, behaviors and sentiments in order
to determine which of them the user belongs to. Defining or
acquiring such ontologies is typically a task-specific prob-
lem, as is the optimization of classifiers. We do not believe
that we (at present) can design or learn one generic ontology
and one generic classifier that can solve any problem. How-
ever, we do believe that we can learn one generic representa-
tion that can be common for all these problems. Ideally, this
representation will capture the causal factors of variation in
streaming data of different modalities and rates.

The idea of a generic representation that can be used for
various different purposes is not novel in itself, see Bengio
et al. (2013) for a review. A good representation simplifies
tasks, and a desirable property of a representation is the sep-
aration of the causal factors that gives rise to a phenomena.
Digital images are an example of representations that are dif-
ficult to use directly for solving computer vision tasks. The
pixels in the two-dimensional grid explain very little of the
scene that generated them. A representation that directly en-
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codes the objects in the scene, their state and surroundings
would make automatic decisions based on the scene much
simpler. Representation learning can be thought of as a gen-
eralization of this inverted rendering process, where we in-
fer what the causal factors were that generated the data us-
ing methods from statistical learning. Popular methods in-
clude latent variable models, deep neural networks and com-
pressed sensing.
Several researchers have published papers in this research

direction; one example is Collobert et al. (2011), who pro-
pose a unified neural network architecture that can be ap-
plied to natural language processing and learns shared rep-
resentations of language useful for solving a variety of tasks.
The field of deep learning to a large extent embodies the idea
that it is possible to learn a compositional, generic represen-
tation that can be used to solve many different problems; in
image recognition for example, it has become customary to
use the unit activations of deep neural networks trained on
very large datasets (such as AlexNet (Krizhevsky, Sutskever,
and Hinton 2012) or ResNet (He et al. 2016)) as the basic
representation when building novel classifiers. This method
of transfer learning is useful where representations learned
on large data sets can be used to solve related tasks where
data is scarce, see Oquab et al. (2014).
Another recent example of representation learning is the

StarSpace framework ofWu et al. (2017), which is a general-
purpose neural network representation that can solve a wide
variety of problems.

(Word) Embeddings as a Starting Point

Our vision of the smart data layer builds on the prior art dis-
cussed in the previous section, and is inspired by the devel-
opment of word embeddings for natural language processing
(Turney and Pantel 2010). Embeddings are low-dimensional
representations that compress and encode co-occurrence in-
formation from the input data. A co-occurrence event is sim-
ply the simultaneous occurrence of two (or more) variables.
In language data, the variables are typically words, and a
co-occurrence is simply a sequence of words. The point of
embedding co-occurrence information in a low-dimensional
representation is that the resulting representation generalizes
from the observed co-occurrence events, and enables quan-
tification of distributional (as in a word’s distribution over
the data) similarity. Since distributional similarity is a proxy
for semantic similarity, embedding models can be seen as
computational models of meaning (Sahlgren 2006).
Word embeddings have become ubiquitous in both nat-

ural language processing and machine learning. However,
current embedding models rely on a severely limited, and
somewhat naı̈ve, ontology. Most current models are con-
fined exclusively to text data, with words being the only lin-
guistic items under consideration. The fact that two words
tend to co-occur is admittedly a useful clue to the meaning
of the words, but there may be other types of contextual in-
formation that can provide equally useful clues for modeling
meaning. In natural discourse, tone of voice, gestures, facial
expressions, even time and location are important contextual
factors that influence semantic processing. It seems reason-

able to assume that this should apply also to computational
models and AIs that aim to learn language.
Some recent studies have begun to investigate the pos-

sibility to extend the ontology of the co-occurrence model
with other modalities such as vision and sound (Bruni,
Tran, and Baroni 2014; Vijayakumar, Vedantam, and Parikh
2017). Our aim is more ambitious; one of the goals of the
smart data layer is to extend current representation learning
models with multi-modal contexts that encompass not only
vision and sound, but also other types of contextual data,
such as spatio-temporal information, various types of sensor
data and infrequently occurring instantaneous events. If our
ultimate goal is to build true AI, its representation must be
built from more senses than just text.

The Data Sandbox

The type of representation learning mechanisms discussed
in the previous sections are data-intensive and require large
amounts of data to learn from. We expect the future IoTs
to produce tsunamis of data where such models will thrive.
However, getting access to such amounts of controlled data
for development purposes is currently more difficult. We use
the notion of a data sandbox (indicating that we start with
baby steps) for collecting heterogeneous multimodal data.
The data sandbox collects information from a user’s com-
puter, and stores the following information:

• Text on the user’s screen (using the Google Cloud Vision
API1).

• Text from the user’s keyboard.

• Transcribed speech (using PocketSphinx2).

• Sentiment based on the user’s facial expression (captured
by the computer’s camera, and using the Google Cloud
Vision API).

• Sentiment based on faces on the user’s screen (using the
Google Cloud Vision API).

• Labels and categories recognized on the user’s screen (us-
ing the Google Cloud Vision API).

• Various sensor data, including:

– CPU usage.
– Memory and disk usage.
– Battery life.
– Temperature.

This heterogeneous data will serve as the foundation for
our initial experiments on multimodal representation learn-
ing. The idea is to extend embedding models with extralin-
guistic contexts, such as sentiment labels from facial expres-
sions, or even CPU usage and core temperature. Although
the amount of data that we expect to be able to collect using
the data sandbox is too small to allow for more advanced
techniques such as deep learning or compressed sensing, we
plan to use statistical correlation measures to find interest-
ing patterns in the data. As an example, imagine that we

1https://cloud.google.com/vision/
2https://github.com/cmusphinx/pocketsphinx
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use a word embedding technique to learn a concept such
as soccer based on the text on a person’s screen.3 Next,
imagine that we notice that the soccer concept often co-
occurs with positive facial expressions captured by the com-
puter’s camera and low CPU usage. This pattern constitutes
a higher-order concept, which we might label something
like taking a break from work. If instead we no-
tice both high CPU and memory usage in conjunction with
the soccer concept, we might instead infer that the user
is in a state of waiting for the experiment to
finish.

Possible Use Cases

Producing representations of diverse, textual and non-
textual, data provides the possibility to represent user ac-
tivity in diverse and interesting ways. Yet how could this be
made actionable to have an influence on user or system be-
havior?
One approach taken by Intelligent User Interface research

has been to make use of Bayesian models of user activ-
ity, “automatically” activating system actions based on pre-
dicted desired user outcomes. This has been used to, for ex-
ample, allow systems to achieve a basic understanding of
user intention based on context, and to perform different ac-
tions at different times in response to the same input (Wilson
and Shafer 2003). Other work has made use of one of our
data streams (text scraped from the user interface) to predict
users’ ongoing “tasks”. While potentially interesting, this is
a heavily reductionist model of user activity, and user state
more broadly which is multifaceted. Clearly, a general rep-
resentation of user activity has the potential to work in more
complex ways.
In conceptualizing different uses of the representations,

we have worked with open concepts applicable to varied
contexts. Taking a historical view of context, distinctive
ways of visualizing user activity from the data streams col-
lected could support searching of past activity by users
through looking for similarities between current activity and
past activity events. The same interaction paradigm could af-
ford the exploration of activity between users, or groups of
users, and could be expanded to not only show the temporal
relationship to the membership of a particular class of user,
but with expanding the interface to expose the dimensions
which relate to each classification. This could show that in
one dimension an individual may be an outlier, but similar to
many others in the rest of the vector representing this user.
Diverse representations might also enable a richer under-

standing of contextual inactivity and object appropriation.
The insights into user relationships with and through things
that this would provide could allow for the development
of more sustainable products and systems. A deeper under-
standing of relationships might also inform a more mean-
ingful design of interactional dialogs with conversational

3Such concept learning could be accomplished e.g.by clustering
the words in an embedding model, resulting in clusters of words
that have a semantic relation. A soccer cluster might be populated
by words such as “offside”, “ball”, “goal”, “kick” and “Zlatan” (the
name of a famous Swedish soccer player).

and embodied agents that appropriately act and enact with
users and on their behalf. Additionally, a smart data layer
might also support the design of experiential narratives that
assist multiple user intentions with multimodal interactions
for immersive or embodied user experiences. More broadly,
building representations of users’ ongoing activity may pro-
vide ways of supporting ongoing activities, such as speech
recognition, Internet search, and advertising. However, we
suspect that this would not be in the classic prompting of
activity, but in different classes of activity that fit more with
the ongoing modeling of action. The openness of these ini-
tial concepts enables future investigations into specific use
cases across many contexts, from idiosyncratic routines to
affective health to enterprise workflows, in which when and
how to interact with the user requires a careful consideration
of what can be understood from the systems’ understanding
the user.
In conclusion, while many of these envisioned use cases

for a smart data layer might break with the expected utilitar-
ian forms of use, we propose that in designing such a layer
to support more playful, meaningful, and contextually ap-
propriate applications it can be a driver for the development
novel paradigms of interaction for the Internet of Things.
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Abstract

We argue that the next generation of the IoT is about a web of
smart entities. It is about real-time data. It is about data from
various sources, from sensor data to data from smart entities.
A key feature of the web of smart entities is accurate models
which are continuously updated with live data. The models
will be given authority to act and as such lead to yet unfore-
seen levels of automation. Models will be interacting with
each other in more or less tightly coupled feedback loops,
again, raising the level of automation. We see the smart enti-
ties as polite assistants, designed to make our lives more con-
venient. Something that will gracefully bow out, when asked
to do so. In this context, we will address several modes in
which to interact with and control the resulting automation.

Introduction

We believe that a large aspect of the next generation of the
internet of things are learned models augmented with real
time data that are authorized to act on our behalf. We explain
and justify our vision in detail, as well as the resulting hyper
automation.

(Gubbi et al. 2013) present a vision in which they empha-
size the importance of cloud computing; we agree with their
assessment. On page 1646, the authors state that ”This plat-
form [i.e. cloud computing] acts as a receiver of data from
ubiquitous sensors; as a computer to analyze and interpret
the data; as well as providing the user with easy to under-
stand web based visualization. The ubiquitous sensing and
processing works in the background, hidden from the user.”
Again, we could not agree more and explain in more detail
what sort of processing may take place in the background.

(Weiser, Gold, and Brown 1999) defines a smart environ-
ment as ”the physical world that is richly and invisibly inter-
woven with sensors, actuators, displays, and computational
elements, embedded seamlessly in the everyday objects of
our lives, and connected through a continuous network.” We
will generalize this to emphasize real-time data that enables
one to build real-time models. In this context, we will argue
that there is real-time data that comes from sources other
than sensors.

(Stankovic 2017) sees a ”... significant qualitative change
in how we work and live.” We will expose some of those

Copyright c© 2018, Association for the Advancement of Artificial
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changes and further refine his assessment. He continues by
stating that ”We will truly have systems-of-systems that syn-
ergistically interact to form totally new and unpredictable
services.” We agree with this assessment and attempt to shed
some light on the kinds of services we may expect.

From a technical perspective, this paper takes off where
the books ”The internet of things” (Greengard 2015) and
”Precision” (Chou 2016) left off. The IoT is an exponen-
tial technology. Now is the time to expose what will happen
in the not so distant future. We need to debate and decide
how our data gets used. Can we design devices and appli-
cations so that the entities which generate the data own the
data and have complete, explicit control of it? Computer sci-
entists and people interested in this technology need to work
with businesses and governments to define standards and
best practices for this vision to take off. For some aspects,
we need to have a legal framework in place. From a perspec-
tive of analyzing the impact of the IoT, this paper continues
to refine the ideas presented in the book ”How IoT is Made”
(McDonald, Pietrocarlo, and Goldman 2015).

(Tucker 2014) and (Siegel 2016) touch on aspects related
to the future of the IoT. They focus on big-data and pre-
dictive analysis. Predictive analysis can reveal things that
may be shocking (Duhigg 2012). However, we focus on au-
tomation that results when models that learn specifics about
someone or something’s behavior are empowered to act.

In this paper, we explain smart entities and present a com-
prehensive vision of the next generation of the IoT in the
context of health. This enables us to analyze the sort of fu-
ture we wish to formalize. It will be sufficiently powerful to
generalize to other domains of the IoT. We present our the-
ory of the next generation of the internet of things, which
we see as a web of smart entities. We discuss the automation
that results when models built on data are empowered to act
and we discuss ways of acting in a hyper-automated world.

Smart things

It has been argued that the internet of things has a PR prob-
lem (Eberle 2016). Rather than talking about the IoT, we
should be talking about smart things, such as smart cars or
smart cities which are powered by the internet of things.
We agree with this assessment and so do others (Bassi et
al. 2013; Willems 2016). At the most basic, the IoT is
about connecting all sorts of things to the internet. Those
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Figure 1: Current state of the art in the Internet of Things

things, whether washing machines, cars, our bodies or our
food (Heikell 2016) produce data, in particular, real time
data. Many times this data is useful on its own, for example
a coffee machine might indicate that it is in the on position.
This would be useful for anyone leaving for a vacation who
is worried whether they left the coffee machine on.
Many items considered to be part of the IoT space can

also receive input. Going back to the coffee machine, one
could, or better yet, one’s calendar could instruct the coffee
machine to make coffee at some specified time. A more so-
phisticated example is advertised by Philips’ Hue light bulb;
it is designed to respond to mood information and the beat
of the music one is listening to (Philips 2016). Since those
devices can process information, they are oftentimes called
smart, hence, smart homes and smart cities.
While many times, the data generated by devices is useful

on its own, value and insight can be generated by building
models of the data. At the most basic, a model of a sen-
sor may be used to interpolate missing data or determine
whether data is out of an expected range and as such may be
faulty. At a higher level, models of data can be used to pro-
duce considerable value. Cummins Engines, the largest in-
dependent manufactures of diesel engines, uses telematics,
i.e. real-time engine data to build real-time models of how
their engines actually perform. These models are then used
by Cummins in several ways. By running live engine data
against the model, they can ascertain the general health of a
particular engine. By using predictive analysis, Cummins is
able to predict various scenarios ruinous to an engine and as
such is able to alert fleet operators, in real time about fault-
codes and their significance on the continued operation of
the engine (CumminsEngines 2016).
We consider the Cummins example to be the state of the

art with regard to current practice of the internet of things,
in the sense that robust and repeatable solutions in this mold
exist. This state of the art is captured in figure 1.

A Vision of the next generation of the IoT

The current generation of the IoT consists primarily of ho-
mogenous systems, i.e. systems that typically do not interact

with systems external to them. For example, a home security
system might interact with several sensors and perhaps with
a dedicated sensor of another company’s system. However,
typically interactions with systems of other companies are
limited and form an exception rather than a rule.
In the next generation of the IoT, we see many different

systems interact to produce data and information. They will
be used to seamlessly manage many aspects of businesses
and of people’s lives. They are in essence heterogeneous
systems. Perhaps the best way to characterize the next gen-
eration is by describing a rich extended example. We pick
the domain of personal health. While the next generation
of the IoT will impact all aspects of people’s lives, this do-
main is sufficiently complex to expose pertinent aspects of
the web of smart entities. We should point out that the fu-
ture of the IoT cannot be seen in isolation; it is imperative
that advances in the IoT be seen in the larger context of ad-
vances in technology in general. This includes fields such as
sensors, miniaturization of chip technology, cloud comput-
ing and Artificial Intelligence.

A Future scenario of IoT and health

In this section, we envision a future in which a person’s
health is maintained at an optimal level. We will address
the following aspects of health maintenance: monitoring the
body with Nano and Macro devices, diet, exercise, sleep,
mental and physical health, health care as well as the use
of artificial intelligence and cognitive assistants to enable
physicians to make proper diagnoses and recommendations
for treatment options. There will be many tight feedback
loops.

Exercise The IoT made great strides measuring exercise
activities. Additionally, many wearables can automatically
sync exercise data to various web-sites. It is fair to state that
a small set of wearables will enable a typical user to record
an accurate picture of their exercise activities.

Diet When it comes to entering diet information, much of
the data entry is manual at this time. Websites such as my-
fitenesspal.com take advantage of the fact that many people
are creatures of habit. They simplify the data entry process
by giving the user the ability to select from prior entries
rather than having to re-enter detailed information about
a dish. Another way to automate the process of maintain-
ing diet information is by tying a meal planner to a site
that maintains information about a person’s diet. Websites
like yummply.com offer diet information associated with a
recipe. We imagine that restaurants, by way of an itemized
bill augmented by nutrition information, will soon enable the
automatic entering of diet information to diet management
software. Think of augmenting Expensify.com with diet in-
formation and a plug-in for your myfitnesspal.com account.

Feedback loop: Fitness Given diet and exercise data, we
can now determine whether a targeted balance of exercise
and diet has been reached. Websites such as fitnesspal.com
keep track of past exercise and diet activities and use var-
ious graphics to indicate the degree to which they are bal-
anced. We now have a basic model of a person’s physical
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fitness. In the future, we see models that are empowered to
act, either by us, or by entities external to us, such as health
insurance companies. We envision that by taking advantage
of automated devices and the IoT, the model is asked to en-
force dietary restrictions. For example, it could refuse to pre-
approve a meal in a restaurant that is judged as not fulfilling
set dietary goals. Alternatively, the model could suggest a
walk or bike ride instead of the use of a car or public trans-
portation. It could go as far as asking the car to refuse to
start. Alternatively, a doctor’s visit might be scheduled, if
fitness goals are not met in a consistent fashion. In the ex-
treme, insurance rates may go up or the person may be loose
health insurance coverage entirely.

Recommender system Given models of people’s behav-
ior, we are in a position to make recommendations. Right
now, the yummly.com web-site makes recommendations
based on preferences entered by the user. We imagine that in
the future, recommendations can be made based on match-
ing a user’s recipe usage to those of others. This would be
similar to how Netflix and Amazon.com recommend movies
and goods. Similarly, based on a user’s exercise patterns, and
patterns that are similar to them, we imagine recommenda-
tions for modifications, additions or substitutions of exercise
regimes.

Sleep Sleeping takes up about one-third of people’s lives.
We know that sleep deprivation is a known form of tor-
ture. As such, it is important to arrange that one gets suf-
ficient sleep. With the creation of smart beds and wearables,
it is possible to monitor people’s sleeping patterns. A model
of sleeping patterns informs whether one is getting enough
sleep each night.

Feedback loop: Restful living The sleep model can inter-
act with several systems in an attempt to regulate sleep. For
example, it could be empowered to regulate the temperature
in the bedroom. Additionally, it could interact with the meal
planner to detect foods or drinks that are not conducive to
sleep. In this context, it could merely inform the user or it
could be empowered to remove or rescheduled such items
to earlier in the day. The sleep model could interact with the
calendar to perhaps move certain kinds of physical exercises
that are detrimental to sleep.

Mental health We know that mental health is as impor-
tant as physical health. The IoT will enable us to monitor
and gauge our mental health as well. There are several as-
pects that can be measured: kinds and duration of mental ac-
tivities. For example, by consulting a person’s calendar, or
some equivalent activities log, one can determine whether
someone reads books, completes puzzles, engages in social
activities, or has other creative pursuits. We envision that
someone will soon develop a working laugh-o-meter app
for smartphones, providing useful information on a person’s
mental health.

Feedback loop: Mens sana in corpore sano With an ade-
quate model of people’s mental health, one can now develop
a more complete model of a person’s health. Similar to fit-
ness models, initially, a health model will likely just report

on a user’s health balance and may make recommendations.
However, here too, we see a large potential for automation.
This may be as simple as dynamically injecting physical or
recreative mental exercises into a person’s calendar, based
on real-time data. In this context, we know that physical
activity has a significant impact on mental health, as such;
there is another feedback loop at play.

Physical health To add to exercise data, there are sen-
sors such as pulse monitors, blood pressure monitors, wire-
less scales which give a fairly clear picture of many peo-
ple’s general health. If we include implanted devices, such
as defibrillators, pace makers and blood glucose monitors,
a good picture of physical health emerges even for people
with major illnesses. Looking ahead, people proposed Nano-
devices (Akyildiz, Jornet, and Pierobon 2011) which when
placed in the body can provide more fine-grained monitor-
ing of people’s health or can be used to treat diseases such
as cancer (Gaudin 2009). In this context, people are inves-
tigating challenges and opportunities of connecting Body
Area Networks and other external gateways with in-body
Nano-devices (Dressler and Fischer 2015). Nano-devices
are expected to communicate, among others, on the molecu-
lar level. This communication has a very high latency time,
something on the order of 12 hours and it is not necessarily
reliable. As such, multiple Nano-devices would be used so
as to get a more reliable picture. Think of how google maps
aggregates data to get reliable information for traffic flow.

Automatic scheduling of doctor visits Combining a real-
time accurate model of physical health with best practices in
health care, we imagine that the model will be empowered to
make appointments with various health care professionals as
necessary. Conversely, some office visits will likely be elim-
inated completely. Many times, when our children are ill, we
know that they need an antibiotic. Perhaps the systems and
the regulations about prescribing medication will change so
that some medication can be prescribed based on real-time
data and best practices. An interesting side effect of both
scenarios would be the effect it would have on how doctors
and healthcare professionals spend their time. According to
the New York Times, doctors find it hard to spend more than
8 minutes per patient visit (Chen 2013). With the ability to
measure blood pressure, weight, run blood tests and other
simple tests through connected devices and possibly even
get prescriptions based on these tests, there will likely be a
drop-off in patient visits. This will allow doctors to spend
more time with patients who have serious illnesses.

Epidemics Automatic collection and consolidation of
health data will enable public agencies to detect developing
trends in real-time (Jalali, Olabode, and Bell 2012). A cru-
cial benefit in formulating a response, as in those situations,
time is of the essence.

Emergencies With real-time data, we can imagine the au-
tomation of emergency responses. This data may be sourced
from wearable devices or from devices external to us. Con-
sider a car crash, based on data from wearable as well as
telematics of all involved parties, the severity of a crash can
be assessed and the need for medical assistance evaluated.
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If emergency assistance is deemed necessary, pertinent in-
formation about the patient should be sent to the paramedics
and the person’s physical health model should interact with
the hospital’s scheduling system. Finally, the model could
alert family members and co-workers.

Reasoned Input Another form of real-time data is input
by a health care provider. While the recommendation, i.e.
data provided by a physician is not as frequent as that of a,
say, a wearable device, it nevertheless is real-time data. This
is particularly true with advancements of tele-medicine. In
this case, the input to the physical health model comes from
an informed actor. Another kind of input may come in the
form of revised nutrition or exercise guidelines, such as is-
sued by the U.S. Department of Health and Human Services.

Information and support In today’s health care world,
patients and physicians are seen as partners. Many patients
want to know more about their condition or feel that they are
in charge of their health. As such, we imagine that if a model
determines that a person has a certain illness; it may make
information about that condition available to that person.

Cognitive Assistants Cognitive assistants, as proposed by
IBM (KellyIII 2015), are designed to digest vetted data to
provide additional information. IBM sees cognitive assis-
tants as ”wise counselors” (IBMWatson 2012) to experts,
such as oncologists. As IBM sees it, ”IBM Watson, through
its use of information retrieval and natural language pro-
cessing, draws from an impressive corpus of information,
including MSK [Memorial Sloan-Kettering] curated litera-
ture and rationales, as well as over 290 medical journals,
over 200 textbooks, and 12 million pages of text. Watson
for Oncology also supplies for consideration supporting ev-
idence in the form of administration information, as well as
warnings and toxicities for each drug.” (IBMWatson 2016).
In addition to providing potentially better treatment options,
information about treatment options informs the model of
a person’s health about potential side-effects and the likeli-
hood for success. Both are important pieces of information
as they may affect a person’s physical and mental health.

Artificial Intelligence There are a few ways in which ar-
tificial intelligence techniques will be helpful. It is to be
assumed that when gathering data from different scenar-
ios to form an overarching model, that there will be incon-
sistencies. Detecting and possibly resolving such inconsis-
tencies can be accomplished with AI techniques such as
proof checkers. In the example about sleep, perhaps one
person needs to have lower temperature than their partner’s
preferences. Such constraints could be resolved or at least
smoothened through constraint satisfaction techniques.

Feedback loop: Overall health We have shown how mul-
tiple sources of real-time data are used to build real-time
models, which are used to monitor various aspects of a per-
son’s health and manage some of those aspects as well as
their overall health in a seamless fashion.

Feedback loop: Insurance companies We have alluded
to bringing insurance companies into the loop. While people

may not mind that those who exercise regularly obtain bet-
ter insurance rates, the big question is how much informa-
tion to share with health insurance companies, for fear that
coverage may be dropped or that insurance rates increase in
an unreasonable fashion. Assuming guaranteed health cov-
erage, or even assuming that people by and large wish to lead
healthy lives, a sophisticated model of a person’s health with
multiple real-time data based feedback loops will by and
large ensure a healthy life. Assuming everyone is doing their
part in staying healthy; a compassionate person might argue
that their health care should be taken care of. A compas-
sionate person, feeling thankful that they are healthy, might
furthermore argue that people with serious pre-existing or
inherited conditions should receive all the health care they
wish to receive.

Towards a theory of the web of smart entities

In this chapter, we develop a theory of the web of smart en-
tities (WSE). We analyze the examples described in section
2 to justify the components of the theory. We show that this
web is about real-time data, real-time models, interactions
between them and models that are authorized to act. Addi-
tionally, we contrast the WSE and Big-data predictive ana-
lytics.

Real-time Data

Sensor data Without a doubt, a key aspect of the IoT and
by extension, the WSE is real-time data obtained from sen-
sors.

Aggregated Data If we look at Nano devices, due to their
brittleness, one needs to rely on aggregate data submitted by
them. Similar to how Google Maps ascertains traffic data, it
is simply the aggregate of data from many sensors. This data
is closer in precision to sensor data and it is automatically
collected in continuous time.

Generated Data If we look at how diet data is inputted
to systems; it is currently not generated by sensors. While
some diet data is entered manually, it is possible to transfer
data from existing resources, such as personal and external
databases. If we look at diet data, even though it is not gen-
erated by sensors, it is still real-time data. It is just that most
people do not eat continuously, rather at certain times of the
day. If a meal planner is used, then some of the data is known
ahead of time. Some of the data will be imprecise, due to the
fact that portion sizes served at home are not standardized.
Perhaps after a few manual inputs, the system learns about
individual appetites. Restaurants, by and large, have stan-
dardized portion sizes.

Knowledge There are many sources of knowledge, from
dictionaries to data inferred by various AI techniques. This
data is perhaps as much removed from sensors as any data
can be. This kind of data, especially data made available
through dictionaries is updated in real-time also, think about
Wikipedia. However, it is unlikely that this data gets pulled
on a continuous basis. Nevertheless, it will be pulled when
a need arises, such as when a person is diagnosed with a
certain illness and wishes to know more about it.
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Figure 2: Exercise data

Human Input Human input may be as mundane as enter-
ing information that currently cannot be read by a sensor, to
acknowledging information, to offering creative insight. If
we look at a physician, many times, their diagnosis will be
based on creative insight. While this data is not continuously
generated as a sensor might, it is still real-time data. Similar
to above, this kind of data is provided when the need for it
arises.

Real-time, accurate models

The defining criteria of the web of smart entities are accu-
rate, real-time models. In the past, models were built based
on educated guesses, experience or historical data. With
real-time data, models are continuously validated, refreshed
and refined by live data as described in the prior sub-section.
Equally important, the model building is automated.

Models Consider the data displayed in the histogram of
figure 2. It is real-time data for number of steps taken over
the course of a day. If we average this data over several days,
assuming that the user has a fairly regimented exercise pro-
gram, we will get a model of the exercise activities. Under
the given assumptions, the model will be very similar to the
histogram. If we assume that exercise patterns vary substan-
tially, then a model that captures exercise activities by time
of day may not be useful. Instead, one may have to be look
for more coarse grained patterns or simply look at the total
of exercise activities by day.
For a system that is balancing physical fitness, data on

exercise and diet totals by day would be sufficient. For a
system that is intended to be used to schedule exercise activ-
ities, a pattern of past behavior by minute or hour would be
useful, if the person likes to have a regimented exercise pat-
tern. If the person does not care, and this would be obvious
from the data, then exercise activities could be scheduled at
will.

Real-time models A real-time model is a model that is
continuously updated by real-time data. We imagine that in
some cases an overall average is desired and in other cases,

Figure 3: A model and its potential inputs

a bias towards more recent data is desirable. Equally impor-
tant to capturing real-time data are the definition of triggers
that detect events. Such triggers can be defined in cases the
real-time data deviates in noticeable ways from the data cap-
tured in the model. While some automation in the context of
the web of smart entities will be driven by procedures that
ingest data and models and act on the combined data, some
automation will be caused by triggers which would then in-
voke dedicated procedures.

Complexity of models Since real-time models are data
driven, models are as complex as the patterns in episodic
data. We imagine that some patterns in the data repeat over
and over again, while some might be considered an ex-
ception. Perhaps the best way to capture data patterns and
exceptions to them is similar to how case-based reason-
ing (Wikipedia 2016) stores information. A collection of
cases would be the model then.

Models produce data In this context, we see three addi-
tional data sources: other models, aggregate models and a
feedback loop from the model to the model itself. Figure 3
shows the potential inputs to a model.

Other Models We have seen several examples of data that
originates from models, such as diet and exercise data. A
model that is interested in balancing diet and exercise would
need to have access to those models. We imagine that the
model which balances diet and exercise would furthermore
interact with other models, such as calendars, cars, public
transportation and restaurants. We should note that in this
context, we use the term ”model” as shorthand for applica-
tions that maintain an underlying model of the data available
to them.

Aggregate Models Just as Google aggregates data from
individual cars, to construct a model of traffic congestion,
we can imagine cases in which we wish to aggregate entire
models. Consider models of exercise data. If we were inter-
ested in simply ascertaining the overall exercise activities of
the employees, we would only need to gather a single data
point of each employee. However, if we wish to ascertain
exercise patterns, perhaps in the context of scheduling gym
hours or to determine how big of a gym to build, then models
of exercise patterns are necessary.
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Figure 4: When models act, automation results

Feedback loop A feedback loop of a model to itself pro-
vides for the ability to fine-tune matching parameters. Sup-
pose that a model of a person’s food preferences is matched
to someone else or to a small set of those of others. A recipe
may be returned that the person likes. However, in case they
do not like it, it may be useful for the model to provide ad-
ditional matching parameters that may assist the recommen-
dation system to determine better matches. We think of how
case-based reasoning (Wikipedia 2016) matches new cases
to the case base. We imagine that something similar might
happen with prescription data. Based on actual use and the
effects they have on a person, medications can be fine-tuned
to a person.

Automation

In this section, we will explore the automation that results
when real-time models are empowered to act. This scenario
is depicted in figure 4.

Data validation The most basic form of automation is to
remove data that is judged outside of an expected range and
to complete data that is missing.

Managing learned behavior Once a model learned pat-
terns of behavior, it can be authorized to act on some-
one’s behalf. Suppose a model learned that every Tuesday
evening, it is pizza night. Suppose it also learned that a given
family always orders the same pizza. In that case the model
can order the same pizza, to arrive at the usual time. To
look at a more complex case, suppose that the model also
learned that the given family never orders pizza twice in a
row and that this family had pizza the night before. In that
case, the model could ask for input, or perhaps act on some
other learned behavior. Notice that in this case, the model
acts on learned behavior, as well as real-time data.

Balancing A more complex use of a model comes about
when models interact. For example, if the model of a per-
son’s exercise activities interacts with a model of a person’s
dietary intake, physical fitness can be balanced to specifica-
tions. If we empower the fitness model to make decisions,
we can dynamically adjust a person’s fitness. For exam-
ple, the fitness model may encourage a walk or bike ride
rather than the use of a car or public transportation. Perhaps,
they alternatively recommend a dish that lowers a person’s
caloric intake.

Seamlessness There is data everywhere. In particular, it is
likely that models will gather data about particular activities
in different contexts. For example, food preferences should
be gathered not just from meals prepared at home, but also
from meals ordered at restaurants or consumed in other set-
tings. This way, an overarching and more informed model

can be built. Seamlessness comes about when an overar-
ching model is applied in different contexts. If the model
learned that someone likes their coffee black, then this is
how it should be prepared, whether at home, at work, or by
a coffee shop.

Recommendations Models of a person’s behavior can be
used to make recommendations based on matching to like
models. For example, diet preferences, just like the prefer-
ences that Netflix and Amazon gather about their customers,
can then be used to match similar models and based on those
matches, recommendations may be made.

Out-of-the-box recommendations Not everyone is en-
amored by recommendations made by Netflix, and some-
times, one may be outright puzzled by them. In particular,
the recommender systems described above are only as strong
as the imagination of those who have models judged similar
to the input model. An alternate way of making recommen-
dations is by using AI techniques, such as IBM’s proposed
cognitive assistants. Assuming a model about some aspect
of a person’s life, AI techniques will be able to search for
information that is not based on other people’s behaviors.

Smart substitutions The use of AI technologies and the
use of ontologies such as used in the context of the seman-
tic web enable smart substitutions. We see examples of this
when, based on dietary restrictions, alternate meals may be
suggested, or when certain kinds of exercises are recom-
mended based on availability or opportunity.

Interacting with automation

We described a highly automated world which is built on
real-time data and models that are continuously updated and
refined. It might be daunting to know that various computing
environments record every activity and build various mod-
els about them; kind of an alter ego. Perhaps, the comput-
ing environment knows you better than you know yourself.
This may be hard to take for many people. Will people feel
watched? Will they feel ”verklemmt?” How will all of this
affect creativity? Will people hide things from the model or
purposefully engage in activities to deceive it, as described
in (Orwell 1950)? Will people get used to ”big brother”
watching them? To which degree does the automation limit
what we can do, a point made by (Agamben 2010).
We attempted to give a reasonable view of the future,

which we see as largely positive. We see the WSE as in-
habited by polite assistants, designed to make our lives more
convenient. We envision automated assistants that gracefully
bow out, when asked to do so. As such, we envision, perhaps
too hopefully, a future in which people can choose the level
of interaction with the WSE. In particular, we would argue
that the ability to choose the degree of automation should be
a design feature, something that the user can explicitly man-
age and to a certain degree, something that the model antici-
pates. In the same context, the user should be able to control
what information is gathered about them and who has ac-
cess to it. Some models may not be as precise as they can
be, however, they will be designed to perform tasks within
the limits set by the user.
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We describe three primary ways of interacting with au-
tomation: autonomous, semi-autonomous and manual. Un-
doubtedly, there will be a spectrum of interaction patterns.

Fully autonomous

In this mode of interacting with automation, the system
makes all the decisions. For example, some people eat the
same dish on specific days of the week. This is behavior that
can be quickly learned. The meal planner can be authorized
to order dishes or the ingredients for them and arrange for
delivery at desired times (another learned behavior.) Simi-
larly, some people always order the same dish at a particular
restaurant. This behavior too can be quickly learned and ap-
plied appropriately. There are many other components of our
lives that have little to no variation. Many people order the
same toiletries, clothes, cars, take the same route to drive to
work, have the same weekly work schedule, and engage in
the same sort of recreational activities on a weekly basis. It is
not unreasonable to assume that large swatches of our lives
can be automated. The benefit of this mode is that it would
take care of routine or nuisance activities.
On a side note, we recall a time when people first at-

tempted to ”live off” the internet for a given period of time.
In the same vein, it might be asked whether people would
be able to live in fully autonomous mode. Many people are
creatures of habit and as such there is no reason to believe
that it cannot be done. Whether this would be an interesting
life is another question.

Semi-autonomous

In this mode, the user gives some input to the model. In some
cases, information will be requested, in other’s the user will
simply override certain inputs or parameters. The override
may be as innocuous as not following the directions of a
navigation system. When operating in this mode, we imag-
ine that the input range will be limited to acceptable operat-
ing parameters. Think of how pilots of an Airbus, no matter
what input they give, cannot put the airplane in a stall situa-
tion.
Another example of an interaction pattern in semi-

autonomous mode is as follows. Suppose a cook heard about
substituting riced cauliflower for rice in stir-fry dishes. The
recipe may have to be adjusted to account for the riced
cauliflower; however, all other aspects of the recipe are un-
modified. If there is a recipe in some accessible data base
that already accounts for the new ingredient, then it can be
consulted. However, if there is none, then the automated
pantry would be able to purchase all other ingredients in ad-
dition to the cauliflower. If the system is sufficiently knowl-
edgeable, it may inform the cook that they may have to
obtain an appropriate device to turn cauliflower into riced
cauliflower.

Manual

In this mode, the user acts without the assistance of automa-
tion. There will likely be different flavors of this mode. One
may enable the system to make suggestions. We are thinking

of a collision avoidance system that gives an audible warn-
ing when it determines that a collision is imminent. Alter-
natively, one may ask the system to enforce certain bound-
ary conditions. Going back to the example of a collision
avoidance system, it would apply the brakes rather than is-
sue a warning. This latter case is at the boundary to semi-
autonomous interaction. We list it here, because the primary
mode of interaction is manual. Finally, a user may simply
tell the model to bugger off. This latter case may happen
when driving in an emergency situation.
It is likely, that even in this mode, the model will gather

data about the user. However, thought should be given to en-
abling the user to easily control which information is gath-
ered about them and who can see it.
One may wonder about the feasibility of operating in

”manual mode.” In particular, it could be argued that it is
necessary for people to act in ”manual” mode ever so often
so as to maintain their ”edge.” Perhaps this is not as im-
portant for situations such as shopping; however, it might
be important when skills are involved. For example, modern
aircraft are highly automated to the extent that some pilots
may not get sufficient practice for crucial maneuvers. There
is talk about having pilots perform certain critical maneuvers
on a regular basis so as to maintain their skills. In the same
vein, perhaps people should be forced to ever so often live
without the automation of models involving crucial skills.

Limits of Instrumentation

We know that there are limits to what can be instrumented,
based on cost, practicality and user acceptance. Consider the
task of monitoring sun spots on the skin for the purpose of
detecting melanoma. It may be impossible or not accept-
able for people to wear sensors. Perhaps a more acceptable
solution exists in a smart mirror that can take images of a
person’s skin and send them to a server to be analyzed for
melanoma. In addition, we know that big-data and predictive
analysis can go a long way to infer data (Duhigg 2012).

Limits of Automation

Even in cases where instrumentation is possible and accept-
able, there are instances where automation may not be desir-
able or feasible. Many people have a morning wake-up rou-
tine that while it can be automated, helps people to wake-up
and start into their days. It is simply part of their psyche to
follow their routine, however archaic it may seem.
To give an example of a case where automation is not fea-

sible, consider the evening routine of young children. There
is a clear routine to it and as such a model can easily be
learned. However, at this point, there is only limited opportu-
nity for automation. While lights may be adjusted, the bath-
water can be drawn and reward points can be tallied, at the
end of the day, it takes a tenacious parent to enforce rules
the limits of which toddlers are so eager to explore.

Conclusions

In this paper we defined the next generation of the inter-
net of things as a web of smart entities. We argued that in
this web is about real-time data which originates from many
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sources, only some of them are sensors. We argued that a
defining characteristic of the WSE are accurate real-time
models which capture and describe the data. We argued that
when models are empowered to act, an unprecedented level
of automation will result. We depicted a world in which this
automation will manage and arrange many activities which
are generally considered nuisance activities. The effect is
that people will be able to focus on things that are important
to them. In a sense, it enables people to focus more on their
lives than before. We portrayed three principle ways of in-
teracting with models: fully autonomous, semi-autonomous
and manual. We ended the paper with a brief discussion of
the limits of instrumentation and automation.
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Abstract

Early detection of dementia are important because it can slow
down the progress of the disease. One of the popular way
to detect dementia is based on cognitive tests. The tests are
usually done in the clinical setup with the help of a psycho-
metrically trained examiner. Revised Hasegawas Dementia
Scale (HDS-R) is one of the prominent screening tests for de-
mentia. We propose a method for early dementia detection by
using a Virtual Personal Assistant (VPA) on a computer that
has a natural language user interface, such as Amazon Echo,
Apple Siri, Google Home, Microsoft Cortana, Softbank Pep-
per, Sharp RoBoHon, etc. In our proposal, we consider HDS-
R as a guideline to examine dementia. A VPA extracts the
necessary features from the verbal and interactive response
of the patient to compute the level of dementia. Such implicit
checking is physically and mentally much comfortable for old
people. We believe the proposed method will be able to con-
tribute future society.

Introduction

Dementia is a category of brain diseases that cause a long-
term and often gradually decrease the ability to think and
remember. Dementia is classified as a neurocognitive disor-
der. It affects a person’s daily functioning as well as other
symptoms like an emotional problem, problems with lan-
guage, and a decrease in motivation. More than 40 million
people worldwide suffer from Alzheimer’s disease, which is
the most common dementia, and the number is expected to
increase drastically in the coming years. But no real progress
has been made in the fight against the disease since its clas-
sification more than 100 years ago.

Nowadays people are frequently using Virtual Personal
Assistant (VPA) that has a natural language user interface,
such as Amazon Echo, Apple Siri, Google Home, Microsoft
Cortana, Softbank Pepper, Sharp RoBoHon, etc. Assistants
can interact with people using voice and text to help them for
finding web content, managing their daily routine, finding a
route, purchasing right goods, help them in social conversa-
tion etc. Since VPA can interact with people, it can do the
cognitive test to detect dementia. Revised Hasegawa’s De-
mentia Scale (HDS-R) is a popular brief instrument for as-
sessing dementia. We can conduct an automatic HDS-R test

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or collect the similar type of response from a spontaneous
conversation with VPA.

Motivating Example

Y. Imai and K. Hasegawa (Imai and Hasegawa 1994) pro-
posed revised Hasegawa Dementia Scale (HDS-R) and ex-
amined its usefulness as a screening test for dementia. In
their study, they have suggested asking simple nine ques-
tions as in Figure 1 with different weight to a patient for in-
vestigating the possibility of having dementia. A description
of each question is as follows.
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Question 1 [Age]: In this question, the examiner asks
about the examinee’s age if he can able to answer correctly
within a deviation of two years get one point.

Question 2 [Orienta In time]: Here, an examiner actually
asks about current year, month, day and name of the day
of the week. The examinee gets one point giving each right
answer.

Question 3 [Orientation in place]: In this section, the ex-
aminer asks the examinee about the place where actually he
is now. If the examinee spontaneously gives correct answer
get two points. His answer considers being correct if he able
to understand where he is. If he fails to answer within five
seconds gives him two options (hospital/house), at this point,
give him one point for the correct answer.

Question 4 [Repeating 3 words]: Utter slowly one by one
three words. A while later, ask the examinee to repeat the
words. Score one to correctly utter each word. Teaching at
least three times to memorize the words, if the subject not
able to repeat. Remove the word from Question 7 as delayed
recall word.

Question 5 [Serial subtractions of 7s]: This question is
about the serial subtraction of 7 from 100. Firstly, ask the
examinee to subtract 7 from 100. If his answer is right, give
him one point and proceed to the second question. If the
answer is wrong, then ask him next question 6. Ask him to
subtract 7 from 93 as a second question. if his answer is right
and gives him one point.

Question 6 [Digits backward]: For this question utter 3
digits, 6, 8 and 2, give one-second interval to each digit. At
this point, ask the examinee to utter the digits backward. If
the examinee able to repeat the first digit correctly, then go
for the second digit and so on, give one point for each cor-
rect digit. If the examinee fails to answer this section pro-
ceed to question no 7. Otherwise, utter 3,5,2, and 9 in the
same manner above. if the examinee can repeat backward
correctly, give one point.

Question 7 [Recalling of 3 words]: The question no four
is about repeating three words. At this point ask the exam-
inee to recall the three words used in the question no four.
Give two points to answer if it is spontaneous. If the ex-
aminee not able to answer properly, if the answer is cherry
blossom give hins ”It is a plant”, if the answer is cat give
hints ”it is an animal”, if the answer is tram give hints ”It
is a vehicle”. Give one hint at a time and confirm examinee
response.

Question 8 [Recalling 5 objects]: Here examiner uses
five unrelated common objects. It may be a combination of
a ring, a pen, a coin, a glass and a cigarette. Show the five
object one by one, as well as uttering their name, after a
while takes them back, give one point to each correct recall
without considering the orders.

Question 9 [Generating vegetables]: This question is for
observing generating fluency of an examinee. Ask the ex-
aminee for uttering the name of the vegetables, if the delay
between any subsequent uttering of vegetable name is more

than 10 second discontinue the question. After successfully
uttering five vegetable name give one point for each veg-
etable up to tenth one.

These questions basically examine memory recalling and
reasoning capability of the patient. They showed that HDS-
R is able to screen dementia at the highest sensitivity of 0.90
and specificity of 0.82 at a cut off point of 20/21 of total
score 30. The HDS-R can screen dementia at conceivable
accuracy and efficiency and may serve to assess the sever-
ity of dementia changing with time and the effectiveness
of pharmacotherapy and rehabilitation. The HDS-R will de-
serve intercultural application by virtue of universality of its
contents. It will gain general acceptance from physicians be-
cause of its very simplicity with the utmost rationality and
contribute to the everyday psychogeriatric management of
demented patients. Also, it is always important to have ad-
ditional diagnostic tools in arriving at an appropriate differ-
ential diagnosis for the memory impairment elderly

So, we can conduct HDS-R test or can find the similar
type of responses in spontaneous conversation with VPA.
For example, assume that a person asks ”find me good ho-
tels in bay area” to VPA. In response, VPA gives three names
and ask to recall the three names. Such HDS-R related inter-
actions are recorded to check dementia level of the person.

Related Work
Several works have been done and proposed for detection
of dementia. Y. Imai and K. Hasegawa (Imai and Hasegawa
1994) revised their previous dementia scale and make sev-
eral experiment to determine its usefulness as a screening
test for dementia. J. B. Jimison et al. (Jimison et al. 2004)
In this work, they monitor the interaction of the user with
the computer and use this in the algorithm to evaluate cog-
nitive performance. For this, they use a popular computer
game usually played and enjoyed by elders who may have
a risk for dementia. So, monitoring cognitive performance
there are significant strategic planning in each level in the
game. From this, they collect cognitive performance of ev-
eryone at frequent intervals. They monitor the movement of
the mouse and their adaptation to the game difficulty to de-
tect individuals cognitive performance.

In the research of E. M. Alkabawi et al. (Alkabawi, Hi-
lal, and Basir 2017) proposed early detection of the differ-
ent type of dementia, here they use the deep learning-based
method in computer-aided diagnosis. They compare other
three conventional computer-aided methods with their pro-
posed method. They show that their proposed method pro-
duces a fair amount of accuracy to early detection of the
different type of dementia. Y. Abe et al. (Abe, Toya, and In-
oue 2013) illustrated how behavior sensing can be used for
early detection of dementia. Here they use two different an-
alytic methods to obtain data and use the data to find out the
initial symptom of dementia. They use threshold based ana-
lytical method as the first one and use trend based analytical
method as the second one. They use different scenarios and
evaluate validity and immediacy of their proposed two meth-
ods. T. Shigemori et al. (Shigemori et al. 2016) proposed a
new system that can quantitatively measure dementia with
high accuracy. In their system, they measure the type and
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progression of dementia without awareness of the patient.
So, they introduce a system that uses daily conversation,
drawing, facial expression etc. to detect dementia. Here,
the mainly rely on Clock Drawing Test (CDT). They used
computer-based CDT for their proposed system. In their pro-
posed method, they extract feature using Weighted Directed
Index Histogram from given image then use support vector
machine for classification. They showed that their proposed
method on an average over ninety percent of dementia cases
correctly. H. Tanaka et al. (Tanaka et al. 2017) proposed a
new method to measure dementia automatically. They use
a computer avatar that can interact with people. The avatar
can use spoken dialog functionality and use this dialog to
conduct spoken quarries as in mini-mental state examina-
tion such as the Wechsler memory scale-revised, and other
related neuropsychological tests. They recorded spoken di-
alog of 29 participants, 14 of them have dementia and 15
of them are healthy. They extract the various audio-visual
feature from these individuals. Two machine learning algo-
rithms (support vector machines and logistic regression) and
the features are used to detect dementia. They showed that
support vector machine provides better performance than
logistic regression. They also determine some key features
that contribute more to detecting dementia like, gap before
speaking, differences in fundamental frequency, quality of
voice etc. They also showed that their system can help health
care persons. Moreover, the proposed method can help med-
ical personnel to spot the early sign of dementia. I. Asghar
et al. (Asghar, Cang, and Yu 2016) tried to detect demen-
tia in software-based approach. T. Endo et al. (Endo et al.
2017) proposed an approach to determine the eye movement
by using the RGB camera usually used in a laptop or in a
smartphone. From this eye movement data, they proposed
a method to detect dementia. For a proper diagnosis, accu-
rate detection of eye movement is essential. But detection
of eye movement is difficult if there is any noisy eye local-
ization. A binary classification of eye movement velocity is
used to determine eye movement from the timing when Iris
begin and finish moving. A discriminant analysis based clas-
sification is used to detect these moments. From the above
function, they use two diagnosis system. They use a tar-
get mark visible at the different point in a white screen of
a computer and track the eye movement. The second one
tracks the eye movement when the subject read texts from
the web browser. They showed that their method detects iris
movement more accurately that is required for dementia de-
tection. M. H. Acharya et al. (Acharya et al. 2016) have
tried detect dementia. their proposed idea is to implement
a dementia detection system that can run on an Android de-
vice. They choose android because, recently android is ac-
cepted by a wide variety of smart devices (Tablet, Wrist-
watch, Cell Phone) as well as it is an open source operating
system. They use ”GPS Navigator”, ”Fall Detection Sys-
tem”, ”Mind Games”, ”Doctor-Finder” and ”Emergency”
functions in their proposed system to detect dementia. H.
Nikamalfard et al. (Nikamalfard et al. 2012) In their re-
search, they describe the monitoring of individuals as well
as assessing activity pattern visualization system for early
detection of dementia. In their method, they gather several
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Figure 2: System Components

sensor data related to a subject. This sensory data can pro-
vide very vital information for assessing the patient activity
pattern. Using these data their method can able to detect un-
usual events and can be used as a very useful impetus for the
cognitive test.

Proposed Cognitive Test

In our model, we are considering four functional blocks as
in Figure 2. First, we have a patient for whom the cognitive
test will be conducted. VPA, which facilitates the proposed
model by providing text-to-voice and voice-to-text conver-
sion features to interact with the patient. After that the con-
ductor, which will maintain interactions (the question and
answer sessions). It will monitor the conversation as well as
the response delay of the patient. Finally, the evaluator will
verify the patient responses as stated in the previous section.
It will compute the level of dementia in HDS-R scale, too.

According to the HDS-R test, a patient is examined by
asking nine questions in Figure 1, which basically test the
memory recalling and reasoning capability of the patient.
In normal situation, we call it ”normal state”, the proposed
system just monitoring conversation between a person and
a VPA. The system examines each interaction whether it is
close to one of the nine HDS-R questions. If the similar-
ity of an interaction is close to a HDS-R question, the sys-
tem evaluates the interaction based on the HDS-R score. The
system monitor the score within a certain period of time. If
the score of the time exceeds a certain threshold, the sys-
tem changes the state into ”warning state”. In warning state,
a VPA is forced to ask the nine questions of HDS-R and
evaluate answers of the questions. Most of recent VPAs are
capable to do such interactions in a natural language user
interface, which is physically and mentally comfortable for
the person.

Cognitive Test in Normal State

In the normal state, the proposed system monitor the con-
versation between a person and the VPA. The proposed sys-
tem then try to find similarity between the conversation and
HDS-R. For example, the if the VPA asked for a person age
if he gives an answer then the answer consider similar to the
first question of HDS-R. We can divide the HDS-R ques-
tions into categories like age, orientation in time, orienta-
tion in place, repeating ability, subtraction ability, backward
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counting ability, recalling ability, object recalling, generat-
ing common item list.

In this state, the proposed system match the conversation
of VPA and a person to the above categories. Considering
the following conversation.
Person: Find some good hotel near Hiroshima
peace memorial park.
VPA: would you like to provide me your age.
Person: 63 years.
VPA: Houston, Westin Oaks, Whitehall. Please
Give your choice.
Person: Please repeat one more time
VPA: Houston, Westin Oaks, Whitehall. Please
Give your choice.
Person: I can’t recall.

From the above short conversation we can say here we
find a similar situation for HDS-R question-1 and Question-
4. So, from the spontaneous conversation when applicable
we can apply HDS-R implicitly also able to do some evalu-
ation based on the answers. So, we take each pair of inter-
action between VPA and person then match it with HDS-R
questions, whenever a match found then evaluate the answer
of the person.

For finding similar HDS-R like questions from the sponta-
neous conversation of VPA and a person in this work we use
four matrices as described in the work (Lytinen and Tomuro
2002) the matrices are term vector similarity, coverage, se-
mantic similarity and question type similarity. We also nor-
malize each of the matrices in between zero to one.

We compute each of the four metrics but at first, we use
POS (Part Of Speech) tagger that allocates a part of speech
for each word. The result is then stored as a term vector and
a question type. Here, term vector shows the weight of the
term found in each question. We find the stemmed word as a
term vector in a question. TF-IDF (Term Frequency Inverse
Document Frequency) (Salton and McGill 1983) usually
use in Information Retrieval(IR). We use TF-IDF to obtain
the weight of each term. The weight wi for each term ti is
computed as

wi = (1 + log (tfi))
logN

dfi
.

At this point, we want to compare similarity of questions;
so, number of questions here consider as N, dfi is the num-
ber of question where the term ti founds, and tfi is the fre-
quency of the term ti in the question.

The user interaction with VPA is compare with each
HDS-R question, and the four similarity metrices mentioned
above are computed. At first, we compute term vector simi-
larity. Each of the HDR-S question we use a term vector as
vh = 〈wh1, wh2, ...., whn〉 and each of the VPA question we
use a term vector as vv = 〈wv1, wv2, ...., wvn〉. The cosine
between the two vectors act as the similarity measurement
as follows.

cos(vh, vv) =

∑
whiwvi√∑

w2
hi

√∑
w2

vi

We use the percentage of HDR-S question terms that
found in a VPA question as a measurement to compute the
second metric coverage.

Here, semantic similarity is measured with the help of
WordNet, for measuring sematic word matching in VPA
question and HDS-R question we calculate minimum path
between WordNet concept (synonym sets) with respect to
VPA question terms and HDS-R question terms. In gen-
eral, δ (t1, t2) the semantic distance between two terms t1
and t2, each of which has n and m WordNet senses S1 =
{s1, s2, ..., sn} and S2 = {r1, r2, ..., rm}, is the minimum
of all possible pair-wise semantic distances between S1 and
S2, that is, δ (t1, t2) = minsiεS1,rjεS2D (si, rj), where
D (si, rj) is a path length between WordNet synsets si and
rj . If there is no path between any of the synsets of t1 and
t2, then δ (t1, t2) = ∞.

Then, the semantic similarity between the VPA ques-
tion 5Tu = {u1, ..., un} and a HDS-R question Th =
{h1, ..., hm} defined as follows:

sem (Tu, Th) =
I (Tu, Th) + (Th, Tu)

|Tu| + |Th|
where

I (Tx, Ty) =
∑ 1

1 +minyεTy
δ (x, y)

and |Tx|, |Ty| denote the size of Tx and Ty. Thus,
sem (Tu, Th) is essentially a metric which is the normalized
sum of the inverse of pair-wise semantic distances between
all words in Tx and Th measured from both directions.

Lastly, by comparing the question type in VPA and HDS-
R, similarity in question type is calculated. A similarity ma-
trix is generated, it usually portrait the amount of nearness
between question types.

From this four matrices we find similarity between the
VPA and user interaction and HDS-R Question if the sim-
ilarity is more than 80% then we go for evaluation of the
question answer pair of the VPA and user. If the evaluation
of the answer is poor then we go for explicit HDS-R test as
described in the next section.

Cognitive Test by HDS-R

Here, we use Latent Semantic Analysis (Dumais 2004) to
match questions and answers to the 9 questions of the HDS-
R test. For each matched question and answer, we evaluate
the response as given bellow.

HDS-R test has nine questions and also well defined an-
swers. So, for each question we have to match users answer
with the HDS-R answers. How can we judge each of the
questions answer is given bellow.

Question 1 During conversation to VPA, when the user is
asked for her/his age and the answer is acceptable within the
error from correct age is within two-year. We add one point
to the score for this question.

Question 2 This question is about current date and day of
the week. When we detect a question about current date and
day of the week in the conversation, we check the answer
and add one point to the score if it is correct.
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Question 3 For this question first, we find out the current
location by Global Positioning System (GPS) of the device
then check a question and the answer of current location also
we check the response time for the question. Right answer
within 5 seconds give 2 point and right answer after 5 sec-
onds with two option give 1 point for the correct answer.

Question 4 This question is about repeating three com-
mon unrelated words. In general, this kind of question does
not exist in natural conversation. We have to intentionally
include this question, for example, when there is a silence
in a conversation like a quiz. Similar to this question, ques-
tion no. 5 to 9 have to be intentionally included when we
find a necessity by observing a problem in the answers for
question no. 1 to 3. If it shows exact matching for the three
words then the answer is consider as right answer. One point
is added to the score for correct matching of each word.

Question 5 Question 5 is about the serial subtraction of 7s
from 100. At first, ask the user to subtract 7 from 100. If the
answer is wrong then discard the question and go to question
no 6. If the first one is right then again ask to subtract 7 from
the answer. For correct answer add one point to the score.

Question 6 This question is about backward digit count-
ing so here we have to consider the right answer as well as
the order if any wrong answer found then discard the current
question and go to next question. When we found that back-
ward counting of 6, 8 and 2 is 2, 8, and 6, then add one point
and proceed to other backward digit counting question, i.e.,
3-5-2-9, in which correct answer is also one point.

Question 7 It is about recalling three words used in ques-
tion no 4. We can evaluate it as described in question no 4.

Question 8 In this question, we use five unrelated objects
(a key, a cigarette, a watch, a pen and a coin). Which are
shown to them as a picture using VPA or spoken by VPA
without a display device. After hiding the object ask them
to recall. For each correct answers, we add one point to the
score.

Question 9 VPA asks to name all vegetables that come
to mind and waits untill there is no further answer after 10
seconds from the last one. For each correct name after the
5th will be evaluated as one point.

Conclusion and Future Work

For developing our proposed dementia detection system ap-
plication, now we are in the preliminary testing stage. We
have just checked and verify our system by collecting data
as a mimic dementia patient. The speech of old people is
different, so we need extra care to recognize their speech.
It also needs extra care to deal with the mental situation of
old people. Privacy of each individual is also vital, we have
to secure and anonymize their sensitive data. All VPA are
the proprietary system of the different corporation, so we
need proper collaboration with them. As a future work, we
will convey a series of experiments on real subject and de-
termine the effectiveness of the model. Moreover, from the

voice activity, we believe it will also be possible to exam-
ine some other features those could be found in a dementia
patient like hesitation, emotional problem and etc.
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Abstract 
The present approach targets to assist decision-making by 
identifying and by-passing Cognitive Bias of speakers-
participants and evaluators in regard to spoken texts. 

 Registering Spoken Interaction    
Registered spoken interaction is integrated and processed 
in a database under development for determining and eval-
uating Cognitive Bias in spoken journalistic texts. The tar-
get is to facilitate evaluation of spoken interviews (includ-
ing short on-line interviews via Skype) and discussions in 
the Media and to assist decision-making by identifying and 
by-passing Cognitive Bias of speakers-participants and 
evaluators. 
 From this perspective, databases based primarily on 
task-specific dialogs (Tung et al., 2013) and evaluation 
strategies for collaborative dialogs (Yang et al, 2012, 
Wang 2013) are not fully compatible with the conversation 
and interaction type concerned, where there is expression 
of sentiment, statement of opinion or even persuasion. In 
these texts, the discourse structure may either be compati-
ble to turn-taking in “push-to-talk conversations” (strict 
protocol in managing the interview or discussion and turn-
taking) (Taboada, 2006) or compatible to models where 
each participant selects self (Wilson, 2005, Sacks et al., 
1974). The approach is based on data and observations 
provided by professional journalists. Collected data in-
volves transcriptions from two-party or multiple party dis-
cussions of spoken journalistic texts (Program M.A in 
Quality Journalism and Digital Technologies, Danube 
University at Krems, Austria in collaboration with the In-
stitution of Promotion of Journalism Ath.Vas. Botsi, Ath-
ens) (52 transcribed interviews by 30 journalists on domes-
tic and foreign policy). The database, currently in the stage 
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of development, combines practices from dialog systems 
with features from designed applications for journalists 
(Alexandris et al., 2015).  
 Path generation of the interaction is modeled and im-
plemented based on user interactions registered in spoken 
dialog systems, in the domains of consumer complaints 
and mobile phone services call centers (Nottas et al., 2007, 
Floros and Mourouzidis, 2016). The System generates a 
visual representation from the user’s interaction, tracking 
the corresponding selected keywords in the dialog flow. 
The same model is applied for tracking topics and generat-
ing models in transcribed spoken journalistic texts. Specif-
ically, there is an interactive generation of registered paths, 
similar to paths with generated sequences of recognized 
keywords (Nottas et al., 2007, Floros and Mourouzidis, 
2016). Thus, a keyword (topic) may be repeated (Repeti-
tion) or related to a more general concept (or global varia-
ble) (Lewis, 2009) (Generalization) or related to keywords 
(topics) concerning similar functions (Association). A 
keyword involving a new command or function is regis-
tered as a new topic (New Topic). The “path” of interac-
tion is generated with the sequence of topics chosen by the 
user and the perceived relations between them, forming 
distinctive visual representations according to its content.  
 Cognitive Bias can be determined from the form of gen-
erated visual representations of dialog flow, for evaluating 
success or failure of spoken interaction (I). This is related 
to by-passing Confidence Bias of speakers-participants and 
evaluators (Hilbert, 2012). Cognitive Bias is also measured 
in the form of triple tuples as perceived relations-distances 
between word-topics (II), related to a type of Lexical Bias 
concerning semantic perception (Trofimova, 2014). 

Generating Visual Representations  

Topics are defined at a local level with the activation of the 
“Identify Topic” command, in respect to the question 
asked or issue addressed by the interviewer or moderator. 
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This feature, based on previous research concerning the in-
teractive annotation of pragmatic features in transcribed 
journalistic texts (Alexandris et al., 2015), allows the con-
tent of answers, responses and reactions to be checked in 
respect to the question asked or issue addressed. Topics, 
treated as local variables, are registered and tracked. The 
automatic signalization of nouns by the Stanford POS Tag-
ger in each turn taken by the speakers in the respective 
segment in the dialog structure provides assistance in 
choice of topic.  
 With the activation of the “Identify Relation” command, 
relation types between topics are determined by the user. In 
the domain of journalistic texts, these relations cannot be 
strictly semantic: automatic processes may result to errors. 
The user choses the type of relation (“Repetition”, “Asso-
ciation”, “Generalization” or “Topic Switch”) between the 
topic of the question or issue addressed with the topic of 
the respective response or reaction (Alexandris et al., 
2015). The “Repetition” relation (“REP” tag) involves the 
repetition of the same word or synonym and corresponds to 
the generation of the shortest distance between defined top-
ics (“Distance 1”- one dash in generated pattern). The “As-
sociation” relation (“ASOC” tag, “Distance 2”), defined by 
the user’s world knowledge (can be evaluated with a lexi-
con or Wordnet) is represented as a longer line to the next 
word-node (two dashes). The “Generalization” relation 
(“GEN” tag), also defined by the user’s world knowledge 
(comparable to a lexicon or Wordnet) corresponds to the 
generation of the longest distance between defined topics 
(“Distance 3”-three dashes). The “Topic Switch” relation 
(“SWITCH” tag) is used when the topic of a discussion or 
interview changes between selected topics without any ev-
ident semantic relations. “Topic Switch” (Distance 4: slash 
“/”) generates a new line - a break, in the sequence of top-
ics. Examples of segments in (interactively) generated pat-
terns from user-specific choices between topics (Tpc) are 
the following: 
• “Britain”-“the UK” (REP-1):TpcA-TpcB.  
• “propaganda”-“social-media”(ASOC-2):TpcA--TpcB.  
• “police”-“security”(GEN-3):TpcA---TpcB. 
• “security”/“entrepreneurship”(SWITCH-4):TpcA/ TpcB. 
The distances (II) between topics in the generated patterns 
(I) are registered as triple tuples (triplets):  (Britain, the 
UK, 1), (propaganda, social media, 2), (police, security, 3), 
(security, entrepreneurship, 4). 

Measuring and Evaluating Cognitive Bias  
Content (i) and form of generated patterns (for example, 
multiple breaks) (ii) as visual representations of Cognitive 
Bias target to depict: 
• (1) Degree in which all topics are addressed. 

• (2) What topics are avoided – either by changing a topic 
or by persisting to address the same topic: Observed to 
be evident in length and form of generated pattern. 

• (3) How participants may be lead or even forced into 
addressing a topic –by association or generalization: 
This is also observed in length and form of generated 
patterns.  

Therefore, targeting to by-pass Confidence Bias (Hilbert, 
2012) of users-participants and evaluators (II), the above-
presented points allow the determination of the participants 
in the conversation (or interview) who were successful in 
their spoken interaction and the participants who were less 
successful. Simultaneously, the perceived relations-
distances between word-topics perceived by the user, relat-
ed to the above-stated type of Lexical Bias, (Trofimova, 
2014) are generated and measured in the form of triple tu-
ples (II). The generated patterns contribute to a user-
independent evaluation of spoken Human-Human conver-
sation and interaction, similarly to user-independent evalu-
ation of spoken dialog systems (Williams et al., 2017), 
where speed and correctness are of crucial importance 
(Lewis, 2009). Varying degrees of user’s familiarity with 
dialog systems or user-friendly interfaces in spoken inter-
action result to different perceptions of successful interac-
tions and may “forgive” occasional errors (Nass and Brave, 
2005, Cohen, 1997): Errors in spoken input or a longer du-
ration of interaction due to complications in the dialog may 
not always correspond to negative evaluation. Similarly, 
varying degrees of familiarity and bias with topics dis-
cussed in spoken journalistic texts result to different per-
ceptions of successful conversations or debates and may 
“forgive” any complications or mistakes. 
 We also note that data from transcriptions and respective 
visual representations created so far indicates cases of ob-
served differences between identified topic relations 
among some journalists that are non-native speakers of 
English (especially in respect to “ASOC” and “SWITCH”). 
Differences may in some cases be attributed to lack of 
world knowledge of the language community concerned 
(Paltridge, 2012, Hatim, 1997, Wardhaugh, 1992), particu-
larly in non-native speakers. This implies that the interna-
tional public may often perceive and receive different 
and/or incomplete information in respect to evaluating 
conversation and interaction (Yu et al., 2010, Alexandris, 
2010, Ma, 2010, Pan, 2000). Topics and words generating 
diverse reactions and choices from users result to the gen-
eration of different forms of generated visual representa-
tions for the same conversation or interaction:  
• “Country Z”  –“defense spending” (ASOC) or 
(SWITCH)  
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Further Research  
Targeted enrichment with more registered interactions - 
possibly in a graphic form similar to discourse trees (Mar-
cu, 1999, Carlson et al., 2001), will provide more concrete 
results and data for statistical analysis, possibly contrib-
uting to the evaluation of a user’s familiarity, perception 
and world knowledge in other domains and applications 
such as education-training and virtual negotiators.  
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Abstract 
This paper describes the development and evaluation of the 
UIs and Scores of musical performance system. The aim of 
this research is to provide a musical tool for elderly people 
and caregivers. The UIs are designed on tablet PCs, which 
look like keyboards. Five UIs are evaluated: plain keyboard, 
and keyboards with note names, numbers, colors and 
shapes. A staff notation score was used for the plain key-
board, and four types of scores represented by note names, 
numbers, colors and shapes were used for other UIs. The re-
sult of the experiment indicates that the UIs and scores of 
note name representation and number representation would 
be useful to play for people who are not familiar with staff 
notation and that those of number representation would be 
useful to play and sing at the same time. The result also in-
dicates that the UI and scores of color representation could 
be used for some people who have difficulty reading num-
bers. It is also indicated that people in their 60s and 70s can 
use the UI and scores of number representation. 

 Introduction   
The aim of this study is to provide a musical tool to im-
prove the quality of life of elderly people. This tool can 
also be a communication tool for elderly people and care-
givers. It is known that musical memory can be preserved 
even in Alzheimer's disease, and the evidence has been 
indicated by using fMRI (Jacobsen 2015). 
 In the field of music therapy, music listening and/or 
singing are commonly used (Groene 1993) (Raglio, et al. 
2008) (Satoh, et al. 2015). However, it is difficult to use 
musical instrument for elderly people who have little expe-
rience with musical performance. There are two problems: 
manipulating a musical instrument may be difficult, and 
staff notation scores might be the barrier to musical per-
formance. In this research, several User Interfaces (UIs) for 
musical performance and several musical scores represent-
ed for these UIs have been developed and evaluated.  
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 There are other approaches to the musical performance 
system. Many new systems have been proposed and evalu-
ated in the field of Computer Music (Zbyszynski, et al. 
2007) (Hochenbaum, et al. 2010) (Oh, et al. 2010) (Brown, 
Nash, and Mitchell 2017), however, these systems are used 
for improvisation or used based on staff notation. On the 
other hand, a new instrument, e.g. Veeh-Harp was devel-
oped along with new score representation (Veeh 1987), 
and the concept of this instrument can be applied to some 
support system for performance. However, the aim of our 
research is to provide a system which can be used to play 
and sing by reading musical scores. 

The UIs and Scores 
A system with several UIs for musical performance has 
been developed in this research, which works on Windows 
tablet PCs. Musical scores of several representations are 
provided for these UIs. 

UIs of Musical Performance System 
This system has several user interfaces as follows: (1) UI 
of layered keyboard (UI-1), (2) UI with note names on the 
keyboard (UI-2), (3) UI with numbers on the keyboard 
(UI-3) as Figure 1, (4) UI with colors on the keyboard (UI-
4) as figure 2, (5) UI of geometric shaped keys (UI-5) as 
figure 3, and (6) Different layout of UI-3 (UI-6). 
 The layout of notes are the same in five UIs (UI-6 is 
different). C3 to B3 keys are in the bottom row, sharp/flat 
keys are in the next row, C4 to B4 keys are in the next row, 
and so on. Figure 1 shows UI-3 where numbers are put on 
the keys: 1 is on C4 key, 2 is on D4 key, and 7 is on B4 
key. A number with an upper dot means the pitch is one 
octave higher than the number, and a number with a lower 
dot means the pitch is one octave lower than the number. 

 This system provides a sound source of piano (C2 to C7) 
and organ (C2 to C7) in WAVE data format. These sounds 
were generated by additive synthesis. 
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Figure 1: UI with Numbers 

Figure 2: UI with Colors 

Figure 3: UI of Shaped Keys 

 
Users of this system can use piano touch or organ touch 

according to the sound source. In piano touch mode, the 
sound starts when a key is touched and it decays like a pi-
ano. In organ touch mode, the sound starts when a key is 
touched and it ends when the finger is released. Users can 
also use multi-touch so that they can play chords. 

This system can read a musical score from score data-
base which was developed in this research, and play music 
so that a user can listen to the melody before performance. 
This system can also record user’s performance to support 
practice and improvisation. 

This system was implemented by HTML, JavaScript and 
WAVE data, and it is working without perceptible time 
delay on Windows tablet PCs (HP Pro Tablet and NEC 
LAVIE Tab). We have not used the tools for building UIs 
(Bryan, et al. 2010). HTML and JavaScript are used be-
cause of the flexibility of building UIs, and WAVE data is 
used because of the response speed. Before developing this 
system, we developed a system using C++ and MIDI sound 
but the system worked with time delay.  

Score Representaion 
Each user interface needs different score form: (1) staff 
notation for UI-1, (2) note name representation for UI-2, 
(3) number representation for UI-3 and UI-6, (4) color rep-
resentation for UI-4 and (5) shape representation for UI-5.  

 The scores used for the experiments were notated manu-
ally on Excel sheets because the score editor had not been 
developed. This notation is based on the scores used by 
Ikuta school of Koto music (Miyagi 1969) which is one of 
Japanese traditional music. Scores of Koto music were 
notated simply in Edo period, and they were described pre-
cisely in Meiji period (19th century). The duration of a 
note is represented as the width of the space where the note 
is notated. Figure 4 shows the example. The notation of 
Ikuta scores is vertical direction, however this notation is 
horizontal direction. 

The score editor is now under development (Deguchi 
2017). The scores are generated from musical score data-
base which was developed in this study. This representa-
tion is based on the scores used by Yamada school of Koto 
music (Nakanoshima 1954), and this notation is similar to 
the scores of Taisho Koto which was developed in the be-
ginning of 20th century. A single line is added to the 8th 
note, and a double line is added to the 16th note, and so on. 
Figure 5 shows the example. 

There is an editor which can display Ikuta scores, Taisho 
Koto scores and other scores of Japanese traditional music 
(Tanishi 2010), however it cannot be used for new repre-
sentations. The editor of our research can display scores in 
different representations: scores of note names, numbers, 
colors and shapes. 

 
 
 

Figure 4: Score using Numbers for the Experiments 

 
 
 
 
 

Figure 5: Score using Numbers Generated by the System 

  
Score database was developed using public domain mu-

sical pieces (the voice part of one piece is copyrighted). 
The pieces are notated in Humdrum format (Huron 1998) 
and saved in text files so that users can easily edit the files. 
The scores in this DB have been input by (1) editing Hum-
drum files directly, or (2) reading sheet music by OCR 
software (KAWAI ScoreMaker) and transforming Mu-
sicXML format into Humdrum format (Sapp 2004). The 
contents of the DB are as follows. 
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Japanese songs: 17 songs such as Sakura. 
English songs: 10 songs such as Mary had a little lamb. 
Classical music: 3 pieces such as Air on the G String. 

Experiments of UIs and Scores 
Two experiments to evaluate these UIs and scores are de-
scribed in this section. 

Methods 
The first experiment was done to compare UI-1, UI-2 and 
UI-3 in Feb. 2016 (Deguchi 2016). The conditions of the 
experiment are as follows. 
Examinees: 16 students of Engineering Department who 
were not familiar with keyboard instruments. 
Songs used for the experiment: Sakura for UI-1, Haruno-
ogawa for UI-2, Yuyake-koyake for UI-3. 
 The second experiment was carried out to compare UI-3, 
UI-4 and UI-5 in Feb. 2017. 
Examinees: 16 students of Engineering Department who 
were not familiar with keyboard instruments (8 students 
are the same students in the first experiment). 
Songs used for the experiment: Sakura for UI-3, Haruno-
ogawa for UI-4, Yuyake-koyake for UI-5. 
 The following conditions are the same in both experi-
ments. 
Condition before the experiment: The examinees did not 
practice the system. 
Condition during the experiment: First, the examinees 
played the system using each UI and score. Next, the ex-
aminees played and sang using each UI and score. 
 The examinees answered the questions by rating 4, 3, 2 
or 1 (4:positive, 3:mildly positive, 2:mildly negative, 
1:negative) for each UI and its score after using them. 
Questions are as follows. 
Q1: Is the score easy?  
Q2: Is the UI easy? 
Q3: Is it easy to play? 
Q4: Is it easy to play and sing at the same time? 

Results and Discussion 
The results of the experiments are as follows. The mean 
value of each question for each UI and its score is shown in 
Table 1 and Table 3. Table 1 indicates that UI-2 and its 
score (note name representation) and UI-3 and its score 
(number representation) might be easier than UI-1 and its 
score (staff notation) for the people who were not familiar 
with musical performance. Table 3 indicates that UI-3 and 
its score and UI-4 and its score (color representation) may 
be easier than UI-5 and its score (shape representation). 
 Paired sample t-test was used for the comparison of the 
mean values of each question for two UIs. UI-1 and UI-2, 
UI-1 and UI-3, and UI-2 and UI-3 are compared in the first 

experiment. The degrees of freedom is 15, and the critical 
value for significance level of 0.05 (two-tailed test) is 
2.131 and that of 0.01 is 2.947. T-ratio of each comparison 
is shown in Table 2. Table 2 indicates that UI-2 and UI-3 
are easier than UI-1 to play the system. It also indicates 
that UI-3 is easier than UI-1 and UI-2 to play and sing at 
the same time. Note names would conflict with songs when 
a user uses UI-2 and its score. This result does not contra-
dict the fact that some of Japanese traditional music which 
has instrument part and voice part use numbers for score 
notation. 
 UI-3 and UI-4, UI-3 and UI-5, and UI-4 and UI-5 are 
compared using paired sample t-test in the second experi-
ment. The degrees of freedom and the critical values are 
the same as described above. T-ratio of each comparison is 
shown in Table 4. Table 4 indicates that UI-5 is difficult to 
use. It also indicates that the score for UI-3 is easier than 
the score for UI-4, however, it cannot indicate that UI-3 is 
easier than UI-4 to play or to play and sing. UI-4 and its 
score (color representation) could be used for some people 
who have difficulty reading numbers. 
 

Table 1: Mean Values of Evaluation of UI-1, UI-2 and UI-3 

 
 
 
 
 
 

Table 2: T-ratios of T-test for UI-1, UI-2 and UI-3 

 
 
 
 
 
 

Table 3: Mean Values of Evaluation of UI-3, UI-4 and UI-5 

 
 
 
 
 
 

Table 4: T-ratios of T-test for UI-3, UI-4 and UI-5 

 
 
 
 
 
 

UI-1 UI-2 UI-3
Q1 2.75 3.38 3.44
Q2 2.63 3.25 3.06
Q3 2.19 3.25 3.19
Q4 2.38 2.56 3.19

UI-1 vs. UI-2 UI-1 vs. UI-3 UI-2 vs. UI-3
Q1 -1.91 -3.15 -0.32
Q2 -3.10 -1.82 1.38
Q3 -7.41 -5.48 0.29
Q4 -1.14 -3.90 -3.48

UI-3 UI-4 UI-5
Q1 3.44 2.56 1.88
Q2 3.50 3.00 2.13
Q3 3.19 2.69 1.88
Q4 3.25 2.63 2.19

UI-3 vs. UI-4 UI-3 vs. UI-5 UI-4 vs. UI-5
Q1 3.95 7.68 3.91
Q2 2.24 6.21 3.66
Q3 1.52 6.01 3.31
Q4 1.99 4.58 2.41

209



A Course for Elderly People 
This system was used in an extension course of Faculty of 
Engineering, Kindai University, in Nov. 2017 as follows. 
Participants: 24 adults (40s: 2, 50s: 2, 60s: 12, 70s: 7, Un-
known: 1). 
UI: UI-3 (number representation) was used. The notes ar-
ranged on UI-3 are C3 to C6, however UI-3 of higher notes 
(C4 to C7) and UI-3 of lower notes (C2 to C5) were also 
provided. 
Scores: Number representation scores of 13 Japanese 
songs, 4 English songs and 3 pieces of Classical music 
were used. 
 The lecturer explained how to read scores and how to 
play the system, and then explained about Japanese songs, 
English songs and Classical music which were used in the 
course. Total time of explanation was about 30 minutes. 
The participants practiced Japanese songs, English songs 
and Classical music using each tablet for about 70 minutes. 
 Participants answered the questions by rating 4, 3, 2 or 1 
for UI-3 and its scores of Japanese songs after this course. 
The questions are the same as described above. The mean 
value of each question answered by 60s and 70s is as fol-
lows. Q1: 3.84, Q2: 3.56, Q3: 3.74, Q4: 3.05 
This result indicates that elderly people can use this sys-
tem. It also indicates that it might be relatively difficult for 
elderly people to play and sing at the same time. 

Conclusion and Future Work 
In this research, four types of UIs and scores were pro-
posed, where notes were represented by note names, num-
bers, colors or shapes. These UIs with scores and normal 
UI (plain keyboard) with score (staff notation) were evalu-
ated by experiments. The result indicates that the UIs and 
scores of note name representation and number representa-
tion would be useful to play for people who are not famil-
iar with staff notation and that those of number representa-
tion would be useful to play and sing at the same time. 
This study also indicates that the UI and scores of color 
representation could be used for some people who have 
difficulty reading numbers. The result of the extension 
course indicates that people in their 60s and 70s can use 
the UI and scores of number representation. 
 Future work includes research on score DB. There are 
two versions for score representation: scores as Figure 4 
and scores as Figure 5. A new function has been added to 
the system so that it can generate both types of representa-
tion. It is also important how to increase musical pieces in 
DB. It would be necessary to discuss with the research 
organizations which have score DB (Hewlett and 
Selfridge-Field 2001). We are also adding new functions 
which can reuse the public domain musical pieces by 

changing rhythms and synthesizing phrases (Deguchi 
2017). 
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Abstract 
Scientists estimate nearly half of the world's adult popula-
tion will be overweight or obese by 2030. Widely used mo-
bile devices can provide inexpensive tools to reinforce self-
monitoring of weight management behaviors and have a 
great potential in obesity treatment. However, their effec-
tiveness depends on whether users actively responds to sug-
gestions or health interventions displayed. This paper pro-
poses a novel theory-based dynamic learning model to ex-
amine how a user’s unobserved mind states of activated en-
gagement in weight loss affect her weight management ac-
tivities. Based on a mobile health app dataset, we find that 
there exist two mind states (activated vs. inactivated) among 
the app users. Users in the activated state of weight loss en-
gagement significantly increase their daily steps taken by 
57.82% compared to those in the inactivated state when fol-
lowing the health interventions in the app. Further, a simple 
home-screen reminder of checking the health suggestions in 
the app targeting inactivated-state users will increase their 
probabilities and time duration of moving into the activated 
state by 29% and 38.9%, respectively. As a result, user mind 
state-based personalized healthcare interventions in the mo-
bile app are shown to be quite effective. 

 Introduction   
Obesity is a major contributor to many chronic diseases 
including type 2 diabetes, cardiovascular disease, many 
cancers, and numerous other diseases and conditions. The 
World Health Organization reports that 1.4 billion adults 
globally exceed healthy body weight (WHO 2013). This 
rate increases every year and by 2030 nearly half of the 
world's adult population will be overweight or obese. In 
U.S., the projected cost of treating preventable obesity-
related diseases is expected to raise by $48-66 billion/year 
(Wang et al 2011). Widely used mobile devices (e.g., 
wearables and apps) and the rapid development of artificial 
intelligence technologies can provide inexpensive tools to 
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reinforce self-monitoring of weight management behaviors 
or motivate users to adhere to treatment protocols, and of-
fer real-time tailored interventions to improve health out-
comes, while reducing the cost and increasing the conven-
ience of treatment delivery and dissemination. However, to 
achieve this requires a better understanding of individual 
users’ mind states of activated engagement in weight loss 
and their corresponding impacts on weight management. 
 Using a mobile app to provide users health interventions 
for weight loss actually consists of an intertwined cycle of 
users’ offline-online-offline behaviors, reflecting the social 
cognitive construct of reciprocal causation. Users’ online 
behaviors include browsing the app to look at their physi-
cal/dietary activity information, suggestions to reduce 
weight, etc. Their offline behaviors include physical activi-
ties like actual exercise, eating, and seeking coaching. In 
reality, some users could be in an activated state of weight 
loss engagement and actively respond to health interven-
tions while others may be casual users in an inactivated 
state not motivated to follow the suggestions closely. Also 
a user could change from the inactivated state to activated 
state from time to time or vice versa. In any circumstance, 
if a user does not respond to health suggestions in the app 
by adjusting her offline physical activities, the effective-
ness of health interventions using the app will be low, and 
the desired weight loss goal may not be achieved.  

Prior research in the field by using artificial intelligence 
and machine learning approaches has primarily focused on 
how to offer customized health/wellness recommendations 
based on sensor recorded data. Combining with users’ pro-
files and the recorded physical activities in terms of calorie 
consumption, the app provides mass customization and 
suggests wellness information that the app believes is good 
to each individual without considering their mind states. 
We know that human mind determines behavior, and users 
could change their mind states over time in response to 
stimuli in the app. This dynamic property of mind states is 
often ignored by conventional learning methods used in 
mobile health tools (Bacigalupo et al. 2013, Free and 
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Philips 2013, Williams and French 2011, Manzoni et al. 
2011). Also, it is unclear if the displayed health interven-
tion does stimulate users to take offline physical actions.  

To fill the gap, this paper presents a novel theory-based 
dynamic learning model that observes individual user’s 
online tap behavior to automatically learn and identify her 
unobserved real-time mind state for weight loss. We ad-
dress the following research questions: (1) How does app-
delivered messaging influence user mind states and their 
dynamics? And (2) Does the mind state of weight loss en-
gagement moderate how effectively health interventions 
impact users’ physical activities?  

The Approach and Results 
According to the Stimulus-Organism-Response (S�O�R) 
framework in the human mind theory (Ajzen 1991), infor-
mation on the app as stimuli S affects users’ unobserved 
mind states O, which then influences their offline physical 
activities R. We develop a hierarchical Bayes learning 
model with a first-order hidden Markov chain that per-
forms a backward reasoning from online observations R to 
infer unobserved O, and the model performs a simultane-
ous analysis to find optimal mind state-based intervention.  

Based on a mobile health app dataset with 250 over-
weight users for 3 months, we focus on their daily steps 
taken. The app displays the user’s total and average steps 
up to pervious day, the recommended health intervention 
(e.g., 20% increase in the average daily steps by far), 
whether the user follows the intervention, the steps taken 
on the current day, pages viewed in the app, if the app visit 
is on a weekend, and the user’s demographic information 
including age and gender.  

The results show that there exist two mind states (acti-
vated vs. inactivated) among the app users. The simple 
home-screen reminder message targeting inactivated-state 
users is quite effective, drastically increasing the user’s 
probability of being in the activated state from 33% to 62% 
with a significant 29% increase. Also, on average it reduce 
the user’s stay in the inactivated state from 2.70 days to 
1.75 days while increasing her time in the activated state 
from 4 days to 5.56 days (a 38.9% increase). 

Interestingly, we find that users’ mind states significant-
ly moderate the impact of health intervention on the daily 
steps taken. As shown in Figure 1, when not accounting for 
user mind states, a user takes 3660 and 4680 steps daily 
when not following and following the health interventions, 
respectively. However, when user mind states are consid-
ered, activated-state users take dramatically more steps 
(3782.7 and 5586.9 steps in the two above cases) than 
those in the inactivated state (3300.0 and 3540.0 steps). 
The most noticeable difference between these two groups 
exists in the case of user following the intervention sugges-
tion (3540.0 vs. 5586.9 steps with a 57.8% difference). 

Figure 1. Impacts of Users’ Mind States  

 

Overall, the results suggest that it is important to incor-
porate users’ unobserved mind states of weight loss en-
gagement which significantly moderate the impact of 
health intervention on users’ daily steps taken. A simple 
home-screen reminder of checking the health suggestions 
in the app targeting inactivated-state users is quite effective 
to prompt the user to move into the activated state. There-
fore, we can design an optimal user mind state-based per-
sonalized healthcare intervention in the mobile app based 
on the dynamics of user mind states in real time, which is 
proven to be an effective strategy to improve user weight 
loss management. 
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Abstract 
We formulate a question of how important explainability 
feature is for customers of machine learning (ML) systems. 
We analyze the state of the art and limitations of explainable 
and unexplainable ML. To quantitatively estimate the vol-
ume of customers who request explainability from compa-
nies employing ML systems, we analyze customer com-
plaints. We build a natural language (NL) classifier that de-
tects a request to explain in implicit or explicit form, and 
evaluate it on the set of 800 complaints. As a result of clas-
sifier application, we discover that a quarter of customers 
demand explainability from companies, when something 
went wrong with a product or service and it has to be com-
municated properly by the company. We conclude that ex-
plainability feature is more important than the recognition 
accuracy for most customers. 

 Introduction: Accuracy vs Explainability   
Machine learning (ML) has been successfully applied to a 
wide variety of fields ranging from information retrieval, 
data mining, and speech recognition, to computer graphics, 
visualization, and human-computer interaction. However, 
most users often treat a machine learning model as a black 
box because of its incomprehensible functions and unclear 
working mechanism (Liu et al., 2017). Without a clear un-
derstanding of how and why a model works, the develop-
ment of high performance models typically relies on a 
time-consuming trial-and-error process. As a result, aca-
demic and industrial ML scientists are facing challenges 
that demand more transparent and explainable systems for 
better understanding and analyzing ML models, especially 
their inner working mechanisms. 
    The question of whether accuracy or explainability pre-
vails in an industrial machine learning systems is fairly 
important. The best classification accuracy is typically 
achieved by black-box ML models such as Support Vector 
Machine, neural networks or random forests, or complicat-
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ed ensembles of all of these. These systems are referred to 
as black-boxes and their drawbacks are frequently cited 
since their inner workings are really hard to understand. 
They do not usually provide a clear explanation of the rea-
sons they made a certain decision or prediction; instead, 
they just output a probability associated with a prediction. 
The major problem here is that these methods typically 
require extensive training sets. 
    On the other hand, ML methods whose predictions are 
easy to understand and interpret frequently have limited 
predictive capacity (inductive inference, linear regression, 
a single decision tree) or are inflexible and computationally 
cumbersome, such as explicit graphical models. These 
methods usually require less data to train from. 
    Our claim in this study for industrial applications of ML 
is as follows. Whereas companies need to increase an 
overall performance for the totality of users, individual 
users mostly prefer explainability. Users can tolerate 
wrong decisions made by the companies’ ML systems as 
long as they understand why these decisions were made. 
Customers understand that any system is prone to errors, 
and they can be positively or negatively impressed by how 
a company rectifies these errors. In case an error is made 
without an explanation, and could not be fixed reasonably 
well and communicated properly, customers frequently 
want to leave the business.  
    We will back up this observation, automatically analyz-
ing customer complaints. To do that, we develop a ma-
chinery to automatically classify customer complaints with 
respect to whether explanation was demanded or not. This 
is a nontrivial problem since complaint authors do not al-
ways explicitly write about their intent to request explana-
tion. We then compare the numbers of customers com-
plaining about problems associated with products and ser-
vices and estimate the proportion of those complaints, 
which require explanations.  
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Use Cases for the ML System Lacking Ex-
plainability 
Although ML is actively deployed and used in industry, 
user satisfaction is still not very high in most domains. We 
will present three use cases where explainability and inter-
pretability of machine learning decisions is lacking and 
users experience dissatisfaction with certain cases.

Figure 1: A customer is confused and his peers are upset when 
his credit card is canceled but no explanation is provided. 

A customer of financial services are appalled when they 
travel and their credit cards are canceled without an obvi-
ous reason (Fig. 1). The customer explains what had hap-
pened in details and his Facebook friends strongly support 
his case again the bank.  Not only the banks made an error 
in its decision, according to what the friends write, but also 
it is unable to rectify it and communicate it properly.  

 

 
Figure 2: Google translation results for a simple phrase shows 

the problems in handling context. 

Figure 3: Search engine shows results very far from what a user 
is asking and do not attempt to explain how they were obtained.  

If this bank used a decision making system with explaina-
bility, there would be a given cause of its decision. Once it 
is established that this cause does not hold, the bank is ex-
pected to be capable of reverting its decision efficiently 
and retaining the customer. 
    An example of a popular machine learning system is 
shown in Fig. 2. The system translates the term coil spring 
(in Russian) into spring spring. This example shows prob-
lem in the simplest case of translation where a meaning of 
two words needs to be combined. A simple meta-reasoning 
system, a basic grammar checking component or an entity 
lookup would prevent this translation error under appropri-
ate compartmental ML architecture with explainability. 
However, a black-box implementation of machine transla-
tion breaks even in simple cases like this. Inverse transla-
tion is obviously flawed as well (in the middle of Fig. 2). 
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The bottom shows the fragment of a Wikipedia page for 
the entity. 
     Search engine is another application area for ML where 
relevance score is a major criterion to show certain search 
results (Fig. 3). Having a highest relevance score does not 
provide an explanation that the results are indeed relevant. 
Typical relevance score such as TF*IDF is hardly inter-
pretable; search highlighting features are helpful but the 
search engine needs to be able to explain why it ignored 
certain keywords like non-sufficient funds. A better phrase 
handling would also help: the system should recognize the 
whole expression non-sufficient funds fee and if it does not 
occur in search results, explain it. 
   To investigate how important it is for a customer to have 
a company’s decision explained, to have a decision associ-
ated with financial service interpretable and compatible 
with common sense, we need the following. A high number 
of scenarios of financial service failure have to be accumu-
lated and a proportion of those requiring explanation from 
the company in one form or another have to be assessed. 
To do that, we form a dataset of customer complaint sce-
narios and build an automated assessment framework to 
detect the cases where explainability is requested. 

The Dataset for Tracking Explainability In-
tent 

The purpose of this dataset is to obtain texts where authors 
do their best to bring their points across by employing all 
means to show that they (as customers) are right and their 
opponents (companies) are wrong (Galitsky et al 2009). 
Complainants are emotionally charged writers who de-
scribe problems they encountered with a financial service, 
lack of clarity and transparency as this problem was com-
municated with customer support personnel, and how they 
attempted to solve it. Raw complaints are collected from 
PlanetFeedback.com for a number of banks submitted over 
last few years. Four hundred complaints are manually 
tagged with respect to perceived complaint validity, proper 
argumentation, detectable misrepresentation, and whether 
request for explanation concerning the company’s decision 
occurred. 
     Judging by complaints, most complainants are in genu-
ine distress due to a strong deviation between what they 
expected from a service, what they received, how this de-
viation was explained and how the problem was communi-
cated by a customer support. Most complaint authors re-
port incompetence, flawed policies, ignorance, lack of 
common sense, inability to understand the reason behind 
the company’s decision, indifference to customer needs 
and misrepresentation from the customer service person-
nel. The authors are frequently confused, looking for com-
pany’s explanation, seeking recommendation from other 
users and advise others on avoiding particular financial 

service. The focus of a complaint is a proof that the propo-
nent is right and her opponent is wrong, suggested explana-
tion for why the company decides to act in a certain way, a 
resolution proposal and a desired outcome. 
     Multiple argumentation patterns are used in complaints. 
We are interested in argumentation patterns associated 
with explainability: I can explain (communicate why I did) 
it but my opponent (the company) cannot. 
     The most frequent is a deviation from what has hap-
pened from what was expected, according to common 
sense. This pattern covers both valid and invalid argumen-
tation.  
     The second in popularity argumentation patterns cites 
the difference between what has been promised (adver-
tised, communicated) and what has been received or actu-
ally occurred. This pattern also mentions that the opponent 
does not play by the rules (valid pattern). 
     A high number of complaints are explicitly saying that 
bank representatives are lying. Lying includes inconsisten-
cies between the information provided by different bank 
agents, factual misrepresentation and careless promises 
(valid pattern). 
    Another reason complaints arise is due to rudeness of 
bank agents and customer service personnel. Customers 
cite rudeness in both cases, when the opponent point is 
valid or not (and complaint and argumentation validity is 
tagged accordingly). Even if there is neither financial loss 
or inconvenience the complainants disagree with every-
thing a given bank does, if they been served rudely (invalid 
pattern). 
    Complainants cite their needs as reasons bank should 
behave in certain ways. A popular argument is that since 
the government via taxpayers bailed out the banks, they 
should now favor the customers (invalid pattern). 
    Complaint authors reveal shady practice of banks during 
the financial crisis of 2007, such as manipulating an order 
of transactions to charge a highest possible amount of non-
sufficient fund fees. Moreover, banks attempted to com-
municate this practice as a necessity to process a wide 
amount of checks. This is the most frequent topic of cus-
tomer complaints, so one can track a manifold of argumen-
tation patterns applied to this topic. 
    For most frequent topics of complaints such as insuffi-
cient funds fee or unexpected interest rate rise on a credit 
card, this dataset provides many distinct ways of argumen-
tation that this fee is unfair. Therefore, this dataset allows 
for systematic exploration of the peculiar topic-
independent clusters of argumentation patterns such as a 
request to explain why certain decision was made. Unlike 
professional writing in legal and political domains, authen-
tic writing of complaining users have a simple motivational 
structure, a transparency of their purpose and occurs in a 
fixed domain and context. Arguments play a critical rule 
for the well-being of the authors, subject to an unfair 
charge of a large amount of money or eviction from home. 
Therefore, the authors attempt to provide as strong argu-
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mentation as possible to back up their claims and strength-
en their case. 

The tag in this dataset used in the current study, request 
for explanation, is related to the whole text of complaint, 
not a paragraph. Three annotators worked with this dataset, 
and inter-annotator agreement exceeds 80%. The set of 
tagged customer complaints about financial services is 
available at https://github.com/bgalitsky/relevance-based-
on-parse-trees/blob/master/examples/opinionsFinanceTags.xls .  

Automated Detection of a Request to Explain 
Obviously, just relying on keywords, using keyword rules 
is insufficient to detect implicit request to explain. Hence 
an ML approach is required with the training dataset with  
text including a request to explain and not including one. 
Not just syntax level but discourse-level features are re-
quired when a request to explain is not explicitly men-
tioned. We select the Rhetoric Structure Theory (Rhetoric 
Structure Theory (RST, Mann and Thompson 1988) as a 
means to represent discourse features associated with af-
fective argumentation.    

We use an example of a request to recommend & explain 
to demonstrate a linguistic structure for explainability (Fig. 
4). This text (from a collection of odd questions to Yahoo! 
Answers) is a question that expects not just a brief answer 
“do this and do that” but instead a full recommendation 
with explanation: 

I just had a baby and it looks more like the husband I had 
my baby with. However it does not look like me at all and I 
am scared that he was cheating on me with another lady 
and I had her kid. This child is the best thing that has ever 
happened to me and I cannot imagine giving my baby to 
the real mom. 

The chain of rhetoric relations RST-elaboration (default), 
RST–sequence and RST-contrast  indicate that a question  
is not just enumeration of topics and constraints for an ex-
pected answer (that can be done by RST-elaboration only). 
Instead, this chain indicates that a conflict (an expression 
that something occurs in contrast to something else) is out-
lined in a question, so an answer should necessarily include 
an explanation. 

We combine parse trees for sentences with pragmatic 
and discourse-level relationships between words and parts 
of the sentence in one graph, called parse thicket (Galitsky 
2012). We complement the edges for syntactic relations 
obtained and visualized with the Stanford NLP system 
(Manning et al., 2014). For coreferences, (Recasens et al., 
2013 and Lee at al 2013) was used. The arcs for pragmatic 
and discourse relations, such as anaphora, same entity, sub-
entity, rhetorical relation and communicative actions are 
manually drawn in red. Labels embedded into arcs denote 
the syntactic relations.  

 

 
Figure 4: Linguistic representation for text which contains a 
request to explain. 
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Lemmas are written below the boxes for the nodes, and 
parts-of-speech are written inside the boxes.     
    This graph includes much richer information than just a 
combination of parse trees for individual sentences would. 
Navigation through this graph along the edges for syntactic 
relations as well as arcs for discourse relations allows to 
transform a given parse thicket into semantically equiva-
lent forms to cover a broader spectrum of possibilities to 
express a request to explain.  
    To form a complete formal representation of a para-
graph, we attempt to express as many links as possible: 
each of the discourse arcs produces a pair of thicket 
phrases that can be a potential match with an expression 
for explainability request. Further details on using nearest 
neighbor learning via maximal common sub- parse thicket 
are available in (Galitsky 2012). 

Evaluation of Recognition Accuracy and As-
sessment of the Proportion of Request to Ex-
plain 
Once we developed our algorithm for explanation request 
detection, we want to train it, test it and verify how con-
sistent its results are across the domains. We also test how 
recognition accuracy varies for cases of different com-
plexity. 
 
Table 1: Cases of explanation requests and detection accuracies 
for model development and evaluation 

Evidence  #  Criteria P  R F1 
Imperative 
expression 
with com-
municative 
action ex-
plain 

44 Keywords: 
explain, clari-
fy, make clear, 
why did they 
act-VP, why 
was it 

92 94 93.0 

Double, 
triple+ im-
plicit men-
tion 

67 Multiple rheto-
ric relation of 
contrast, at-
tribution, se-
quence, cause  

86 83 84.5 

Single im-
plicit men-
tion 

115 A pair of rheto-
ric relation 
chains for con-
trast and cause 

76 80 77.9 

 
Detection accuracy for explanation request for different 
types of evidence is shown in Table 1. We consider sim-
pler cases where the detection occurs based on phrases, in 
the top row. Typical expressions here have an imperative 
form such as please explain/clarify/motivate/comment. 
Also, there are templates here such as you did this but I 
expected that … you told me this but I received that. 

   The middle row contains the data on higher evidence 
implicit explanation request case, where multiple frag-
ments of DTs indicate the class. Finally, in the bottom row, 
we present the case of the lower confidence for a single 
occurrence of a DT associated with an explanation request. 
The second column shows the counts of complaints per 
case. The third column gives examples of expressions 
(which include keywords and phrase types) and rhetorical 
relations which serve as criteria for implicit explanation 
request. Fourth, fifth and sixth columns presents the detec-
tion rates where the complaints for a given case is mixed 
with a hundred of complaints without explanation request. 
   Recognition accuracies, bank-specific topics of com-
plaints and an overall proportion of the complaints with 
explanation request are shown in Table 2. We used 200 
complaints for each bank to assess the recognition accura-
cies for explanation request (ER). One can observe that 
82±3% is a reasonable estimate for recognition accuracy 
for explanation request. The last column shows that taking 
into account <20% error rate in explanation request recog-
nition, 25±4% is an adequate estimate of complaints re-
quiring explainability in implicit or explicit form, given the 
set of 800 complaints. 

 
Table 2: Discovering explanation request rates for four banks 

 
Source #  Main topics of 

complaints 
P  R F1 ER 

rate 
Bank of 
America 

200 NSF, credit 
card  interest 
rate raise 

82 84 83.0 28.5 

Chase Bank 200 NSF, foreclo-
sure , unex-
pected card 
cancellation 

80 82 81.0 25.8 

Citibank 200 Foreclosure, 
mortgage ap-
plication, refi-
nancing,  

79 83 81.0 23.8 

American 
Express 

200 Card applica-
tion, NSF, late 
payment 

83 82 82.5 27.0 

 

Finally, we ran our explanation request detection engine 
against the set of 10000 complaints scraped from Planet-
Feedback.com and observed that 27% of complainants 
explicitly or implicitly require explainability from compa-
nies for their decisions. There is a single complaint per 
author. Our observation is that since almost a quarter of 
customers strongly demand and rely on explainability of 
the companies’ decisions, these customers are strongly 
affected by the lack of explainability and may want to 
switch to another service. Hence the companies need to 
employ ML algorithms with explainability feature. A very 
small number of customers complained about errors in 
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decisions irrespectively of how these errors were commu-
nicated (a manual analysis). Hence we conjecture that cus-
tomers are affected by a lack of explainability in a much 
higher degree than by an error rate (such as extra 10%, 
based on anecdotal evidence) of a company’s decision-
making system. 
    This explainability feature is more important than the 
recognition accuracy for the customers, who understand 
that all businesses make errors. Typically, when a company 
makes a wrong decision via ML but then rectifies it effi-
ciently, a complaint does not arise. The most important 
means for customer retention is then properly communi-
cating with them both correct and possibly erroneous cus-
tomer decisions (not quantitatively evaluated in this study). 

Related Work 
To tackle the challenges associated with the lack of ex-
plainability of most popular modern ML algorithms, there 
are some initial efforts on interactive model analysis. The-
se efforts have shown that interactive visualization plays a 
critical role in understanding and analyzing a variety of 
machine learning models. Recently, DARPA I2O released 
Explainable Artificial Intelligence proposal to encourage 
research on this topic. The main goal of XAI is to create a 
suite of machine learning techniques that produce explain-
able models to enable users to understand, trust, and man-
age the emerging generation of AI systems. 
   There have been attempts to augment the learning mod-
els intrinsically lacking explainability with this feature. ML 
models can be trained to automatically map documents into 
abstract concepts such as semantic category, writing style, 
or sentiment, allowing to categorize a large corpus. Besides 
predicting the text's category, it is essential to understand 
how the categorization process arrived to a certain value. 
(Arras et al., 2017) demonstrate that such understanding 
can be achieved by tracing the classification decision back 
to individual words using layer-wise relevance propaga-
tion, a recently developed technique for explaining predic-
tions of complex non-linear classifiers. The authors trained 
two word-based ML models, a CNN and a bag-of-words 
SVM classifier, on a topic categorization task and applied 
the layer-wise relevance propagation method to decompose 
the predictions of these models onto words. Resulting 
scores indicate how much individual words contribute to 
the overall classification decision. This enables one to dis-
till relevant information from text documents without an 
explicit semantic information extraction step. The authors 
further used the word pair-wise relevance scores for gener-
ating novel vector-based document representations which 
capture semantic information. Based on these document 
vectors, a measure of model explanatory power was intro-
duced and showed that, although the SVM and CNN mod-
els perform similarly in terms of classification accuracy, 

the latter exhibits a higher level of explainability which 
makes it more comprehensible for humans and potentially 
more useful for other applications. 
    Although ML models are widely used in many applica-
tions due to high accuracy, they fail to explain their deci-
sions and actions to users. Without a clear understanding, it 
may be hard for users to leverage their knowledge by their 
learning process and achieve a better prediction accuracy. 
As a result, it is desirable to develop more explainable ma-
chine learning models, which have the ability to explain 
their rationale and convey an understanding of how they 
behave in the learning process. The key challenge here is 
to design an explanation mechanism that is tightly integrat-
ed into the ML model. Accordingly, one interesting future 
work is to discover which parts in an ML model structure 
explains its different functions and plays a major role in the 
performance improvement or decline at each iteration. One 
possibility is to better back up both the model and the deci-
sions made. In particular (Lake et al., 2015) proposed a 
probabilistic program induction algorithm, having devel-
oped a stochastic program to represent concepts, which are 
formed compositionally from parts and spatial relations. 
(Lake et al., 2015) showed that their algorithm achieved 
human-level performance on a one-shot classification task, 
However, for the tasks that have abundant training data, 
such as object and speech recognition, CNN approaches 
still outperform (Lake et al., 2015 ) algorithm. There is still 
a long path to proceed towards more explainable deep 
learning decisions.  
     Following the recent progress in deep learning, ML 
scientists are recognizing the importance of understanding 
and interpreting what goes on inside these black box mod-
els. RNN have recently improved speech recognition and 
translation, and these powerful models would be very use-
ful in other applications involving sequential data. Howev-
er, adoption has been slow in domains such as jurists, fi-
nance, legal and health, where current specialists are reluc-
tant to let an explanation-less engine make crucial deci-
sions. (Krakovna et al., 2016) suggests to make the inner 
workings of RNNs more interpretable so that more applica-
tions can benefit from their power. 
     CNNs have achieved breakthrough performance in 
many pattern recognition tasks such as image classifica-
tion. However, the development of high-quality deep mod-
els typically relies on a substantial amount of trial-and-
error, as there is still no clear understanding of when and 
why a deep model works. (Liu et al 2017) presents a visual 
analytics approach for better understanding, diagnosing, 
and refining deep CNNs. The authors simulated CNN as a 
directed acyclic graph. Based on this formulation, a hybrid 
visualization is developed to visualize the multiple facets 
of each neuron and the interactions between them. The 
authors also introduced a hierarchical rectangle-packing 
algorithm and a matrix re-shuffling method to show the 
derived features of a neuron cluster. They also proposed a 
bi - clustering-based edge merging algorithm to minimize 
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visual distortion caused by a large number of connections 
between neurons.  

Conclusions 
We demonstrated that customers are strongly dissatisfied 
when decisions strongly affecting them are made by ML 
systems lacking explainability and interpretability features. 
Popularity of deep learning approaches, which make these 
features harder to implement, further increase customer 
dissatisfaction and negatively affect their user retention. 
Whereas deep learning and big data approaches decrease 
the development costs for companies, especially when suf-
ficient data is available, customer satisfaction drops.  
   We developed the NL detection system for the case of 
explainability request and detected 27% of complaints re-
quire explainability from companies, from the set of 10000 
complaints. Hence a quarter of customers strongly demand 
and rely on explainability of the companies’ decisions 
(Galitsky 2017). The conclusion is that these customers are 
strongly  affected by a lack of explainability of ML system 
and would stop being customers if a competitive business 
offers explanation-enabled service. Hence we conjecture 
that the companies need to employ ML algorithms with 
explainability feature. 
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Abstract

In the worldwide trend of big data and AI, the use of sec-
ondary data is an essential social demand in terms of cross-
discipline data exchange and utilization. However, the inten-
tions or the contexts of data collected by others tend to be
unclear, which may cause difficulties in grasping facts for de-
cision making. To avoid this contextual gap between users
and collectors, we propose the retrieval system of data reflect-
ing the collectors’ contexts as well as users’ requirements for
making a beneficial decision. Our motivation is to support
users to retrieve data without extensive knowledge of them
and to improve the transparency of the retrieval process. To
achieve these aims, we conducted several workshops to col-
lect integrated knowledge of data utilization and implemented
an interface for users to retrieve information about data re-
lated to their interests from free text queries.

Introduction

It is difficult for users to accurately obtain data correspond-
ing to their intentions because they struggle to express their
objects of interest using the terms in the relevant data. This
problem occurs owing to a lack of knowledge of the data
and a lack of knowledge about how to use data. To tackle
such problems, we propose herein an interactive visualiza-
tion and retrieval system by structuring knowledge relating
to data utilization. In this study, knowledge of data utiliza-
tion consists of three types of entities: Requirements, So-
lutions, and Data Jackets. Requirements are the problems
stated by users, Solutions are the proposals for analysis with
combinations of data that satisfy the Requirements, and Data
Jackets represent information relating to data. Data Jacket
(DJ) is a technique for sharing ”a summary of data” as meta-
data without sharing the data itself (Ohsawa et al. 2013).

System Architecture

The three layers to describe the knowledge of data uti-
lization are based on the three roles of the players
in the market of data: the data owner, the user, and
the analyst. Considering that the data owners offer DJs,
the data users state Requirements, and the data ana-
lysts propose Solutions, two minimum units of knowl-
edge of data utilization can be described as follows

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with binary predicate logic: combine(solution,DJ) and
satisfy(solution, requirement). We can describe com-
plex knowledge of data utilization structurally by combin-
ing these models, which consist of a 3-partite graph. For ex-
ample, the retrieval system returns a set of DJs constituting
Solutions satisfying the corresponding Requirements, from
a query to the Requirement database. Also, by adding the
information about variables (Variable Labels: VLs) to the
3-partite graph, it is possible to learn the combinations of
variables constituting data. In general, a VL is a concrete
entity but a Requirement is an abstract entity. Both are dif-
ferent types of knowledge elements and there is no linkage
to bridge Requirements and VLs. Introducing knowledge of
data utilization, the system can retrieve VLs by way of So-
lutions and DJs. Furthermore, the retrieval process is clear
through visualization, which enhances the persuasiveness of
the search results (Sinha and Swearingen 2002). To create
a knowledge base of data utilization, we conducted an In-
novators Marketplace on Data Jackets (IMDJ). The IMDJ is
a workshop for discussing data utilization using DJs. Data
owners provide their datasets as DJs, and participants of the
IMDJ (data owners, users, and analysts) create Solutions to
solve users’ problems stated as Requirements. We stored
190 DJs, 276 Solutions, and 222 Requirements created in 16
IMDJ workshops as the knowledge base of data utilization.

Fig.1 is the interface showing the 3-partite graph of
knowledge of data utilization with VLs. The figure shows
the results of retrieval from the free text query ”safe trans-
portation system for foreigners in Tokyo Olympics” using a
retrieval algorithm. Users send queries using the text area
1© and the result is visualized in 2©. The area 3© con-

tains detailed information related to the result (the num-
bers of retrieved knowledge elements). The visualization
of the 3-partite graph is represented based on a directed
graph GW = (VW , EW ) (W : a set of knowledge ele-
ments, VW : a set of nodes, EW : a set of edges). The co-
occurrence graph of VLs is represented based on a weighted
undirected graph GS = (VS , ES) (VS = {vli ∈ S},
ES = {(vli, vlj)djk |vli, vlj ∈ S, vli �= vlj}).

When users entered free text (Tx) as a query, the system
searched for the database of DJs and returned a set of DJs
(DJdj(Tx) =

⋃T
i=1 DJdj(ti)) obtained by string matching a

word (ti) with the descriptions of the DJs. Likewise, when
searching for DJs in the Solutions, the system searched for
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Figure 1: The interface of our retrieval system.
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Figure 2: The types of DJ sets.

the database of Solutions by checking for strings matching
a word (ti) with the descriptions of the Solutions, and re-
turned a set of DJs (DJsol(Tx)) connected with the Solutions.
Similarly, when retrieving DJs from Requirements, the sys-
tem searched for the database of Requirements by matching
the string represented by a word (ti) with the descriptions
of the Requirements and returned a set of Solutions con-
nected to the Requirements. The system then searched for
DJs connected to the set of Solutions and returned a set of
DJs (DJreq(Tx)). Finally, the system returned a set of DJs
(DJdj(Tx) ∪DJsol(Tx) ∪DJreq(Tx)).

Results and Conclusion

To evaluate the system’s ability to retrieve information po-
tentially related to users’ interests, we collected 4,326 search
queries from the users’ searching behaviors on the portal site
of DJs. We compared the number of DJs in the DJ group
and the Req-Sol group retrieved by queries. The DJ group
are the DJs found by the string matching of words in the DJ
database (areas 1©, 4©, 5©, and 7© in Fig.2), and the Req-Sol
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Figure 3: The number of retrieved DJs (the numbers corre-
spond to the numbers in Fig. 2.)

group are the DJs found the string matching of words only in
the Solution or the Requirement database (areas 2©, 3©, and
6© in Fig. 2). The result shows that a larger number of DJs

can be retrieved by way of the Solution and the Requirement
databases than by searching only the DJ database (Fig.3).
The result shows that the structured knowledge of data uti-
lization may support the significant discovery of data related
to users’ interests, even if users cannot adequately express
their interests by employing terms found in the data, or do
not have sufficient knowledge of the data.
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Abstract

This paper analyzes a questionnaire survey data on elderly
people in order to investigate regional characteristics of their
living activities. For the purpose, we use Probabilistic Latent
Spatial Semantic (PLSS) Modeling, which is integrated the
two methods: probabilistic latent semantic analysis (pLSA)
and Bayesian network (BN). First, we aggregate each indi-
vidual’s survey record by postal code; Second, we find char-
acteristics of the region by pLSA; Third, we use BN to clar-
ify factors of this regional disparity. From the study, we are
able to identify critical information to support decisions for a
manager in a local government: i) There is regional disparity
in terms of social network; and ii) The regional disparity of
social network will improve by neighborhood facilities. Such
information will be of use for designing the super-aged so-
ciety in the near future. We propose policy decision support
system in aging society based on PLSS Modeling.

Introduction

As the aging will rapidly progress in worldwide, especially
in Japan, which is the top of such a super aged society, the
policy decision making in Japan is urgent study topic; for
example, here will be the medical shortage caused by super
aged society, and the increase in social security expenses.
However, policy problems were thought to be difficult to
deal with in existing social science. Policy problems are dif-
ficult to solve because of its complexity. As this complex-
ity, there are four properties; 1)Comprehensiveness; policy
problems involve various problems, 2)Reciprocity; policy
problems conflict with other problems, economic develop-
ment and environmental protection, 3)Subjectivity; Framing
of policy problems are different depending on position and
viewpoint , 4)Dynamics; Policy problems are changing ev-
eryday (Akiyoshi et al. 2015). For that reason, we need to
construct model to understand structure and context of pol-
icy problems, and this model have to respond flexibly to
changes of policy problems and reflect knowledge from mul-
tiple viewpoints and experts. That is, it is the model which
is easy to understand the relationship between variables and
reflect domain knowledge and new data. This research aims
to policy decision support system for local government in

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

aging society based on modeling which clarify regional dis-
parities.
To realize this model, we applying computational social sci-
ence techniques to a large scale survey study conducted by
Japan Gerontological Evaluation Study (JAGES). JAGES
are conducting large-scale questionnaire survey targeting
more than 100,000 elderly people to uncover the current ge-
ographical status of living activities of elderly people. With
this questionnaire, it is possible to acquire data on elderly
people from a multifaceted viewpoint such as body, psychol-
ogy, society. One of main objects in this project is to clarify
regional health disparity and regional characteristics in order
to support policy making of local governments.

Currently, data analysis using spatial data is increasingly
important in the context of policy decision making. Spatial
data are used in various policy fields, and in the field of med-
ical policy, it is applied to problems such as factor analysis
of mortality rate and correction of regional disparities. In the
mid-19th century, J. Snow created a map to find out the spa-
tial ubiquity of the distribution of cholera patients in London
(Snow, John 2015). This is a method of space clustering and
has been developed in a field called Spatial epidemiology.
Time, person, and place are 3 main epidemiologic variables
(Pfeiffer, Dirk, et al. 2008), in particular, place is the most
important variables in the context of policy decision making.
In the scene of policy, municipalities have intervention at re-
gional level. In this research, we use the postal code attached
to the questionnaire data as primary key.

Based on this background, this paper analyzes the ques-
tionnaire data with recent plural machine learning tech-
niques and simulates policy effect at regional level. First, we
apply a clustering technique to extract postal code groups.
Second, we find characteristics of the region by and ques-
tion item groups via probabilistic latent semantic analysis
(pLSA). Third, we apply bayesian network (BN) to the data
to understand relations among many variables. Based on the
obtained model, we carry out causal reasoning in regional
health disparity.

The rest of the paper is organized as follows: In Section
2, we describe the data and method in order; in Section3, we
give investigation results of each method; Section 4 gives
discussion of the study, and finally, Section 5, we give some
concluding remarks.
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Figure 1: JAGES question items

Data and Methods

Data

The target data of this analysis is JAGES 2010-2013 cohort
data which is 2010 cross-sectional data combined with certi-
fication of long-term care need in 2013. This is tracking data
of the respondents in 24 municipalities targeted for the 2010
survey. There are some variables in certification of long-term
care data, for example, dead, dementia and the level of care
needed. JAGES 2010-2013 cohort data has 74264 records
and 53801 records have postal code.

The question items in the questionnaire consist of core
items and version items. Core items are items common to
all respondents and five types of version items of the A to E
version are equally attached to the core items. The outline of
questionnaire items is shown in Fig.1.

Methods

pLSA(Hofmann, Thomas 1999) has been proposed as a
method of document classification and is one method of
text clustering. In this method, we assume that word w in
document d is generated via latent variable z. In the likeli-
hood maximization by the EM algorithm, the latent variable
z ∈ Z = {z1 , ..., zk} is attached to the co-occurring data. In
this study, we assume that the postal code wi responds to the
question answer di via the latent variable zk, and extracted
postal code groups and question item groups with similar re-
sponses in the questionnaire data. Co-occurrence frequency
is n(i, j). The joint probability is expressed by the following
equation.

P (wi, di) =
∑

k

P (wi|zk)P (di|zk)P (zk) (1)

After that, P (w|z), P (d|z), P (z) are calculated by EM al-
gorithm which maximizes the following log likelihood func-
tion.

L =
∑

i

∑

j

n(i, j) logP (wi, di) (2)

Figure 2: Bayesian network

pLSA can maximize information content by EM algorithm
so that dimension reduction, which has less loss of informa-
tion content, can realize in the resulting segment. Analysis
that extracted latent classes using pLSA is effective for big
data but it does not express explicitly what the extracted la-
tent class represents, so it is difficult to understand the mean-
ing of that latent class intuitively. It is a big problem when
manually analyzing after extracting latent classes. There-
fore, we consider a probabilistic latent semantic modeling
that can model latent classes extracted by pLSA, and further-
more, relationships between latent classes by Bayesian net-
work. By modeling relationships with the explanatory vari-
able, there is an advantage that the latent class which was
intuitively difficult to understand can be characterized by the
related explanatory variable.

The Bayesian network (Pearl, Judea 1985) is one of
graphical model that enables prediction of events and rea-
sonable decision making.The model created can be repre-
sented by network graph. The product of simultaneous prob-
abilities among the variables shows the simultaneous distri-
bution of the model. In addition, by using the probabilistic
reasoning algorithm, posterior probability calculation, sen-
sitivity analysis can be executed(Motomura 2009).

A Bayesian network is a model in which a qualitative de-
pendency relationship among multiple random variables is
represented by a graph structure and a quantitative relation-
ship between individual variables is represented by a preced-
ing conditional probability as Figure2. This is a probabilis-
tic model defined by random variables and the conditional
dependency between random variables and its conditional
probability. A variable is a node, a dependency relation be-
tween variables is represented by an oriented link extending
in the direction of the variable resulting from the cause, a
node that comes before the link is called a child node, and a
node under the link is called a parent node. For example, the
dependence relation between random variable Xi and Xj is
represented by directed rink XiXj . Xi is parent node, and
Xj is child node. When we assume that the set of parent
nodes π(Xj) = {X1, ..., Xi} with child node Xj . The de-
pendency relation between Xj and π(Xj) is quantitatively
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expressed by the following conditional probability.

P (Xj |π(Xj)) (3)

Furthermore, for each of the n random variables X1, ..., Xn,
in the same way as a child node, the simultaneous probabil-
ity distribution of all the random variables is as below.

P (X1, ..., Xn) =
∏

j

P (Xj |π(Xj)) (4)

The Bayesian network is a modeling based on discontinuous
probability distribution in which X - Y space is discretized
according to the conditional probability table and individual
probability values are assigned. However, we apply bayesian
network to big data, the number of states of the discrete ran-
dom variable becomes enormous. For that reason, the size
of the conditional probability table becomes huge and fre-
quency distribution becomes sparse, so that model construc-
tion becomes difficult. To solve this problem, it is neces-
sary to cluster the state to an appropriate granularity before-
hand(Ishigaki et al. 2010). Therefore, clustering by pLSA as
prior processing can prevent from frequency distribution be-
coming sparse(Murayama et al. 2015; Hirokawa et al. 2015).
In other words, a structure model corresponding to big data
is constructed by classifying the elderly or the region into
latent segments with pLSA and constructing a Bayesian net-
work that estimates the probability of belonging to the latent
segment from various variables. In this research, we added
aggregation by postal code as data processing. We called this
method Probabilistic Latent Spatial Semantic (PLSS) Mod-
eling.

Results

pLSA

We extracted latent segments from JAGES dataset aggre-
gated by postal code by using pLSA. The total number of
postal codes is 2133.The number of latent class was deter-
mined based on AIC(Akaike 1987). There is an initial value
dependence because EM algorithm is used for the likelihood
calculation of pLSA. Thus, by changing the initial value 5
times, the latent class was increased from 4 to 45 and the
minimum value at each cluster number was compared. The
figure 3 indicates AIC scores. As a result, since AIC has
the minimum value when K = 25, the number of clusters
25 was selected. PLSA is a method for maximum likelihood
estimation of topic model so that all variables belong to all
clusters and the degree of affiliation is given by probabil-
ity. We assigned postal codes and question answers to clus-
ters with the highest affiliation probability.In figure 4, this is
scatter plot of postal codes in which the vertical line shows
P (wi|zk) and the horizontal one zk. As can be seen from
the figure, postal codes are distributed mainly in Z003 and
Z009 and Z025. Moreover, most of affiliation probabilities is
less than 0.5 and it’s meaning variables belong to more than
one cluster at the same time. Figure 5 and 6 shows affiliation
probabilities of all postal codes and question answers in each
cluster. All clusters have different distribution of affiliation
probability.

Figure 3: AIC scores

Figure 4: Scatterplot of postal codes with highest affiliation
probability

We take these three main clusters for instance. Figure 7
shows top 10 question answers with the highest affiliation
probabilities. The columns of question answers are color-
coded, in particular, answers about hobby are green, answers
about near facilities are blue, and answers about isolation are
red. Similar answers are listed for each cluster, and the po-
tential trends of clusters can be interpreted as follows. Z003
and Z009 are the areas where hobby activities are active and
no isolation, on the other hand, Z025 is the area where peo-
ple lacked social and community ties.

We consider Nagoya city which has the largest number
of respondents among subject municipalities. First of all,
in each 16 wards constituting Nagoya City, the number of
postal codes belonging to each 25 clusters was counted.
Then, considering the cluster with the highest postal code
distribution as the cluster representing the administrative
district, a choropleth map is created and shown in figure 8.
As shown in figure 8, the representative clusters are equal in
the neighboring area. Hence, it was confirmed that the ten-

225



Figure 5: Affiliation probability of postal codes Figure 6: Affiliation probability of question answers

Figure 7: Postal codes and Question answers with the top 10 highest affiliation probabilities

Figure 8: Cluster distribution in Nagoya city

dency of answers is similar when the residential areas are
located nearby. There is a high possibility that there is a cor-
relation between the response tendency of the elderly and
the resident area. The results of figure 7 and figure 8 suggest
there is regional disparities in terms of social network.

Bayesian network

In this research, we used Bayonet (Motomura 2003) to cre-
ate a Bayesian network. The determination of the graph
structure of the Bayesian network can be determined by
Greedy algorithm that searches for the optimal local tree for
each child node. We build Bayesian network by the proce-
dure 1) child nodes are defined, 2) candidate local trees are
given for each child node, 3) conditional probability is deter-
mined for each local tree, 4) an optimal local tree is searched
for Greedy for each child node. In the procedure of 4), when
choosing a tree, we select the candidate set given in advance
by the selection criterion (MDL, AIC) which takes into con-
sideration the likelihood and the complexity of the model.
Extracting regional questions out of all questions, we con-
structed a bayesian network with the answer and the vari-
ables belonging to the above three clusters in figure 9. This
questions are about the change in their area in the past 3
years and about the environment within 1 km from their
house. In this bayesian network, the upstream is occupied
by neighboring facilities, it propagates to the change of the
area, and eventually leads to cluster affiliation. This result
suggests that neighborhood facilities affect regional change,
regional change affect regional disparity. By executing prob-
abilistic reasoning on this bayesian network, the influence
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Figure 9: Bayesian Network about regional characteristics

degree between nodes can be quantitatively calculated.
We focus on the node of Increase of local communica-

tion and activity. There are three parent nodes linked to this
node,“Houses and Facilities that you can drop in casually
within 1 km from your house”, “Increase of people moving
in”, “Deterioration in security”. By giving numerical value
into each node and comparing the prior probability with the
posterior probability in figure 10, it increases from 3.7 per-
cent to 19.8 percent by regional intervention. In other words,
if you increase the number of homes and facilities that you
can drop in easily, promote an increase in the number of
people moving in and improve the public safety, it can be
expected that the local community will be revitalized. As
this inference on the top down, by giving numerical value to
the parent node on the Bayesian network and looking at the
probability transition of the child node, it is possible to de-
duce what kind of result will occur with a certain probability
under a certain hypothesis.
On the other hand, by giving numerical value to a child
node and looking at the probability transition of the parent
node at the bottom up, the most likely hypothesis can be ob-
tained when the result is given. As shown in figure 11, when
the result of No in “Expansion of income gap” is obtained,
the probability of Sometimes in “Graffiti or Garbage” de-
creased. Moreover, the probability of No in “Increase of un-
waged” and “Increase of people moving in” has increased.
This result suggests graffiti and garbage in the neighborhood
and the increase of unwaged and people moving in are fac-
tors of expansion of income gap. In this way, it is possible to
use the Bayesian network as a hypothesis construction.

Discussion

Importance of social capital

This study shows the presence of disparity of social network.
Epidemiological studies have concluded that people who are
socially integrated live longer(House, James S et al. 1988).
Berkman’s study have shown that the people who lacked so-
cial and community ties were more likely to die than those
with more extensive contacts.

The age-adjusted relative risks for those most isolated
when compared to those with the most social contacts were
2.3 for men and 2.8 for women(Berkman, Lisa F et al.1979).

Figure 10: Bayesian Network Infer : Top-Down

Figure 11: Bayesian Network Infer : Bottom-Up

These studies show the evidence that the social cohesion
enhances longevity.Robert Putnam defined social capital as
features of social organization, such as trust, norms, and net-
works, that can improve the efficiency of society by facili-
tating coordinated actions(Putnam, Robert D et al. 1994).

There are three plausible reasons why social capital affect
individual health(Kawachi et al 1999; Kawachi et al. 1997;
Kawachi et al. 1997). According to Kawachi’s study, (1) so-
cial capital may influence the health behaviors of neighbor-
hood residents by promoting more rapid diffusion of health
information, increasing the likelihood that healthy norms of
behavior are adopted (e.g., physical activity), and exerting
social control over deviant health-related behavior, (2)neigh-
borhood social capital may influence health by increasing
access to local services and amenities, (3) neighborhood so-
cial capital may influence the health of individuals via psy-
chosocial processes, by providing affective support and act-
ing as the source of self-esteem and mutual respect.

In Japan, we always hear news about dying alone and
social isolation of the elderly. On the other hand, Japan
also have communities where there are strong connections
through neighborhood associations and local governments.
Local governments have the potential to greatly contribute
to Japan’s aging society by focusing on social capital. As
part of that, this study suggest the method for regional char-
acteristics extraction and decision support for regional inter-
vention and showed the analysis results.

Social capital and Regional environment

From the view of social capital, there is hypothesis that ex-
plains the results of this study. From figure 7 and figure 8,
the east side of the city is Z009, where the cluster has good
environment, and seem to be no isolation because drinking
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with companion. On the other hand, the west side of the city
is Z025. This cluster is the area where people lacked so-
cial and community ties. Nagoya city has large scale green
parks with forest in the east side. For example, there are Hi-
gashiyama park and Heiwa park in Tikusa ward, Obata green
tract of land in Moriyama ward, Makinogaike green tract of
land in Meito ward and Odaka green tract of land in Midori
ward. All of these parks are in the east side of Nagoya. The
core of the city is the central part of Nagoya, where commer-
cial facilities and office buildings were build. With figure 9,
three cluster: Z003, Z009, Z025 have common parent node
in the most upstream, it is just “Parks and promenades suit-
able for exercise and walking.” Here is the hypothesis that
the fact that there are parks in the neighborhood gives rise to
social capital disparity. Ariane L’s study shows psycholog-
ical benefits for park users that arise from the proximity of
natural environments(Bedimo-Rung, Ariane L et al. 2005).
Other study (Godbey, Geoffrey, and Michael Blazey 1983)
has shown that older adult park users who participated in
moderate aerobic activity were in a better mood after visit-
ing the park. From the perspective of public health, it would
be beneficial to add parks and encourage social capital.

Policy Decision Support System in Aging Society

Gerontechnology is defined as interdisciplinary academic
and professional field combining gerontology and technol-
ogy(Bouma, Herman et al. 1992). This field not only sup-
ports the elderly but also will develop into a core industry
in Japan. In China, the number of elderly people will ex-
ceed 200 million in 2025. Japan is expected to help asian
countries and promotion of economic growth by gerontech-
nology.

Policy problems in aging society are also needs solution
by Gerontechnology. Policy problems are complex struc-
tures involving various factors so that there is high possi-
bility of misjudging the problem in the conventional field-
specific ways. However, PLSS Modeling reflects the com-
plexity of policy problems. As stated in introduction, there
are difficulties in policy problems: 1)Comprehensiveness;
BN capture the relationship of many variables without being
bound by field-specific views. Moreover, BN reflects knowl-
edge from multiple viewpoints and experts as prior distribu-
tion. 3)Subjectivity; The relationship between variables is
visually clear and we share the frame of problems. 4)Dy-
namics: BN respond flexibly to new data and changes of
policy problems. PLSS Modeling based on JAGES data en-
able local governments to construct hypothesis about values
and needs of elderly people. Longitudinal data integration
and analysis will improve prediction accuracy. JAGES aims
to make smart aging society by artificial intelligence and de-
velop health care simulation science. Figure 12 shows the
framework of data platform in aging society. PHR means
Personal Health Record, which is a collection of health-
related information that is documented and maintained by
the individual it pertains to. It is necessary to constantly re-
flect social feedback to the model without separating model-
ing and application using model. Therefore, we should fol-
low the cycle as Figure 13. By continuing this cycle, it is ex-
pected that system will be established to continuously calcu-

Figure 12: JAGES and PHR data platform in aging society

Figure 13: Cycle for solving problems in aging society

late the characteristics of diverse elderly people and utilize
them as useful knowledge for society. Sharing this system
will help realization of new social infrastructure in aging so-
ciety.

Conclusion

The paper has described Probabilistic Latent Spatial Seman-
tic (PLSS) Modeling which is integrated probabilistic latent
semantic analysis and bayesian network to uncover the cur-
rent geographical status of living activities of elderly people.
Finally, this paper proposed policy decision support system
to implement PLSS Modeling in the real world.

We have clarified the latent regional characteristics and
the factors of regional disparities from the elderly question-
naire data. We also mentioned what kind of intervention the
municipal government should take to solve regional dispar-
ities. It became clear that 1)there is regional disparities in
terms of social network, 2)neighborhood facilities affect re-
gional disparity, 3)the local community will be revitalized
by increasing the number of homes and facilities that you
can drop in easily, promoting an increase in the number of
people moving in and improving the public safety.

In the future, there is need to comparative controlled study
to certify causality. By using the results of clustering re-
gions, we are able to compare regions without intervention
and with intervention in the same cluster. JAGES is engaged
in intervention by holding local events. We plan health track-
ing such as blood pressure measurement at these events for
model evaluation.

Our remaining works include i) undersampling data be-
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fore constructing BN to improve the accuracy of predic-
tion of health status; ii) time series data analysis using other
year’s survey data; iii) intervention trial to certify causality;
These future works might help local government to improve
social capital and health status.
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Abstract 
Changes in sensation due to aging affect the preferences 
when the elderly choose products. Texture is an important 
factor to affect their preferences of products especially in 
the case of items that are held by hand. However, it is diffi-
cult to design products preferred by elderly people. There-
fore, we constructed a texture suggestion system consider-
ing the elderly’s preference. Users input sound-symbolic 
words such as “tsuru-tsuru” (comfortable slippery texture), a 
kind of Japanese intuitive texture word. Then the system re-
fers to the texture database including 3D model images out-
puts 3D model data to realize the texture design preferred by 
elderly people.  

 Introduction   
Technological development of 3D printers is remarkable. It 
is possible to manufacture microscopic and fine objects of 
micron size. In addition, there is also great convenience 
that various materials such as resin and metal can be used 
as materials (Bhushan and Caspers 2017). The printing 
technology is highly applicable because we can use many 
different materials. It is also possible to make artificial 
body parts to create various products. There are few studies 
considering individual texture preference, especially pref-
erence of elderly people. In this study, we focus on the 
additive manufacturing techniques (3D printers) to consid-
er the relationship between texture property and preference 
of elderly people.  

We can perceive surface textures and material properties 
through the sense of touch, and the tactile modality is con-
sidered to play an important role in evaluations of items 
used in daily life. In particular, relations between surface’s 
material properties and tactile perception are important for 
consumer goods. In the psychophysical domain, a large 
body of literature deals with the relationship between sur-
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face (or texture) perceptions and the surfaces’ physical 
properties (Bergmann Tiest and Kappers  2006, Chen et al. 
2009, Gescheider et al. 2005, Hollins et al. 2000, Hollins et 
al. 1993, Okamoto, Nagano and Yamada 2013, Picard et al. 
2003). However, most of them have identified the main 
factors of tactile perception based on averaged data among 
subjects (Hollins et al. 2000). Touch quality is influenced 
not only by the surfaces’ physical properties of the object 
but also by a large individual difference such as skin de-
formation of the finger.  

In recent years, many researchers have studied sound 
symbolism as an integral expression of texture, and have 
verified its effectiveness (Doizaki, Watanabe and Sakamo-
to 2017, Sakamoto and Watanabe 2016, Sakamoto and 
Watanabe 2017, Sakamoto et al. 2016). Sound symbolism 
represents a phenomenon in which a certain amount of 
information perceived from environment is strongly asso-
ciated with phonological elements (as sound) in the brain. 
The existence of sound symbolic words (hereafter, SSWs) 
has been demonstrated in a wide variety of languages 
(Bolinger 1950, Hinton, Nichols and Ohala 1994, Köhler 
1929, Nuckolls 1999, Ramachandran and Hubbard 2001, 
Sapir  1929, Schmidtke, Conrad and Jacobs 2014). For 
example, English words starting with “sl-” such as “slime”, 
“slush”, “slop”, “slobber”, “slip”, and “slide” symbolize 
something smooth or wet  (Bloomfield 1933). We have 
proposed a system that can automatically estimate multi-
dimensional ratings of touch from a single sound-symbolic 
word that has been spontaneously and intuitively expressed 
by a user (Ramachandran and Hubbard 2001). When a user 
inputs a sound-symbolic word into the system, the system 
refers to a database of phonemes and their auditory impres-
sions, and calculates ratings in terms of 26 pairs of funda-
mental scales of touch. The estimated ratings of sound-
symbolic words enable us to visualize a tactile perceptual 
space. We assume that the human brain has a database of 
phonemes and perceptual learning and SSW can be used 
for integral expression of texture. 
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Aging can be regarded as an important factor of individ-
ual difference in touch because functions in the main sen-
sory modalities are declined with aging. In particular, the 
effect of aging on touch is well reported in nervous system, 
tactile thresholds and functional implications (Nusbaum. 
1999, Wickremaratchi and Llewelyn 2006). Aging leads to 
a gradual decrease of cells and fibers in the central and 
peripheral nervous system (Katzman and Terry 1983, 
McLeod 1980, Victor and Ropper 2001). The density and 
distribution of Pacinian and Meissner corpuscles and Mer-
kel’s discs also decrease in the skin of the elderly people 
(Bolton, Winkelmann and Dyck PJ 1966, Gescheider et al. 
1994, Schimrigk and Ruttinger 1980, Stevens and  Patter-
son 1995). In addition, older subjects were significantly 
less sensitive to mechanical stimuli and tactile, vibration, 
pain and temperature thresholds in the elderly are signifi-
cantly increased (Gescheider et al. 1996, Gescheider et al. 
1994, Goble, Collins and Cholewiak 1996, Kenshalo 1986, 
Thornbury and Mistretta 1981, Tucker et al. 1989, Verrillo, 
Bolanowski and Gescheider 2002). Thus, aging in tactile 
sense can be an important issue. With respect to that issue, 
it is necessary to propose methods and systems to reflect in 
detail the differences in touch feeling of individuals which 
was difficult to quantitatively assess. 

There are several studies suggesting the possibility that 
changes in sensation may affect preferences. Kuga (Kuga 
1996)  suggests that threshold changes tend to affect pref-
erences and pointed out a change in taste preference. Fur-
thermore, there are several studies related to texture and 
preference, for example, the relation between the percep-
tion and discomfort (Iwasa and Komatsu 2015) and, the 
preferable texture on touch (Mihara, Sekine and Yamauchi 
2007). However, there are very few studies focusing on the 
preferred texture for the elderly. When comparing young 
people and elderly people, texture preferences may be dif-
ferent. Since the population of elderly people is increasing, 
it will be getting more important to consider the preference 
of elderly people. Still, it seems that the most products of 
everyday life are designed for young people because de-
signers of products are relatively young. Therefore, there is 
a need to create a system to recommend texture design 
preferred by the elderly. 

The purpose of this research is to construct texture sug-
gestion system considering the elderly’s preference on 3D 
modeling. To achieve the purpose, we investigate the ten-
dency of texture preference of the elderly and construct the 
system using the analysis results. 

System Construction 
In this research, we construct a system that proposes 3D 
texture model to consider preferences of elderly people. 
Users input a SSW to express intuitively the texture they 

want to be put on their products. Then, the system refers to 
the texture database including 3D model image and designs 
are outputted from the 3D model. In this research, we focus 
on shape as texture parameter. First, we selected SSWs for 
input data and constructed a database that store texture data 
corresponding to SSWs. In particular, the texture data 
shows the 3D model using surface characteristics (height, 
width and interval). Figure 1 shows the flow of the system. 
The overview of the operation of the system is as follows, 
(1) Enter the SSW that matches the texture you want. (2) 
The system refers to the database and call the 3D model 
data corresponding to the input SSW. (3) The system 
outputs using the 3D model data.  
Selection of input SSWs�
First, we perform an experiment to select input SSWs. 60 
elderly participants participated in the experiment. In the 
experiment, 18 types of image data were used and the tex-
ture was evaluated by SSWs and semantic differential (SD) 
method. The experimental stimuli used in this study were 
obtained from the FMD 
(http://people.csail.mit.edu/celiu/CVPR2010/FMD/) 
(Sharan et al. 2014), which is one of the major stimulus 
sets used in vision research. The FMD consists of color 
photographs of surfaces belonging to one of ten common 
material categories: fabric, foliage, glass, leather, metal, 
paper, plastic, stone, water, and wood.  

Figure1. Flow of system that we aim for. 

Each image contains surfaces that belong to a single ma-
terial in the foreground. A range of images was selected to 
provide a variety of illumination conditions, compositions, 
colors, textures, surface shapes, material sub-types, and 
object associations. Since the FMD was constructed with 
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the specific goal of capturing the natural range of material 
appearances, the surfaces depicted in the images each be-
long to a specific material category, and not any of the oth-
ers. In the FMD images, we selected 18 types of image 
data as experimental stimuli representing the basic 6 tactile 
scales, "warm - cool", "hard - soft", "slippery - sticky", 
"dry - wet", "coarse - smooth", "uneven - flat". 

The experimental method is as follows. (1) The selected 
image stimulus is presented to the participants. 
(2)Participants answered whether they want to touch those 
appearing in the photograph by using 7-step SD method. 
(3) Participants were instructed to answer spontaneously 
and freely SSWs expressing the texture of each material.  

From the result of the answer, “Zara-Zara”, “Sara-Sara” 
and “Tsuru-Tsuru” were most frequently answered with 
preference. Therefore, we selected them as input data.  
Database construction�
Data stored in database shows the 3D model images creat-
ed by texture data corresponding to input data and the data 
is used when outputting by a 3D printer. Therefore, we 
conducted the experiment to obtain data on the surface 
shape corresponding to SSWs. At first, we prepared the 
tactile stimuli to investigate the texture pattern of surface 
characteristics which are height, width and interval. 40 
kinds of texture stimuli are provided by Nice and Takeo Co. 
as experimental stimuli. We analyzed surface characteris-
tics (height, width and interval) using a 3D surface meas-
urement system (KEYENCE/VR-3000). Figure 2 shows 
the definition of surface characteristics which are height, 
width and interval. 

Figure 2. Surface characteristics which are height, width and 
interval. 

30 participants participated in the experiment. The ex-
perimental method is as follows. (1) Participant touches the 
surface of the experimental stimulus. (2) Participants were 
instructed to answer spontaneously and freely with SSWs 
expressing the texture of each material.  

We analyzed the height and width of the experimental 
stimuli corresponding to "Zara-Zara", Sara-Sara” and 

Tsuru-Tsuru,” which are frequently answered. From the 
analysis, we obtained the mean values of height and width. 

Then, we created the 3D model using the shape’s data and 
we used the 3D modeling data for outputting the objects. 
Output object�
Next, we apply our shape data to output object. We decid-
ed a smartphone case as output object because smart 
phones and iPhones are spread to all generations. We used 
Fusion 360 (3D CAD software) to create 3D modeling data 
to create 3D modeling data. First, 3D modeling data of the 
texture was created based on "height" and "width" corre-
sponding to SSWs obtained from the experimental result. 
Specifically, we created texture data repeatedly using the 
waveform of the height and width. Figure 3 shows the ex-
ample of 3D model of iPhone case. Then we stored the 3D 
modeling data in the database. With respect to 3D printing, 
3D printer (Stratasys Objet 260 Connex 3) was used to 
output the 3D modeling data. The output mode was matte 
mode, VeroBlackPlus (black opaque hard resin) was used 
as the material. 

Figure 3. The example of 3D model of iPhone case. 

Evaluation of the outputs 
We printed the iPhone case using the data in the database. 
However, we need to confirm whether these iPhone cases 
are preferred by the elderly. Therefore, we additionally 
printed the comparable iPhone cases. The comparable iPh-
one cases were targeted at iPhone cases that were fivetimes 
larger than the shape of the 3D model in the database, ran-
dom shapes, and no textures (flat surface). Table 1 shows 
the outputs of the iPhone case. 40 elderly participants 
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Table 1. The experimental stimuli
No Name Height[mm] Width[mm] Output image 
1 Zara-Zara 0.079±0.083 0.482±0.195 

 
2 Sara-Sara 0.021±0.017 0.345±0.121 

 
3 Tsuru-Tsuru 0.005±0.002 0.222±0.041 

 
4 Enraged shape from 

the No1 stimulus 
0.393±0.416 2.411±0.974 

 
5 Enraged shape from 

the No2 stimulus 
0.105±0.086 01.727±0.603 

 
6 Enraged shape from 

the No3 stimulus 
0.023±0.011 1.109±0.203 

 
7 Standard stimulus 0 0 

 
8 Random shape 1 5.000  

 
9 Random shape 2 3.220  

 
10 Random shape 3 10.400  
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 participated in the experiment. This experiment was con-
ducted to confirm whether the output objects are preferred 
or not. The procedure is as follows. (1) Participants 
touched the ten stimuli, and were instructed to evaluate and 
answer the texture of each stimulus using three SSWs, “Za-
ra-Zara”, “Sara-Sara” and “Tsuru-Tsuru”. (2) Participants 
evaluated whether they prefer the output’s textures using 7-
step SD method. iPhone mockup was used in this experi-
ment to more realistically evaluate. Figure 4 shows the 
experimental situation. 

Figure 4.Experimental situation 

Result�
Table 2 shows the result of experiment. Participants rated 
the stimuli 1 to 7 as “preferred” and the stimuli 8 to 10 as 
“non-preferred”. We confirmed whether the iPhone cases 
outputted from the database were preferred or not and were 
answered to correspond with database’s SSWs. As a result, 
although stimulus No. 3 corresponding to “Tsuru-Tsuru” 
was answered as database’s data, but Stimuli No. 1 and 2 
were not answered as database’s SSWs.  

Then, we performed comparative analysis between iPh-
one cases outputted from the database and those that were 
not. At first, we classified experimental stimuli based on 
SSW’s answers. As a result, the stimuli No. 4, 8 and 10 
were frequently answered as "Zara-Zara", the stimuli No. 1, 
6 and 9 were frequently answered as "Sara-Sara" and the 
stimuli No. 2 and 3 were frequently answered as "Tsuru-
Tsuru", respectively. In “Tsuru-Tsuru” group, a repeated-
measures analysis of variance (ANOVA) of the prefer-
ences did not show a significant main effect for the shape 
data (p=.275). In “Sara-Sara” group, a repeated-measures 
ANOVA of the preferences showed a significant main ef-
fect for the shape data (p<.001). Therefore, Stimulus 1 is 
significantly more preferred than other stimuli. Further-
more, in “Zara-Zara” group, a repeated-measures ANOVA 
of the preferences showed a significant main effect for the 
shape data (p<.001). Therefore, Stimulus 4 is significantly 
more preferred than other stimuli. 
 

Table 2. The result of experiment 
No Frequently Answered 

SSWs 
Degree of Preference 
(mean value) 

1 Sara-Sara 1.250 
2 Tsuru-Tsuru 1.2575 
3 Tsuru-Tsuru 1.375 
4 Zara-Zara 0.425 
5 Zara-Zara 0.500 
6 Sara-Sara 0.425 
7 Tsuru-Tsuru 1.050 
8 Zara-Zara -0.450 
9 Sara-Sara -0.125 
10 Zara-Zara -1.750 

Figure 5. Updated Database 

Based on the results, the original data (stimulus 3) corre-
sponding to “Tsuru-Tsuru” can be used to output the object. 
However, there is a need to change the original data of 
stimuli 1 and 2. Therefore, we updated the 3D modeling 
data based on the results. Specifically, the 3D modeling 
data corresponding to "Zara-Zara" changed from the stimu-
lus 1 to the stimulus 4 and the 3D modeling data corre-
sponding to "Sara-Sara" changed from the stimulus 2 to the 
stimulus 1.  Figure 5 shows the update of database. 

Conclusion 
In this study, we constructed a texture suggestion system 
considering the elderly’s preference. Users input sound-
symbolic words such as “tsuru-tsuru” (comfortable slip-
pery texture), a kind of Japanese intuitive texture word. 
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Then the system refers to the texture database including 3D 
model images outputs 3D model data to realize the texture 
design preferred by elderly people. In future work, we aim 
to construct a system that can handle not only three SSWs 
for input but also all SSWs, for example, using a method 
such as focusing on phonemes and structure. In addition, 
the database in this study focused only on the surface shape 
of the object. Therefore, we aim to use data of other physi-
cal quantity forming texture such as hardness, moisture. 
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Abstract 
 In this AAAI Spring symposium 2018, we discuss cogni-
tive bias and humanity in the context of well-being AI. We 
define “well-being AI” as an AI research paradigm for pro-
moting psychological well-being and maximizing human 
potential. The goals of well-being AI are (1) to understand 
how our digital experience affects our health and our quality 
of life and (2) to design well-being systems that put humans 
at the center. The important challenges of this research are 
how to quantify subjective things such as happiness, per-
sonal impressions, and personal values, and how to trans-
form them into scientific representations with corresponding 
computational methods.  
  One of the important keywords in understanding machine 
intelligence in human health and wellness is cognitive bias. 
Advances in big data and machine learning should not over-
look some new threats to enlightened thought, such as the 
recent trend of social media platforms and commercial rec-
ommendation systems being used to manipulate people's in-
herent cognitive bias. 
  The second important keyword is humanity. Rational 
thinking, on which early AI researchers had been focused 
their efforts, is recently and rapidly replacing human think-
ing by machines. Many people might have begun to believe 
that irrational thinking is the root of humanity. Empirical 
and philosophical discussions on AI and humanity would be 
welcome. 
 This paper describes the detailed motivation, technical, and 
philosophical challenges of this symposium proposal. 

Motivation for Understanding  
Cognitive Bias and Humanity  

Recent AI technologies (such as Deep Learning and other 
advanced machine learning technology) will definitely 
change the world. However, it seems that many people 
have excessive expectations or fears for AI in the near 
term, perhaps as a result of how AI is portrayed in science 
fiction and covered by the popular media. Examples in-
clude thinking that general purpose AI is just around the 
corner, as well as the fear the AI will steal jobs and create 
                                                
Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

mass unemployment. It is therefore important that we first 
understand both the possibilities and limitations of the cur-
rent machine intelligence correctly. 
 It remains especially challenging to understand the im-
plications of machine intelligence in human health and 
wellness domains [Kido and Takadama, 2017]. Although 
statistical machine learning methods can predict the future 
based on past data, it remains difficult to respond to the 
new event which has never seen in the past. How to create 
new value that really makes people happy is one of the 
most important challenges in well-being AI. For this pur-
pose, we need to share interdisciplinary scientific findings 
between human science (brain science, biomedical 
healthcare, psychology, and others) and AI. 
 One of the important keywords in this year's symposium 
is cognitive bias. In the recent trend of big data becoming 
more personalized, AI technologies to manipulate cogni-
tive bias have evolved; For example, social media plat-
forms such as Twitter and Facebook, and commercial rec-
ommendation system make it easy for people with the 
same opinion to form communities in which it appears that 
everyone has the same opinion; this is sometimes called 
the "Echo chamber effect." Recently, there has been a 
movement to use such cognitive bias in the political world 
as well. Advances in big data and machine learning should 
not overlook these new threats to enlightened thought. 
 The second important keyword in this symposium 
is humanity. One of the purposes of AI is to pursue "what 
is intelligence?" Early AI researchers focused their efforts 
to make progress on rational thinking, such as mathemati-
cal theorem proving, chess and so on. However, rational 
thinking is recently and rapidly being replaced by ma-
chines. It seems that many people might have begun to 
believe that irrational thinking is the root of humanity. 
Empirical and philosophical discussions on AI and human-
ity will be very important issues, if we design well-being 
AI systems that put human at the center.  
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Technical challenges and  
philosophical discussion 

We need to deepen the understandings of the following 
four technical challenge areas of well-being AI as well as 
one philosophical issue. Technical research that clarifies 
the possibilities and limitations of machine intelligence  
or philosophical discussions on AI and Humanity  are our 
important focuses. 

 (1) Representation of cognitive biases and person-
al traits. 
 First, we need to represent the cognitive biases, human 
tacit and subjective health/wellness knowledge in explicit 
and quantifiable ways. Much of the knowledge in well-
being science is subjective. For example, fuzzy properties 
of subjective word embeddings in human health and well-
ness might be better represented with concrete mathemati-
cal structures.  

 (2) Representation of cognitive biases and person-
al traits. 
Second, we need to explore the available advanced ma-
chine learning technologies, such as deep learning and oth-
er quantitative methods, in health and wellness domains. 
At the present, machine learning research is focused on 
giving machines the ability to recognize things and under-
stand data similar to humans, such as recognizing images, 
text, sounds, and so on. However, the focus is going to 
shift to getting machines to understand things that humans 
cannot. We need to make a bridge to allow humans to un-
derstand these things.  

 (3)  Interpretable Models, Reasoning and Infer-
ence 
Third, the reasoning about data through representations 
should be understandable and accountable to human. For 
example, we need to develop powerful tools for under-
standing what exactly, deep neural networks and other 
quantitative methods are doing. Not only for increasing 
accuracy rate of predictions, we need to understand the 
causality with reliable models, reasoning and inference.  

 (4) Better Well-being systems design. 
Furthermore, we need to understand the human. While 
recent technological advances bring many truly great bene-
fits, there is an opportunity to rethink about the impact of 
these fruits. We need to understand how our AI revolution 
affects our emotions and our quality of life and how to 
design a better well-being system that puts humans at the 
center. 

(5) Discussion on “AI and Humanity”. 
We need to deepen the empirical and philosophical under-
standings on AI and Humanity.  The topics include the 
Machine Intelligence vs. Human Intelligence , or How 
AI affects our human society or way of thinking . 

Conclusion 
In this paper, we described the motivation, technical, and 
philosophical challenges related to cognitive bias and 
humanity for well-being AI  as proposers and organizers 
of this AAAI18 symposium. 
This symposium is aimed at sharing the latest progress, 
current challenges and potential applications related with 
AI, health, and well-being. The evaluation of digital expe-
rience and understanding of human health and well-being 
will be very important issues for designing human centric 
well-being AI. 
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Abstract

Online argumentation, particularly on popular public
discussion boards and social media, is rich with fallacy-
and bias-prone arguments. An artificially intelligent tool
capable of identifying potential biases in online argu-
mentation might be able to address this growing prob-
lem, but what would it take to develop such a tool?
In this paper, we attempt to answer this question by
carefully defining both argumentative biases and fal-
lacies, and laying out some guidelines for automated
bias detection. After laying out a roadmap and iden-
tifying current bottlenecks, we take some initial steps
towards relieving these limitations through the creation
of a dataset of personal and ad hominem attacks in com-
ments. Our progress in this direction is summarized.

Debates on Internet discussion boards are rarely, if ever, car-
ried out in a calm, respectful, and open-minded manner by
all participants. Exchanges carried out in the comments sec-
tions of websites like Facebook, Reddit, or YouTube will of-
ten devolve into the typed equivalent of shouting matches,
rather than the high-minded exchange of ideas that one
might hope to see more of. Many reasons have been put for-
ward to explain this: the emergence of trolling (Cheng et
al. 2017), accusations of government-sponsored agents in-
tentionally fomenting discord (Woolley and Howard 2016),
and so on.

There are some discussion forums which have been de-
signed in such a way that encourages well-thought-out com-
ments or content from relevant experts (e.g. StackExchange1

or Reddit’s AskScience subreddit,2 even going so far as to
aggressively remove sub-standard comments and ban users
who are repeat offenders. However, such moderation is typ-
ically labor-intensive and can result in substantially de-
creased site activity, as significantly fewer users are able or
willing to take the time to submit content meeting these in-
creased standards.

We propose to develop automated tools to help with the
problem of poor online discourse by addressing one of its
primary causes: the prevalence of cognitive biases in online
argumentation. In this paper, we describe first steps towards

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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a research program whose goal is the development of algo-
rithms capable of detecting the existence of biases in on-
line argumentation. We first motivate the need for such al-
gorithms, then define relevant terms and explain the relevant
background. Drawing on this background, we then introduce
three practical guidelines for any work into bias detection,
and lay out a road map for the long-term goals of this project.
Finally, we describe the primary contribution of this paper:
an annotated dataset containing instances of personal attacks
from real-world online arguments.

Biases in Online Argumentation

Biases have long been identified as problems plaguing
fields involving expert reasoning, such as: legal reasoning
(Chortek 2013), medicine and health (Campbell, Croskerry,
and Petrie 2017; Daniel et al. 2017), forensic science (Lock-
hart and Satya-Murti 2017), and more. However the pre-
cise relation between biases and actual errors is not defini-
tively established. Cognitive “de-biasing” strategies have
mixed results (Sherbino et al. 2014; Lockhart and Satya-
Murti 2017), and even medical professionals can have diffi-
culty agreeing on the presence or absence of biases (Zwaan
et al. 2017).

Nevertheless, while it may never be possible to com-
pletely eliminate biases, initial results suggest that there may
be limited scenarios where awareness of common biases
can decrease their harmful effects (Jenkins and Youngstrom
2016; Croskerry, Singhal, and Mamede 2013; Chew, Durn-
ing, and van Merriënboer 2016). For this reason, it is worth
exploring whether the ability to detect potential biases in
discussions and argumentation on internet forums and so-
cial media (hereafter simply referred to as “online argumen-
tation”) can demonstratively improve the quality of such
discourse. For example, an online community may want to
form a group that only allows high-quality comments that
have been pre-screened for biases and fallacies, but lack the
ability to appoint full-time, well-trained moderators whose
job is to ensure such quality.

However, there are at least several major roadblocks to
progress. First, there is some confusion and inconsistent us-
age of terms such as ‘bias’, ‘fallacy’, and so on. Perhaps due
to these inconsistencies, popular understanding of fallacies
tend to treat them either as the equivalent of checkmating
in the game of argumentation, or as nuisances to be ignored

The 2018 AAAI Spring Symposium Series

239



completely. Furthermore, those that wish to study biases or
fallacies in online argumentation quantitatively find there is
a severe shortage of datasets to do so. To start addressing
this collection of problems, we will first define our terms.

Bias. We make use of several distinctions made by (Wal-
ton 1999)’s dialectical analysis of bias, which focuses on
bias in argumentation, as opposed to focusing on the psycho-
logical states (e.g., personal beliefs, influences, etc.) of an
arguer. According to his dialogical theory, a bias can simply
be defined as a one-sided argument, which “advocates a par-
ticular proposition but fails to be balanced” (Walton 1999,
p.79). One-sided arguments are contrasted with two-sided
arguments, which fairly consider, weigh, and react to argu-
ments and evidence on both sides of a dialogue.

For instance, an argumentative bias against a defendant
in a murder trial might manifest as a willingness to accept
weak evidence suggesting the defendant’s guilt (“It’s obvi-
ous that,” “It’s common sense to say,” etc.), while at the same
time remaining extremely critical or even outright ignor-
ing evidence suggesting their innocence (“Of course he/she
would say that,” “That’s just a coincidence,” etc.). Later in
this paper we will list Walton’s (ibid) 9 indicators of bias.

Fallacies. Closely related to argumentative biases (and
sometimes confused with them) are formal and informal fal-
lacies. A fallacy is typically taken to be a particular argu-
ment type which is flawed in some way—due to a form that
is not deductively valid (in the case of formal fallacies), or
a simple non-sequitur (as with informal fallacies). Our treat-
ment of fallacies will be in line with that of (Walton, Reed,
and Macagno 2008)—Rather than treating the identification
of fallacies in a dialogue as either winning moves or inconse-
quential nuisances, fallacies are properly classified as defea-
sible schemes which can be defeated by stronger schemes. In
a way, such a treatment turns the game of argumentation into
one of using the strongest possible scheme available to you,
and attacking the weaknesses in an opponent’s schemes, all
of this happening in ways subject to the norms of the current
dialogue.

In the definitions we use, a bias is something like a pat-
tern or tendency of multiple arguments to skew in a certain
direction, and a fallacy is a property of an individual argu-
ment. When we say that one’s arguments are biased, it is a
shortcutted way of saying that one’s arguments show pat-
terns (e.g., common fallacies) that can be explained by the
existence of a bias.

Guidelines for Bias Detection

Even given the above definitions, there are still many other
possible confusions about the causes, effects, and proper
treatments of biases in argumentation. Therefore, before we
present our proposed roadmap for developing a bias detec-
tor in online argumentation, it is important to make explicit
a few guidelines, drawn from various sources. This non-
exhaustive list of items partially formalizes our views on
what exactly we are trying to capture when we are talking

about bias in argumentation, and can serve as starting points
for researchers to compare to their own views.

Biases are not necessarily ‘bad’, i.e., they do not always
lead to fallacious reasoning or erroneous conclusions.
The discovery of a bias in argumentation is properly treated
as a reason to suspect that further arguments might also be
biased, but they do not serve as knock-down, definitive de-
terminations of fallacious arguments. Instead, their proper
treatment is as ad hominem attacks; i.e., they should be
treated as highly defeasible arguments which may be the
strongest arguments available in some instances, but should
be considered defeated in the presence of better arguments
or evidence.

To further illustrate this point, consider that there are in-
stances in which even ad hominem attacks can be considered
appropriate. For a trivial example, imagine a Cretan who
makes claim c: “No Cretans can make claims.” Then we can
simply put forward argument A: by virtue of the fact that c
is a claim, and the speaker is a Cretan, c is false. Because
A hinges on the fact that the speaker is Cretan, it might be
considered a form of ad hominem attack. But the existence
of a fallacious form is insufficient to prove c is false. A can
be easily re-formulated into a much stronger form with de-
ductive validity if we consider the a priori truth that for any
speaker who has any property, if that speaker makes an ut-
terance which is false if the speaker does not have that prop-
erty, then the speaker made a false utterance. A can thus be
re-formulated into a deductively valid argument A′, which
will defeat any counterarguments to A (unless those coun-
terarguments are as strong, or stronger, than A′).

Just as the existence of a fallacy like ad hominem does not
instantly disprove an argument’s conclusion, the identifica-
tion of a consistent bias affecting multiple arguments made
by a single individual or organization does not necessarily
disprove those arguments’ conclusions. However, identifi-
cation of a bias or fallacy in one’s own arguments can be
productive when it allows one to highlight potential weak
points in their arguments, thus making it easier to search for
counter-examples. It is for this reason that we believe that ar-
tificially intelligent software tools that can automatically de-
tect biases in online argumentation may be able to improve
the quality of discourse over what it is currently.

It may not be possible for reasoning to ever be completely
free of biases. Another reason that biases should not be
treated as instant disqualifiers is that they may simply be un-
avoidable. As (Walton 1999) observes of Jeremy Bentham’s
discussion of biases and fallacies, Bentham suggests at one
point that ”all our thinking and reasoning is biased, in the
sense of being produced by an interest of some sort,” namely
a bias of interest. But ”Bentham does not seem to think there
is anything bad about this type of bias, or that the existence
of it, in itself, is a sufficient reason to condemn reasoning as
fallacious or faulty” (Walton 1999, p.16).

Walton’s dialectical theory of bias (ibid) also notes that
the context of the dialogue in which arguments appear must
be considered, particularly its stated and unstated norms. A
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judge is expected to have minimal biases that are considered
personal, but is also expected to act in a way that prefers cer-
tain values of justice, impartiality, nondiscrimination, and so
on. The adherence to these values might be considered a type
of bias, but one that is required by the norms of the relevant
judicial systems. On the other hand, in a lighthearted debate
between friends over their preferred sports teams, heavy par-
tisanship on the part of the participants may actually be pre-
ferred. In fact, a reluctance to take sides and profess devo-
tion to a sports team might earn one accusations of being a
“fair-weather” or “bandwagon” fan.

Whenever possible, preserve information about how
meaningful features contribute to determinations of bias.
Current advances in deep learning have abetted the emer-
gence of algorithms capable of performing complex classi-
fications without using human-encoded mid-level features.
Convolutional neural networks, for example, perform visual
classification tasks without needing a human to teach the
network how to recognize lines, edges, shapes, even artistic
styles which can then be transferred to other images (Gatys,
Ecker, and Bethge 2015).

However, such approaches do not necessarily learn fea-
tures that, individually, are meaningful to human beings
(though fixing this problem is an active area of research; see
(Krause, Perer, and Ng 2016; Ribeiro, Singh, and Guestrin
2016)). There is a danger of creating bias detectors that may
be able to reliably detect the possible existence of biases in
online argumentation, without being able to explain why bi-
ases exist. The inability for such models to explain their con-
clusions in easily-understandable, non-esoteric terms can re-
duce their acceptance among the general public (Bornstein
2016). Furthermore, not being able to reliably identify con-
tributing factors makes it difficult to produce actionable sug-
gestions for how to reduce the negative effects of bias. For
this reason, our approach is primarily bottom-up: we attempt
to identify meaningful components and indicators of biases
and create classifiers for those indicators first, before deter-
mining how they can be combined to create bias detectors.

A Roadmap for Detecting Problematic Reasoning

Taking into account the above principles for bias detection,
particularly those which emphasize the importance of iden-
tifying recognizable components of bias, we suggest the fol-
lowing high-level strategy:
1. Identify meaningful indicators of bias, either of specific

biases or biases in general. Such indicators, for pragmatic
purposes, should also be detectable in online argumenta-
tion using current NLP technologies. We will list indica-
tors of bias suggested by (Walton 1999) in the next sec-
tion.

2. Create datasets for each indicator. After meaningful in-
dicators of bias are chosen, datasets should be collected,
ideally from real-world examples of online argumenta-
tion. Later in this paper, we will describe progress made
in developing one such dataset.

3. Develop algorithms to reliably detect each indicator, or
component features of indicators. The datasets collected

in the previous step can be leveraged to create and test
classification algorithms. It may be useful to create sub-
classifiers designed to detect features that are believed to
contribute to indicators, as we will do later in this paper.
Such feature detectors can be combined later to produce
indicator detectors, as is common in NLP work (Kiddon
and Brun 2011; Wei and Wan 2017; Biyani, Tsioutsioulik-
lis, and Blackmer 2016). It is important, given the princi-
ples we have listed, that each indicator has its own classi-
fier(s), even though multiple indicators will ultimately be
used to determine the existence of bias.

4. Detect biases. It is a non-trivial step to determine precisely
how the indicators can be leveraged to reliably detect the
existence of biases. Presumably, much of this work would
be performed in the first few steps—after all, indicators of
bias shouldn’t have been selected as indicators in the first
place if they are not useful for detecting biases.

Indicators of Bias

Focusing only on argumentative bias then, is there a way
to identify whether a set of arguments, presented in a text
form typical of online argumentation, contains bias? There
are at least two approaches that might allow us to answer this
question. The first is to detect bias by using a kind of senti-
ment analysis on text or text fragments (Roman, Piwek, and
Carvalho 2006; Roman et al. 2015). The second approach,
which this paper favors, is to identify features that are nor-
mative indicators of bias, and to use these features as a start-
ing point. In this section, we will list nine such indicators of
bias in argumentation, originally identified by (Walton 1999,
Ch. 4). Walton’s approach is not empirical; rather, his “claim
is a pragmatic and normative one, that these indicators are
the ones that ought to be used as a [basis] for judging eval-
uations of bias in argumentation and are the ones that are
practically most useful for this purpose” (ibid). His indica-
tors are paraphrased below.

1. Something to gain. The arguer has something to gain
from their argument’s conclusion being true, or something
to lose from being wrong. It should be noted that the use
of this indicator is very reminiscent of the ad hominem
fallacy. But as stated earlier, fallacies should be treated
as defeasible argument schemes; i.e., if an arguer is ac-
cused of impartiality because they have something to gain
or lose from the argument’s correctness, and a stronger
argument exists that can debunk that accusation, then the
weaker argument is defeated. Otherwise, the accusation
stands as an indicator of bias.

2. Selectivity of arguments. The arguer conveniently omits
counterarguments to her own, or evidence harmful to their
case.

3. Lip-service selection. Instead of ignoring counterargu-
ments completely, they cite weak, easily dismissible, or
misrepresented straw-man arguments that are easy to re-
fute or make the other side look weak or non-credible in
some way.

4. Stated commitment to an identifiable position. The ar-
guer has an affiliation with, position with, or stated com-
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mitment to, an organization or ideology that is relevant
to the arguments being made. Like indicator (1), accusa-
tions of this indicator are highly defeasible and should not
be treated as sufficient conditions for bias. Furthermore,
Walton notes that it is implausible to expect speakers to
be completely free of any beliefs, affiliations, or even bi-
ases whatsoever, and although “it would be unrealistic to
expect anyone to be free of it [... it] can become a problem
in argumentation when commitment is too firmly fixed to
a position” (Walton 1999, p.98-99).

5. Closure to opposed argumentation A stubbornness or
refusal to fairly consider arguments or evidence opposed
to the speaker’s arguments. This indicator is best tested
in interactive dialogues, because it shows up most promi-
nently in an arguer’s responses to criticisms or strong
counterarguments. Walton (ibid) also suggests this indi-
cator is associated with the use of words and phrases
designed to dissuade further thought or discussion, such
as those identified by (Fearnside and Holther 1959): ‘it
is obvious,’ ’everybody knows,’ ’every decent American
wants,’ ’only a moron would believe,’ etc.

6. Rigidity of stereotyping. Stereotyping is another highly
defeasible type of inference, in that it tends to produce
weak arguments, but may be necessary in the extreme ab-
sence of further arguments or evidence. This indicator,
like the previous, shows up in dialogues when faced with
counterexamples to the stereotypes, an arguer refuses to
show flexibility and acknowledge the defeat of the stereo-
type’s inference.

7. Treating comparable cases differently. This indicator
effectively amounts to an arguer’s refusal to appreciate the
similarity between two cases, where one case support’s
the arguer’s views, whereas the second case does not. It is
not clear, however, which objective standard (if any) for
comparing two cases is to be used as a baseline for this
indicator.

8. Emphasis and hyperbole. The arguer tends to use loaded
words in a way that is imbalanced. For example, the
arguer might describe testimonies in support of an op-
ponent’s arguments as ’ridiculous’ or ’unconvincing,’
whereas testimonies on the other side might be ’bomb-
shells’ or ’dramatic revelations’.

9. Implicature and innuendo. Closely related to the previ-
ous indicator, the arguer uses text that is worded in such
a way, or otherwise suggests, “a conclusion or point of
view that is highly argumentative and takes one side of a
controversial issue” (ibid).

Given the roadmap to bias detection we laid out earlier,
Walton’s indicators serve as a helpful starting point. How-
ever, not all of Walton’s indicators are equally applicable to
online argumentation given the current state of natural lan-
guage processing. As an initial attempt to create a dataset for
these indicators, we have chosen to pursue the feature of per-
sonal attacks. Personal attacks are an important component
of Walton’s indicators, contributing to many of them either
directly or indirectly. For example, indicators (5) and (6) can
manifest as personal attacks, such as insults (“only a moron

FORM 1: “A says X, A has negative property P; there-
fore X is false”
FORM 2: “A says X, A has an interest in X being true;
therefore X is false”
FORM 3: “A says X, A doesnt believe X or acts in
a way Y which is inconsistent with X; therefore X is
false”

Figure 1: The forms of argument considered to be personal
attacks in our dataset.

would believe,” “you clearly don’t understand anything”), or
refusal to consider opposing arguments due to the counter-
arguer’s affiliation (“you’re just saying that because you’re
a,” “of course you’d say that”). Therefore, the ability to reli-
ably determine whether comments in online argumentation
constitute personal attacks is useful.

There are at least three argument forms that are associ-
ated with personal attacks, and we define personal attacks in
online argumentation as any comment which fits one of the
forms listed in Figure 1.

These forms are simplified versions of those identified by
(Walton 1985). Walton’s analysis of the ad hominem fallacy
also includes a set of critical questions for each of these
forms, some of which we have borrowed for the creation
of the dataset we will describe shortly.

An Algorithm for Detecting Personal Attacks

At present, we are not aware of any labeled datasets of per-
sonal attacks in Internet comments, and this absence hinders
progress in the development of bias detectors. It is therefore
worthwhile to build a dataset of personal attacks satisfying
the conditions stated in our roadmap. However (and this will
likely be the case for many bias indicators or components
of indicators), acquiring labeled datasets is difficult. In part,
this is due to the fact that objective and accurate assessments
of the logical forms of arbitrary Internet comments requires
a significant degree of training.

Perhaps more problematic, even properly trained indi-
viduals can disagree on the appropriate assessment for any
given comment. Such disagreement is normally solved by
creating a corpus of comments where multiple individuals
assess each comment. Services such as Amazon Mechanical
Turk are often useful for this purpose, and might be able to
provide a sufficient amount of properly trained individuals.
However, properly training and paying enough individuals
to build a sizable dataset for each bias indicator can be ex-
tremely cost-prohibitive.

In order to address the problem, we have made some
progress in developing a method for collecting and anno-
tating comments containing personal attacks. This method
is deployable to non-experts, since it can allow minimally
trained individuals to annotate comments, and not cost-
prohibitive, since it can be deployed to services like Amazon
Mechanical Turk and not restricted to highly trained experts.
This section will describe our progress, which at this stage is
preliminary and in preparation for more rigorous validation.
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Figure 2: The instructions provided to individuals in order to identify personal attacks in comments.
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Step 1: Initial Filtering

Using the “Python Reddit API Wrapper” (PRAW),3
we collected the 500 most recent submissions from
each of the following subreddits4: politics, the donald,
askReddit, debateAnAtheist, debateAChristian, philoso-
phy, news, worldnews, liberal, conservative, libertarian,
Bad Cop No Donut, Good Cop Free Donut, gunpolitics,
and gunsAreCool. From each submission, we collected the
top comments, sorted by those that were most controversial
(Reddit allows comments to be considered controversial if
they contain a mix of upvotes and downvotes from other
users). Altogether, we obtained 294,627 comments.

In order to initially filter through these comments, we
looked for indicators that someone was making an argument
that might be a personal attack, by searching for what we
called “indicator comments”—i.e., comments that accuse
others of committing some form of personal attack. For ex-
ample, if a comment contains the words “ad hominem,” then
we have reason to suspect that it is an indicator comment
which accuses its parent comment, the comment of inter-
est (CoI), of committing an ad hominem, which is a type of
personal attack. Although this technique returns many false
positives (e.g., from a discussion on whether ad hominem is
a fallacy), it gives us a way to identify enough test cases to
initially validate our accessible identification algorithm (de-
scribed shortly).

The full list of terms, in regular expression form, are:
(F|f)ake news, a l(iar|ying),

you(’re|r) an*, (T|t)roll,
(Y|y)ou(’re|r) (so|just),
(P|p)ersonal(ly)* attack, (A|a)d(
)*hominem, post history, (O|o)f course
(s)*he, and (O|o)f course you. Searching for
these terms yielded 6,117 indicator comment/CoI pairs. We
also retrieved the parent comment of the CoI, whenever one
existed.

The terms used for the initial filtering step were selected
by the authors’ manually reading through Reddit discussions
and identifying comments that seemed to follow personal
attacks. The reasoning behind this approach is that our ini-
tial dataset can train weak classifiers that can then be used
to create larger, more accurate labeled datasets of personal
attacks. Not surprisingly, the initial filtering step showed
some limitations of our chosen terms. For example, the term
‘a l(iar|ying)’ tended to be used by commenters who
were performing, rather than calling out, personal attacks.

Some terms, such as ‘fake news’, appeared in com-
ments that were clearly jokes, rather than comments making
arguments or actual accusations of “fake news.” With this
revelation in place, we adjusted our personal attack identifi-
cation algorithm to distinguish between arguments and non-
arguments.

3https://github.com/praw-dev/praw
4To access any of these subreddits, simply append the subreddit

name to ‘http://reddit.com/r/’. For example, the URL for the poli-
tics subreddit is: http://reddit.com/r/politics.

Step 2: An Accessible Algorithm for Identifying
Personal Attacks

As stated earlier, it was important to develop an algorithm
for identifying personal attacks in comments that is accessi-
ble to minimally-trained individuals, so that future creation
of personal attack datasets would not be as cost-prohibitive
as it currently is. We set about to classify comments as one of
five types: three ad hominem attacks, arguments that are not
of one of those three forms, non-arguments that are personal
attacks, and non-arguments that are not personal attacks (the
last of these categories was used as a default, catch-all cate-
gory).

The three forms of ad hominem attacks recognized by our
algorithm, pictured in Figure 1, correspond to three types
of ad hominem fallacy, as described by (Walton 1985; van
Heuveln ).

Abusive Ad Hominem. An ad hominem attack is abusive
if it contains an allegation of a property held by a speaker
making a claim, and the conclusion that on the basis of the
speaker having that property, the claim must be considered
invalid. For example, a politician might be disbelieved be-
cause “he is a liar,” or a news report might be considered
false if the source is considered “fake news.”

Circumstantial Ad Hominem. In the circumstantial ad
hominem, a speaker making a claim is alleged to have an
interest in the truth of the claim. An executive of a food
company making a claim that his company produces the best
food might be accused of only making that claim because of
his position. Because the existence of a relevant interest dis-
tinguishes this form from the others, our algorithm requires
that it be made explicit. Also note that the ‘speaker’ in this
fallacy (as with the other two forms) can be an individual,
an organization making an official statement, and so on.

Inconsistency Ad Hominem. Although this type of ad
hominem is not as frequently recognized as the others (some
lump it in with the circumstantial variety), it is helpful to
distinguish. An ad hominem is inconsistent if it involves
a speaker who makes claim C, but the speaker also per-
forms some particular action, has some belief, or makes
other claims that are inconsistent with C. A parent telling
her child that “smoking is bad” when she is a heavy smoker
herself might be attacked with an inconsistency ad hominem.
In general, accusations of hypocrisy will satisfy the condi-
tions of this form.

Considering the above, we developed the algorithm pic-
tured in Figure 2, whose instructions were arrived at over
several iterations of trial and error.

Verifying the Dataset

The wording shown in Figure 2 was iteratively modified in
order to reduce possible sources of confusion for minimally-
trained individuals. To measure its success towards this goal,
four undergraduate students who did not have any formal
training in formal logic were asked to use the algorithm in
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Figure 2 on the same set of comments. 100 comments were
randomly selected from the set of initially filtered comments
described earlier, and presented individually to each student
in the same order. They were instructed not to communicate
with each other, to avoid having their answers influence each
other.

To measure how well the four students agreed with each
other, we use Krippendorff’s alpha-reliability measure α
(Krippendorff 2004).5 α attempts to measure how well mul-
tiple raters agree when asked to rate the same list of items:

α =
Ao − Ae

1− Ae

where Ao is the percent of all observed matches within units
andAe is the percent of matches obtainable by chance (Krip-
pendorff 2004). Furthermore, for some possibly observable
value c, occ is the total number of times that on some unit
to observe, a rater agreed with another that the correct ob-
servation was c, and nc is the number of times that c was
observed overall. If n is the total number of observations:

Ao =

∑
c occ
n

Ae =

∑
c nc(nc − 1)

n(n − 1)

An α value closer to 0 means there was an agreement be-
tween raters no better than chance, and an α closer to 1 indi-
cates more agreement. Three such calculations were made:

Simple condition. For each comment, each student would
determine exactly one of the six possible classifications as
described in Figure 2. The simple condition calculated α for
these classifications with no further preprocessing.

High confidence condition. For each comment where a
classification was made, the student was asked to rate their
confidence in their assessment on a three-point scale. In the
high confidence condition, only assessments with the high-
est confidence rating (3) were taken into account; all other
assessments were treated as missing data.

Text agreement condition. Because we evaluated unfil-
tered comments on Reddit forums, there was enormous vari-
ation in the length and number of arguments contained
within each comment. Some contained only a few words,
others contained multiple paragraphs. However, our student
raters were only asked to choose one argument per comment
to rate. This led to the situation where students who chose
different arguments within the same comment to rate were
treated as disagreeing with each other.

The text agreement conditions attempted to rectify this
problem by requiring all students, when classifying com-
ments, to record the “minimal text” of the argument; i.e.,
to directly copy and paste the portion of the comment that
contains all of the text necessary for the argument being con-
sidered, with as much unnecessary text removed as possible.

5Our implementation was specifically based on the varia-
tion designed for nominal data, an unlimited number of par-
ticipants/observers, and possibly missing data described at:
http://web.asc.upenn.edu/usr/krippendorff/mwebreliability5.pdf.

Condition α n
Simple 0.3946 309
High confidence 0.4293 186
Text agreement 0.6033 178
Text agreement + confidence 0.4961 114

Table 1: The alpha values of the four conditions we tested.

For example, a comment that says “You’re an idiot, so I don’t
believe you. I’m going to delete my account.” would have
the minimal text “You’re an idiot, so I don’t believe you”
or “You’re an idiot”, depending on which type of argument
form was identified.

In order to approximately measure whether two students
identified the same argument fragment to focus on, we
used the string distance measure implemented by Python’s
difflib.SequenceMatcher algorithm (Ratcliff and Metzener
1988). Given any two ratings for the same item, if the mini-
mal text has a similarity score of 0.6 or higher, then it is con-
sidered by the text agreement condition. In the text agree-
ment + confidence condition, we additionally only consider
a pair of ratings if they also both have confidence values
of 3. The resulting values, along with the number of values
considered n, are listed in Table 1.

Conclusion and Next Steps

The goal of the present paper was two-fold. First, we in-
troduced a high-level plan for research into bias detection
in online argumentation, by describing guidelines that can
be followed in such research and then laying out a series of
steps to carry out. The second step in our proposed steps is
to create datasets for each indicator of bias in argumentation,
and the second goal of this paper was to do just that. Settling
on indicators related to personal attacks, we created an ini-
tial dataset which we believe is in line with the high-level
plan introduced here.

We hope that the principles and roadmap introduced here
will encourage discussion and motivate further research into
detecting biases in argumentation. Of course, there is much
more work to do than can be described in this paper. For
example, there may be further possible refinements to the
flowchart algorithm in Figure 2 which can be performed.
The effects of such changes can be quantified by compar-
ing their resulting α values to those reported in Table 1.
We hope to raise α to a level where we can be confident
enough to offer our algorithm to completely untrained users
on Amazon Mechanical Turk. This would allow us to cre-
ate a substantially larger labeled corpus of comments, which
may be used to train at least weak classifiers; these can then
be used to search the set of comments we collected before
the initial filtering step to find personal attacks not captured
by the terms we manually identified.
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Abstract 

This paper proposes an image-processing-based method for 
personalization of calorie consumption assessment during 
exercising. An experiment is carried out where several ac-
tions are required in an exercise called broadcast gymnas-
tics, especially popular in Japan and China. We use Kinect, 
which captures body actions by separating the body into 
joints and segments that contain them, to monitor body 
movements to test the velocity of each body joint and cap-
ture the subject’s image for calculating the mass of each 
body joint that differs for each subject. By a kinetic energy 
formula, we obtain the kinetic energy of each body joint, 
and calories consumed during exercise are calculated in this 
process. We evaluate the performance of our method by 
benchmarking it to Fitbit, a smart watch well-known for 
health monitoring during exercise. The experimental results 
in this paper show that our method outperforms a state-of-
the-art calorie assessment method, which we base on and 
improve, in terms of the error rate from Fitbit’s ground-truth 
values. 

Introduction   
It is suggested by several health experts that people should 
be concerned of their calorie intake and consumption (Hill   
et al. 2003). Nowadays, the assessment of calorie con-
sumption remains challenging. There exists a gas analysis 
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system for calorie consumption assessment (B Böhm, 
Hartmann, and H Böhm 2016), which seems highly accu-
rate, but it needs large space and expensive devices. In 
addition, users of their system also lose freedom to move. 
Another method (Tsou and Wu 2015) was developed by 
Tsou and Wu where Kinect, a line of motion sensing input 
device that can detect the gesture of a whole body, is used 
for calorie assessment. This kind of device is expected to 
be extensively used in constructing rehabilitation applica-
tions in calorie assessment that are related to health promo-
tion (Da Gama et al. 2015). In Tsou and Wu's method, the 
coordinates of body joints in 3D space are captured by Ki-
nect and used to calculate the velocity of each joint move-
ment, and then a kinetic energy for estimating calorie con-
sumption. The method yields promising performance; 
however, there are still issues that can be improved, in par-
ticular, the issue that assessment does not take the body 
size of individual users into account. 
 In this paper, we propose an improved version of the 
method by Tsou and Wu. Note that in their method, kinetic 
energies are computed by using the velocities of body 
joints and the standard mass of each joint (a mass repre-
sents the portion of a joint of interest to the whole body, 
including muscles and bones attached to that joint). On the 
contrary, in our work, the mass of each body joint is de-
rived by processing an image of the subject’s body. In oth-
er words, calorie consumption assessment by our method 
takes the body size of each user into account. Following an 
existing protocol for system evaluation (Ryu, Kawahawa 
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and Asami 2008), we use a reference device, Fitbit, to 
evaluate the assessment accuracy of our system. 

Existing Work 
Nowadays, we could know how many calories a human 
consumes during walking by some smartphone applica-
tions. But accuracy is still in question. Most applications 
do not consider mass, which means they do not weight the 
importance of each body segment. Therefore, a method is 
required that adapts to the body size and weight of each 
individual user. 

For the aforementioned exiting work on calorie con-
sumption assessment based on gas analyzing, we stated 
that, based on their result, it is an accurate system. Howev-
er, considering a high cost, largely needed space, it is im-
practical to adopt their approach to applications for pro-
moting users’ physical health through daily exercise or 
motion gaming.      

 Our work is mainly based on the aforementioned exist-
ing method by Tsou and Wu, in which Kinect is used to 
monitor users’ activities and assess their calorie consump-
tion. They showed error rates to a ground truth that is calo-
rie consumption assessed by a reliable assessment tool, i.e., 
a heart rate monitor. In addition, the longer the training 
time, the less the error rate. They used kinetic energies of 
the body joints to build a regression function for estimating 
calorie consumption. The kinetic energy of each body joint 
is calculated as a multiplication of the joint’s standard 
scale with the body weight. We conjecture that assessment 
can be improved if the body scale is measured specifically 
for each individual user.  

Methodology 
According to Tsou and Wu’s method, kinetic energy pa-
rameters are used to assess calorie consumption. This 
shows that such energies are related to the calorie con-
sumption amount.  Following their recipe, we also use ki-
netic energy parameters to assess calorie consumption.  
The kinetic energy needs mass and velocity to calculate. In 
Tsou and Wu’s method, the kinetic energy in each joint is 
used in multiple linear regressions for predicting calorie 
consumption. The assessment of mass, velocity, and calo-
rie consumption are described in the subsections below, 
respectively. 

Mass 
Tsou and Wu’s method assumes that the shape of body is 
universal to all people while in our method, the system 
obtains mass by analyzing the body shape of each user 
specifically. Image processing is done on a depth image 

(An example is shown in Fig.1), where the ratio of each 
body segment to the whole body is computed and used to 
represent the mass percentage of each joint. By multiplying 
the mass percentage with the weight of the user, we obtain 
the mass of each part for calculation of the energy. To ob-
tain the mass for each of Kinect’s 20 joints, we used soft-
ware called ImageJ to measure the ratio of the number of 
pixels in each joint’s area to that in the whole body. 

Velocity 
While a user is exercising, the system obtains his/her 
streaming skeleton data from Kinect (see Figure 1). The 
skeleton data represent 3D coordinates of all body joints in 
each row. We set the data frame rate to 25 fps. We derive 
the velocity of a given joint over a period of time by using 
the differentiation method.  
 The differentiation method is widely used in physics to 
obtain the average velocity over time. When the period is 
very short, we can regard this average velocity as the in-
stantaneous velocity, i.e., the formula of which at time t for 
joint j is as follows: 

���� �
��

��
� ����

where ds is the distance that joint j moves during the inter-
val [t -  dt, t]. For each joint, all instantaneous velocities 
are collected for the assessment of its kinetic energy. 
 

 

Figure 1 An Example of a Depth Image 

Calorie Consumption 
After obtaining the mass and velocity data of all body 
joints, we compute the kinetic energy for each one. As 
done in Tsou&Wu’s original method, the values from three 
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dimensions are used to calcuate the kinetic energy Ej for 
joint j as follows: 

 

�� � ���� � ���� � ���� � ����

 In Eq. (2), the parameters ���� ����� ������ represent the 
kinetic energy in each dimension. Classical mechanics in-
dicate that the kinetic energy E of a particle of mass M 
travelling at speed V is given by E = 1/2MV2. As a result, 
Eq. (2) can be reformulated as follows: 
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 In actual calculation, the velocity for each dimension in 
Eq. 3 is combined as one velocity. The parameter Mj in this 
equation represents the mass of body joint j. This mass is 
obtained by Eq. 4 where aj is the ratio of joint  j in compar-
ison to the area of the whole body, as described in Subsec-
tion Mass, and weight is the weight of a user of interest. 
 

�� � ��������� � ����

 Note that Ej in Eq. 2 is the kinetic energy at a given short 
period, e.g., 1 second. By accumulating this amount over 
the whole exercise session of, say, T seconds, we obtain Kj 
as an accumulated energy, or in other words the total ener-
gy spent for an exercise of interest (Eq. 5).   

�� � ����

�

���
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Table 1 Twenty Joints in Kinect 

Head Center 
Shoulder 

Left     
Shoulder 

Right   
Shoulder 

Left Elbow Right Elbow Left Wrist Right Wrist 
Left Hand Right Hand Spine Center Hip 
Left Hip Right Hip Left Knee Right Knee 

Left Ankle Right Ankle Left Foot Right Foot 
 

where Ej,t is  

������������������� �
�

�
������

� � �
��

 
 Eq. 5 is applied to each of the 20 body parts (see Figure 
2). Following the recipe in Tsou and Wu’s method, calorie 
consumption (CC) is computed by using a multiple regres-
sion function having the resulting energies as input (Eq.7 

where b0 ~ b20 indicate a bias and the coefficient for each 
dimension, respectively). The regression function is con-
structed in a training stage, in which CC from Fitbit is used 
as the dependent variable and the energies of all body parts 
are used as the independent variables in an analysis to find 
b0 ~ b20.     
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    Eq. 7 is used for calculation of calorie consumption in 
our experiment for both Tsou and Wu’s method and our 
method. For the former, aj in Eq. 4 is set to a standard scale 
of the human body. However, since in their work, some 
joints are combined, we need to separate them in order to 
have 20 joints as in our method. By checking the joints that 
didn’t appear in their method, we found that the “body” 
part (30 percent of the whole body) mentioned in their 
method contains five parts of joint: Center Shoulder, Left 
and Right Shoulder, Spine, Center Hip and Left and Right 
Hip. As how each part contributes to Tsou and Wu’s body 
remains unknown, we simply considered that all segments 
related to those joints share the same mass percentage, and 
when considering symmetric parts, we future divided the 
percentage into half. The 20 segments, each corresponding 
to one of Kinect’s 20 joints (Table 1), and the standard 
scale for any subject are shown in Table 2. 
 
 

 
Figure 2: The Concept Map of Joints in Kinect  

(NikkeiBP 2012) 
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Table 2 Standard Scale for Any Subject 

 

Experiment 
We evaluated our system on two different sets of motions 
from broadcast gymnastics (BG): one by NHK (JPN1), 
Japan's national public broadcasting organization, and an-
other by by Chinese Sports Government (CHN2). They are 
exercises that are popular and widely known among people 
in each respective nation. As a result, we used these sets of 
motions in our experiment. 

Process 
For six subjects, each will be asked to do either JPN or 
CHN, depending on their choice, for construction of the 
prediction model. Figure 3 shows a subject doing an exer-
cise in the experiment. This takes approximately 30 
minutes. There are three steps as follows. 
 First, according to the method provided by Taylor (Tay-
lor et al. 2012), before or after an experiment, a subject 
wears Fitbit and rests for 5 minutes. During such a period, 
the calorie consumption result from Fitbit is acquired. This 
data is required to ensure the measurement goes well by 
verifying whether the value in resting is not higher than the 
value in exercising. 
 Second, the subject is asked to do JPN or CHN, either 
on their own after given a guidance or following an exer-
cise video, while wearing Fitbit. Then after finishing exer-
cise, the calorie consumption data from Fitbit are collected, 
and the first and second steps will be repeated twice. 

                                                
1

JPN Broadcast Gymnastics, 1st version, https://www.youtube.com/watch?v=b4SH_lap4ag 

2
 CHN 9th National Broadcast Gymnastics official, http://www.iqiyi.com/w_19rqvi3qt9.html 

 

 

 
Figure 3: A subject performing a broadcast gymnastics 

  
 Third, when the three cycles for the first and second 
steps are finished, a photo of the subject is taken with 
his/her hands stretched up. This photo contains 20 joints. It 
is used in image processing to obtain the mass scale of 
body joints.  

Data 
There are two types of data in our experiment: the ground 
truth data from Fitbit and the mass data.                   
 The ground truth is the calorie consumption assessed by 
Fitbit, both during the resting and exercising (engaging in 
JPN or CHN) time of the experiment. In this experiment, 
there are six subjects (three subjects from Japan, three sub-
jects from China) for evaluating the prediction model of 
calorie consumption. Each subject did BG three times. The 
data are shown in Table 3, where iR represents the calorie 
loss the rest time before the  ist exercise,  and iE   repre-
sents   the calorie loss in the ist exercise.  From this set of 
data, it can be seen that the calorie consumption in the rest 
situation (marked as 1R, 2R, 3R) is not more than the con-
sumption in exercising (marked as 1E, 2E,  3E). The re-
sults from 1E, 2E, and 3E are used in comparison of the 
two prediction models.   

Segment Name Percentage Accumu-
lated %. 

Joint  
Number 

Head 10% 10% 1 
Left, Right Elbow 4%*2=8% 18% 2,3 
Left, Right Wrist 3%*2=6% 24% 4,5 
Left, Right Hand 2.5%*2=5% 29% 6,7 
Center Shoulder 6% 35% 8 

Left, Right Shoulder 3%*2=6% 41% 9,10 
Spine 6% 47% 11 

Center Hip 6% 53% 12 
Left, Right Hip 3%*2=6% 59% 13,14 

Left, Right Knee 10%*2=20% 79% 15,16 
Left, Right Ankle 7%*2=14% 93% 17,18 
Left, Right Foot 3.5%*2=7% 100% 19,20 
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Table 3 Ground Truth Data from Fitbit(Data Unit: kcal) 
 

Name 1R 1E 2R 2E 3R 3E 
Sub.1 12 16 17 20 16 19 
Sub.2 9 25 9 26 7 29 
Sub.3 6 14 7 19 6 15 
Sub.4 7 20 9 17 8 19 
Sub.5 9 22 14 26 6 21 
Sub.6 11 31 13 30 26 33 

 
Table 4 Example of Mass Data of a Subject 

 
Segment Name Percentage Total 

Head 5.76% 5.76% 
Center Shoulder 9.99% 15.75% 

Left Shoulder 5.49% 21.24% 
Right Shoulder 5.49% 26.73% 

Left Elbow 3.07% 29.80% 
Right Elbow 3.07% 32.87% 
Left Wrist 1.40% 34.27% 

Right Wrist 1.40% 35.67% 
Left Hand  1.05% 36.72% 

Right Hand 1.05% 37.77% 
Spine 10.47% 48.24% 

Center Hip 3.64% 51.88% 
Left Hip  4.36% 56.24% 

Right Hip 4.36% 60.60% 
Left Knee 9.64% 70.24% 

Right Knee 9.64% 79.88% 
Left Ankle 7.10% 86.98% 

Right Ankle 7.10% 94.08% 
Left Foot 2.96% 97.04% 

Right Foot 2.96% 100.00% 
  
 The mass data shows the body scale of each subject. It is 
unique to each subject as shown for example in Table 4. 
This data is multiplied by the subject’s weight for each 
segment (Eq. 4) in order to obtain the segment’s mass. 
 
Performance Metric:  
The metric for performance evaluation is shown in Eq. 8. 
This metric shows the error rate in calorie consumption 
assessment for the nth subject in the ith exercise where ���

�
 is 

the result from Fitbit and �
��

� �is the result from a prediction 
model of interest.  

���������� �� � �
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Results and Analysis 
The results are shown in three parts: error results, cross 
validation results, and statistical test results. Error results 
are the evaluation results over training data, which indicate 
that our method outperforms Tsou and Wu’s method. 
Crossvalidation results ensure that the proposed should 
work well even on unseen data. Statistical test results indi-
cate that there is a statistically significant difference be-
tween the two methods in cross validation.  

Error Results 
We compared CC measured by Tsou and Wu’s and by our 
method to the ground truth provided by Fitbit. We bench-
marked the two methods using the error rate (Eq. 8). Table 
5 shows that our method yields less error rate than Tsou 
and Wu’s method. In addition, the error rate of our method 
is obviously smaller than Tsou and Wu’s method, which 
means we have successfully improved state-of-the art Tsou 
and Wu’s method in predicting calorie consumption.  

Table 5 Error Rates of Our Method and  

Tsou & Wu’s Method over the Training Data 

Subject Ours  Tsou & Wu’s 
1 1.39*10-5 1.79*10-5 
2 4.35*10-5 1.93*10-2 
3 1.86*10-5 3.23*10-5 
4 1.54*10-5 3.58*10-5 
5 1.54*10-5 2.14*10-5 
6 3.18*10-5 4.32*10-5 

 

Cross Validation Results 
In order to confirm the accuracy of the prediction model, 
we ran a 3-fold cross validation. In this cross validation, 
part of the data of all subjects (e.g., data from the first and 
second exercises for all subjects) are used for constructing 
a prediction model for each method, then the prediction 
models are tested on the remaining data (e.g., referring to 
the example above, data from the third exercise); this is 
done three times, each with  a different combination of 
training and testing data, for each method in order to obtain 
the average result.  
Table 6 shows the error rates in cross validation. Note that 
the error rate of our method (Tsou and Wu’s) at the ist ex-
ercise, Oursi (Tsou & Wui), shows the performance of the 
prediction model based on the corresponding method using 
the data in the remaining exercises for training. As can be 
seen from the table, the error rates of the proposed method 
are in most cases less than Tsou and Wu’s method. 
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Statistical Test Results 
We conducted a Wilcoxon signed-rank test to find whether 
there is a statistically significant difference between error 
rates from the two methods. The resulting p value is 0. 
00854, which is less than 0.01, indicating that there is a 
significant difference at the confident interval of 99%. As a 
result, we can state that our attempt to improve Tsou and 
Wu’s method through personalization of the user’s mass 
scale is successful. 

Conclusions and Future Work 
We have presented a personalized method for calorie con-
sumption assessment using Kinect based on the unique 
shape of each user. Kinect can produce skeleton data for 
analyzing the movements of body joints that lead to the 
velocity of each joint, and depth images that lead to mass 
data that are unique to each subject, both of which enable 
kinetic energy calculation. We build a prediction model 
based on the results from the ground truth data that con-
nects the kinetic energies from Kinect. By comparing to 
the prediction model by Tsou and Wu, which uses standard 
scale mass data on every subject, our method utilizing per-
sonalized mass data outperforms Tsou and Wu’s method, 
both in evaluation over training data and in evaluation us-
ing cross validation. 
 In future work, we will employ this method to monitor-
ing the health state of motion-game players. This can be 
done by constructing a calorie consumption system that 
uses Kinect and a ground truth device for a prediction 
model, and by considering the effect of the amount of ex-
ercises (Slentz et al. 2004). We will also add a potential 
energy into the assessment formulas and estimate post-
exercise calorie burn. In addition, our method can be used 
for health monitoring during full-body motion gaming to 
promote a healthy exercise while preventing injuries. 
 

 
 

 
Table 6 Error Rates of Our Method and Tsou & Wu’s Method for 

Each Testing Data in a Three-Fold Cross Validation 
 

 
Subject 

Ours1 Ours2 Ours3 Tsou & 
Wu’s1 

Tsou & 
Wu’s2 

Tsou 
& 

Wu’s3 
1 0.2106 0.2196 0.1408 0.1537 0.1464 0.1266 
2 0.0303 0.0208 0.1429 0.3009 0.5538 0.3447 
3 0.1166 0.0834 0.3677 0.3409 0.5433 0.4870 
4 0.3960 0.1634 0.0501 0.2506 0.3803 0.3096 
5 0.1045 0.0458 0.1501 0.2227 0.2724 0.1927 
6 0.0529 0.6126 0.3941 0.2040 0.5131 0.4292 

Avg. 0.1835 0.3207 
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Abstract 
Senior isolation is becoming a major social problem in Ja-
pan, as a super-aged society where more than a quarter of 
population is over 65 years old. Many elderly people are liv-
ing in single-resident homes without family or social sup-
port. Even in nursing home, residents stay in their private 
bedrooms lonely without participating social activities, such 
as chatting, playing game, watching TV together at a living 
room, etc.  
Since social isolation leads to serious consequences such as 
disuse syndrome, mental depression, suicide etc., main-
taining person’s sense of community is very important. But 
measuring sense of community is difficult because it is a 
mental process and many kinds of activities and interactions 
are involved in the process. In this paper, we define Social 
Activities of Daily Living (SADL) to focus on social activi-
ties to enhance the sense of community.  We also propose a 
multimodal sensor based recognition method for SADL, 
which is implemented in the IoT-based emotion recognition 
robot for nursing environment. The robot monitors the daily 
activities and emotions of the residents, estimates the social 
relationships of the residents, takes care of the residents who 
are isolated from the community, and reduces their loneli-
ness feelings by forming a good relationship in community. 

Introduction   
According to the United Nations, the population aging is 
progressing all over the world (United Nations 2015).  As 
of September 2013, Japan became a super aging society 
where one quarter of the population is aged 65 years or 
older (Ministry of statistics 2013). Consequently, from 
April 2000 to April 2013, the number of nursing home res-
idents has increased 1.71 times (Ministry of Health, Labor 
and Welfare 2014). In the survey of personnel shortfall for 
nursing home in 2017, 62.6% of nursing home answered 
that the caregiver was short (Person nursing labor stability 
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center 2016). Despite the fact that the number of care re-
cipients is increasing, care workers are in short supply. 
Therefore, the government encourage to introduce ICT in 
nursing environment to mitigate the workload of caretakers. 
In this context, many types of monitoring system are de-
veloped for nursing home. However, the monitoring sys-
tem in the nursing home in the past is many in the bedroom 
and the area to be monitored is narrow. The ideal monitor-
ing system monitors the entire nursing home such as the 
bathroom, the toilet, the dining room, the discourse room 
as well as the bedroom.  

The dining room and discourse room can be accessed 
during the day and anyone can use it.  Sadly, there exist 
some residents who spend most of their time in the bed-
room without participating in the social activities such as 
television appreciation, conversation and recreation in the 
lounge, etc. These people are suffered from social isolation, 
which leads to many harmful health conditions (Nicholas 
2012), which is becoming a problem not only in Japan but 
also worldwide. The social isolation is caused by various 
incidents, such as physical weakness, physical disorder, 
mental illness, deterioration of psychological function, so-
cial loss, and when these occur simultaneously, the elderly 
people often face to a deep social isolation (Karatsu 2012). 
It is also involved in depression, which is caused by a big 
life event such as relatives disappearing and chronic stress 
(Ministry of Health 2009). 

We consider that creating a good relationship in the  
community is a useful mean to prevent social isolation. By 
creating a good community relationship, social activities 
are increased such as dining with others, chatting, playing 
game, watching TV together, helping others etc., which, in 
turn, decreases the loneliness feeling. 

In this paper, we define Social Activities of Daily Living 
(SADL). Compared with ADL and Instrumental ADL 
(IADL), the former focuses on person’s physical self-care 
abilities to perform independent living. And the latter fo-
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cuses on person’s mental-involved complex activities, 
SADL focuses on the social activities to measure the per-
son’s sense of community.  Then, we propose a multimod-
al sensor-based recognition method for SADL, which is 
implemented in the IoT-based emotion recognition robot 
for nursing environment. The robot first recognizes per-
son’s activities and change of emotions by integrating the 
sensors’ data: microwave sensor for vital data, video cam-
era for the facial expressions, microphone for speech tone, 
environmental sensors for temperature, and brightness etc. 
Then, it evaluates the ADL, IADL index.  SADL is also 
evaluated by monitoring the social relationships of the res-
idents. The robot takes care of the residents who are isolat-
ed from the community by chatting on health-related talk. 
It also advises to create a good relationship in the commu-
nity. 

Related Work

Relationship between Loneliness and ADL 
Relationship between loneliness or social isolation and var-
ious patterns of daily living are investigat-
ed(Goonawardene et al. 2017).  In their research, Activity 
of homebound elderly people are analyzed. It is shown that 
the time spent in the living room is significantly correlated 
with the emotional loneliness. This suggests that single liv-
ing elderly person who spends most time in living room 
feels lonely.  Correlation of daytime napping duration with 
social loneliness is also analyzed, suggesting that if elderly 
people lack of sense of community, they sleep more during 
day time. From these studies, it can be considered that so-
cial isolation and loneliness can be measured by actively in 
daily living (ADL). Furthermore, this study shows that de-
pression in the elderly people correlates with the loneliness 
and social isolation. 

Emotion Recognition 
Emotions can be recognized from various things such as 
facial expressions, voice, sentences, body temperature and 
so on. In patented technology by Panasonic (Panasonic), 
we recognize feelings form talking content and sounds of 
voice. In addition, the Empath API (Smartmedical) recog-
nized feelings using the physical sound of speech. Mi-
crosoft’s Emotion API (Microsoft)can recognize emotions 
from facial expressions. Recognition of facial expressions 
is also implemented as a function in the Omron camera 
module(Omron) that is used in our system.  
Techniques for recognizing emotions like these are active-
ly researched and these are applied in various fields. 

Proposed Monitoring System  
The monitoring system in nursing home needs to be wide-
spread including dining room and discourse room. The use 
case diagram of the monitoring system is shown in the 
Figure 1. "People", "Room" and "Items" on the right side 
indicate objects to be monitored. In the Target Model, it re-
fers to the state to be monitored. The "Sensor" in the 
Health Monitoring System reads the information in the 
Target Model and recognizes what kind of state it is. "Us-
er" is the person who actually uses the monitor system. If 
you look at these in a nursing home, "People" are  care-
requiring persons who use a nursing home, "Room" is a 
room of a nursing home such as a bedroom, a living space, 
and "Items" is toothbrushes, dishes used for meals, furni-
ture, and so on. "User" corresponds to a caregiver or a doc-
tor. In Based on this use case diagram, we propose a moni-
toring system targeting the entire facility including the liv-
ing space used by multiple people. Illustration of a desira-
ble monitoring system in our proposal is shown in the Fig-
ure 2. It monitors the entire facility, including bedrooms 
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that are often found in the conventional products. In addi-
tion to abnormality detection, we propose a system that uti-
lizes information such as behavior recognition, conversa-
tion and expression, which leads to enhance community 
and living in the nursing home of the elderly. In this paper, 
we describe the implementation, experiment and evalua-
tion of the IoT based robot with multiple sensors, which is 
developed to realize the proposed functions. 

Proposed Model of Loneliness
In this research, we aim to measure the loneliness of the 
elderly automatically by the system, which in turn acts to 
support a creation of a good sense of community. The 
loneliness depends on several things, such as mental pro-
cess and physical process. So, we propose to measure  the 
loneliness of elderly people in three axes: physical loneli-
ness, mental loneliness, and social loneliness. Physical 
loneliness is simply based on whether or not there are peo-
ple around the elderly. Mental loneliness is measured from 
emotions such as expression. Also, actions such as reading 
and talking are related to mental loneliness. Social loneli-
ness is measured by the amount of social activity such as 
recreation. 

Model of Loneliness 
Calculation of the loneliness of each of the three axes is 
performed by recognizing the actions in daily living. Con-
sideration is given to the relationships between typical ac-
tions in daily living and the physical loneliness, mental 
loneliness and social solitude. Table 1 gives examples of 
points of senior citizens' behavior and loneliness levels re-
lated to them.  

For example, consider the act of eating with others in the 
dining room at meal time, that action is considered to be 
beneficial to reduce the physical loneliness and social iso-
lation, thus the good points are given to these two axes. 
The higher the score of each axis, the lower the loneliness 
of elderly people feel.  
Define a table that combines such actions and points for 
typcical activities in daily living.  
 

Table 1 relationship between behavior and loneliness 

Behaviors Physical Mental Social 
Eating with everyone +1 +1 +1 
Speak using cell phone +0 +1 +0
Visit discourse room +0 +0 +1 
Join Recreation +1 +1 +1 
 

Mapping of Loneliness 
Using the table shown in Table 1, we can summarize the 
all activities in daily living and map the results into the 
three axes shown in the Figure 3 as the degree of loneliness 
in a day.  

By analyzing this three-dimensional figure, it is possible 
to grasp the tendency of which axis the solitude degree is 
high or low. After mapping, we can make a personalized 
care plan to reduce the solitude which is different peron by 
person. 

Monitoring System Design  
and Implementation 

System Design 
Functional requirements of the monitoring system are as 
follows: 
(1) Status Monitor 

The most basic function is to monitor person’ various status 
such as position, posture, activity, and vital sign. Different 
kinds of sensors should be used, thus integration of sensor 
data to reason higher level status is necessary. 

(2) Emergency Watch 
If the person is in a critical status, such as stroke and falling, 
the system should recognize the status and put alert within a 
specified time, such as 1 minitute, that means the system’s 
response time requirement is essential. 

(3) Forecasting 
Forecasting of status change is also desirable. For daily liv-
ing, prediction of wake up time or urination is important for 
a caregiver.To realize it, the system should store the activity 
log and analyze to find a daily life pattern. 

(4) Dialog 
Normal functions of monitoring are passive. The monitoring 
should be performed without bothering the residents. But for 
isolated elders, active monitoring function should be consid-
ered, such as dialog and greeting. The reactive planning ca-
pability is necessary to realize it. 
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Physical 
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Figure 3 Mapping of Loneliness 
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Configuration 
The system configuration diagram is shown in the Figure 4. 
All sensors are mounted on RaspberryPi3: camera module, 
non-contact temperature sensor, microwave sensor.  We 
use Fluentd S/W toolkit which is originally developed for a 
Web server log collection, for our data-driven architecture. 
It can processes and integrates data flowing asynchronous-
ly from each module, and utilizes them for recording of vi-
tal data, communication by utterance function, and behav-
ior recognition. The log data and the name of the elderly 
are recorded in the database. 

Experiment and Evaluation 

Experiment Method
We actually installed a IoT based robot in a nursing home, 
and conducted an experiment. The purpose of the experi-
ment is two-fold. 

First, since the camera module, the non-contact tempera-
ture sensor, and the microwave sensor operate asynchro-
nously, it is necessary to integrate them and perform sim-
ple communication with the elderly using the integrated 
data. The verification of this basic function should be 
checked. The communication performed this time is to de-
tect the face of a person and speak with data of heart rate, 
respiratory rate, expression, obtained from each module if 
it is a person registered in the database. Figure shows im-
plemented scenarios. This scenario assumes that the robot 
will greet the elderly. If there is only one face detected, 

speak the name, the expression at that time, and vital data. 
If two or more people, call their name and greet. In this 
scenario, the robot uses camera module and microwave 
sensor for detecting face and sensing the heart rate and 
breathing rate.  
The second is to recognize one SADL, "visit a discourse 
room" and to measure the social loneliness degree of elder-
ly people in a simple way. For recognition of this SADL, a 
camera module is used. When the robot monitors the entire 
discourse room and recognizes the face, it records the ID 
of that person and the time visited in the database. Count 
the number of visits by elderly people and measure the so-
cial loneliness with the number of visits as a score. For the 
experiment, we registered the face of four facility users in 
the robot. The experiment was conducted for about 2 days 
from 13:00 on January 18, 2018 to January 19, 2018. 

Results of Face Recognition 
After registering the face of the person and verifying it in 
the discourse room, The IoT-based robot could communi-
cate with the elderly using sensor data. Table 2 shows a 
part of vital data such as the heart rate of the user actually 
obtained. Even the elderly talked to the robot, and many 
laughing facial expressions were observed. Figure 4 shows 
the state of the experiment at the actual nursing home. 
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Results of SADL Recognition 
It was possible to obtain the time and the staying time of 
visiting the lounge room of the subject whose name was 
registered in the database. The Figure 5 shows the result of 
recognition of SADL. The horizontal axis is time, which is 
a point indicating that a round plot has visited the discourse 
room. The top one is the log data of user 1,  her visiting 
was at 14:22 on 18th and never on 19th. Likewise, user 3 
never visited the lounge on the 19th. On the other hand, 
user 2 and user 4 were visiting the lounge room on the 19th.  

Based on Figure 5, Table 2 shows how many times each 
user visited the lounge room manually. If the intervals of 
the plots are short, it is assumed that they are recognized 
multiple times by one visit, and a set of plots in which one 
hour or more is free is taken as "one visit". Based on the 
proposed Model of Loneliness, we will measure the loneli-
ness of each user. Assuming that the behavior of visiting 
the discourse room is related only to the degree of social 
isolation, it can be said that user 1 has the most social de-
gree of solitude among the four. 

 
Table 3 User Visits 

User User Visits 
User1 2 
User2 5 
User3 4 
User4 4 

 
 
 

Discussion 
In this experiment, we are only able to observe the visitor 
in the discourse room, we cannot map the social degree of 
loneliness because we cannot currently recognize other ac-
tions.  By increasing the recognizable behavior, it is possi-
ble to measure significant degree of loneliness. In order to 
increase the number of recognizable behaviors, it is neces-
sary to handle not only the sensor built into the robot but 
also the data of the remote sensor installed at a location 
away from the robot, such as a bedroom or dining room. 
By doing so, the scope of monitoring as a monitoring sys-
tem will also become wider, and it will be possible to in-
crease the number of types of behaviors that can be recog-
nized and to be able to map loneliness to significant 3 axis 
diagrams at the same time. 

Moreover, by using the vital data obtained by the exper-
iment and the recognition result of SADL for visualization 
and measuring the degree of loneliness, it is expected to 
realize a system which can support to reduce the caregivers’ 
work load. 

It is thought that an interface using speech recognition 
technology becomes essential. When we were experiment-
ing at a facility, we often saw robots are talked back. we 
actually got an opinion from the residents that "I wat to 
continue conversation after the robot talked to me”.  

Since speech recognition can be used by a caregiver who 
both hands are occupied in doing work, we will also con-
sider application in the field of ICT to convey work effi-
ciency and information on the elderly. 

Figure 6 The robot is talking to user 

Figure 7 Visitor to discourse room 
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Conclusion 
In this paper, we propose a next-generation monitoring 
system in a nursing home, and developed a monitoring ro-
bot which implemented a part of the desirable functions. 
We also proposed a model for measuring elderly loneliness. 
The robot incorporates multiple sensors and a speaker so 
that communication can be taken.  

As a result of the experiment using the robot, it was pos-
sible to consolidate the sensor data sent to fluentd asyn-
chronously and to store the log data such as the expression 
of the elderly at that time in association with the person. 
We were able to communicate easily with the elderly peo-
ple. Also, we were able to recognize SADL, by monitoring 
who and when the visitor comes. By using the result of 
recognizing SADL, we could measure social loneliness de-
gree of elderly person in a simple manner by counting the 
number of visiting times in  the discourse room. Currently, 
recognizable behaviors are limted. Although few meas-
urements of the degree of solitude have been made, future 
data of the remote sensor will be utilized to increase the 
recognizable behavior. 
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Abstract

Long-term observation of changes in Activities of Daily Liv-
ing (ADL) is important for assisting older people to stay ac-
tive longer by preventing aging-associated diseases such as
disuse syndrome. Previous studies have proposed a number
of ways to detect the state of a person using a single type
of sensor data. However, for recognizing more complicated
state, properly integrating multiple sensor data is essential,
but the technology remains a challenge. In addition, previ-
ous methods lack abilities to deal with misclassified data un-
known at the training phase. In this paper, we propose an
architecture for multimodal sensor-based ADL recognition
which spontaneously acquires knowledge from data of un-
known label type. Evaluation experiments are conducted to
test the architectures abilities to recognize ADL and construct
data-driven reactive planning by integrating three types of
dataflows, acquire new concepts, and expand existing con-
cepts semi-autonomously and in real time. By adding exten-
sion plugins to Fluentd, we expended its functions and de-
veloped an extended model, Fluentd++. The results of the
evaluation experiments indicate that the architecture is able
to achieve the above required functions satisfactorily.

Introduction

The world’s elderly population is growing rapidly, particu-
larly in more developed countries where longevity and the
increase of elderly people seem to impact negatively on the
proportion of the working age population. This situation
causes serious social issues and problems including medi-
cal staff shortage for homecare services. To deal with the
problems, Ambient Assisted Living (AAL) is gaining a great
deal of interest. AAL uses IoT and AI technology to support
to support older people to live independently for as long as
possible and improve their quality of life. In the AAL com-
munity, Activities of Daily Living (ADL) observation by
IoT is one of the most attention-getting topics (Monekosso,
Florez-Revuelta, and Remagnino 2015). For example, long-
term observation of changes in ADL is one thing consid-
ered to be important for preventing disuse syndrome. Once
older people suffer from the disuse syndrome, it is difficult to
ameliorate their conditions to the original level. Therefore,
giving older people some awareness of how active they are

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

becoming by checking older peoples ADL and preventing
the disuse syndrome could be more important than treating
it.

Many of the previous studies have proposed various ap-
proaches to detect the state of a person by using a single
type of sensor data. However, single type of sensor cannot
provide enough information, thus it is essential to use mul-
tiple sensors for recognizing more complicated state, but in-
tegrating different kinds of data from multiple sensors are
difficult and the integration technology is not well estab-
lished. Also, previous methods lack the ability to deal with
data of unknown label type. It means that they do not possess
enough capability to deal with unexpected actions or condi-
tions. This paper proposes an Active Online Learning (AOL)
architecture that can semi-autonomously acquire knowledge
from unknown label type data for multimodal sensor-based
ADL recognition.

Sensor-based Activity Recognition

Currently, various kinds of sensors, i.e. infrared motion sen-
sors, accelerometers and cameras, are available for ADL
measurements. In addition, RFID is one of the most widely
used technologies for human activity recognition, and it usu-
ally uses small passive tags which don’t require an internal
power source, thus they can be easily attached to person’s
wears and tools. The position and attitude of the tagged ob-
ject can be calculated by RSSI. Among numerous studies on
sensor-based activity recognition, Fortin-Simart et al. have
demonstrated that several ADLs in the kitchen such as mak-
ing coffee and getting a bowl of cereal can be distinguished
with higher accuracy than 90% (Fortin-Simard et al. 2015).

Related Work

Multimodal Learning

Information in the real world is provided as multimodal in-
formation such as text, image, and audio. Humans recog-
nize things by ingeniously integrating those modalities. In
the same ways, multimodal machine learning uses multi-
modal information to recognize a more complicated situa-
tion and do more complicated tasks than when single modal-
ity is used. Based on a taxonomy proposed by Tadas B. et
al., there are mainly five challenges that multimodal learn-
ing faces: representation, translation, alignment, fusion and
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co-learning (Baltrusaitis, Ahuja, and Morency 2017). Out of
these five challenges, fusion is the one that this paper ad-
dresses in order to join information from two or more modal-
ities to perform a prediction. Libal V. et al. have conducted
an experiment to classify 6 ADLs, i.e. eating-drinking, read-
ing, ironing, cleaning, phone answering, and TV watching,
by using microphones and cameras installed inside an apart-
ment. Their results show that classifier using simple con-
catenative features of audio and visual significantly out-
performed both unimodal classifiers: 65.97% when using
audio-visual features, 57.64% when using only an audio fea-
ture, 46.53% when using only a visual feature (Libal et al.
2009).

Active Learning

Active learning is a subfield of machine learning. The key
idea behind active learning is that greater accuracy can be
obtained with fewer labeled training instances if a machine
learning algorithm is allowed to choose the data to learn
(Settles 2009). An active learner can request an oracle to
label unlabeled instances. Active learning is useful where
there is already a large amount of data or unlabeled data can
be easily obtained and there is high labeling cost. As recog-
nizing ADLs by using sensor data deals with large amount of
data and unlabeled data as well as high labeling cost, active
learning is considered to be an effective approach for recog-
nizing ADLs. Sensor data itself can be easily obtained once
sensors have been installed. However, labeling them for a
computer to learn is very laborious. If an active learning al-
gorithm can find which instances are most informative and
then ask an oracle to label them, active learning approach
can solve the labeling problem.

Online Learning

Online machine learning can sequentially update its pre-
dictor for future data as training data comes while batch
learning fixes its predictor once learning phase with train-
ing dataset has been done. This property makes it possible
for a machine learning algorithm to maintain and improve its
model so as to adapt to changes in an environment. Masuda
and Numao have proposed a real-time human state detection
system and has confirmed that the detection model can keep
high accuracy rate more than 90% by additionally trained
detection model with data collected from different subjects
in a setting where a detection model trained with data col-
lected from a single subject is used for another subject (Nu-
mao and Masuda 2016).

AOL Architecture for ADL Recognition
In this paper, we propose an architecture for multimodal
sensor-based ADL recognition. This architecture is able to
recognize ADLs based on data-driven approaches and semi-
autonomously acquire knowledge about activities of daily
living. Figure 1 provides an overview of the Active Online
Learning (AOL) architecture. This architecture’s functions
can be largely separated into two parts:

1. ADL recognition
2. New concept learnering

ADL Recognition in Three Types of Dataflows

ADLs are recognized based on data flown in the following
three types of dataflows: sensor-level dataflow, action-level
dataflow, and concept-level dataflow. Each dataflow has its
own role and cooperates each other to recognize ADLs and
utilize utilize obtained results.

Sensor-level Dataflow A large quantity of data obtained
from various kinds of sensors is sent to the sensor-level
dataflow. The role of this dataflow is to process the data
into easy-to-use form by extracting important information or
merging multiple data according to pre-determined rules so
that subsequent processes can be easily done. It includes de-
tecting some ADLs based on simple if-then rules e.g. detect-
ing entering/leaving a room when RSSI of an RFID tag at-
tached to a person is higher/lower than a certain level. Then
the processed data or recognized action data is sent to next
dataflows.

Action-level Dataflow The action-level dataflow receives
recognized data of ADLs from the sensor-level and concept-
level dataflows. Then its reactive planning engine processes
the recognized results and gives a command to the activator
of the intelligent caretaker to do some tasks such as speaking
out generated texts according to the obtained data or execut-
ing speech recognition program to get a response of a per-
son whom the intelligent caretaker is interacting with. This
role of the reactive planning engine is very important for
this architecture because it determines what to do with rec-
ognized results obtained from the sensor- and concept-level
dataflows. This is an example of assumed scenarios: If one
can track peoples location and posture using RFID or some
other sensors, the system can give a warning when someone
enters the toilet and does not move for over 15 minutes.

Concept-level Dataflow The concept-level dataflow rec-
ognizes ADLs using online machine learning techniques
and sends the estimated results to the action-level dataflow.
While the sensor-level dataflow is in charge of relatively
low-level ADL recognition such as just applying simple if-
then rules to the obtained data, the concept-level dataflow is
responsible for more advanced ADL recognition tasks.

Also, it keeps updating its activity recognition model as
associating with the new concept learning function. When it
encounters new patterns in the data sequence, it notifies that
it has detected new patterns and updates its activity recog-
nition model with the data and its correct label given by an
oracle. It is also expected to detect unexpected anomalous
actions or conditions.

Data-Driven Reactive Planning

Reactive planning is a different approach concerning with
the problem of planning under uncertainty (Pryor L. 1996).
It denotes a group of techniques for action selection by au-
tonomous agents that operate in a timely fashion and com-
pute just one next action in every instant, based on the cur-
rent context (Reviews 2016).

This study utilizes similar techniques that enable the al-
gorithms make decisions based on the results of data recog-
nition within a very short time (e.g. 0.1 sec.), real time and
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New Concept Learning

Intelligent Caretaker

Figure 1: Overview of the active online learning architecture for ADL recognition

Figure 2: Overview of Data-Driven Reactive Planning

seamlessly. The baseline of the proposed architecture sets
the data to be parallel and actions to be sequential in a pro-
cess described in Directed Acyclic Graphs (DAGs) (See Fig-
ure 2)

New Concept Learning

New concept learning is one of the most important key fea-
ture of this proposed architecture. This function adds abil-
ities of learning new concepts and expanding existing con-
cepts to this architecture. The data-driven ADL recognition
passes uncategorized data to the new concept leaner when it

encounters data which is unlikely to be classified into an ex-
isting class, and then the new concept learner requests cor-
rect label corresponding to the received data to an oracle.
Next, the new concept learner updates its activity recogni-
tion model with the data and its correct label given by the
oracle. When the given label is a new label for the activity
recognition model, it means that new concept will be added
to the candidate class list, and when the given label already
existing, it means that the existing concept will be expanded.
By repeating this process, asking a correct label to the oracle
and updating its activity model, the online learning classi-
fier in concept-level dataflow becomes smarter and smarter
and to be able to recognize more complicated activities with
higher accuracy. Figure 3 shows the process of acquiring a
new concept.

Intelligent Caretaker

The intelligent caretaker is a smart robot which has the data-
driven AOL architecture inside of it. It collects data from
various sensors mounted in the robot’s body or placed in the
environment and feedback to the external environment ac-
cording to obtained results. The intelligent caretaker is in
charge of interacting with the external environment. It is
also expected to helps the system give a sense of intimacy
to older people.
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Figure 3: New concept acquisition flow

Implementation

We have implemented the proposed architecture using open
source log collection software Fluentd for data-driven data
processing in the architecture, Raspberry pi 3 for the intel-
ligent caretaker, and open source online distributed machine
learning platform Jubatus respectively.

Three Dataflows in Fluentd

Data flown in Fluentd is structured as JSON format so that
we can easily unify log data across multiple sources and des-
tinations. Also, Fluentd has a very flexible plugin system
that allows users to extend its functionality depending on
their specific needs. Hence, Fluentd can be considered that
it is not just a log collection software but also a very useful
data stream management tool which let us apply data-driven
approach.

A Fluentd event consists of a tag, time and record.
A tag has period-separated name structure (e.g. sen-
sor.temp hum.in living room) and is used for routing Flu-
entd events. The time shoes when the event came and the
record has its JSON formatted data. Following is an exam-
ple of a Fluentd event:

2017−11−03 1 9 : 3 5 : 3 2 +0900 s e n s o r . microwave :
{” h e a r t ” : 7 9 , ” b r e a t h ” : 1 2}

We have determined tag naming conventions. By us-
ing its tag name-based routing rule, the three kinds of
dataflows, sensor-, action-, and concept-level, can be dis-
tinguished internally such as ”sensor.” for sensor-level
dataflow, ”action.” for action-level dataflow, and ”concept.”
for concept-level dataflow.

Fluentd++ for Data-Driven Reactive Planning

As we encountered difficulties in handling asynchronous
data from the sensors using Fluentd during testing phase and
in defining processing scenarios, it was necessary to expand
the functions of Fluentd. To do so, we made additional plug-
ins: record merger plugin to integrate multiple events arriv-
ing at different timing, condition checker plugin to make it
easier and simpler to apply if-then rules to the data stream,
and event serializer to sequence the multiple events detected.
By installing the three plugins, which default Fluentd does
not possess, we were able to handle the parallel data more
accurately and efficiently as well as flexibly and achieve
our goals of activity recognition, such as face and emotion

Figure 4: Fluentd++

Figure 5: Caring Owl talking to women

recognition, and reactive planning, such as requesting for
smile or measuring detected person’s vitaldata. Figure 4 is
an overview of the Fluentd++.

Intelligent Caretaker

We have assembled an intelligent caretaker named “Caring
Owl” together with WCL Co., Ltd. using Raspberry Pi 3.
Fluentd++ is installed and the data-driven ADL recognition
architecture is running on it. It is equipped with several sen-
sors including a face recognition camera, a microwave sen-
sor, a non-contact thermal sensor, a temperature-humidity
sensor, and a microphone. It can also collect data from sen-
sors placed in the external environment such as a mattress
sleep sensor through the wireless network. Obtained sensor
data can be easily sent to Fluentd by using an event sending
interface fluent-logger. It is available for most major pro-
gramming languages. We have started conducting an experi-
ment with the Caring Owl in a nursing home. Figure 5 shows
the scene that the Caring Owl is talking to women.

New Concept Learnering

To do this, active learning plugin for fluentd++ were made.
It adds function to issue queries to an oracle when unclas-
sifiable data arrives and to get new concepts by using re-
ceived data from the oracle. In more detail, when the online
learning classifier in concept-level dataflow encounters data
which is unlikely to be classified into an existing class, it out-

262



puts the data to a specified filepath. The new concept learner
keeps watching the output file and executes the following
each time when it is updated.

1. When new unclassifiable data comes, check the elapsed
time since the last unclassifiable data came; and if the
time lag is exceeded specified time limit, delete all the
data in the log file except the latest one; but if the time lag
is shorter than the time limit, just append the new unclas-
sifiable data at the end of the log file

2. If the specified amount of unclassifiable data has accumu-
lated in the log file, request the correct label correspond-
ing to the data to an oracle

3. Subsequently, update the activity model using the accu-
mulated data and the label
There are two reasons why a certain amount of unclassi-

fiable data is stored in a log file. The first reason is that it
is just bothersome and inefficient to do labeling every time.
The second reason is that sensor data often contains noises
and labeling noisy data is waste of energy or even harmful
to the activity recognition model.

Evaluation Experiments

In this experiment, we had mainly two kinds of experiments:
one was about whether the architecture implemented with
Fleuntd++ can (1) actually describe reactive planning and
work as expected; the other was whether this architecture
can (2) acquire new concepts and (3) expand existing con-
cepts adjusting its activity model according to individual dif-
ferences, and (4) how much the labeling costs for each case
are.

Experiment 1: Data-Driven Reactive Planning with
Fluentd++

By using Fluentd++, we defined scenarios to be Figure6,
confirmed the actions and conducted performance evalua-
tion.
• Scenario 1: Face recognition is done by the face recog-

nition camera. The Intelligent Caretaker sends greetings
when the faces of two or more pre-registered people are
detected at the same time.

• Scenario 2: Face recognition camera detects pre-
registered faces individually. When a recognized face is
in the center, the Intelligent Caretaker greets the person
and stores the persons vital data (body temperature, heart
rate and respiration rate) taken from the sensors into the
database.

• Scenario 3: Face recognition camera detects pre-
registered faces individually. When the recognized face
is not in the center, the Intelligent Caretaker requests the
person to move to the center in order to properly obtain
the persons vital data from the sensors.

• Scenario 4: In the case that the face recognition camera
recognizes the face(s) but finds no pre-registered faces
and that there are more than 5 smiling faces, the Intelli-
gent Caretaker greets the people, “You look like you are
having fun!”

Figure 6: DAG based Process Definition

[1] 9DoF sensor + Edison [2] Pin mic + RaspPi

Figure 7: The 9DoF sensor and the pin mic

Fluentd++ outputs all the data flown on dataflow to log files.
We evaluated how much data were processed and the real-
time response to the recognized results.

Experiment 2 and 3: Data Collection for AOL

We used a 9DoF(Degrees of Freedom) sensor (3-axis ac-
celerometer, 3-axis gyro, and 3-axis magnetometer) and a
pin mic, wearing on the dominant wrist and on the chest re-
spectively. The 9DoF sensor is attached to an Intel Edison
and the pin mic is connected to a Raspberry Pi 3 so that
they can send collected data through a wireless network.
Collected data are converted into feature vectors and then
sent to the data-driven ADL recognition unit roughly every
second which is running on an intelligent caretaker.

For the 9DoF sensor, a value of each axis is obtained
every 0.1 seconds and mean and variance values of them
are calculated every second and used as feature vectors. For
the pin mic, MFCC(Mel Frequency Cepstral Coefficients),
RMS(Root Mean Square), and ZCR are calculated every
second and used as feature vectors. All the feature vectors
are normalized between -1 and 1 using min-max normaliza-
tion method.

Experiment 2 and 3: AOL Algorithm

The k-Nearest Neighbor(k-NN) algorithm is used as a clas-
sification algorithm in the concept-level dataflow in the
ADL recognition unit, and Locality Sensitive Hashing(LSH)
based on cosine similarity is used for finding nearest neigh-
bors. We set k = 10. Obtained data would be treated as uncat-
egorized data when the max score is smaller than 9.5. The
score for each class is calculated from following equation:
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Score(class) = exp(−distance ∗ S) S is the sensitivity
with respect to distance, which is set to 0.1. The procedure
of issuing queries to an oracle follows described in Imple-
mentation of New Concept Learning. The time gap limit is
set to 3 seconds and when 10 unclassifiable data has accu-
mulated, the new concept leaner requests the corresponding
label to the data.

Experiment 2: Acquiring New Concepts

Firstly, we tried to find out whether this architecture can
actually acquire new concepts spontaneously. We collected
sensor data from a subject for 10 seconds each of the follow-
ing five classes and train the NN-classifier in advance.

• Sitting

• Standing

• Walking

• Vacuuming

• Hair-drying

We call the subject subject-A in order to distinguish it from
the other subject, and we call the other subject subject-B.
After finishing the pre-training, we kept repeating the five
activities above and answered questions issued by the new
concept leaner until it stopped asking a question. Then, we
began to do the following five activities.

• Washing hands

• Brushing teeth

• Gargling

• Speaking

• Stairs up/down

If the new concept learner works properly, it would re-
quest new labels corresponding to these activities and learn
these activities as new concepts. We counted how many
times the new concept leaner needed to issue requests for
each label. Also, we classified subject-A’s activities using
the trained model and analyzed the result.

Experiment 3: Expanding Existing Concepts

Secondly, we tried to find out whether this architecture can
actually expand existing concepts according to individual
difference. The activity recognition model was only trained
by subject-A’s behavior, which meant that this model might
not work well on subject-B’s activity classification. How-
ever, as well as acquiring new concepts, the new concept
learner would request labels when ambiguous data arrived
and try to adjust its model with true labels given by an ora-
cle.

We compared the accuracy rate between the following
cases, (a) one is prohibited to request true-label to an ora-
cle and (b) the other is allowed. Also, we counted how many
times the new concept leaner needed to ask a question for
each label in the latter case.

Results and Analysis

Data-Driven Reactive Planning with Fluentd++

First, the total numbers of sensor data on dataflow and bytes
within the 30 hours of system operation are 277596 and 59.4
MB. On average, 2.6 numbers of data were sent to dataflow.
The maximum number of data per second counted was 197
(inclusive of the error messages emitted when the connec-
tion with MQTT broker was broken and of the normal sen-
sor data). The numbers of execution of each scenario are
obtained and results are as follows: {Scenario 1: 1, Scenario
2: 97, Scenario 3: 40, Scenario 4: 1}. Next, we evaluated the
performance of the system construction. Within the 30 hours
of experiments, the number of execution of speech scenarios
by the Intelligent Caretaker was 139. For all the 139 times
of scenario execution, Fluentd++ was able to process all the
scenarios triggered by the face recognition camera within 1
second each time. (With the current settings, we were unable
to measure the time in millisecond scale or to have more
precise time than seconds.) In addition, we confirmed that
action serialization functioned normally, i.e. being able to
sequence the multiple events chronologically.

Acquiring New Concepts

Table shows that how many times the new concept learner
requested and updated its ADL recognition model. The
largest number of input times was 6 for going up/down the
stairs. This shows that at most several times of label in-
put operation is sufficient for learning one class of activ-
ity. A reason why seemingly easy activities such as sitting
or standing required relatively large numbers of labeling re-
quest are considered that 3-axis geomagnetic sensor’s values
are used as a part of the feature vector and it put an impor-
tance on which direction the subject was looking. For the
same reason, activities such as washing hands and brushing
teeth which are taken in a limited position required just a
few times of learning.

The confusion matrix in Table 2 shows the performance of
the obtained ADL classification model. Accuracy rate was
over 90% in all classes except standing. Especially, it ap-
pears that the new concept learner properly has requested
labels to the five latter activities and acquired new concepts
corresponding to them.

Expanding Existing Concepts

Table 4 shows the performance of ADL classification of the
following cases (a) directly using subject-A’s ADL recogni-
tion model, (b) using updated subject-A’s ADL recognition
model by the new concept learner respectively. The numbers
in brackets means the results of (b). Although accuracy rates
of sitting and standing classes have mildly declined, those
of gargling, speaking, and up/down the stairs classes got im-
proved significantly. Table shows the numbers of label in-
put times to train the subject-A’s ADL recognition model in
order to fit the subject-B’s behavioral patterns. It was also
assumed that just a few times of label input for each class is
enough to adjust the model in this case. These results above
show that this architecture can actually acquire new concepts
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Table 1: Numbers of Label Input Times for Acquiring New Concepts
Actions Class Sitting Standing Walking Vacuuming Blow-drying Washing hands Brushing teeth Gargling Speaking Up/Down the stairs
Label Input Numbers 5 5 3 4 1 1 1 1 3 6

Table 2: Results of Experiment 2: Confusion Matrix
Activity Classified As Accuracy Rate

Sitting Standing Walking Vacuuming Blow-drying Washing Hands Brushing Teeth Gargling Speaking Stairs Up/Down
Sitting 37 0 0 0 0 0 0 0 0 0 1.0
Standing 0 21 6 0 0 0 0 0 0 12 0.53
Walking 0 0 55 0 0 0 0 0 0 2 0.96
Vacuuming 0 0 0 38 0 0 0 0 0 0 1.0
Blow-drying 0 0 0 0 40 0 0 0 0 0 1.0
Washing Hands 0 0 0 0 0 39 0 0 0 0 1.0
Brushing Teeth 0 0 0 0 0 0 39 0 0 0 1.0
Gargling 0 1 0 0 0 0 0 23 0 0 0.96
Speaking 0 0 0 0 0 0 0 0 40 0 1.0
Stairs Up/Down 0 3 0 9 0 0 0 0 0 116 0.91

Table 3: Numbers of Label Input Times for Expanding Existing Concepts)
Actions Class Sitting Standing Walking Vacuuming Blow-drying Washing hands Brushing teeth Gargling Speaking Up/Down the stairs
Label Input Times 0 0 0 0 0 0 0 3 1 6

Table 4: Results of Experiment 3: Confusion Matrix
Activity Classified As Accuracy Rate

Sitting Standing Walking Vacuuming Blow-drying Washing Hands Brushing Teeth Gargling Speaking Stairs Up/Down
Sitting 42 (47) 0(0) 0 (1) 0 (0) 0 (0) 0 (0) 0(0) 0 (0) 0 (0) 0 (0) 1.0 (0.98)
Standing 0 (0) 26 (34) 0 (7) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1.0 (0.83)
Walking 0 (0) 0 (0) 45 (45) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1.0 (1.0)
Vacuuming 0 (0) 0 (0) 0 (0) 47 (42) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1.0 (1.0)
Blow-drying 0 (0) 0 (0) 0 (0) 0 (0) 39 (38) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1.0 (1.0)
Washing Hands 0 (0) 0 (0) 0 (0) 0 (0) 0(0) 39(39) 0 (0) 0 (0) 0 (0) 0 (0) 1.0 (1.0)
Brushing Teeth 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 38 (35) 0 (0) 0 (0) 0 (0) 1.0 (1.0)
Gargling 0 (0) 0 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (13) 37 (0) 0 (0) 0.08 (1.0)
Speaking 19 (10) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 28 (24) 0 (0) 0.60 (0.71)
Stairs Up/Down 0 (0) 1 (1) 35 (5) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 17 (94) 0.32 (0.94)

and expand existing concepts spontaneously and be able to
classify ADLs with higher accuracy than 90% on average.

Conclusion and Future Works

We proposed an active online learning architecture for mul-
timodal sensor-based ADL recognition for real-time recog-
nition and learning to achieve better practicality. Also, we
conducted three evaluation experiments to test the architec-
tures abilities to recognize ADL and construct data-driven
reactive planning by integrating three types of dataflows,
acquire new concepts, and expand existing concepts semi-
autonomously and in real time. By adding extension plu-
gins to Fluentd, we expended its functions and developed
an extended model, Fluentd++. The results of the evaluation
experiments indicate that the architecture is able to achieve
the above required functions satisfactorily. In this research,
positive results were obtained from a simple combination
of the 30 features calculated from multimodal sensor data.
However, we are uncertain that the same results would be
achieved when the number of features increases as a result
of increased sensors. Therefore, our plan for future research
is to improve the feature selection methodology.
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Abstract 
People refer to personalized value to actively make decision 
on his/her own life. It is important to understand how per-
sonalized value is developed in adolescence and how it in-
fluences later life. Methods for assisting development of 
personalized value may contribute to human wellbeing. In 
this study, we report the estimated personalized value in ad-
olescence through the analysis of conversational data assist-
ed by coimagination method, which has been used for older 
adults. We found that the method is effective for estimating 
attitude towards everyday life, when the theme of conversa-
tion was “favorite snacks”, which may help introspecting 
the personalized value of each participant. 

 Introduction  
Personalized value is a person's inner drive for long-term 
action, which will be internalized and personalized through 
adolescence. Adolescence is characterized by social inter-
actions with peers while childhood is associated with trans-
generational incorporation of parental values. It is thought 
that personalized value may help to pursue subjective well-
being (Fukuda and Kasai 2017).  
 Linguistic and psychological intervention methods such 
as cognitive behavioral therapy may have preventive and 
therapeutic effects on mental illness. It has been shown that 
cognitive therapy is as efficacious as antidepressant medi-
cations at treating depression (DeRubeis et al. 2008). 
Yoshinaga et al. (2016) revealed that clinical trials have 
clarified that cognitive behavioral therapy is effective for 
patients with social anxiety who do not improve with anti-
depressants. Although cognitive behavioral therapy has 
mainly involved interventions by language, methods using 
images are also attracting attention (Blackwell et al. 2015). 

                                                 
Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

Likewise, the assistive technology to develop personalized 
value may contribute to human happiness. Estimation 
method for identifying personalized value is one of the 
fundamentals to achieve the goal because feedback of the 
estimated value may help introspecting the personalized 
value of each person.  
 Otake et al. (2011) proposed conversational assistive 
technology named coimagination method where themes, 
allocated period for speech, listening, questions and an-
swers are predetermined so that all participants can partici-
pate in the conversation in an equal manner. Participants 
take photos beforehand so as to show them during the peri-
ods of speech, questions and answers. Participants can 
share their episodes with photos and co-imagine them with 
each other. It applied mainly to older adults and the basic 
effect and safety were confirmed (Otake et al. 2013).  
 We have preliminary determined that selected topics 
according to the theme reflect the personalized value of 
each speaker. In this study, we report the estimated person-
alized value of adolescence through the analysis of conver-
sational data assisted by coimagination method. 

Method 
We conducted group conversation sessions supported by 
coimagination method. In this study, the theme of the con-
versation session was “favorite snacks”. All 12 participants 
(9 women, 3 men) were high school first grade students 
and were divided into 3 groups by 4 people. In the group 
conversations, each participant had a talk about her/his 
favorite snack (1 minute) and conducted Q & A session (2 
minutes) while displaying photos of favorite snacks col-
lected in advance. Then, we analyzed the transcribed data 
of group conversation and searched for items of contents 
that are considered to reflect the personalized value of each 
participant. 
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Results 
We extracted items that are associated to the personalized 
values from the topics provided by the participants. It was 
found that topics provided by the “favorite snacks” are 
classified by the attitude toward ordinary or extraordinary 
life scenes of each participant. Many participants refer to 
the price (cheap or expensive), the amount of eating (a 
large or a few), the frequency of eating (often or rarely), 
and the tension between their appetite and body shape. 
 Table 1 shows the number of topics classified in terms 
of price, amount, and frequency in all sessions. Favor on 
ordinary or extraordinary life scenes are classified based on 
either of the price, amount and frequency of eating of the 
snacks. If the snack is cheap, eaten a large amount, often, 
then the participant who provided the topic may favor or-
dinary life scene. In contrast, if the snack is expensive, 
eaten a few amount, rarely, then the participant may favor 
extraordinary life scene.  

We found that 8 participants favored ordinariness, 3 par-
ticipants favored extraordinariness, 1 participant favored 
both (Table 1). Overall, there were more participants who 
wanted to eat a large amount of favorite snacks or eat fre-
quently, namely, emphasized ordinariness. Participants 
who chose extraordinariness, such as rarely eating, small 
amount of the snacks, are supposed not to be able to eat 
them by external factors such as high price and their body 
shape, and without those factors it is thought that they 
could eat more. Interestingly, the topic of roll cake was 
classified in both. This reflects that it can be enjoyed both 
in daily snack scenes and extraordinary scenes such as par-
ties and Christmas. It was explicitly stated that the partici-
pant put value on both ordinariness and extraordinariness. 

 
Table 1. Number of topics in all sessions 
 price amount freq. ordinary 

cheap/many/often/ 
ordinary 

5 5 4 8 

expensive/a few 
/rare/extraordinary 

2 0 3 3 

both 1 0 0 1 
total 8 5 7 12 

Discussion 
 We extracted items related to personalized values from 
topics of 12 participants. In all generations, it may be pos-
sible to classify the conversation into ordinariness and ex-
traordinariness according to the items extracted in this re-
search, in the coimagination method which is carried out 
by the theme of “favorite snacks” or “favorite food”. This 
can reveal their personalized values.  
 There are some participants who favored extraordinari-
ness. However, whether they also favor ordinary snacks or 

only favor extraordinary slacks is unknown because the 
participants were allowed to select only one favorite slack 
during the experiment. In order to make clear this condi-
tion, the number of topics should be more than one so that 
the participants can select multiple favorite things. 

Conclusion 
In this study, we presented the estimated personalized val-
ue in adolescence through the analysis of conversational 
data assisted by coimagination method. We found that the 
method is effective for estimating attitude towards every-
day life, when the theme of conversation was “favorite 
snacks”, which may help introspecting the personalized 
value of each participant. Future work includes comparison 
of measured personalized values based on personalized 
value questionnaires and estimated ones from the conver-
sational data, evaluating whether feedback of the estimated 
value may help introspecting the personalized value of 
each person. We will explore how taking photographs 
based on a theme, searching for topics, and sharing them in 
group conversation can lead to assist personalized value 
development in adolescence. 
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Abstract

Global health-care systems are struggling with rapid increas-
ing of aging population, the prevalence of chronic diseases,
and raising of medical treatment costs. In this paper, we pro-
posed a hybrid sensing and wearable device for health infor-
matics and emergency medication. The proposed device will
include some of the existing individual modules for monitor-
ing health attributes and emergency medication. Moreover, it
will also include information communication modules, which
will assist the prescribed physician and health center to moni-
tor the patient remotely. In addition, the communication mod-
ules will enable the device to communicate automatically
with emergency medical services when needed. Furthermore,
the proposed device will also act as a virtual medical assistant
to advice regular medicine to the patient according to his/her
prescription.

1 Introduction

Global health-care systems are struggling with rapid increas-
ing of aging population, the prevalence of chronic diseases,
and raising of medical treatment costs (Bloom et al. 2011).
Now it becomes the major challenge of our aging society. It
is also found that elderly people tend to be very unconscious
about their health condition and regular medical check-up.

With rapid increase of aging people with chronic diseases,
we need to find smarter ways to manage the health needs
without increase of financial burden of hospitals and/or nurs-
ing facilities. To address these incomplete health-care re-
quirements, particularly for the early diagnosis and treat-
ment of major diseases, remote biomedical sensing device
has raised as an active area of interdisciplinary research. Ac-
cording to (Zheng et al. 2014), a significant progress in de-
veloping health-monitoring systems for health-care applica-
tions have been made in the past decade, but most of them
are still in their prototype stages. There are some major chal-
lenges like user acceptability, portability, reduction of mo-
tion artifact, power consumption, self-processing capability,
and distributed interference in wireless communication net-
works still need to be considered to increase the usability
and functions of these devices for practical use. Also, there
are several biomedical instruments have already developed

Copyright c© 2018, Association for the Advancement of Artificial
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for emergency treatment, which can save the human life in
some unpredictable circumstances.

Taking all these issues in mind, we are proposing a hy-
brid sensing and wearable device for health monitoring and
emergency medication. The proposed hybrid-device will in-
clude some of the existing individual modules for monitor-
ing blood glucose, blood-pressure, heart rate, body temper-
ature, and ECG. On the other hand, it will also facilitate
some treatments and medications for emergency situation
like automatic drug injection to human body. As a medi-
cal assistant, it can also suggest regular routine medicine to
the patient based on physician’s prescription and also advise
emergency drug/medicine to the patient depending on the
health monitoring attributes. It should include facilities to
communicate with the registered health center for automatic
interchange of regular health-informatics, prescription, and
emergency services.

The proposed device will help aging people especially
those who are suffering from chronic diseases like diabetes,
high blood pressure, cardiac arrhythmia, and cardiovascu-
lar diseases. Such kind of instrument will open up a new
dimension in biomedical instrumentation and artificial intel-
ligence research areas. Moreover, the data acquired from the
individual sensor will be a large and valuable source of the
knowledge storage, which will play an important role in the
development and expansion of medical science. Such kind
of device will introduce new challenges to the researchers
too. For example, accuracy improvement of the health mon-
itoring attributes, miniaturization and unobtrusiveness of the
wearable device, reliability of data-communication inter-
face, on-node intelligent data processing and power con-
sumption.

In this paper, we review some modules and technologies
from the published scientific research papers in Section 2,
which could be integrated with the proposed device for sens-
ing and processing physiological data. In Section 3, we dis-
cuss the main objectives and characteristics of the proposed
device. The significance, opportunities, and effectiveness of
the proposed device are discussed in Section 4. Then we
show the major challenges in Section 5, which should be
needed to overcome for the development and implementa-
tion of such device. Finally we conclude the paper in Sec-
tion 6.
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2 Related Works

Because of some features of unobtrusive and wearable de-
vices have transformed their usages for biomedical mea-
surement devices, since they have been widely used in the
clinical environment for many decades due to the recent ad-
vances in sensing and networking technologies. Fortunately,
with the rapid progress of integrated circuit technologies and
micro-electromechanical technologies, the size of process-
ing electronics and measurement modules have been signif-
icantly shrunk for wearable and portable applications.

A compact micro-system could be deployed for monitor-
ing cardiac electrical and mechanical activity, which may
combine the multi-sensor modules, signal processing unit,
and battery unit into a single integrated platform. Similarly,
a pressure-free and cuff-less measurement module is desir-
able to monitor patient’s arterial blood pressure (BP) con-
tinuously. In this regard, the pulse transit time (PTT) based
cuff-less blood pressure measuring technology could be cho-
sen considering the comforts of user by replacing the widely
used cuff-based methods, as proposed in (Poon and Zhang
2005). However, the PTT based cuff-less blood pressure me-
ter is still in experimental stage.

Again, most common ways to check glucose levels in-
volves pricking a fingertip with a lancing device to obtain a
blood sample. And then using a glucose meter to measure
the blood sample’s glucose level, which will not be suitable
for monitoring blood glucose continuously or periodically.
In this regard, continuous glucose monitoring (CGM) sys-
tems, using a tiny sensor inserted under the skin to check
glucose levels in tissue fluid, would be a better solution for
the proposed device as described by (Ahmadi and Jullien
2009). Besides that, it may also integrate a minimally inva-
sive and pseudo-continuous blood glucose monitoring sys-
tem as described in (Wang et al. 2017), which extracts a
whole blood sample from a small lanced skin wound using a
shape memory alloy (SMA)-based micro-actuator for mea-
suring the blood glucose level directly from the sample.

As for ECG, although the capacitive coupling sensing
is the most commonly used technology for capturing ECG
signals, it is not suitable for perpetual monitoring, since
this technology requires contact gel, which provides di-
rect resistive contact to the subject body (Zheng et al.
2014). Garment-integrated sensing is another technology
for continuously monitoring physiological parameters. The
garment-integrated sensing active electrode was presented in
some papers for wearable ECG monitoring (Pani et al. 2016;
Nemati, Deen, and Mondal 2012; Fuhrhop, Lamparth, and
Heuer 2009; Yama, Ueno, and Uchikawa 2007; Park et al.
2006), which could be introduced for the proposed device.

Self-assessment during vital condition of the patient re-
quired technologies like micro-controller based electrome-
chanical injection syringe pump proposed in different pa-
pers (Koundinya et al. 2014; Chirgwin, LaCourse, and
McWilliam 2015; Rideout et al. 2011; Chee, Fernando, and
Trinh 2006). These could be utilized for injecting life saving
drug(s) to a cardiac patient or for injecting regular insulin to
diabetic patients. It could be also utilized for injecting glu-
cose to a diabetic patient in case of hypoglycemia symptom.

Furthermore, several papers was published and proposed

different methods for assisting a patient with chronic dis-
eases. An interactive robot for reminding medication has
been proposed by (Datta et al. 2012). A personalized diet
and exercise guideline recommendation system was pro-
posed by (Tseng et al. 2015). Personalized medical assis-
tant base preventive health-care model was also proposed
by (Aridarma, Mengko, and Soegijoko 2011). On the other
hand, the largest Information Technology(IT) companies
like Google, Apple, Microsoft, Amazon and Facebook has
already introduced their virtual personal assistant Google
Assistant, Siri, Cortana, Alexa and M. So, the biomedical in-
strument developer industries may collaborate with these IT
companies to integrate the conversational interactive voice
response interface and the artificial intelligence(AI) tech-
nologies provided by these virtual personal assistant, to im-
plement Virtual Personal Medical Assistant(VPMA).

Finally, networking will be an integral part of proposed
wearable devices to deliver high-efficiency and high-quality
health-care services to support the remote health monitor-
ing. Body Sensor Network (BSN) is presently a very popu-
lar research topic and extensive progresses have been made
in the past decades. (Yadav and Tripathi 2017) has proposed
adaptive clustering scheme for effective data communication
in health-care monitoring system. Self-adaptive data collec-
tion and fusion for health monitoring has beet proposed by
(Habib et al. 2016). On the other hand, event-driven mid-
dleware besed on smartphone has been proposed in (Seeger,
Laerhoven, and Buchmann 2015). Recently, scientists have
drawn significant research attention on introducing Inter-
net of Things (IoT) in the health-care system, which inte-
grates the Internet with remote monitoring smart sensors and
medical device. Many articles were published on IoT-based
applications for health-care system (Nguyen et al. 2017;
Span, Pascoli, and Iannaccone 2016; J and Shivashankar
2017). Security and reliability of the communication media
would be the major focus point in this regard. Several arti-
cles has been published, surveyed and proposed techniques
for securing the communication media for BSN (Naik and
Samundiswary 2016; Chukwunonyerem, Aibinu, and On-
wuka 2014).

3 Objectives
Basically, acquisition of health-related information by un-
obtrusive sensing and wearable technologies is considered
as a cornerstone in health informatics (Zheng et al. 2014).
Health informatics mainly deals with the acquisition, trans-
mission, processing, storage, retrieval, and use of different
types of health and biomedical information (Zhang and Poon
2010). The two main acquisition technologies of the health
attributes are sensing and imaging. But we are preferring
only the sensor technologies, specially the unobtrusive sens-
ing and wearable modules for continuous health monitor-
ing. In order to acquire health information continuously and
pervasively in daily living, sensors can be integrated with
garments or wearable accessories. The sensors can also be
organized as stick-on electronic tattoos. Moreover, for en-
abling long-term health monitoring, it can be printed onto
the human skin.

The main objective of unobtrusive health sensing is to
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Figure 1: System diagram of the proposed wearable smart device for health monitoring and medication

enable continuous monitoring of physical activities and be-
haviors, as well as physiological and biochemical parame-
ters during the patient’s daily living. The most commonly
measured vital signs include: Electrocardiography (ECG),
blood-glucose, heart rate, blood pressure (BP) and surface
body temperature. Different data acquisition modules, de-
scribed in Section 2, can provide real-time information and
facilitate timely remote intervention to acute events such as
high blood glucose, hypoglycemia, high blood pressure, car-
diovascular diseases, and cardiac arrhythmia, particularly in
rural and remote areas where expert treatment is not avail-
able. Therefore, considering all these health factors and re-
cent progress in health technologies, we are proposing to
conduct a research on designing and developing a compact
wearable device, which will integrate all the existing mod-
ules to monitor most commonly measured vital signs with-
out users initialization. It will also concentrate on sending
the acquired personalized bio-medical attributes’ records to
the health center in discrete and customizable time intervals
by the widely available Internet infrastructure, using cellular
or Wi-Fi wireless communication media.

The proposed device should also be capable of taking nec-
essary initiatives for emergency medication and treatment
in case of unpredictable situation and notifying the patient
about regular medication routine like a medical assistant ac-
cording to physician prescription. It may also notify the pre-
scribed physician about current health condition of the pa-
tient.

Miniaturization and unobtrusiveness should need to be
carefully considered so that the proposed device is comfort-
able for users. Further more, the device may also act as an in-
telligent agent terminal for patient, which will interact with
physician and pharmacy on behalf of the patient. Where the
physician may prescribe medicine to the patient based on
health informatics provided by the sensors of the proposed
device and then the agent may track the physician’s prescrip-
tion to place orders automatically to the pharmacy. After re-

ceiving orders, pharmacy may deliver the medicine to corre-
sponding patient and also notify the agent about orders sta-
tus. Then, the present stock of individual medicine, further
consultation requirement with the physician and new orders
to the pharmacy may also be tracked by the agent.

Figure 1 describes the conceptual system diagram of the
proposed wearable smart biomedical device. Here, the de-
vice will interchange information directly with the data
warehouse. Only the prescribed physicians and health cen-
ter can see the individual’s biomedical attributes from the
data warehouse. In case of life-threatening situation, the
proposed device will directly communicate with emergency
medical services automatically.

As we have discussed in Section 2 of this paper, a signifi-
cant progresses in developing required modules for the pro-
posed device have made in the past decades. Although most
of them are still in their prototype state, the proposed device
does not seems to be unrealistic. It should be required to
choose right modules for integration that will serve demand.
Further research would be conduct to refine those selected
modules for improving the accuracy, efficiency, unobtrusive-
ness and power consumption.

4 Significance

A significant portion of medical expenditure in the world
is spent on managing chronic disease in the hospital. Since
the average life expectancy of the people is increasing all
over the world (Wikipedia ), the demand for the hospitals,
aged care services, nurses, and doctors are also increasing.
The proposed device will be suitable for remote health mon-
itoring in such areas, which has a significant number of el-
derly citizens; since with the increase in the age of people
different chronic diseases and their symptoms are begin to
be observed in human body, such as diabetes, high blood
pressure, cardiovascular diseases, and cardiac arrhythmia.
Moreover, for elderly people, the automated smart monitor-
ing system can provide detailed information about the con-
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tinuous changes in their health conditions, which will help
the well-wishers keep their intensive observation. It will pro-
mote the healthy lifestyle. It can also detect health risk and
facilitate the implementation of preventive measures at an
earlier stage. In addition, examining the person’s health con-
dition from the everyday life is more effective than the clin-
ical setup.

Besides that, regular monitoring of the patient’s physical
condition will help the patient for follow-up discussion with
the doctor. It will also help to alert physician about the vital
changes in patient’s health condition and facilitate patient
self-assessment of chronic disease.

The physiological situation of a patient with chronic dis-
eases is most commonly managed by using vital signs mon-
itoring of health attributes; which includes asthma, diabetes,
hypoglycemia, high blood pressure, cardiovascular diseases
and cardiac arrhythmia. Monitoring these vital signs help the
patient and caretaker to coordinate treatment and medication
dosage (e.g. insulin in the case of diabetes, anti-hypertensive
medication in the case of high blood pressure).

Finally, it will reduce the risk of patient’s life, especially
those who live alone, since it will alert the specific authori-
ties automatically in the patient’s risky circumstances with-
out human interaction. It will also provide emergency medi-
cation and treatment service to the patient. As explained ear-
lier, the senior citizens are not sincere about their health con-
dition, it becomes difficult to monitor their health condition
regularly. And when they live alone in rural places, then it
becomes more difficult to provide emergency services, since
in some vital life-threatening situation, like hypoglycemia,
high blood pressure or heart diseases, the patients lost their
sense. And at that time they become unable to communi-
cate with the nearest health center or their well-wishers for
the emergency support by their self. Remote monitoring and
emergency medication may help us to deal with these vital
signs, which is particularly well suited to Africa, Australia
and Asia, which have significant of the population living in
rural and remote areas.

Moreover, continuous health-monitoring systems have
been shown to be effective in helping to manage chronic
disease, post-acute care, and monitoring the safety of the
aging people. Regular health-monitoring technologies can
help elderly people to slow the progression of chronic dis-
ease and can ensure continued recovery after being dis-
charged from an acute care setting. Unobtrusive and auto-
matic health monitoring technologies can also alert care-
givers and prompt intervention when a vulnerable old person
is injured or in harms way.

Beside that, the monitoring device will be useful for
rhythm monitoring to understand the cardiac role of unex-
plained symptoms. Furthermore, it would also support ar-
rhythmia medication therapy to monitor treatment effective-
ness.

The structured data acquired from the individual devices
would also be a key source for data-mining. The data re-
source can be used for clinical decision support systems. It
can be applied for the up-gradation of proposed device it-
self. The proposed device will be cost efficient because it
may achieve considerable cost savings in a number of as-

pects such as reducing visits to specialists. It avoids symp-
tom exacerbations that lead to hospitalizations, which re-
duces potentially preventable hospitalizations (PPHs), age
related PPHs, emergency room visits, and nursing home ad-
missions. It also keeps low-care residential patients in their
homes, which decreases the burden on health care profes-
sionals, patient transport costs, and hospitalizations.

5 Challenges

As discussed in Section 2 most of the proposed modules are
in prototype stage which cannot be applicable in real world
applications immediately. Considering as a biomedical in-
strument the proposed smart device should need to be highly
sophisticated and accurate, as well as be intelligent enough
to initiate emergency services in a vital condition. So, we
cannot proceed with those modules and methods, until they
are proven to be accurate and capable of dealing with dif-
ferent circumstances. Therefore, a vast study should be re-
quired to choose each individual module for monitoring the
health attributes and medication, considering their availabil-
ity, accuracy, performance, miniaturization, unobtrusiveness
and data-communication interface.

On the other hand, energy efficiency will also be a cru-
cial element for the proposed wearable device since it will
directly affects the design and usability of the device, espe-
cially for long-term monitoring applications. This motivate
us to consider the power consumption as a vital indicator
of performance evaluation to select the modules for the pro-
posed device.

Another challenging task will be the development of the
embedded software for the device. It should need to be in-
telligent and perfect to take an emergency decision in a life-
threatening health state without communicating with any
Internet-based knowledge. The software will directly deal
with automatic initiation of each individual sensing compo-
nents for new reading with customizable time interval. It will
also deal with post processing of sensed data and local mem-
ory management system. In addition, it will manage regular
data exchange between the device and the data warehouses
and will also manage communication with the emergency
service provider when needed. Finally, the software should
be focused on the optimization of applications that will not
only improve the performance of the proposed device but
also ensure the best utilization of hardware resources and
power.

As a virtual personal medical assistant, the device should
be interactive to the users by a friendly interface. Some
virtual personal assistant applications, such as Apple Siri,
Google Assistant, Microsoft Cortana, can make the device
more interesting to the users. For example, the proposed
device may remind the patient verbally for regular routine
medication. It may also warn the patient after detecting any
dangerous sign in the sensed biomedical attributes.

Finally, as a wearable biomedical instrument software,
it should be not only focus on the improvement of perfor-
mance, but also ensure the maximal utilization of hardware
resources and power consumption. In this context, the devel-
opment of proposed device requires collaboration between
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industries and researchers, who are developing the technolo-
gies for the biomedical instrument.

6 Conclusion

In this paper, an overview of hybrid health monitoring and
medication platforms in wearable form is presented. In Sec-
tion 2, we have shown that the underlying technology pave
the way for implementation of proposed device. We have
also shown the significance and the major challenges for
implementing such devices. Since the researchers and in-
dustries are continuously inventing and producing new tech-
nologies and gadgets for human welfare, we can say that in
near future we may observe this kind of devices. The future
development of the proposed device will greatly rely on the
advances in a number of different areas such as materials,
sensing, energy efficiency, electronics and information tech-
nologies for data acquisition, transmission and analysis due
to the multidisciplinary nature of this research topic. The
proposed device will be cost-effective because of it’s high
volume of demands. So, we propose collaboration between
industries, researchers and developers to share their tech-
nologies and innovative ideas to joint together for develop-
ing such kind of devices with health monitoring and medica-
tion capabilities. It will make the architecture of these device
unique and make the platform open to all industries for pro-
duction of such devices. It is also required to enforce iden-
tical data structure for information interchange. We believe
that with the future implementation of the proposed device
will advance the medical services and lead to fundamental
changes in how the health-care service will be delivered in
the future.
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Abstract 
This paper presents a conceptual framework for understand-
ing the importance and relevance of human cognitive biases 
in development of more effective and seamless human-AI 
interactivity. A categorization model is proposed for distin-
guishing two general types of human biases: 1) biases that 
are primarily determined by neurobiological hardwiring, 
and 2) those that are determined and transmitted across gen-
erations by cultural and symbolic structures of thought and 
affect. It will then examine the meaning and implications of 
the suggested types of biases, specifically in relation to hu-
man-AI interaction. 

     
One of the most intriguing aspects of writing this pa-
per for me has been the wonderfully paradoxical fact 
that it has compelled me to look simultaneously back 
and forward in time: back to a paper I wrote long ago 
in defense of the notion of “cultural logic”; and for-
ward, of course, towards the concept of artificially in-
telligent agents demonstrating a degree of subjectivi-
ty.  It would perhaps make good logical sense for me 
to start with the earlier place and then move to the one 
ahead.  

 Reasoning, I had argued in an earlier discussion of 
cultural logic (Rahimi, 2002), is a process that occurs 
within the space of meanings defined by linguistic, 
social, and cultural environments; and logic, or the 
process of “establishing necessary connections be-
tween these meanings”, as the great theorist of struc-
turalism, Levi Strauss, once put it (Levi Strauss, 1966, 
p. 35), is always already defined by and bound within 
these linguistic, social and cultural parameters.  Con-
sider the following excerpt, which is drawn from an 
interview reported by Michael Cole, a psychologist 
who studied the relationship between culture, intelli-
gence and logical reasoning. This is how a conversa-
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tion between the interviewer and a Kpelle tribal elder 
in Liberia unfolded (Cole & Scribner 1974, p. 162): 

 
I:   […] spider and black deer always eat together.  Spider 

is eating.  Is black deer eating? 
E:  Were they in the bush? 
I:   Yes. 
E:   Were they eating together? 
I:   Spider and black deer always eat together.  Spider is 

eating.  Is black deer eating? 
E:  But I was not there.  How can I answer such a ques-

tion? 
I:   Can’t you answer it? Even if you weren’t there, you 

can answer it [repeats the question]. 
E:  Oh, oh, black deer is eating. 
I:  Why? 
E:  The reason is that black deer always walks about all 

day eating leaves in the bush. Then he rests for a 
while and gets up again to eat. 

 
 I should mention that this same excerpt is used in Cogni-
tive Psychology textbooks to demonstrate what we call 
“belief bias,” where incorrect conclusions are assumed to 
be valid simply because they are consistent with personal 
beliefs (see e.g. Kellogg, 2016, p. 321).  I will not enter a 
discussion of the specific cognitive processes involved 
here, but I mentioned this example primarily as an instance 
of the ways in which culture, cultural norms and culture-
specific models of interpreting events and the environment 
directly influence reasoning, giving rise to what we can 
call a “cultural logic” various aspects of which may or may 
not coincide with the model of reasoning employed in a 
different culture.   To quote Cole himself, “the notion of 
culture-free intelligence is a contradiction in terms” (Cole, 
1999, p. 645).   
 Before coming back to make more sense of this brief 
introduction, let us examine the specific sense in which 
cognitive biases are of interest to us here, and the implica-
tions of that for thinking about biases in relation to AI.   
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 It is a truism of the day to speak of big data, deep learn-
ing and artificial intelligence as parts and parcels of the 
same assemblage.  As clearly as deep learning and hence 
AI are currently dependent on big data, however, there is 
no good reason to expect such dependency to be perma-
nent.  Intelligent machine’s dependence on man-made sets 
of data, no matter how extensive or how intricate those sets 
might become, is perhaps one of the last obstacles on its 
way to achieving fully integrated general AI.  I am not an 
AI expert, but even from where I stand as a social scientist, 
in the imaginable ideal future of artificial intelligence the 
machine will be able to connect, interact with, collect, and 
process ‘real world’ information without the need for hu-
man intermediation. Given this distinction, it is possible, 
perhaps necessary, to consider two paradigmatically dis-
tinct fields of contemplation on the questions of cognitive 
processes, specifically cognitive biases, in relation to AI.  
The first would concern the long-term developmental 
framework of artificial intelligence and artificial subjectivi-
ty, and the second would concern current and near-future 
relational framework of human-AI interaction.   
 Whereas in the context of the long-term developmental 
trajectory of artificial intelligence the main question would 
concern the “subjectivity” of artificially intelligent agents 
as such, the primary concern of the shorter-term human-AI 
relation, which defines the scope of the current paper, 
should be human subjectivity, and the ability of AI to serve 
and interact with human subjects in a fashion most desired 
by and beneficial to the latter.   
 In order to briefly consider the point of view in which 
cognitive biases are understood as a fundamental point of 
distinction between human subjectivity and artificial intel-
ligence, let us start with a basic distinction between the 
“thinking” and “decision making” processes in the two. Let 
us consider the simple fact that, while AI is programmed to 
pursue a line of rational thinking fed with specific sets of 
data and driven by specific algorithms to fulfill specific 
objectives, humans’ reality consists of formative real-life 
uncertainties and is driven by the mechanics of cognitive 
heuristics (biases) and emotional forces (desires).  Indeed 
these two distinctly implicit and distinctly human forces 
are both defined in contradistinction to the basic notion of 
rationality, and research tells us, both of which are highly 
informed by environmental, specifically social and cultural 
parameters.  As this audience knows better than most, hu-
man cognitive processes, specifically cognitive biases 
which serve as the disciplinary hallmark of Behavioral 
Economics, are gradually emerging as significant differen-
tiators between human and artificial intelligence.  They are 
typically introduced in precisely the frame that we are con-
sidering here, namely the distinction between the natural 
and embodied workings of homo sapiens’ reasoning and 
decision making processes, versus the “machine like” rea-
soning paths and decision making steps taken by homo 

economicus (Thaler, 2000), which represents a conceptual, 
abstracted and disembodied entity.   
 Foregoing once again a vast and vastly tempting discus-
sions of behavioral economics and the characteristics that 
set homo sapiens apart from homo economicus, I would 
like to focus here on cognitive biases as a phenomenologi-
cal category, specifically in its relevance to thinking about 
AI.   As you know, a long list of human psychological pro-
cesses have been generally grouped by cognitive scientists, 
and hence within the language of Behavioral Economics, 
under the basic descriptor of “biases.”  However, almost all 
common lists of cognitive biases in fact contain a range of 
different biases that we need to conceptualize in a more 
specific way, if we are to make more precise use of them 
beyond the basic sense that ‘biases are processes that warp 
people’s perceptions and hence affect their decision mak-
ing.’  This fact has been driven home for me especially 
strongly in the context of market related social and psycho-
logical research, where the focus is often on development 
and design of appropriate, specific, and effective strategic 
interventions (aka nudges.  See Thaler & Sundstein, 2008). 
 Generally speaking, the so-called “cognitive biases” on 
most given lists can be understood as occupying different 
places on a bi-polar spectrum that ranges from neurobio-
logical processes to symbolic processes.  The two poles of 
this scale are therefore populated by what we can call neu-
ro-perceptual biases on one end and socio-cultural biases 
on the other.  And somewhere between these two poles we 
can also identify primarily cognitive or primarily emotive 
biases, though this latter distinction will have to remain 
primarily conceptual, since in reality the cognitive and the 
emotive are often too intricately entangled to comfortably 
tease apart.  We can think for instance of a group of biases 
that are identified primarily with cognitive processes such 
as decision paralysis, metaphorical thinking, or dissonance 
reduction bias; versus those associated strongly by emo-
tional forces, such as selective attention, ostrich effect, or 
own-group bias.  It is important to keep in mind, however, 
that there is a great degree of melding and overlap between 
these two types, since in reality most biases are driven in 
varying proportions by both cognitive and emotional fac-
tors.  Let us pause briefly to consider neuro-perceptual and 
socio-cultural biases, before moving on to examine the 
significance of such classification of biases. 
 Neuro-perceptual biases can be understood as a group of 
biases that originate from the interaction of our neurologi-
cal system and the sensory inputs, such as sight, touch, 
smell, taste, or hearing.  These biases function as lenses 
that impact our direct impressions of the environment, 
even before such impressions have been cognitively inter-
preted or made symbolic or linguistic sense of.  Basic visu-
al or auditory biases belong to this group.  Think, for in-
stance, of studies that have uncovered biases in visual and 
auditory localizations: people are biased towards the center 
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when localizing visual stimuli, and biased towards the pe-
riphery when localizing auditory stimuli (Odegaard et al., 
2015).  Our sensory perception of the world around us is in 
fact biased by an interaction of neurological processes and 
prior expectations, rather than directly reflecting the actual 
qualities of our environment. As early as the 19th century, 
Helmholtz (1867) used the term “unconscious inference” 
in describing the process through which sensory data is 
mixed with prior knowledge and existing expectations to 
create a perception of the environment.  More recently, 
Patten et al. (2017) investigated biases in the visual pro-
cessing of spatial orientation and they demonstrate how 
prior expectations and current sensory information interact 
to generate inescapable biases in visual perception. 
 Socio-cultural biases, on the other hand, are rooted in 
culturally endorsed patterns of thought and interpretation, 
including such phenomena as cultural logic, and they lead 
to culturally specific emotional and cognitive modes of 
sense making and symbolic interpretation of objects, 
events or actions.  A growing body of research is showing 
us that culturally-driven cognitive and emotive biases play 
as much an impact on individual decision making as do 
neurologically-driven biases.  Researchers such as Miamo-
to (2002, 2013) or Kitayama and Park (2016) have high-
lighted the presence of clear links between local cultural 
patterns of thought and prominence of certain types of 
cognitive biases over others.  For instance, research has 
repeatedly demonstrated significant cross-cultural differ-
ences in presence of dispositional bias (aka the fundamen-
tal attribution error), which is the idea that in interpreting 
and judging other people’s behavior, we tend to assign a 
heavy weight to internal (dispositional) factors such as 
their character and their intention, rather than circumstan-
tial causes of the behavior, while we tend to do the reverse 
when judging our own (Morris and Peng, 1994; Chua et 
al., 2005; Kitayama et al., 2006; Kitayama et al., 2009; 
Choi et al., 1999; Miyamoto and Kitayama, 2002). In addi-
tion to patterns of thought, culturally endorsed social bias-
es also contribute to formation of individual biases.  These 
are cultural biases that lead to interpreting and judging 
phenomena by standards that are inherent to one's own 
culture.  Consider for example the case of a teacher who 
may have a favorite student, driven by the infamous own-
group favoritism bias. The bias can lead to teacher’s ignor-
ing that student's sub-optimal performance, while s/he 
might not notice the overachievement of another student 
whom s/he perceives less favorably due to same culturally 
endorsed biases.  The following example, which I am quot-
ing from a clinician, offers a good example of cultural bias:  
 I’m treating a Native American patient. When I ask 
questions, she consistently avoids meeting my eyes. I in-
terpret this as evasiveness, shyness, and lack of assertive-
ness.  As a result, I arrive at the incorrect interpretation that 
she is currently being abused because she’s acting so sub-

missive. In reality, according to her cultural blueprints, 
averting her eyes is a sign of respect, which she is trying to 
afford me as her physician. 
 As mentioned earlier, the “socio-cultural” aspects of 
such biases can be traced back to a number of factors, such 
as cultural logic, local semiotic and linguistic processes, 
local cultural norms and behavioral blueprints, and culture-
specific emotional patterns, which has also been called 
‘structures of feeling’ (Sharma & Tygstrup, 2015; Wil-
liams, 1977). Earlier I briefly mentioned the notion of cul-
tural logic.  Metaphors, which are the bread-and-butter of 
human communication, are developed and used in different 
ways and to different extents across cultures; leading to 
significant divergences in modalities of cognitive and 
symbolic processing of information, as well as behavioral 
and decision making patterns across cultures.  A powerful 
body of research has driven the point home that metaphors 
represent local cultural conceptual systems of thinking, and 
can be studied as such (e.g. Lakoff & Johnson, 1980; I-
wenSu, 2002; Zhou, 2009).  In my own work on culture 
and subjectivity I have provided extensive analyses of cul-
ture-specific patterns of metaphoric referencing that govern 
patterns of thought, emotion and decision making (e.g. 
Rahimi, 2015, 2016).  Think of the color red, for instance, 
and the divergent implications it may have across cultures 
such as in Turkey (where red is the primary color of the 
flag and tied to strong nationalist sentiments); the United 
States, the USSR, or China.  
 Culture regulates, structures and provides guidelines and 
expectations for understanding, experiencing, and express-
ing emotions. In addition to distinct cross-cultural differ-
ences in context-dependent expression and interpretation of 
emotions, cultural differences exist also in evaluation and 
social consequences, of emotions (Jenkins & Karno, 1992; 
Scherer, 2000). As demonstrated by psychological anthro-
pologists, Jean Briggs, in her famous book Never in Anger 
(Briggs, 1970), the Utku Eskimo culture enforced strict 
limits on feeling and expressing anger, so that anger was 
rarely communicated, and in the rare occasions where it 
did occur, it was reacted to by such strict measures as os-
tracizing the individual.  Psychologists Ekman and Friesen 
(1975) addressed the ways culture’s "unwritten codes" 
become internalized by individuals growing into a society, 
and how the internalized codes continue to structure the 
ways in which emotions are felt and expressed by those 
individuals. 
 To recap the above in terms relevant to the question of 
human-AI relations, two main groups of biases can be dis-
tinguished.  One group includes biases that are embedded 
in and transmitted across human generations via the sym-
bolic structures that underlie collective systems of meaning 
and power.  These are biases that I have grouped under 
socio-cultural biases.  These are embedded implicitly in 
such processes as local systems of meaning, local meta-
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phoric patterns and what we term ‘cultural logic.’  A se-
cond group of biases, however, may be identified as those 
that are based on non-algorithmic shortcuts known as cog-
nitive heuristics.  While the first set of biases are embed-
ded and transmitted through the collective level of struc-
tures and relations of meaning, the second is embedded 
within the individual/private realm of cognitive mecha-
nisms and psychological dynamics, and primarily driven 
through universal neurological features of our species.   
 Insofar as the question of AI-human interactivity is con-
cerned, the two group of biases may call for different ap-
proaches and concerns.  The socio-cultural group of biases, 
for instance, may consist primarily of biases that can be 
detected and, depending on specific objective, either pre-
vented or leveraged, through systematic examination of 
data collection and management, as well as in program-
ming of our learning and intelligence agents.  Anybody 
following the AI news has no doubt noticed the recent out-
pouring of articles and research on such topics as “racist 
AI” or “sexist AI”.  The same biases that are “transmitted” 
implicitly across generations within a given culture 
through such media as linguistic and semiotic processes are 
obviously bound to be “transmitted” also to AI agents 
through the vast amount of data that is created within the 
same social and cultural systems of meaning and points of 
reference.  In order to better understand, and therefore de-
tect and either prevent or perhaps leverage such biases, we 
will need to turn our focus on the “data” as such: we will 
need to try rigorously to identify semiotic, logical, and 
emotive patterns that function as the warp and weft of our 
social and cultural fabric and our collective systems of 
meaning. 
 With the second group of biases, those driven primarily 
by neuro-cognitive processes and which function at the 
level of the individual, however, we may notice the need 
for an altogether different approach.  This set of biases will 
not be transmitted to our machines through terabytes of 
data, and they will likely remain to represent a significant 
gap between human and machine cognitive processes.  
This is a problem solving which may in fact require an 
unusual step of intentionally introducing cognitive biases 
that would warp the machine’s cognition or solutions and 
decisions in a specific direction, in order to either make the 
human-AI interactions more coherent and “natural”; or 
make AI more powerful in understanding and anticipating 
“human” patterns of thought, emotion or behavior and de-
cision making.  We may, in other words, have no option 
but to intentionally incorporate or represent cognitive bias-
es into the workings of our otherwise un-biased intelligent 
agents.  In addition to rendering intelligent agents more 
compatible with human cognitive and emotional needs and 
nuances, such cognitive warp filters may in fact be neces-
sary in the context of research, specifically health related 
research, where we would need AI to identify such deeply 

human, and deeply biased behaviors as treatment adher-
ence (or lack thereof), and the range of cognitive biases 
associated with it. 
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Abstract

This paper focuses on a sleep cycle, and improves the prob-
lem which an estimation accuracy of Real-Time Sleep Stage
Estimation Method(RSSE) when it estimates a sleep stage on
real time. Concretely, the proposed method re-estimates the
sleep stage immediately after first sleep cycle since going to
bed for the problem which decreases the correct rate of the
sleep stage estimated by RSSE as time passes since going to
bed. From the human subject experiments, the following im-
plications have been revealed: (1) the correct rate improved
by re-estimation in 8 cases out of 9 cases. (2) when the sleep
cycle is long, it is possible to calculate the sleep cycle from
the same subject’s past sleeping information and if it is used,
the estimation accuracy is improved for all cases.

Introduction

Currently, it is said that 20% of people are sleeping disorder
patients in Japan, and it is considered to be a large propor-
tion. Sleep disorders are classified finely according to the
symptoms, and there are many symptoms from mild such
as poor sleep to serious such as narcolepsy. As a cause of
the increase in the number of patients with sleep disorders,
modern social life can be considered. For example, the op-
portunity to experience jet lag is increasing due to the devel-
opment of traveling means, and sleeping time is reduced by
working time system regardless day and night such as night
shift. Also, the quality of sleep reduces due to mental dam-
age due to stress. In order to treat these sleep disorders, it
is necessary to observe the sleep stage which is degree of
sleep state in addition to the effect of medication. Even in
terms of prevention against sleeping disorders, that is, main-
taining the quality of sleep with a high level, the importance
of recording daily sleep states is high. The deterioration of
the quality of sleep also exists as a sign of diseases such
as mental illness, so to maintain human health care the ob-
servation of sleep state is importance. In addition, there is a
great correlation between the quality of sleep and the quality
of work, so a bad sleep is feared that economic losses such
as traffic accidents. Furthermore, in recent years, there is a
mindfulness as an action to raise the productivity of daytime
activities, it is thought that it can raise higher productivity
by controlling sleeping.

Copyright c© 2018, Association for the Advancement of Artificial
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How do you record the sleep stage? The Rechtschaffen
& Kales method (R&K method) exists as a method most
used as a method of acquiring the sleep state. This method
acquires the electroencephalogram (EEG), the electromyo-
gram (EMG), and the electrooculogram (EOG) data by at-
taching multiple electrodes to the subject’s head and face.
From these acquired data, specialist doctors classify sleep-
ing state into six states or four states. The thing obtained
in this way is the sleep stage and it makes it possible to
know objectively the depth of sleep. Generally, it is said
that the sleep stage acquired by the R&K method shows the
sleep state with 80% accuracy. Therefore, the specialist doc-
tor does not diagnose and classify by one self, but multi-
ple doctors diagnose and classify for maintaining high accu-
racy. However, the following two problems exist in the R&K
method: (1) it takes time to acquire the sleep stage because it
is necessary to classify it by diagnosis of a specialist doctor,
(2) this method requires the connection of many devices (in-
cluding many electrodes) to the human body, increasing the
stress on the human subjects. Because of these problems, the
R&K method is not a practical method in terms of recording
the daily sleep state.
In order to solve the problem of (1), there is a neural net-
work which uses a learn data as obtained from the elec-
trodes and uses a teacher data as the sleep stage diagnosed
by specialist doctor. However, this method purpose is sup-
port to inexperienced doctor of the sleep diagnosis, not for
sleep state recording. On the other hand, solving the prob-
lem (2) is indispensable for recording to sleep state. In order
to solve the problem of (2), a method that does not require
attachment of electrodes, diagnosis and classification with-
out specialist doctors for the same sleep stage obtained by
the R&K method is being studied. Concretely, Heart rate,
body movement, respiration, and body temperature exist as
biological data that can be acquired instead of EEG, EMG,
and EOG, which is data obtained by attaching electrodes.
Watanabe acquired heart rate, body movement, and respira-
tion by analyzing the frequency of data obtained from a pres-
sure sensor placed under the bed. In addition, there are meth-
ods using head movement and thermography during sleep-
ing, in this thesis from the viewpoint of ease of introduction
of instruments, biological data (heart rate, body movement)
obtained from a pressure sensor is used. Many researches
have been done on methods for estimating the sleep stage
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without using expert knowledge from acquired biological
data. Watanabe estimate the sleep stage by extracting the
medium frequency component from the obtained heartrate
and discretizing it. This uses knowledge that the wave shape
of the medium frequency component of the heartrate cor-
relates with the sleep stage. Based on the findings used by
Watanabe, Harada determined frequency bands related to the
sleep stage beforehand and used trigonometric function ap-
proximation for them so that the sleep stage could be esti-
mated in real time. In this study, we are looking for an ac-
tion that leads to good sleep during sleep (for example, shed
sound leading to sleep) to improve future insomnia and pre-
vent it, so we will focus on the estimation Harada’s method.
Harada’s estimation method has a problem that the coinci-
dence ratio (hereinafter referred to as ”accuracy rate”) with
the sleep stage derived by the R&K method after sleep de-
teriorates. Therefore, this research address this problem by
using the sleep cycle. Specifically, since the sleep cycle that
appears for the first time after going to bed is different from
other sleep cycles among one sleep (indicating from sleep-
ing to getting up), it is estimated again at the end of the first
sleep period. As the judgment of the end of the sleep cy-
cle, REM sleep estimated by Harada’s method is used. The
effect of this estimation method will be clarified by subject
experiment.
The rest of this paper is organized as follows. First, the pre-
vious work related to the sleep stage estimation is introduced
in Section 2. Section 3 describes the proposed method that
estimates the sleep stage again based on the sleep cycle. Sec-
tion 4 describes the experiments conducted on the subjects
and presents the obtained results. Finally, the conclusions of
this paper are presented in the final section.

Previous Method

Rechtschaffen & Kales Method

The Rechtschaffen and Kales method: R&K method is the
gold standard method to determine the sleep stage and is
treated generally for a treatment of sleep disorders. Con-
cretely, the medical experts determine the sleep state which
is classified into the six stages from a viewpoint of depth
of sleep estimated by the data of electroencephalogram
(EEG), the electromyogram (EMG), and the electrooculog-
raphy (EOG). Since the accuracy of the sleep stage in this
method is enough for a medical purpose, this method has
been widely employed as the global standard method. But
this method requires to connect many devices (including
many electrodes and codes) to human body, which increases
the stress of human subjects. Since this reason, this method
is not suitable as determining the daily sleep stage for health
care.

Real-Time Sleep Stage Estimation Method

In order to estimate the sleep stage from heartrate in real-
time, Harada proposed the sleep stage estimation method:
RSSE using trigonometric function approximation. Figure
1 shows the overall flow of the RSSE. This method starts
to approximate the heartrate as the trigonometric function

Figure 1: Overall flow of RSSE

and estimates the sleep stage from the intermediate fre-
quency range of the approximate heartrate. The approximate
heartrate is modeled as follows.

h(t) = c+

N∑

n=1

(ancos(
2πt

L/n
) + bnsin(

2πt

L/n
)) (1)

In this equation, (h(t) denotes the estimated heartrate at time
t, L denotes the maximum period of the intermediate fre-
quency component(in this method L uses the value 214), N
denotes the number of composed trigonometric functions(in
this method N uses the value 14). The model parameters an,
bn and c are calculated by the maximum likelihood estima-
tion method that minimizes the following likelihood func-
tion.

minJ =
1

T

∑

t=1

T (HR(t)−h(t))2+
λ

N

N∑

n=1

(a2n+b2n) (2)

RSSE is able to estimate the sleep stage without connecting
biometric sensor and expert knowledge. But RSSE has the
problem which cannot accurately estimate the sleep stage
when a fixed time has passed since going to bed.

Proposed Method

We expect that the problem of RSSE is change of sleep cy-
cles. Sleep cycles are the period from REM sleep to REM
sleep. In Figure 2, this sleep has 4 sleep cycles. The front
3 cycles have 60 minutes cycle, but the back cycle has 80
minutes cycle. This difference influence the accuracy rate
of RSSE. Therefore, this study proposes the Re-Estimation
method which restart RSSE at the point where changing the
sleep cycles. In particular, RSSE is restarted before changing
sleep cycle, in Figure 2, the restarted point is end of the 60
minutes cycles. In the proposed method, the change in sleep
cycle is judged by focusing on REM sleep. Because the sleep
cycle refers to the interval from REM sleep to REM sleep,
the appearance of REM sleep represents a change in sleep
cycle. Among them, since sleep first sleep cycle has quite
different nature in other sleep cycle, the proposed method
re-estimates when REM sleep appears for the first time in
sleep stage estimation by RSSE. However, since WAKE and
REM sleep are not stable immediately after going to bed,
the proposed method is supposed to re-estimate when the
REM appears for the first time after 45 minutes or more has
passed since going to bed. This is due to the fact that the
time of sleep cycle is about 60 to 120 minutes if there are
individual differences.
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Figure 2: Approach to change sleep cycle

Table 1: Details of subjects

age Sex
Subject A 20 Male
Subject B 40 Male
Subject C 60 Female

Experiment

To investigate the effectiveness of the Re-Estimation
method, we conducted the human subject experiment as the
field experiment. In particular, we compared the RSSE(All
Time) as the previous method and RSSE(Re-Estimation)
which re-estimated at the position which is changed the
sleep cycle.

Setup

To investigate the effectiveness of the proposed method, we
conducted human subject experiment. Table 1 shows the de-
tails of the three healthy subjects with no sleeping disorders.
The sleep for the three days of each subject was measured.
Two types of measuring instruments were used for mea-
suring sleep in this experiment. One is AlicePDx in Fig.-
which is a kind of the electroencephalograph used to mea-
sure the subjects electroencephalogram(EEG), electromyo-
gram(EMG) and electrooculogram(EOG), the other is Em-
fit in Fig.- which is a non-connect biosensor used to mea-
sure the subjects heartrate, body movement and respiration.
In this experiment, the subject attached some electrodes for
measuring by AlicePDx, and slept on the bed where Em-
fit was lain. The data measured by AlicePDx (EEG, EMG
and EOG) is used to calculate the sleep stage by the R&K
method, whereas the data measured by Emfit (heartrate,
body movement and respiration) is used to estimate the sleep
stage by the real-time sleep stage estimation method. In the
R&K method, medical specialists determine the sleep stage
every second of sleep, and in the real-time sleep stage esti-
mation, the sleep stage is estimated using data measured at
every second by Emfit. On the day of the experiment, we
asked subjects to refrain from excessive exercise and from
drinking alcohol. In addition, there were no external factors
that prevent sleeping such as alarms, and subjects were able
to fall asleep and get up whenever they want. The parame-

Table 2: Parameters in RSSE
Parameter Value
L 214 ≈ 4.5h
λ 1
tint 60s=1min
N 13

ters used for the estimation of the sleep stage in Real-time
sleep stage estimation method are listed in Table 2.

Evaluation Criteria

The sleep stage which is estimated by the re-estimation
method compared with the sleep stage is estimated by the
R&K method. Because the R&K method is the gold stan-
dard method all over the world, the sleep stage estimated
by this method is treat correct. In this experiment, the sleep
stage which is derived by re-estimation method compares
the correct sleep stage. In comparison, REM sleep 1 and
REM sleep 2, REM sleep 3 and REM sleep 4 are combined,
in other word, this experiment evaluates in 4 stages instead
of 6 stages. Then the purpose of this study is to increase
the correct rate of sleep stage estimation when sleep cycle
is changed. Calculation of the accuracy rate is calculated
from the time when 30 minutes have elapsed from the re-
estimation time to the time to get up. This is because RSSE
has a problem that adaptation occurs immediately after esti-
mation and estimate worse accuracy. In order to prevent this,
it is suggested to use the past sleep data, but since there is no
clear means yet. So this experiment excluded the time from
calcurating the accuracy rate.

Result

Table 3: Experiment Sleep Data
Subject Day Bedtime Wake-up Re-Estimation

1 day 23:18:40 06:29:08 03:05:00
SubjectA 2 day 02:18:19 07:02:17 03:23:00

3 day 01:28:58 09:08:46 05:08:00
1 day 00:07:56 04:57:36 02:26:00

SubjectB 2 day 01:50:07 05:47:43 02:33:00
3 day 01:30:09 05:42:25 02:16:00
1 day 22:26:34 06:43:46 02:46:00

SubjectC 2 day 00:20:44 06:10:32 04:30:00
3 day 22:06:46 06:02:42 02:27:00

Table 3 shows sleep information of Subjects(Bedtime,
wakeup time, and re-estimation time) used in actual experi-
ments. Figure 3 is the result of this experiment. In this figure,
the vertical axes shows accuracy rate%, the horizontal axes
shows sleep data of three subjects. The horizontal stripes
pattern shows RSSE(All Time) result, the fill point pattern
shows RSSE(Re-Estimation). In this figure, the correct rate
of RSSE(Re-Estimation) results except for subjectB
day3 are higher than the correct rate of RSSE(All Time). The
maximum value of the improvement ratio of the correct rate
is 15% at subjectA Day1.
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Figure 3: Experiment result

Figure 4: Estimated result after improvement

In addition, Figure 4 shows the sleep stage diagrams of
each subject in four stages. The vertical axis shows the sleep
stage (Wake, REM, Shallow REM, Deep REM), and the
horizontal axis shows sleeping time. The sleep stage map
for one day is one set with two figures, the upper shows
R&K method and RSSE (All-Time), the lower shows R&K
method and RSSE (Re-Estimation). The solid lines in the
figure show the sleep stage diagram of the R&K method re-
spectively, the gray dotted line is RSSE (All-Time), and the
gray double-dotted line is RSSE (Re-Estimation). In each
figure, the place where the background is gray shows the
part used for calculating the coincidence rate. From the fig-
ure, as in Day 2 of subject B, the accuracy of sleep cycles
was properly captured by re-estimating the first sleep cycle
in some cases, but as in Day 1 of subject C, the time to re-
estimation was long There are cases in which it takes time.
In the case of the latter case, even though the accuracy is
improved, it may be thought that the first sleep cycle to be
captured has not been captured inherently.

Discussion

When the RSSE REM sleep judgment does not appear prop-
erly, like Day1 of SubjectA, Day3 of SubjectB,and Day1 of
SubjectC, a problem arises in which re-estimation does not
occur for a long time. This is because the REM judgment of
RSSE will not be exactly the same as the R&K method. In
order to solve this problem, only when the REM sleep does
not appear for a certain period of time, the proposed method
re-estimated based on the time of the sleep cycle inherent
to the individual. Specifically, we use the time of the sleep
cycle that first appeared by looking at the past sleep. In this
experiment, the sleep cycle time of subject A was 70 min-
utes, subject B was 70 minutes, subject C was 100 minutes.

If the REM sleep does not appear even after this time, the
result of performing the re-estimation is shown in Fig4.

Conclusion

This paper focused on the sleep stage estimation method
based on the sleep cycle change, and improved its estimation
accuracy by re-estimation. More specifically, it is a method
of capturing REM sleep first appeared in RSSE as a change
in sleep cycle and re-estimating RSSE again. Using the hu-
man subject experiments, the following conclusions have
been revealed: (1) the correct rate improved by re-estimation
in 8 cases out of 9 cases. (2) when the sleep cycle is long, it is
possible to calculate the sleep cycle from the same subject’s
past sleeping information and if it is used, the estimation ac-
curacy is improved for all cases.

It should be noted here that the results have been ob-
tained from only three subjects, which means that further
careful qualifications and justifications, such as an increase
of the number of subjects, are necessary to generalize our
results. In addition to this important direction, the follow-
ing issues must be addressed in the near future: (1) since
sleep is affected by internal and external factors such as the
subject’s health condition, previous night’s sleep conditions,
daytime activities, weekly variation, and seasonal effects,
these should be addressed in the next stage of this research;
(2) since the accuracy of our proposed method differs with
the estimation time from 50% to 90%, we should improve
our method for more stable and accurate sleep stage esti-
mation by addressing,(i) the use of the body movement and
respiration data for the estimation of the sleep stage.
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Figure 5: Sleep Stage of SubjectA

Figure 6: Sleep Stage of SubjectB

Figure 7: Sleep Stage of SubjectC
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Abstract 
This paper focuses on care support knowledge (especially 
focuses on the sleep related knowledge) and tackles its cog-
nitive bias and humanity aspects from machine learning per-
spective through discussion of whether machine learning 
can correct commonly accepted knowledge and provide un-
derstandable knowledge in care support domain. For this 
purpose, this paper starts by introducing our data mining 
method (based on association rule learning) that can provide 
only necessary number of understandable knowledge with-
out probabilities even if its accuracy slightly becomes 
worse, and shows its effectiveness in care plans support sys-
tems for aged persons as one of healthcare systems. The ex-
perimental result indicates that (1) our method can extract a 
few simple knowledge as understandable knowledge that 
clarifies what kinds of activities (e.g., rehabilitation, bath-
ing) in care house contribute to having a deep sleep, but (2) 
the apriori algorithm as one of major association rule learn-
ing methods is hard to provide such knowledge because it 
needs calculate all combinations of activities executed by 
aged persons. 

1. Introduction  
Most of commonly accepted healthcare-related knowledge 
are subjective or exaggerated from a small number of evi-
dence. An example includes the knowledge that “the eight 
hours are needed for good sleep.” This knowledge is 
somewhat correct and wrong because the deepness of sleep 
is more important than the length of sleep from the view-
point of good sleep. This kind of knowledge tends to be 
commonly accepted because of an effect of the focusing 
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illusion (Kahneman 2006) as one of cognitive bias 
(Kahneman 1982, Gilovich, 2002, Haselton 2005) that 
occurs when people place too much importance on one 
aspect of an event. In detail, the focusing illusion is caused 
by a wrong impression due to a strong focus of a specific 
aspect of an event (e.g., the length of sleep) as the expected 
outcome (e.g., good sleep), which may derive the wrong 
outcome (e.g., better sleep is derived by a longer sleep). 
Such an expected but wrong outcome is called as illusion 
in the context of the focusing illusion. For more its under-
standing, let me show the following typical question: “Do 
people become happier when they were richer?” This ques-
tion focuses on an amount of money as the only evaluation 
criterion of happiness. Needless to say, however, our hap-
piness is not only determined by an amount of money but 
also by other evaluation criteria such as good wellness, and 
good relationship of family.  
 To overcome such cognitive bias, machine learning 
(Mitchell 1997) has a great potential of correcting com-
monly accepted knowledge because it can provide the dif-
ferent knowledge extracted in a rational manner. In par-
ticular, big healthcare data recently becomes personal, 
which enables machine learning to extract the personalized 
knowledge from such data. This promotes us to place an 
importance of the personalized knowledge in comparison 
with the commonly accepted knowledge. 
 What should be noted here, however, is that most of 
machine learning methods are hard to provide the under-
standable knowledge to human. For example, deep learn-
ing algorithm (Hinton 2006a, Hinton 2006b, LeCun 2015) 
has made revolution in computer vision, speech recogni-
tion, and natural language processing, but we cannot know 
how deep learning algorithm learns. In other words, deep 
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learning algorithm contributes to increasing the accuracy 
of predictions, but it cannot provide the knowledge that we 
can understand. This indicates that we can only operate 
deep learning algorithm as a black box tool because the 
network structure acquired by deep learning algorithm is 
very complex. From this fact, we need a new machine 
learning that can provide the understandable knowledge to 
human, i.e., the knowledge with a high human readability. 
For this issue, association rule learning (or rule-based 
machine learning) such as apriori algorithm (Agrawal 
1993, Agrawal 1994) is appropriate because it can discover 
interesting relations among variables (inputs) in large data-
bases as the understandable knowledge. 
 However, the apriori algorithm needs to calculate all 
combinations of variables as rules, which results in provid-
ing a lot of knowledge to human. Furthermore, such 
knowledge has the following two probabilities: (i) confi-
dence (which is an indication of how often the rule has 
been found to be true) and (ii) support which is an indica-
tion of how frequently the rule appears in the dataset. Con-
sidering these features of the apriori algorithm, we do not 
understand all combinations of variables as rules but select 
the distinctive combinations for easy understanding. Even 
after such a selection, we do not still understand the rules 
with some probabilities, but prefer to understand the rules 
without probabilities. For example, we do not prefer the 
rule such as “exercise is good for deep sleep” with 70% 
probability under 10% appearance in the dataset, but prefer 
the only rule without probabilities even though such a rule 
is not 100% correct. This indicates that humans prefer to 
understand something as simply as possible even in a little 
ambiguous understanding. If this kind of understanding is 
based on humanity, what we need in healthcare domain is a 
new machine learning based on humanity, i.e., the method 
that can provide only necessary number of understandable 
knowledge without probabilities even if its accuracy slight-
ly becomes worse. For this purpose, this paper starts by 
introducing our rule-based machine learning method and 
shows its effectiveness in care support systems for aged 
persons as one of healthcare systems. Concretely, this pa-
per focuses on care support knowledge (especially focuses 
on the sleep related knowledge) and tries to extract a few 
significant understandable knowledge that clarifies what 
kinds of activities (e.g., rehabilitation, bathing) in care 
house contribute to having a deep sleep 
 This paper is organized as follows. The next section 
explains an overview of machine learning and Section 3 
introduces the care plan and daily activities scheduled in 
the care plan. Section 4 shows our previous human subject 
experiments. Finally, the conclusion is given in Section 5. 

2. Machine Learning 

Classification of machine learning  
Machine learning is roughly categorized as follows.  
 
� Supervised learning 

The goal of this learning is to learn the relationship be-
tween inputs and their desired outputs provided by a 
“teacher”. Concretely, this learning aims at generating the 
function (y=f(x)) that maps inputs (x) to outputs (y). Note 
that this function can be called as a model which is repre-
sented by neural network (Rumelhart 1986) model, rule-
based model including tree structure, Bayesian model, 
and so on. Major algorithms in supervised learning in-
clude (1) classification (which aims at assigning unseen 
inputs to one or more of these classes); and (2) regression 
(which aims at estimating output value from inputs). 

� Unsupervised learning 
The goal of this learning is to learn a hidden structure of 
given data (inputs). Note that such a hidden structure can 
be called as a pattern or a concept. This learning is useful 
for visualization of characteristics of data. Major algo-
rithms in unsupervised learning include (1) clustering 
(which aims at dividing a set of inputs into groups but the 
groups are not known beforehand unlike in classifica-
tion); and (2) association rule learning (which aims at 
discovering interesting relations among variables (inputs) 
in large databases).  

� Reinforcement learning 
The goal of this learning is to learn a policy (which de-
termines an appropriate action in a given situation) 
through a maximization of rewards provided from an en-
vironment. Reinforcement learning differs from 
the supervised learning because correct input/output pairs 
are never provided, i.e., this learning should be completed 
to acquire an appropriate policy without a teacher who 
explicitly tells correct pairs.. 

Apriori algorithm 
Among the above category of machine learning, the asso-
ciation rule learning categorized as the unsupervised learn-
ing has a great potential of correcting commonly accepted 
knowledge by providing the understandable knowledge 
extracted from the personal big data. Since the apriori al-
gorithm is the major method among the association rule 
learning methods, this paper employs it to compare with 
our data mining method. 
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3. Care plan and daily activities  

Care plan 
In care houses, most of all aged persons want to have a 
comfortable and healthy life. For this issue, care houses try 
to provide the good appetite and proper rehabilitation to 
aged persons for their healthy bodies, and possibly their 
long life. To provide such an appropriate lifestyle design 
for aged persons, our previous research (Takadama 2014) 
developed the concierge-based care support system that 
supports aged persons by designing their own appropriate 
care plans (i.e., rough schedules in a day) for a comforta-
ble and healthy life. For example, a certain care plan starts 
from waking up, having meal, taking medicine, health 
check, exercise or rehabilitation, excretion, and sleep. 
What should be noted here is that (1) the current care plan 
is a common for all aged persons from the viewpoint of an 
efficient support for aged persons, which means that it may 
not be effective for a certain person; and (2) the current 
care plan is designed according to the experience of the 
care planner, which means that it has not yet perfectly op-
timized to each person.  

Dairy activities  
Towards an appropriate care plan, we developed the novel 
data mining method (Takadama 2015) to extract essential 
daily activities (e.g., rehabilitation, bathing) that contribute 
to deriving a deep/light sleep of aged persons. The detailed 
daily activities in care house are summarized as shown in 
Table 1. These activities are recoded (1) to extract essential 
ones that contribute to deriving a deep/light sleep of aged 
persons by the apriori algorithm and our method and (2) to 
compare the deepness of the sleep in the current care plan 
with one in the personalized care plan found by our method 
(hereafter, we call it the proposed care plan). Note that the 
daily activities that derive a light sleep are also important 
to be specified because the possibility of having a deep 
sleep increases by removing the activities that derive a 
light sleep. 
 

 
Table 1 Daily activities in care house 

   
Figure 1. Knowledge for a deep and light sleep  

(apriori algorithm) 

4. Human subject experiments  

Experimental design  
To investigate the effectiveness of our data mining method 
by comparing with the apriori algorithm, our previous re-
search (Takadama 2015) conducted the human subject ex-
periments of the following three aged women in the actual 
care house: 82 aged diabetes person, 89 aged dementia and 
emotional illness person, and 107 aged healthy person. For 
an evaluation of the care plan, their sleep stage is investi-
gated from the viewpoint of the deep/light sleep. Such an 
evaluation is based on a personal big data (e.g., the heart-
beat and body movement data) stored everyday by air-
mattress sensor.  

Experimental result s 
� Extracted knowledge (by apriori algorithm) 

Fig. 1 shows some of the knowledge extracted by the 
apriori algorithm for a deep and light sleep of the 82 
aged diabetes woman. Since the apriori algorithm gen-
erates a lot of knowledge through a calculation of all 
combinations of variables in data, the figure shows the 
only knowledge selected from 42 rules for a good sleep 
and 23 rules for a bad sleep, both of which are firstly se-
lected with 60% confidence or more. As shown in this 
figure, the knowledge is based on many variables (i.e., 
activities in this experiment). For example, the first 
knowledge for a good sleep suggests that a tea time in 
both AM and PM without snack and bathing contribute 
to have a deep sleep with 70% probability under 13% 
appearance in the dataset. Such a knowledge indicates 
some features for a deep sleep, but it is difficult for us to 
understand what kinds of activities are needed to have a 
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deep sleep. If we carefully check the difference between 
knowledge for a good and bad sleep, we may notice that 
bathing or none of rehabilitation derives a good sleep 
while rehabilitation without taking a bath derives a bad 
sleep. This difference is significant but the apriori algo-
rithm does not have a mechanism of providing such a 
difference. 
 

 
Figure 2  Knowledge for a deep and light sleep (out method) 

(Referring from (Takadama 2014) and (Takadama 2016)) 

 
 
� Extracted knowledge (by our method) 

Fig. 2 shows the typical knowledge extracted by out 
method for a deep and light sleep of the same aged wom-
an in the case of the apriori algorithm. This figure shows 
that the aged person has a good (deep) sleep when taking 
a bath or none of rehabilitation and bath, while the same 
person has a bad (light) sleep when undergoing rehabili-
tation without taking a bath. Note that the same relation-
ship can be found in Fig 1. To understand this relation-
ship, we interviewed the person and find that she always 
takes care of her body clean and she is willing to take a 
bath especially in the case of rehabilitation. From this in-
terview, she can keep her body clean when taking a bath 
or not undergoing rehabilitation, which promotes her to 
have a comfortable sleep. In contrast, she cannot keep her 
body clean in the case of rehabilitation, which promotes 
her to have an uncomfortable sleep. By utilizing such 
knowledge, our proposed method can design the care plan 
which includes the daily activities that derive a deep sleep 
and excludes the daily activities that derive a light sleep. 
This kind of personalized care plan is not the common 
care plan among aged persons. 
 

� Detailed extracted knowledge (by our method) 
To investigate the above extracted knowledge in detail, 
Fig. 3 shows both of the generalized and specialized 
knowledge for a good (deep) and bad sleep. Concretely, 
our method found two generalized and one specialized 
knowledge for a good sleep, while one generalized and 

one specialized knowledge for a bad sleep. For example, 
the first knowledge of the generalized knowledge for a 
good sleep suggests that it is important to take a bath in 
P.M but it does not matter to need rehabilitation for a 
deep sleep (which represents with the # mark).  
 

 
Figure 3. Generalized/specialized knowledge  

for a deep and light sleep (out method) 

 
 From these extracted knowledge, the following implica-
tions can be found:  
 
(1)  Good vs. bad sleep knowledge  

A comparison of these four kinds of the extracted 
knowledge suggests that the essential daily activities 
in care plans are bathing and rehabilitation which are 
the same as shown in Fig. 2. Focusing on the general-
ized knowledge, in detail, the generalized knowledge 
for a good sleep suggests that the aged persons have a 
good sleep when taking a bath in PM or when neither 
taking a bath nor undergoing rehabilitation, while the 
generalized knowledge for a bad sleep suggests that 
the aged persons have a bad sleep when undergoing 
rehabilitation in A.M. without taking a bath. 
 

(2)  Generalized vs. Specialized knowledge  
When comparing the generalized and specialized 
knowledge for a good sleep, the essential difference is 
a time of taking a bath, i.e., the generalized knowledge 
suggests P.M. for a bath, while the specialized 
knowledge suggests A.M. for a bath. This is because a 
time of taking a bath of this aged person is generally 
assigned in P.M. in the current care plan, but its time 
changes to A.M. in the only case of her birthday party 
because the birthday party is scheduled to start in P.M. 
What should be noted here, however, is that such a 
small number of data is generally deleted as a noise by 
most of the data mining methods, but our method can 
keep such a small number of data which is indispensa-
ble to extract the specialized knowledge in addition to 
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a large number of data which is used to extract the 
generalized knowledge. 
 

(3)  Specialized knowledge for a bad sleep 
The specialized knowledge for a bad sleep suggests 
neither a bathing nor rehabilitation, but this knowledge 
matches the third generalized knowledge for a good 
sleep. What is the difference between these two 
knowledge is whether the aged person has or does not 
have a tea time. According to the interview to the aged 
person, she is diabetes person and is told from her doc-
tor to take an appropriate amount of water. This gives 
an influence to her, that is, she can have a good sleep 
when she takes an appropriate amount of water, while 
she had a bad sleep when she cannot take an appropri-
ate amount of water even in the condition of having a 
good sleep. This is because she is worry about it when 
she cannot have an appropriate amount of water, 
which derives a bad sleep. This result indicates that 
our method can extract the specialized knowledge ac-
quired by only a few days when she cannot have an 
appropriate amount of water by missing a tea time due 
to some reasons. 
 

 
Figure 4.  Deepness of sleep and care plans 

(Referring from (Takadama 2014)) 
 
 

� Effectiveness of extracted knowledge 
Finally, we compare the deepness of sleep of aged per-
sons in the current care plan with that in the proposed 
care plan which includes the daily activities that derive a 
deep sleep and excludes the daily activities that derive a 
light sleep found by our method. Fig. 4 shows the deep-
ness of the sleep, where the vertical and horizontal axes 
indicate the ratio of the sleep stages 3 & 4 and care plans, 
respectively. Note that the ratio of the sleep stages 3 & 4 

increases in the case of a deep sleep while the ratio de-
creases in the case a light sleep. In this figure, the red and 
blue bars indicate the current and proposed care plans, re-
spectively. In detail, the two bars from the left side indi-
cate the results of the healthy aged persons (i.e. non-
dementia aged person), while the two bars from the right 
side indicate the results of the dementia persons who are 
hard to have a deep sleep in comparison with non-
dementia persons.  

This figure shows that the ratio of the sleep stages 3 & 
4 in the proposed care plan is higher than that in the cur-
rent plan in both healthy (non-dementia) and dementia 
aged persons, which means that the proposed care plan 
can provide a deep sleep in comparison with the current 
care plan. This is very important in care houses because 
such a deep sleep contributes to decreasing a frequency of 
wandering in midnight. From the viewpoint of the sleep 
age estimated from the ratio of sleep stages 3 & 4 aver-
aged from a lot of aged persons (The Japanese Society of 
Sleep Research, 2010), the proposed care plans can pro-
vide nine years younger sleep in the healthy aged persons 
and seven years younger sleep in dementia persons in this 
experiment. What should be noted here is that the pro-
posed care plans have a great potential of providing 
younger sleep even in dementia persons, although they 
are generally difficult to have a deep sleep. 

5. Conclusion 
This paper focused on care support knowledge (especially 
focuses on the sleep related knowledge) and tackled its 
cognitive bias and humanity aspects from machine learning 
perspective through discussion of whether machine learn-
ing can correct commonly accepted knowledge and pro-
vide understandable knowledge in care support domain. 
For this purpose, this paper started by introducing our data 
mining method (based on association rule learning) that 
can provide only necessary number of understandable 
knowledge without probabilities even if its accuracy slight-
ly becomes worse, and shows its effectiveness in care plans 
support systems for aged persons as one of healthcare sys-
tems. The experimental result indicates that (1) our method 
can extract a few simple knowledge as understandable 
knowledge that clarifies what kinds of activities in care 
house contribute to having a deep sleep, but (2) the apriori 
algorithm is hard to provide such knowledge because it 
needs calculate all combinations of activities executed by 
aged persons. 

What should be noted here is that the above potentials 
have only been shown from only one aged person. This 
suggests that further careful qualifications and justifica-
tions, such as an investigation of other aged persons, are 
needed to generalize the proposed rough guideline. Such 
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important directions must be pursued in the near future in 
addition to the following future research: (1) an analysis of 
other days or other period; (2) a long-term analysis of ef-
fect of the personalized care plan; and (3) a deep discus-
sion of cognitive bias and humanity for well-being compu-
ting. 
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Abstract 
The purpose of this study is to find novel knowledge to clar-
ify the relationship between the sleep quality and the degree 
of the mental stress. For this purpose, we focus on not only 
these two indices (the quality of sleep and the degree of the 
mental stress), but also the human circadian rhythm as the 
new index for analysis. Through three types of data meas-
ured during the night-time sleep and during the day, we 
tried to inspect the usefulness of the human circadian 
rhythm for the index of the analysis. In this paper, data of 
these three indices were measured by the single subject ex-
periment of about two weeks and analyzed comprehensive-
ly. In the analysis, we categorize good / middle / bad for 
each index every few days, and investigating the relation-
ship between the three indices by summarizing the transition 
of the categories of the three indices. As a result, by com-
paring three types of data of ten-odd days in parallel, we ob-
tained the following findings: (1) These three indices have 
been moving with a similar trend in units of days; (2) those 
trends coincide details from the simple diary written by the 
subject. As a result, by comparing three types of data of ten-
odd days in parallel, these data were related to each other.  

Introduction  
The goal of this study is to clarify the relationship be-

tween the quality of sleep and the degree of stress. It goes 
without saying that the main function of sleep is recovery 
of fatigue of the body. And similarly, sleep has the effect 
of restoring mental stress [Grant, 2010]. For these reasons, 
a good quality of sleep is the important factors for main-
taining physical and mental health. However, since some-
times people with high stress often fail to sleep well, the 

                                                
Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

relationship between the two indices is complicated and 
still unknown [Grant, 2010]. For this reason, how to get a 
good quality of sleep aimed is one of the important tasks in 
study for caring health and mental health.  However, at-
tempts to clarify the relationship between the quality of 
sleep and the degree of mental stress have not yet been 
fully achieved.  

In this study, we focus on human circadian rhythm as 
the new viewpoint for analysis between the quality of sleep 
and the degree of mental stress. And we try to obtain new 
findings on this relationship between the quality of sleep 
and the degree of stress by analysis with the human circa-
dian rhythm. Circadian rhythm is known to be an important 
factor in determining the quality of sleep [Robert, 2007]. 
Moreover, when this circadian rhythm cause to slip out 
from actual life rhythm consisting of a cycle of sleep and 
action, human fall into a state such as jet lag, and high 
stress is likely to occur. Accordingly, this study expects 
that using this circadian rhythm for analysis is to be able to 
connect two indices with different observation periods 
"quality of sleep measured in the night" and "stress meas-
ured during the day". As described above, we verify that 
new relationships be able to obtain from three kinds of data 
"quality of sleep measured in the midnight", "stress meas-
ured during the day" and "circadian rhythm measuring day 
and night".  

The remaining of this paper is organized as follows. 
First, second section shows the proposed method for analy-
sis of this study. Third section shows the subject experi-
ment and its result. Finally, the conclusion of this paper is 
given in the final section.  

The 2018 AAAI Spring Symposium Series

291



-1 

4 

9 

14 

10/7 03:00 
10/7 06:00 
10/7 09:00 
10/7 12:00 
10/7 15:00 
10/7 18:00 
10/7 21:00 
10/8 00:00 
10/8 03:00 
10/8 06:00 
10/8 09:00 
10/8 12:00 
10/8 15:00 
10/8 18:00 
10/8 21:00 
10/9 00:00 
10/9 03:00 

LF
/H

F

Wake 
1% 

Rem 
27% 

NonRem1 
3% 

NonRem2 
55% 

NonRem3 
10% 

NonRem4 
4% 

Analytical method
In this chapter, we explain three types of data for this 

study. These three types of data are "quality of sleep meas-
ured in the midnight", "stress measured during the day" 
and "circadian rhythm measuring day and night".  Moreo-
ver, the comprehensive analysis method by these three 
types of data is also described in this chapter. The compre-
hensive analysis method reveals the changes in daily phys-
ical condition by summarizing these three type of data. 
The content of the usage data 

 Details of three types of data used for the analysis is ex-
plained respectively.  These three types of data are indices 
to measure "quality of sleep", "degree of stress" and 
"Goodness of Human circadian rhythm ", respectively.  

Estimated sleep stage 
First, as the index of "quality of sleep" we employed the 

estimated sleep stage. The sleep stage is represented by a 
numerical value meaning the depth of sleep. The estimated 
sleep stage is determined according to the characteristics of 
vital data obtained from an air mattress biosensor without 
connecting any devices to human body and can roughly 
estimate the sleep stage without medical experts [Harada 
2016]. The estimated sleep stage is classified into six types 
as follows: “Wake”: awake as the lightest sleep; “Rem”: 
REM sleep which is deeper sleep than awake and it is gen-
erally occurred in dreaming time; NonRem1-4: Non-Rem 
sleep 1 - 4 as deep sleep (note that the depth of sleep be-
comes deeper from NonRem1 to NonRem4). In this study, 
we employed the proportion of the total time of Wake, 
Rem and NonRem1 in the six stages as the index of the 
quality of sleep. The smaller the ratio is shown that the 
longer the deep sleep is maintained, and the quality of 
sleep is good. In Figure 1, the proportion of the estimated 
sleep stage in a night is shown as the example.   

 

Figure.1 The proportion of the estimated sleep stage  
 
Index of Stress degree 
Second, as the index of "the degree of stress" we em-

ployed "LF / HF". "LF / HF" is the index showing the bal-
ance between the sympathetic nerve (LF) and the parasym-
pathetic nerve (HF), which means that the higher the value 
show that a person gets the higher the stress. Figure 2 

shows the transition of LF / HF measured every few hours 
for two days as the example.  When the value of LF / HF is 
smaller than 2, the stress is small. On the other hand, when 
it is 2 or more, it indicates that the stress is high. 

 

 
Human circadian rhythm 
Thirdly, as the index showing "goodness of Human cir-

cadian rhythm" we employed the standard deviation of 
Basal body temperature for two days. It is known that basal 
body temperature goes up and down according to circadian 
rhythm. Based on this knowledge, by observing the stand-
ard deviation of basal body temperature during the meas-
urement period, it can be observed whether the circadian 
rhythm holds a definite pattern. The definite pattern of cir-
cadian rhythm is an index related to good sleep and good 
activity during two days.  

The concrete example is shown in Figure 3 which con-
sist of 3 graphs (a) to (c). In Figure 3, actual basal body 
temperature during two days (dot) and its sixth order poly-
nomial approximation (dash line) has been drawn in 2 of 3 
graphs ((a-b)). In these graph, the dash line can express as 
a pattern of circadian rhythm during two days. Figure 3 (a) 
is good pattern of circadian rhythm, because the difference 
in height between the two sets "Valley at late night" and 
"Peak at afternoon" of dash line is large, so that the pattern 
can be clearly seen. On the other hand, figure 3 (b) is bad 
pattern, because the difference in height between "Valley 
and Peak" is small, so that the pattern can be unclearly 
seen. In order to evaluate the good or bad of the pattern 
judged from these graphs only with numerical data, we 
employ calculating the standard deviation of the basic body 
temperature. In figure 3 (c), the standard deviations of the 
basic body temperature of figure3 (a) and (b) are shown in. 
As can be seen from figure 3 (c), the standard deviation of 
9/26 - 9/27 showing the good pattern in figure 3 (a) shows 
higher numerical value than that of 10/1 - 10/2 which 
showed the bad pattern in figure 3 (b). In this way, it is 
possible to discriminate the quality of circadian rhythm 
based on the magnitude of the standard deviation of the 
basal body temperature. 

Figure.2  The transition LF / HF for two days  
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(a) Good case  

(b) Bad case  

(c)  Standard deviation of every two days  
Figure.3 The circadian rhythm from basal body temperature 

 
Comprehensive analysis 

The analysis aims to clarify the causal relation between 
sleep quality and stress from the measurement result as 3 
types of data "the sleep stage, LF / HF and basal body tem-
perature" about 2 weeks’ period. In this section, we de-
scribe the comprehensive analysis using 3 type of data. For 
this purpose, prepare the proportion of shallow sleep per 
night as the data of the estimated sleep stage. For the other 
two types of data, it is calculated the average and standard 
deviation for every two days by the values which measured 
every several hours. The reason for summarizing these two 
days is to observe numerical values before and after the 
data during the two days of sleep. 

At first, for two data other than estimated sleep stage da-
ta, numerical standardization is carried out in order to im-
prove the ease of visual analysis. Numerical standardiza-
tion is calculated as that the values subtracted each numer-
ical value by the own average and divided by the own 
standard deviation. As a result, the average value and the 
standard deviation of the data set is 0 and 1, respectively. 
And the closer the value in the data is 0, the closer it is to 
the mean value. On the other hand, large value in the data 
is as characteristic data. Specifically, the data is standard-
ized as shown in figure 4. Figure 4 (a) shows average val-
ues of LF / HF before normalization for about 2 weeks, and 
figure 4 (b) shows the normalized average values of LF / 
HF for same period. Compared with figure 4 (a), it is pos-
sible to discriminate the level of stress simply by looking at 
figure 4 (b) at a glance. 

Next, we describe how to analyze three types of data. In 
order to understand each cause and effect relation, three 
types of data are classified according to good or bad with 
units of several days in the same time axis, respectively. In 
this way, we consider the relationship between sleep quali-
ty, stress magnitude and circadian rhythm from this classi-
fication and the simple diary by subjects. The specific ex-
ample is to introduce in the next chapter. 

(a) Raw data  

(b) Normalized data  
Figure.4  
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Human subject experiment 
In this section, as first step of whether it is possible to 

obtain novel knowledge about the relationship between the 
quality of sleep and the degree of stress with a focus on 
human circadian rhythm, actual measurement data is ana-
lyzed using the three indices described in the previous 
chapter. 

 
Details of usage data 

The usage data are values of the three indices of adult 
females measured during the 15 days from September 25, 
2016 to October 10, 2016. The Estimated sleep stage is 
calculated by the data for one night. For measuring instru-
ments, EMFIT's mat sensor was used to calculate sleep 
stage, stress measurement sensor (VM 302) of Fatigue Sci-
ence Laboratory Inc. for measuring LF / HF, and commer-
cially available basic thermometer was used for measure-
ment of basal body temperature. And LF / HF and basal 
body temperature were measured every few hours in a day. 
After the end of the measurement, we calculated the aver-
age of the LH / HF and the standard deviation of the basal 
body temperature every 2 days. In addition, these value of 
LF / HF and the basal body temperature is rendered with a 
normalized value so that the average is 0 and the standard 
deviation is 1. In addition, we asked the subjects to record 
a simple diary. The summary of the contents of the diary is 
shown in Table 1. 

 
Table.1 Short diary by the subject 

9/25 No description 

9/26 Business meeting 
Exercise at the gym 

9/27 Not have lunch 
9/28 Leave the office regularly 

9/29 Business seminar 
Drinking party 

9/30 Business trip 
Important negotiation 

10/1 [Holiday] Wander around Kanazawa 
10/2 [Holiday] Chat with a friend 
10/3 Desk work in all day 

10/4 Long meeting 
Exercise at the gym 

10/5 Go home early 
10/6 Exercise at the gym 
10/7 Busy day 
10/8 [Holiday] Relaxing at home 
10/9 [Holiday] Shopping 

 
Result of measurement 

First, the measurement results obtained in the experi-
ment are shown in follows: the estimated sleep stage is 
shown in figure 5; the normalized average of LF / HF is 
shown in figure 4 (b); and the normalized standard devia-

tion of basic body temperature is shown in figure 6. For the 
graph of the proportion of the estimated sleep stages in 
figure 5, for the subsequent analysis, the values below the 
25th percentile and above the 75th percentile are color 
coded into blue and red, respectively. This is to make it 
easy to distinguish between the good quality sleep, the 
middle quality of sleep and the bad quality of sleep. 

 

Figure.5 
 

Figure.6 
 

Analysis 
In this section, as described in the previous chapter, we 

analyze the relationship by classifying each data by the 
good or bad. In this analysis, it is conducted for each data 
the case of categorizing into two "good or bad" and the 
case of categorizing into three "good, middle or bad". The 
reason for analyzing two cases, "the case of categorizing 
into two" and "the case of categorizing into three", is to 
verify whether there is a difference in analysis result de-
pending on the number of categories. 
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Figure.7 Result of three indices 
 
Classified into two -Good or Bad- 
Figure 6 shows the numerical values of each indices cal-

culated and the graphs obtained coloring them according to 
the degree of goodness. Figure 6 is composed of three bar 
graphs, with the first row showing sleep stage, the second 
row showing LF / HF and the third row showing the stand-
ard deviation of basal body temperature. In addition, the 
color of each day bar in the upper graph classifies each 
sleep by blue, green and red as three types of "quality of 
sleep" (good or bad). The color of the background in Fig-
ure 6 indicates the goodness-badness of the indices, as 
viewed in a few days’ span. First, when comparing the 
sleep stage of the upper row and the standard deviation of 
basal body temperature of the lower row, the transition of 
the color tone of the background coincides. Next, when 
comparing the LF/HF of the middle row and the standard 
deviation of basal body temperature of the lower stage, the 
color of the background shades of red and blue are re-
versed with one day's deviation. Focusing on these, the 
trends of all indices have changed significantly from Sep-
tember 30 to October 1. From short diary of the subject 
(Table 1) about September 30, it found that she is on busi-
ness trip and carrying out important negotiations. And it 
also found that she did not measure sleep because she 
stayed at the hotel on this day. 

 
Figure.7 Result of three indices 

 
Categorize into three - Good, Middle or Bad- 
Figure 7 shows the numerical values of each indices cal-

culated and the graphs obtained coloring them according to 
the degree of goodness. Figure 7 is composed of three bar 
graphs, with the first row showing sleep stage, the second 
row showing LF / HF and the third row showing the stand-
ard deviation of basal body temperature. In addition, the 
color of each day bar in the upper graph classifies each 
sleep by blue, green and red as three types of "the quality 
of sleep" (good, middle or bad). The color of the back-
ground in Figure 7 indicates the goodness-badness of the 
indices, as viewed in a few days’ span. First, when com-
paring the sleep stage of the upper row and the standard 
deviation of basal body temperature of the lower row, the 
transition of the color tone of the background coincides 
with one day's deviation. Next, when comparing the LF/HF 
of the middle row and the standard deviation of basal body 
temperature of the lower stage, the color of the background 
shades of red and blue are reversed. These results are con-
sistent with the results of the categorized into three shown 
in figure 6. According to the sleep stage of the upper row 
and the standard deviation of basal body temperature of the 
lower row in the graph, both of the middles areas indicated 
by the green background almost much with each other. 
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Summary 
From these results of analysis in 2 cases of categoriza-

tion, she felt stress during several days for important nego-
tiations, but stress has been relieved after the negotiations. 
Furthermore, to recover from stress in this several days, it 
is considered that the circadian rhythm became a large pat-
tern and led to deep sleep. 

Conclusion 
The final goal of this study is to clarify the relationship 

between sleep and stress. For this purpose, we focus on the 
human circadian rhythm as the new index. Using this cir-
cadian rhythm for analysis is expected to be able to con-
nect two data with different observation periods "quality of 
sleep measured in the night" and "stress measured during 
the day". Through three types of data measured during the 
night-time sleep and during the day, we tried to verify the 
usefulness of this focus on human circadian rhythm.  

In order to verify the effectiveness of this point of view, 
we conducted subject experiments for 15 days. In this ex-
periment, the subject's sleeping data, basal body tempera-
ture and HF / HF were measured during the period. From 
these, three indices of sleep quality (sleep stage), degree of 
stress, goodness of circadian rhythm pattern were calculat-
ed. By comprehensively analyzing these three indices, we 
obtained the following findings: (1) These three indices 
have been moving with a similar trend in units of days; (2) 
those trends coincide details from the simple diary written 
by the subject. As a result, by comparing three types of 
data of ten-odd days in parallel, these data were related to 
each other. As a result, by comparing three types of data of 
ten-odd days in parallel, these data were related to each 
other.  As a future task, we verify the versatility of this 
analysis method by more subject experiments. 
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Abstract

This paper described that proposing a novel method to esti-
mate the sleep stage by biological data obtained with a non-
contact sensor devices and that investigating its effectiveness.
Proposed method focused on circadian rhythm to consider
of a day biological rhythm in overall sleeping in addition
to employ the Haradas method. To verify the effectiveness
of the proposed method, we derived the subject experiment
that compared with the evaluation accuracy by the previous
method with adjustment of circadian rhythm. As the experi-
mental results, the following implications have been revealed:
(1) the accuracy of the sleep stage estimation in 5 days out of
that in 9 days were improved by proposed method in compar-
ison with Haradas method; (2) the parameter β (which deter-
mines the discount rate of curve of circadian rhythm) should
be set around 60%, meaning that a raw circadian rhythm (i.e.,
no discounted rhythm) strongly affected the sleep stage while
the highly discounted circadian rhythm (e.g. 30% discounted
rhythm) does not contribute to accurately estimating the sleep
stage.

Introduction

Recently, sleep disorders affect our health condition, which
causes a bad influence to human activities in our societies.
According to the survey of the Ministry of Health, Labor
and Welfare of Japan (Ministry of Health, Labor and Welfare
2015), one out of five adults in Japan suffer from insomnia,
and the number of those who answered that they cannot take
sufficient sleep has been increasing year by year.

To examine sleep disorder including insomnia, the
Rechtschaffen & Kales method (hereinafter referred as the
R & K method) is widely employed as the international
standards method in the current medical field. The R& K
method can estimate the sleep stage with a high accuracy
based on the doctor’s experience and knowledge, however
it gives mental or physical burden to patients because many
electrodes should be attached to the patient’s face and head
in order to gain electroencephalogram (EEG), electroocu-
logram (EOG), and electromyogram (EMG) data. To tackle
this problem, the several non-contact sleep stages estimation
methods have been proposed in recent years. However, the
essential problem of such conventional non-contact methods

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is that the accuracy of the sleep stage estimation is not high
enough in comparison with R & K method.

To overcome this problem, this paper proposes a novel
non-invasive sleep stage estimation method based on cir-
cadian rhythm which is a human biological rhythm of one
day. We focus on circadian rhythm because none of the con-
ventional methods do not take it into account even though
it indirectly affects the sleep stage. For this reason, this
paper starts to improve Haradas method (Real-time Sleep
Stage Estimation, hereafter referred to RSSE) (Harada and
Takadama 2017) by introducing circadian rhythm to im-
prove the accuracy of the sleep stage estimation. We employ
Haradas method as the baseline of the sleep stage estimation
because its accuracy is higher than other conventional meth-
ods and it can estimate the sleep stage in real time which is
more difficult than in all time during sleeping. While circa-
dian rhythm is basically measured by the body temperature
changes, proposed method estimates circadian rhythm from
a low frequency component of heart rate because of a corre-
lation between body temperature and heart rate. As the main
difference between Haradas method and proposed method,
the former method estimates the sleep stage on the bases of
an average of medium frequency component of heart rate,
while the latter method estimates the sleep stage on the bases
of a low frequency component of heart rate as circadian
rhythm.

This paper is organized as follows. The next section ex-
plains some conceptions with regard to the measurement
of sleep. In section of Related works, we introduce some
related works, especially focus on non-contact sleep stage
estimation methods. Section of RSSE explains the previ-
ous method which we employ as a base line and section of
Sleep Stage Estimation Method Based on Circadian Rhythm
(RSSE-CR) describes how to take circadian rhythm into ac-
count and processing for the weighting wave of circadian
rhythm. Section of Experiment explains the subject exper-
iment in order to verify the effectiveness of the suggested
idea and the result is shown in section of Result, then we
discuss what is effective to estimate sleep stage in section
of Discussion.Finally, we conclude this paper and indicate
future works in section of Conclusion.
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Figure 1: A graphical image of the sleep stage estimation
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Figure 2: An illustration of an example for circadian rhythm

Sleep and its rhythm

Sleep stage

According to R&K method, sleep stage is divided into
six parts called Wake, REM, NREM1, NREM2, NREM3,
NREM4 toward deep sleep which is available to digitize
sleeping objectively as Figure1 shows. Beginning to sleep,
human tends to get deepest sleep immediately in general,
then repeating the sleep cycle called ultradian rhythm. In
an entire view, it becomes light sleep as the time to wake
up is coming. Recently, the evaluation with four sleep stage
became more general, which replaces that NREM1 and
NREM2 for Light-sleep, and that NREM3 and NREM4 for
Deep-sleep.

Circadian rhythm

Circadian rhythm is normally a twenty-four hours cycle,
which effects physiological processes such as sleeping and
waking. Circadian rhythm is represented by core body tem-
perature as Figure2 shows. With changes of inter- nal body
temperature, physical activity of animals including human is
controlled by circadian rhythm. For example, an- imals get
to feel sleep at three to four o clock when cir- cadian rhythm
is to be the lowest point, also at the evening when it is to be
the highest point, animals get to be active. Conversely, dis-
turbing of circadian rhythm affects physical processes, some
of which are jet lag, insomnia.

Related works

The several non-invasive sleep stages estimation methods
have proposed in recent years. The examples includes (i)
the two-stage sleep estimation method by an infrared motion

Figure 3: The EMFit sensor being laid under a bed mattress

sensor or microwave radar which can classify deep or light
in the sleep stage (Kamibayashi and Hagiwara 2012), (ii)
the REM/non-REM classification method based on breath-
ing extracted from microwaves sensor(Sasaki et al. 2015),
(iii) the machine learning estimation method based on the
biological signals (Komine et al. 2016), and (iv) the sleep
stage estimation based on heartbeat and body movement
measured by the air mattress sensor (Watanabe and Watan-
abe 2002)(iv-1),(Harada and Takadama 2016)(iv-2). Specif-
ically, the previous method(RSSE) researched by Harada
and Takadama employed the EMFit sensor made by the
VTT Technical Research Center in Finland as a non-contact
biosensor in order to obtain biological data such as heart
rate and body movement every second. As Figure3 shows,
the EMFit is used by being laid under a bedmatress. Table1
is what classified these previous methods to estimate sleep
stage by category of both used biological data and measure-
ment time, and we focus on (iv-2) at the lower left on the
table1.

Table 1: Classification of previous methods
HR+BM BM only

Non-realtime (iii),(iv-1) (i)
Realtime (iv-2) (ii)

Real-time Sleep Stage Estimation(RSSE)

RSSE is constructed by the process as following: (1) to
obtain biological data from the mattress sensor (shown by
Figure3; (2) to calculate the medium frequency component
of the heart rate based on the regression of the trigonomet-
ric function (referred to in (step a)); (3) to standardize the
calculated medium frequency; (4) to discretize the medium
frequency (referred to in (step b)) and (5) to compensate the
evaluation of Wake and REM (referred to in (step c)). These
processes are dealt with in sequence depended on number-
ing.
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(step a)Trigonometric function regression model RSSE
acquired medium frequency component of the heart rate by
the composed wave of many trigonometric functions ap-
proximate an intermediate frequency as follows.

h(t, φ) = c+
N∑

n=1

an cos(
2πt

L/n
) + bn sin(

2πt

L/n
) (1)

In this formula, N is determined as the parameter and L
denotes the maximum data for approximation, which are set
as following N = 13,L = 214 in this paper. Also φ is a set of
parameters {a1, b1, ..., an, bn} and both an and bn indicate
the coefficients of a cosine wave and sine wave amplitude
for each one, which are the trigonometric function with set-
ting a cycle to L/n. These the trigonometric functions are
calculated to make an error of J(φ) smallest in comparison
between the raw heart rate and the calculated approximation
of heart rate. In formula(2), λ is set as λ = 1, c denotes a
constant and t indicates time.

J(φ) =
1

T

T∑

t=1

(HR(t) − h(t, φ))2 +
λ

N

N∑

n=1

(a2n + b2n) (2)

(step b)Discretization After calculating the approximated
medium frequency component of heart rate h(t, φ), sleep
stage is estimated by discretizing depended on the follow-
ing formula:

s(t) =

⎧
⎪⎨
⎪⎩

5 � (h(t,φ)−ave.)
stdev. + 2� > 5,

0 � (h(t,φ)−ave.)
stdev. + 2� < 0,

� (h(t,φ)−ave.)
stdev. + 2� otherwise.

(3)

ave. =
1

max(T, L)

∑

t=1

max(T, L)h(t, φ) (4)

stdev. =

√
1

max(T, L)− 1

∑
t=1

max(T, L)(ave.− h(t, φ))2 (5)

s(t) denotes the sleep stage at time t, [x] indicates the
ceiling function that returns the minimum integer value
equal to or greater than x, and from 5 to 0 correspond
to Wake, REM, NREM1,NREM2,NREM3,NREM4 respec-
tively, This discretization formula is based on the previous
research (Takadama et al. 2010).

(step c)Wake/REM Classification For Wake classifica-
tion, RSSE focuses on a huge body movement in sleeping.
To consider a variability in the body movement, it calculates
both the standard deviation BMstd in every minute and the
average of the body movement BMave from start of sleep-
ing, then classified the sleep stage into Wake over the latest
one minute by the function is defined as follows :

BMstd

BMave
> 1.0 (6)
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Figure 4: The process to evaluation the sleep stage in RSSE

For REM classification, the rapid heart rate variability is em-
ployed. The start point of REM is set if the growth rate in
median value of heart rate during the last five minutes is
greater than 4 % compared with the growth rate from the
last ten minutes to the before five minutes, which is repre-
sented by the formula (7). In addition, the condition of REM
is canceled if a huge body movement occurred within near
ten minutes or avoiding the misclassification.

(HRrecent
med − HRprev

med )

HRprev
med

> 0.04 (7)

Sleep Stage Estimation Method Based on

Circadian Rhythm(RSSE-CR)

Problem of RSSE

The three graphs in Figure4 show the sleep stage estima-
tion by R&K, the sleep stage estimation by RSSE and the
baseline by the average of medium frequency component of
the heart rate. In the graphs at the top and middle, the ver-
tical axis indicates sleep stage, while the horizontal axis in-
dicates time of sleeping. In the bottom one, the vertical axis
indicates raw heart rates, while the horizontal axis indicates
time of sleeping. The yellow line indicates the raw heart
rates, the green line shows that medium frequency compo-
nent of the heart rate and the black one describes the average
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Figure 5: an examle to derive the sleep stage estimation in
RSSE-CR

of medium frequency. RSSE estimates sleep stage by stan-
dardization depended on the baseline which is equal to the
average of medium frequency component of heart rate as
graph at the bottom in Figure4. Graph at the top in Figure4
shows the sleep stage estimation by R&K and the evalua-
tions described are different from the sleep stage by RSSE.
Focused on graphs at the middle and bottom one, the sleep
stage described by the former remarkable circle is evaluated
as NREM1 because the medium frequency is higher than
the baseline. With the same way, the evaluation described
by the latter remarkable circle is effected by the position
of the medium frequency which is lower than the baseline.
In general, human get to sleep deepest in the early time of
sleeping and it becomes light toward wake, however, these
tends could be related with personal life style. In RSSE, the
baseline is fixed by the average of medium frequency, so
that sleep rhythm is not taken into account. In other words,
it is essential to consider the sleep depth variability with
time elapsed for the high accuracy in sleep stage estima-
tion. Thus, the proposed method attempts to take circadian
rhythm account into for sleep stage estimation with higher
accuracy.

Mechanism: The adjusted medium frequency

Figure5 shows the baseline by circadian rhythm and the re-
lation with the medium frequency, the adjusted medium fre-

quency and the sleep stage estimation by RSSE-CR from top
to bottom. In the graph at the top, the vertical axis indicates
raw heart rates. The yellow line indicates the raw heart rates,
the green line shows the medium frequency component of
the heart rate and the black one shows circadian rhythm. In
the middle graph, the vertical axis indicates values in the
standardization. In the bottom, the vertical axis indicates the
sleep stage. In all graphs, the horizontal axis indicates time
of sleeping. The adjusted medium frequency is obtained by
a difference between the medium frequency component of
the heart rate and the low frequency in order to take circa-
dian rhythm into account as Figure5 shows. While the graph
at the bottom in Figure4and at the top in Figure5 indicated
same heart rate and the medium frequency, the change the
baseline from the average of medium frequency to circadian
rhythm made the difference as the view of the medium fre-
quency. For instance, the sleep stage surrounded by the for-
mer remarkable circle at the graph in Figure5 was estimated
as NREM3 because the medium frequency was lower than
circadian rhythm as graph at the top shows. At the same way,
the sleep stage highlighted by the latter circle at the bottom
graph was estimated as NREM2 because the medium fre-
quency was almost as same as circadian rhythm at the top
graph. In this way, to pay attention to the relation with circa-
dian rhythm adjust the sleep stage in comparison with RSSE.

Algorithm

In order to estimate sleep stage, RSSE-CR adds more two
processes such as step(d) and step(e) in addition to RSSE.
As overall processing flow, the following deals are executed
in se- quence: (1) to obtain biological data from the mattress
sen- sor; (2) to calculate both the medium frequency and
the low frequency component of the heart rate based on the
regres- sion of the trigonometric function(referred to (step
a: note that step a is demonstrated in previous chapter) and
(step d)); (3) to acquire the adjusted medium frequency; (4)
to standard- ize and to let the adjusted medium frequency
weighted with parameter (referred to in (step e)); (5) to dis-
cretize the ad- justed medium frequency(step f) and (6) to
compensate the evaluation of Wake and REM.

(step d)Estimation of circadian rhythm RSSE-CR em-
ploys the low frequency component of heart rate as circa-
dian rhythm, while circadian rhythm is generally obtained
by measuring core body temperature(Goel et al. 2011). Be-
cause core body temperature is related with heart rate(Van-
dewalle et al. 2007) and also the low frequency with a pe-
riod of twenty-four hours which is one of associated waves
in heart rate is adequate to replace circadian rhythm also
having a period of twenty-four hours. Based on this idea,
RSSE-CR supposes that circadian rhythm is gained by a low
frequency of a heart rate. Especially, in this paper, we use
the low frequency of a heart rate in thirty-six hours circle as
circadian rhythm. Specifically, it could be calculated by for-
mula (1) (with following parameter: N = 1, L = 217 ≈ 36
hours ). While circadian rhythm is twenty-four hours cycle,
the reason why we employ the low frequency in thirty-six
hours cycle as circadian rhythm is that the calculation of
frequency component of heart rate in FFT is set by power
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of 2.

(step e)Calculation of the adjusted medium frequency
To adjust a gradient of circadian rhythm, RSSE-CR executes
the weighting deal to the adjusted medium frequency. The
brackets {} in Formula(8) indicates the calculation for the
adjusted medium frequency as the graph at the middle in
Figure5 shows, and f(t) denotes the adjustment by param-
eter β which attenuates amplitude of the adjusted medium
frequency. In this case, we set the range of parameter β to
less than 1.0 in increments of 0.1 from 0.1 and the weighing
is processed as following formula on condition that both φ in
formula (1) for the medium frequency and the low frequency
are given as φMF and φLF appropriately by the calculations
for each. f(t) is used for the calculation of formula(9).

f(t) = β{h(t, φMF ) − h(t, φLF )} (8)

(step f)Discretization of the adjusted medium frequency
For discretization of the adjusted medium frequency, RSSE-
CR calculates it as following formula,

s(t) =

⎧
⎪⎨
⎪⎩

5 � (f(t)−ave)
stdev + 2� > 5,

0 � (f(t)−ave)
stdev + 2� < 0,

� (f(t)−ave)
stdev + 2� otherwise.

(9)

In this formula, both stdev and ave are fixed as the parame-
ter β = 1.0 regardless of the parameter β .

Experiment

Experimental Setting

In order to verify the effectiveness of RSSE-CR, we con-
ducted the subject experiment toward three people (age from
twenty to sixty, two men and a woman) in three days. Each
subject has slept to give results by in two kinds of ways to
evaluate sleep stage at the same day as following; (1) Alice
PDx made by Philips for the evaluation by R&K method (2)
the EMFit sensor for the evaluation by RSSE and RSSE-CR.

This paper conducted the following two experimental
cases:

Case 1: sensitive analysis (parameter β)

Case 2 comparison of RSSE-CR with RSSE

Evaluation criteria

The sleep stage estimation with ALICE PDx by R&K
method is set as the correct estimation and we compared
with each evaluation accuracy calculated by both the pre-
vious and proposed method in four sleep stage evaluation.
Because four sleep stage evaluation is also used in com-
mon, we firstly attempt to evaluate sleep stage roughly in
four stage. Additionally, for the evaluation in the parameter
β to adjust the weight of circadian rhythm, this paper com-
pared the sleep stage estimation by RSSE-CR with changing
the parameter β with the estimated accuracy by.

Result

Case1 : Sensitive Analysis

Table2 shows the estimation accuracy with the four stage
evaluation in each parameter β, and the subject and the day
of experiment are represented capital letter and the number
in each (e.g. M 1; data of the subject M in the first day).
The accuracy had risen up as the parameter β is close to 0.1.
Especially, in less than 0.7, each accuracy in all experimen-
tal data was higher than RSSE, and it tended to get same
value when the parameter β was getting down. While the
value of accuracy was got as the same, waveforms in each
parameter were different, which means they became differ-
ent from the original medium frequency component of the
heart rate steadily. Figure6 shows the change of waveforms
with parameter β in the result of subject M (shown as M 3
in the table2). While the vertical axis indicates sleep stage,
the horizontal axis indicates time of sleeping. The blue line
shows the sleep stage estimation by R&K, the orange dot-
ted line shows the sleep stage estimation by RSSE-CR and
the orange line shows the adjusted medium frequency. While
table2 indicates the accuracy in four sleep stage evaluation,
Figure5 is set in six sleep stage evaluation for examination
of the waveform variability in detail.

Table 2: Estimation accuracy with changing parameter β
M 1 M 2 M 3 H 1 H 2 H 3 K 1 K 2 K 3 Ave

1 52.1% 54.9% 63.5% 64.6% 60.0% 65.6% 62.9% 62.3% 59.5% 60.6%
0.9 56.9% 56.9% 66.9% 70.5% 59.4% 69.6% 68.7% 65.2% 60.5% 63.8%
0.8 62.6% 64.3% 72.3% 73.5% 67.6% 71.1% 74.0% 69.3% 64.7% 68.8%
0.7 65.4% 66.1% 73.3% 76.7% 68.2% 71.5% 76.8% 77.3% 72.1% 71.9%
0.6 69.1% 67.5% 73.7% 80.6% 69.4% 72.5% 76.9% 77.3% 72.1% 73.2%
0.5 70.1% 68.8% 73.6% 80.7% 69.8% 74.3% 76.9% 77.3% 72.1% 73.7%
0.4 70.4% 69.3% 73.3% 80.7% 69.8% 74.3% 76.9% 77.3% 72.1% 73.8%
0.3 70.4% 69.7% 73.3% 80.7% 69.8% 74.3% 76.9% 77.3% 72.1% 73.8%
0.2 70.4% 69.7% 73.3% 80.7% 69.8% 74.3% 76.9% 77.3% 72.1% 73.8%
0.1 70.4% 69.7% 73.3% 80.7% 69.8% 74.3% 76.9% 77.3% 72.1% 73.8%
RSSE 60.5% 56.0% 58.6% 62.9% 64.4% 57.7% 58.3% 58.7% 68.1% 60.6%

Focused on the parameter β, we could look at their effect
at the different views by the changes in amplitude of the ad-
justed medium frequency and the sleep stage. First, in the
view of amplitude with the adjusted medium frequency, as
parameter β gets smaller, it gives strong effect in that the
amplitude is attenuated. In other words, the difference be-
comes larger in comparison with the non-adjusted medium
frequency. On the other hands, in the view of sleep stage,
the changes of sleep stage also get small as the parameter
β becomes small because the adjusted medium frequency
converges the average. For instance, in comparison between
parameter β = 1.0 and β = 0.6 in Figure6, the classi-
fication came to be correct in the highlighted parts. How-
ever, focusing on the estimation in parameter β = 0.2, there
was remarkable difference compared with the estimation by
the R&K method. While the wrong estimations between
NREM1 and NREM2 did not effect on the accuracy, because
we adopted the four sleep stage estimation in that both are
divided into Light sleep in this experiment. Paying attention
to the wave of adjusted medium frequency, the amplitude
variability of the medium frequency got to be almost steady
and became different from the original medium frequency,
which designated that parameter β gave too strong influ-
ences in the amplitude of the adjusted medium frequency.
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Figure 6: the waveform variability with parameter β

Case2 : Comparison of RSSE-CR with RSSE

Figure7 shows four graphs in the result of subject M 3: (1)
the sleep stage estimation by R&K; (2) the relation between
the medium frequency and circadian rhythm; (3) the relation
between the adjusted medium frequency(RSSE-CR) and the
medium frequency(RSSE) and (4) the sleep stage estima-
tion by both RSSE and RSSE-CR from top to bottom. While
the vertical axes in four graphs of Figure7 indicate the sleep
stage, heart rate, values of discretization and the sleep stage,
the horizontal axes indicate time of sleeping in all graphs.
The orange line in graph(2) shows the raw heart rate and the
green line shows circadian rhythm. Also the green line indi-
cates the medium frequency and the blue line is the average
of medium frequency. In graph(3), the orange line indicates
the adjusted medium frequency and the green one indicates
the medium frequency. Finally, in graph(4), the green line
indicates the sleep stage estimation by RSSE and the dotted
orange line indicates the sleep stage estimation by RSSE-
CR.

The estimated accuracy without parameter β, when the
parameter β = 1.0, improved in five days out of in that nine
days compared with RSSE. Focused on the former remark-
able circle, the sleep stage estimated as NREM2 in RSSE-
CR so that the value of the adjusted medium frequency was
located between -1.0 and -2.0 in graph(3), which leads to
the correct classification. However, the medium frequency
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Figure 7: The waveform variability with the weighted circa-
dian rhythm

was located lower than the adjusted one as the green line as
graph(3) shows, which was caused the uncorrected evalua-
tion as NREM3. At the same way, focused on the latter re-
markable circle, RSSE-CR succeeded to estimate sleep stage
correctly because the adjusted medium frequency was lo-
cated between -1.0 and 0.0. All these results were affected
by the adjusted medium frequency which depended on the
relation with circadian rhythm.

On the other hand, with consideration for the weighting
parameter β, when parameter β = 0.6, the estimated accu-
racy improved in nine days out of in that nine days in com-
parison with the estimation without the weight ing, which
indicated that the weighting for circadian rhythm was effec-
tive in this experiment.

Discussion

From these results, it can be confirmed that RSSE-CR is able
to estimate more accurate sleep stage than RSSE, however,
it is necessary to reconsider the weight in waveform of cir-
cadian rhythm since we used a low frequency of thirty-six
hours as circadian rhythm which is normal cycle in twenty-
four hours. To adjust an appropriate waveform of circadian
rhythm, this paper employed the adjusted medium frequency
with parameter β. As the results of the weighted circadian
rhythm, the parameter β is determined with the approxi-
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mately 60 % discount of the raw circadian rhythm lest the
parameter β effects too strong to sleep stage estimation such
as showed by Figure6. Also, these results verified the pos-
sibility that it is suitable to employ a low frequency compo-
nent of the heart rate as the replacement of the internal body
temperature for circadian rhythm.

Conclusion

This paper suggested the sleep stage estimation
method(RSSE-CR) to improve an estimated accuracy
in addition to RSSE. To enhance the accuracy, we noticed
circadian rhythm which governs the physical activity in
animals since the previous methods in the sleep stage
estimation did not take it account. Specifically, RSSE-CR
regards the low frequency component of heart rate as circa-
dian rhythm and calculates the adjusted medium frequency
with revision of gradient of circadian rhythm in order to
estimate sleep stage in four stage evaluation.

To guarantee the effectiveness of RSSE-CR, we measured
its accuracy of four sleep stage estimation using 9 days of
sleep data of three subjects and compared it with that of
the Harada’s method as the conventional method. As the ex-
perimental results, the following implications have been re-
vealed: (1) the accuracy of the sleep stage estimation in 5
days out of that in 9 days were improved by RSSE-CR in
comparison with RSSE; and (2) the parameter β (which de-
termines the discount rate of curve of the circadian rhythm)
should be set around 60%, meaning that a raw circadian
rhythm (i.e., no discounted rhythm) affects strongly to the
sleep stage while the highly discounted circadian rhythm
(e.g. 30% discounted rhythm) does not contribute to accu-
rately estimating the sleep stage.

As the future works, the following research must be done
in the near future: (1) we should improve the classification
criteria of the sleep stage because RSSE-CR classifies the
sleep stage on the assumption of the standard normal distri-
bution, which does not reflect the actual stage; and (2) we
should also improve the accuracy of the sleep stage in six
stage evaluation, which would be available to recognize a
circumstance in sleeping more detail.
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Abstract

This paper proposes new heart rate estimation method for bi-
ological data from sleep monitor sensor toward estimating
sleep stage accurately. Concretely, we employed two heart
rate estimation methods, and integrated the two methods as
weak estimator. One of the two methods calculates power
spectrum from the biological data by FFT, and selects the
frequency with maximum spectrum as heart rate (HR). The
other calculates power spectrum as a same manner of the for-
mer method, and selects the frequency which indicates the
half size of all power spectrum as HR. To validate the effec-
tiveness of EHEM, this paper applies EHEM to pressure data
from sleep monitor sensor. From the result, EHEM can ex-
tract HR accurately, and prevent from outliers generated by
HEM-FFT. We are going to research (1) what method gives
good influence to EHEM, and (2) how to integrate the HRs
extracted from the methods.

Introduction

Lately, sleep is important topic for not only human helthcare
but also human well-being. Especially, monitoring method
for whether they are sleeping deeply or not is required
and studied by many researcher. From this reason, several
sleep monitoring methods were proposed. One of most stan-
dard sleep monitoring method is Rechtschaffen and Kales
(R&K) method which calculates the sleep stage by the brain
wave from the electroencephalogram (EEG), electromyo-
gram (EMG), or electrooculography (EOG) (Rechtschaffen
and Kales 1968). R&K method can estimate sleep stage ac-
curately, but requires many kinds of data which is acquired
from many sensors tester wearing. In addition, the sensors
make stress to the tester, and prevent from sampling the data
of the tester without the stress. To tackle this issue, sleep
stage estimation methods based on heart rate data sampled
from pressure sensor were mainly studied. Watanabe pro-
posed the sleep stage estimation method based on the fluc-
tuation of the heart rate obtained with a non-contact device
(Watanabe and Watanabe 2004). This method estimates the
sleep stage based on the intermediate frequency component
of the heart rate measured by a non-contract device. The
above things suggest that extracting the heart rate data ac-

Copyright c© 2018, Association for the Advancement of Artificial
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curately from the pressure sensor is important to estimate
accurate sleep stage.

Pressure sensor measures pressure made by a human, e.g.,
body moving, respiration, and heart beat. The pressure sen-
sor acquires the data composed of these pressure data. Since
respiration and heart beat occur with different cycle respec-
tively, the heart rate is generally extracted by FFT from
the data. Note that the cycle of the heart rate is changable
for sympathetic and parasympathetic behaviors. However,
these methods are weak for the data’s uncertainty because
they assume that the only one power spectrum can express
all power spectra related to the heart rate (Tsuchiya et al.
2008). To solve this issue, we propose the heart rate extrac-
tion method with robustness against outliers, and propose
new new method which integrates two heart rate extraction
methods including the method based on FFT in order to sur-
press influence by the data’s uncertainty.

This paper is organized as follows. We explain heart rate
extraction technique in the section of Heart rate extraction,
and the pressure sensor employed by us in the section of Wa-
ter pressure sensor. Next, we introduce the proposed method
in the section of Ensemble heart rate extraction method
(EHEM), and explain and discuss experiment for effective-
ness of the proposed method in the section of Experiment.
At the end, we conclude this research.

Heart rate extraction

Heart rate (HR)

Heart rate (HR) indicates the number of heart beat for one
minute. Generally, two kinds of data are measured as HR:
blood pressure and body move. Heart rate measurement
based on blood pressure is more accurate than that based
on body move. However, the tester has to wear the sensor to
measure the blood pressure ,i.e., it is measured with stress.
On the other hand, the measurement based on body move
can acquire data without stress for the tester because the
employed sensors (e.g., pressure sensor and doppler sensor)
do not require the tester’s wearing. However, this measure-
ment cannot acquire only HR. From this reason, heart rate
extraction method must be required when you employ the
measurement based on body move. This paper employ sleep
monitor sensor as the pressure sensor, and the measurement
based on body move.

The 2018 AAAI Spring Symposium Series
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Heart rate extraction method

Generally, HR is extracted based on FFT (Ttsuchiya et al.
2008) (called HEM-FFT in this paper). Figure 1 shows flow
of heart rate extraction based on FFT. First, the method ac-
quires certain range of pressure data and applies them to
window function (process 1). Next, the method calculates
power spectrum from this data by FFT (process 2), and se-
lects frequency whose power spectrum is largest of all (pro-
cess 3). These processes are continued until the unprocessed
data do not exist. If they exist, process is returned to process
2 (process 4).

Figure 1: Flowchart

Water pressure sensor

Product specification

This paper employ TANITA sleep scan SL-511-WF as wa-
ter pressure sensor. Figure 2 shows the image of the sleep
monitor sensor. Table 1 shows the details of the sleep mon-
itor sensor. The sensor is made from acrylonitrile butadiene
styrene (ABS) and poly vinyl cloride (PVC). The sensor per-
forms well with 7V, 1.7A, 5-35 degree celsius, 5-80 humid-
ity. The sensor is generally called body move sensor, and
class I medical device of number Q5B1X00001000003. The
sensor measures pressure data which is happened when a
human moves itself with 16Hz as sampling frequency and
0.5Hz and more as frequency band.

Figure 2: TANITA sleep scan (SL-511-WF)

Data format

The water pressure sensor can measure four pressure data in
four sensors. In addition, this sensor can estimate the pres-

Table 1: Sensor details

materials ABS, PVC
output 7V, 1.7A

templeture range 5-35 degree celsius
humidity range 5-80%
general name body move sensor

medical device class class I
medical equipment number Q5B1X00001000003

sampling frequency 16Hz
frequency band 0.5Hz and more

Figure 3: Example data

sure data of the heart rate part from these pressure datas.
This paper utilize these pressure data. Figure 3 shows the
example of those pressure data. In this figure, vertical axis
indicates magnitude of the pressure, while horizontal axis
indicates time. The pressure value is from -2047 to 2048,
and the unit of this horizontal axis is one 16th of a second.

Ensemble heart rate extraction method

(EHEM)

As machine learning techniques, there is ensemble learning.
This generates one result by integrating several results ac-
quired from several learning methods (or several learners
based on one learning method and different data). This tech-
nique can prevent from error which one learning method
generates because different methods seldom generate same
error. This paper proposes ensemble heart rate extraction
method (called EHEM) by utilizing this technique. Con-
cretely, we proposes new heart rate extraction method called
HEM-HS (we introduces HEM-HS in section below), and
integrates HEM-FFT and HEM-HS to make EHEM.

Heart rate extraction based on half size (HEM-HS)

This paper proposes new method for one heart rate extrac-
tion method. This method has the same processes as HEM-
FFT, but this method selects frequency which indicates the
half size of all power spectra as HR (called HEM-HS). If the
power spectra of several frequencies is almost same value.
Since HEM-FFT estimates HR from the largest spectrum,
if the power spectra of several frequencies are almost same
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(a) One peak of spectra (b) Several peaks of spectra

Figure 4: Two kinds of spactra

value, it is influenced easily from outliers. HEM-HS has ro-
bustness for the outlier because it estimates HR from the size
of all power spectra. we explain the effectifeness of HEM-
HS in two kinds of spectra empirically assumed below.

• One peak of spectra
Figure 4a shows the spactra with one peak. HEM-FFT and
HEM-HS estimate the frequency around this peak as HR.

• Several peaks of spectra
Figure 4b shows the spactra with several peaks. HEM-
FFT estimates the certain frequency among these peaks,
while HEM-HS estimates the frequency of the center of
these peaks as HR.

In the situations of one peak and two peaks, both methods
can estimate HR accurately, but HR of HEM-FFT is more
accurately than HR of HEM-HS. In the situation of sev-
eral peaks, HEM-FFT cannot estimate HR accurately, while
HEM-HS can estimate HR accurately. we integrates both
method in order to utilize strong points and decrease weak
points. The integration way is explained below.

Ensemble policy

As machine learning techniques, there is ensemble learning.
This generates one result by integrating several results ac-
quired from several learning methods (or several learners
based on one learning method and different data). This tech-
nique can prevent from error which one learning method
generates because different methods seldom generate same
error. We proposes ensemble heart rate extraction method
(called EHEM) by utilizing this technique. As for the con-
cretely method in this paper, EHEM extracts HRs by HEM-
FFT and HEM-HS, and compares the two HRs. If difference
between the two HRs is over certain threshold, this method
employs the HR by HEM-HS; otherwise, this method em-
ploys the HR by HEM-FFT. This threshold indicates prior-
ity of whether EHEM accepts the HR of HEM-FFT. If the
threshold is large, EHEM accepts HR of HEM-FFT in a lot
of time.

Figure 5: EHEM based on HEM-FFT and HEM-HS

Experiment

Experimental details

This paper utilizes pressure data from water pressure sensor
while tester sleeping, and compares the HRs extracted by
EHEM and HEM-FFT, and measured by TEIJIN as true HR.
This paper evaluates the behavior of the HR. Concretely, this
paper evalueates whether the extracted HR bahaves along
to the HR of TEIJIN. In additon, average, standard devia-
tion, and max value of the errors among the HRs of EHEM,
HEM-FFT, and TEIJIN are evaluated, respectively. We uti-
lize 26 kinds of pressure data from 12 males or females peo-
ple, and ages of them are from 20s to 70s. The above thresh-
old is 10 in this experiment.

Results

Figures 6 shows the behavior of the HR by EHEM and
HEM-FFT in one example. In this figure, blue, green, and
orange lines show the HR by EHEM and HEM-FFT, and that
measured by TEIJIN, respectively. From this result, HRs
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(a) Result of EHEM (b) Result of HEM-FFT

Figure 6: Result (blue: EHEM, green: HEM-FFT, orange: TEIJIN)

(a) Average of errors (b) Standard deviation of errors (c) Max value of errors

Figure 7: Average, standard deviation, and max value of errors in all examples

of EHEM and HEM-FFT can behave along to the HR of
TEIJIN. The HR of HEM-FFT sometimes becomes outlier,
while that of EHEM can prevent from becoming outlier. Ta-
ble 2 shows average, standard deviation, and max value of
the errors of HR between EHEM and TEIJIN (upper side),
HEM-FFT and TEIJIN (lower side) respectively. The HR of
EHEM is smaller than that of HEM-FFT in all attributes.
Figure 7 is the differences of the errors between EHEM and
HEM-FFT in each data. Left side, middle side, and right side
of Fig. 7 indicate the differences of the average, the stan-
dard deviation, and the max value of the errors, respectively.
Vertical and horizontal axes are the differences and kinds
of data, respectively. In this figure, if the bar is negaitive,
EHEM performs better than HEM-FFT, otherwise, HEM-
FFT performs better than EHEM. From this result, EHEM
performs better than HEM-FFT in almost whole case of the
data, though it performs worse than HEM-FFT in one data
“141015 H” in terms of the above three points.

Table 2: Difference between EHEM and HEM-FFT

method average standard deviation max value
EHEM 4.89 5.38 39.8

HEM-FFT 5.13 6.66 52.9

Discussion

From the results, EHEM can extract HR accurately. From
Table 2 and Fig. 7, since the HR extracted by EHEM has
small error than that extracted by HEM-FFT, EHEM can
prevent the error made by HEM-FFT, and extract HR along
to the true HR accurately. That is because EHEM is based
on HEM-HS and HEM-FFT. HEM-HS can extract HR with-
out outlier, though the accuracy of HEM-HS is not better
than that of HEM-FFT in each time. From the result, it is
clear that EHEM can utilize the effectiveness of HEM-HS
and the accuracy of HEM-FFT. We discuss the performance
of EHEM in terms of each point of view below.

Result of HEM-HS

Figure 9 is the result of HEM-HS in one example. Vertical
and horizontal axes indicate the extracted HR and time, re-
spectively. Violet line is the result of HEM-HS, while orange
line is HR of TEIJIN. In this figure, HEM-HS can extract
HR without outlier, but cannot capture the shape of true HR
more accurately than HEM-FFT. That is because HEM-HS
utilize half size of all spectra for extraction. HEM-HS can
extract HR from the shape of the spectra by utilizing size of
them. This way has robustness to outlier. However, HEM-
HS cannot capture the small difference of pressure by the
HR changing because the spectra are the similar shapes with
each other in each time. As for the result, the HR by HEM-
HS has smaller amplitude than other HRs.
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Figure 8: Details of EHEM

Figure 9: Result of HEM-HS

Candidate of EHEM

Figure 8 shows the detail of EHEM performance in one ex-
ample of the experiment. Lines in upper side of this fig-
ure show HRs of EHEM, HEM-FFT, and TEIJIN, respec-
tively. A line in middle side of this figure shows which
method EHEM utilizes. EHEM has utilized HEM-HS while
this line is in up side, and has utilized HEM-FFT while it is
in low side. Figures in lower side of this figure show spec-
tra in certain time. The arrow from each spectrum indicates
to the time when it is occured. In Fig. 8, EHEM rejects
HR of HEM-FFT and accepts HR of HEM-HS, whenever
HEM-FFT extracts HR with extreme deviation from true
HR. In addition, there are two types of the spectra in Fig.
8, the spectrum with one peak and several peaks, respec-
tively. HEM-FFT and HEM-HS perform well in the former
and the latter spectra, respectively. EHEM can select appro-
priate method along to the above fact.

Difference among sensors

In this paper, we utilize pressure data by heart beat extracted
from the water pressure sensor. Figure 10 shows the ex-
tracted HR by EHEM from raw data measured by four sen-
sors in one example. The extracted HR by EHEM from the
extracted data is shown in Fig. 6a. Vertical and horizontal

axes indicate HR and time, respectively. Blue line is HR by
EHEM, while orange line is true HR measured by TEIJIN.
From these results, the extraction from the raw data is diffi-
cult for EHEM, preprocessing is required. However, the HRs
in Fig. 10c and 10d have behaved along to true HR in first
half, while the HRs in Fig. 10a and 10b have behaved along
to true HR in latter half. On the other hand, Table 3 shows
the average, the standard deviation, and the max value of the
errors. From this table, the results based on data from each
sensor are worse than that of extracted pressure data, but av-
eragely the results are less than almost 6.

Table 3: Difference among each sensor in EHEM

sensors average standard deviation max
heart rate 3.29 3.72 26
sensor 1 5.18 5.23 39
sensor 2 5.16 5.19 39
sensor 3 5.55 5.09 29
sensor 4 6.02 5.06 27

Table 4: Details of Tab. 3

sensors average standard deviation max
sensor 1 3.79 4.39 31

first sensor 2 3.35 3.68 27
sensor 3 2.62 2.70 24
sensor 4 2.53 2.50 19
sensor 1 4.58 4.43 34

middle sensor 2 4.63 4.45 29
sensor 3 6.97 5.33 24
sensor 4 5.83 3.80 24
sensor 1 7.19 6.10 39

last sensor 2 7.54 6.21 39
sensor 3 7.06 5.38 29
sensor 4 9.72 5.54 27

Table 4 shows the detail of Tab. 3. This table show the
difference among each sensor in three periods. Upper side
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(a) Sensor 1 (b) Sensor 2

(c) Sensor 3 (d) Sensor 4

Figure 10: Result of each sensor

is that in first one third time, middle side is that in next one
third time, bottom side is that in last one third time. From
this table, the data of sensors 3 and 4 behave like the pressure
for HR in first period, the data of sensors 1 and 2 behave
like the pressure for HR in middle period. However, nothing
behaves like the pressure for HR in last period. Therefore,
EHEM might perform well by utilizing raw data, but these
results suggests the requirement for data using.

Conclusion

This paper proposes ensemble heart rate extraction method
called EHEM which integrates two heart rate extraction
methods (HEM-FFT and HEM-HS) in order to decrease
errors generated by HEM-FFT, and improve accuracy of
heart rate extraction method. Concretely, this paper employs
HEM-FFT which regards frequency with maximum power
spectrum calculated by FFT as HR and HEM-HS which re-
gards frequency that indicates the half size of all power spec-
trum as HR, and EHEM regards the HR of HEM-HS as true
HR when difference between the two HRs is over 10; other-
wise EHEM regards the HR of HEM-HS as true HR. To val-
idate the effectiveness of EHEM, this paper applies EHEM
to pressure data from sleep monitor sensor. From the result,
EHEM can extract HR accurately, and prevent from outliers
generated by HEM-FFT.

We are going to research (1) what method gives good in-
fluence to EHEM, (2) how to integrate the HRs extracted
from the methods, and (3) how to utilize raw data for heart

rate extraction.
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Abstract

In recent years, various mobile communication devices such
as smartphones are becoming increasingly popular. Because
of the convenience brought by such devices, they are ap-
parently becoming indispensable. However, several studies
have indicated that these devices have detrimental effects on
our cognitive abilities; some studies have described this phe-
nomenon as digital dementia (DD). Media multitasking and
the heavy use of mobile devices are suggested as some fac-
tors causing DD. Nevertheless, evidence linking the overuse
of mobile devices and DD remains scarce. This study was
conducted to elucidate the existence and possible causes of
DD using crowdsourcing, which facilitates recruitment of nu-
merous study participants. We investigate the usage of infor-
mation devices and cognitive ability. Via crowdsourcing, one
thousand study participants were recruited. Results suggest
that the age when one begins using mobile devices as well
as the heavy usage of those are potential factors leading to
cognitive decline. We want to sound the alarm on the use of
mobile terminals, which might cause severe disorder.

Introduction

With rapid innovation in the information and communica-
tions technology (ICT) area, our lifestyles have been chang-
ing dramatically. Sometimes such changes cause new disor-
ders, such as smartphone related disorders. In recent years,
mobile communication devices, including smartphones and
tablets, have rapidly become popular, enabling virtual com-
munication via internet. Because of that convenience, the
devices are becoming increasingly indispensable and addic-
tive.

However, use of those devices, particularly overuse, has
been emphasized as a cause for alarm. Actually, not a few
studies have found possible adverse effects of overuse: mul-
titasking has a relation to a decline of attention (Ralph et
al. 2014) and memory (Ophir, Nass, and Wagner 2009);
overuse of smartphones is related to a declining tendency
of thought (Barr et al. 2015). Several reports of the literature
have described these symptoms as digital dementia (DD) be-
cause of their symptoms, which are analogous to those of
Alzheimer’s disease. Several reports have described that DD
derives from two factors: (1) overuse of information devices

Copyright c© 2018, Association for the Advancement of Artificial
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such as smartphones and (2) daily multitasking habits. Nev-
ertheless, no reliable evidence exists for DD because of the
difficulty of designing valid experiments. Moreover, counter
studies of DD have found no relation between media multi-
tasking and cognitive ability (Ralph et al. 2015). Therefore,
even today, DD is a vague and controversial concept. This
situation naturally motivates research to explore the exis-
tence of DD and its putative mechanisms. Although recruit-
ing participants using crowdsourcing generally bottlenecks
unbiased recruitments because almost all crowdworkers are
heavy users of digital devices, we intentionally used crowd-
sourcing in expectation of the biases. For this study, heavy
users of digital devices are suitable as participants. From an-
alyzing the data of recruited 1000 participants, existence of
DD was apparent. Moreover, new potential factors causing
DD were found.

Method

We used Yahoo! Crowdsourcing1 to investigate the state of
each participant (Fig. 1) using a questionnaire.

Recruitment Crowdsourcing was used for recruitment for
two reasons: (1) people who use those devices to some ex-
tent in daily life are suitable as participants; (2) it is easy to
recruit many participants.

Questionnaire We investigated the usage of information
devices. Information devices were classified into two cate-
gories: (a) mobile terminals and (b) computers. Usage was
classified into three categories: (1) age at start of use (start
age), (2) usage time per day, (3) time for private use per
day. Cognitive ability and mental test scores were also cal-
culated from the responses to the questionnaires. Calculated
features were mindfulness (Brown and Ryan 2003), memory
(Kazui et al. 2003), conscientiousness (Wada 1996), happi-
ness 2, and extraversion (Wada 1996), and stress (Imazu et
al. 2006).

Results

As a result, 1000 participants (male 482, female 517, other
1) were recruited via crowdsourcing during September–
October 2017. The results are explained below.

1https://crowdsourcing.yahoo.co.jp/
2http://www.med.oita-u.ac.jp/oita-lcde/WHO-5[1].pdf
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Figure 1: Recruitment and questionnaire.

(a) (1) Start age: Significant variation was found in Mindful-
ness, Memory, and Conscientiousness (one-way ANOVA,
p < 0.01). (2) Usage time per day: Significant variation was
found for Mindfulness, Conscientiousness, Extraversion,
and Stress. (3) Time for private use per day: Significant
variation was found only for Mindfulness. (Table 1)
(b) (1)–(3) In no usage category was significant variation
found among scores.

start age using time time for private use
Mindfulness � � �
Memory �
Conscientiousness � �
Happiness
Extraversion �
Stress �

Table 1: Bariation between mobile terminal groups (one-
way ANOVA, �: p < 0.01).

Additionally, we classified participants into two groups
according to start age: under 20 years old (Early Start) and
21 plus (Late Start). Comparison of these two groups re-
vealed that the Mindfulness score (higher score = less at-
tentive) of the under 20 years old group was greater than
that of the 21 plus group (45.29 ± 12.14 vs. 42.21 ± 12.25,
p < 0.01). Moreover, the Memory score (higher score =
less memory ability in daily life) was greater (12.01 ± 6.54
vs. 9.93 ± 5.81, p < 0.01). The stress score (higher score =
more stressed) was also higher (7.05± 3.14 vs. 6.63± 3.10,
p < 0.01). The Conscientiousness score (the score is high,
more conscientious) was lower (46.38 ± 6.77 vs. 48.57 ±
7.21, p < 0.01) (Table 2).

Early Start (n = 406) Late Start (n = 594) P-value
Mindfulness 45.29 ± 12.14 42.21 ± 12.25 < 0.01
Memory 12.01 ± 6.54 9.93 ± 5.81 < 0.01
Conscientiousness 46.38 ± 6.77 48.57 ± 7.21 < 0.01
Happiness 11.71 ± 5.05 11.69 ± 5.33 0.41
Extraversion 48.72 ± 4.99 49.42 ± 4.66 0.01
Stress 7.05 ± 3.14 6.63 ± 3.10 < 0.01

Table 2: Comparison of mental test scores between two
groups related to the start age of mobile terminal use.

Discussion

The DD symptoms found in earlier studies appeared among
participants recruited via crowdsourcing. Some examples
are that the relation between the mobile usage per day and
the Mindfulness score support this view. Moreover, results
suggest that the starting age of mobile device use is also an

important factor related to DD: the earlier a person starts us-
ing mobile terminals, the less attention and memory ability
a person has and the greater the amount of stress felt.

Considering that the number of young people is depen-
dent on smartphones in daily life, this trend can be expected
to persist into the next decade. Consequently, during the
next decade, DD might be regarded as a common state of
human beings because many people around world are ex-
pected to be affected by DD caused by overuse of mobile
devices. Follow-up investigations with appropriate control
groups would be difficult to conduct.

Considering the points raised above, future works are the
following: (1) investigating the relation between the hip-
pocampus size and device-use starting age and (2) investi-
gating the severity of DD’s spread through smartphone ap-
plications, investigating applications that can notify users of
overuse, etc. Although DD is not currently regarded as a se-
vere problem, it must be monitored closely in the near future.
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Abstract

Given a Markov Decision Process (MDP) defined by a sim-
ulator, a designated starting state s0, and a downside risk
constraint defined as the probability of reaching catastrophic
states, our goal is to find a stationary deterministic policy π
that with probability 1 − δ achieves a value V π(s0) that is
within ε of the value of the optimal stationary deterministic ν-
feasible policy, V ∗(s0), while economizing on the number of
calls to the simulator. This paper presents the first PAC-Safe-
RL algorithm for this purpose. The algorithm extends PAC-
RL algorithms for efficient exploration while providing guar-
antees that the downside constraint is satisfied. Experiments
comparing our CONSTRAINEDDDV algorithm to baselines
show substantial reductions in the number of simulator calls
required to find a feasible policy.

Introduction

This work is inspired by problems in natural resource man-
agement centered on the challenge of invasive species (Diet-
terich, Alkaee Taleghan, and Crowley, 2013; Taleghan et al.,
2015). Computing optimal management policies for ecosys-
tems is challenging because they exhibit complex spatio-
temporal interactions at multiple scales. Many ecosystem
management problems can be formulated as MDP (Markov
Decision Process) planning problems (Sheldon et al., 2010).
In a simulator-defined MDP, the Markovian dynamics and
rewards are provided by a simulator from which samples
can be drawn. Simulators in natural resource management
can be very expensive to execute, so that the time required
to solve such MDPs is dominated by the number of calls to
the simulator.

Efficient MDP planning algorithms attempt to mini-
mize the number of simulator calls before terminating
and outputting a policy that is approximately optimal with
high probability (Dietterich, Alkaee Taleghan, and Crowley,
2013). For unconstrained MDPs, the standard formulation
of this is the notion of PAC-RL, first introduced by Fiechter
(1994). This is in contrast to the PAC-MDP formalization,
which minimizes various measures of infinite-horizon re-
gret (Strehl and Littman, 2008). A common component of
PAC-RL algorithms is to compute confidence intervals and
explore using the optimism principle.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In many practical scenarios, such as natural resource
management, a desirable policy needs to satisfy certain
constraints imposed by decision makers. In these scenar-
ios, maximizing the expected reward does not necessarily
avoid rare catastrophic or dangerous situations. For exam-
ple, in conservation problems, catastrophic outcomes in-
clude species extinction, long-term establishment of an in-
vasive species, and severe wildfires. A standard approach to
finding policies that avoid catastrophic states is to assign a
large negative reward to those states (Garcı́a and Fernández,
2015; Geibel and Wysotzki, 2005). This is equivalent to a so-
called Big M method for establishing a lexicographic prefer-
ence for policies that do not enter catastrophic states. How-
ever, this approach does not quantify the risk (probability) of
entering a catastrophic state, nor does it determine whether
there are policies that control this risk. A better approach
is to adopt the Constrained MDP (C-MDP) formalism (Alt-
man, 1999), which seeks to maximize one objective (e.g.,
economic value) while satisfying one or more constraints
probabilistically. For example, in invasive species manage-
ment, we can define a C-MDP to minimize the economic
cost of invasive species management while ensuring that the
probability of native species extinction is less than a speci-
fied threshold.

Recently, Geibel and Wysotzki (2005) developed a
model-free Q-learning algorithm for C-MDPs. Their formu-
lation is applicable to episodic tasks with a combination
of absorbing catastrophic and goal states. As Geramifard
(2012) pointed out, the Geibel, et al., work does not provide
a performance guarantee on the result.

An alternative to constrained MDPs is to consider risk-
sensitive objectives such as variance penalties, value at risk
(VaR), and conditional value at risk (CVaR) (Garcı́a and
Fernández, 2015; Altman, 1999). Var and CVar optimize the
α-quantile of the expected return, and CVaR has favorable
mathematical properties. While these are all very interesting
approaches, we find the constrained MDP formulation eas-
ier to understand and explain to stakeholders, and for this
reason, we focus our efforts on C-MDPs.

A drawback of C-MDPs is that the optimal policy can be
stochastic in some cases. Specifically, if there are c con-
straints, then the optimal policy may be stochastic in up
to c states. From the perspective of our stakeholders, this
stochastic behavior is confusing and undesirable. Hence, in
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this paper, we aim to find a stationary deterministic policy
that satisfies a downside risk constraint as well as maximiz-
ing the discounted reward. We seek to do this while econ-
omizing on the number of calls to the simulator and while
providing PAC guarantees both that the constraints are sat-
isfied and that the resulting policy is within a fixed bound
of optimality. This provides the first PAC-RL algorithm for
deterministic policies in C-MDPs.

The paper is organized as follows. Section 2 introduces
our notation for MDPs, C-MDPs, and confidence inter-
vals. Section 3 introduces our new planning algorithm
CONSTRAINEDDDV. Section 4 provides theoretical results.
Section 5 presents an experimental evaluation of CON-
STRAINEDDDV and a comparison with other methods. Sec-
tion 6 concludes the paper. We evaluate our algorithms on an
invasive species problem as well as on standard reinforce-
ment learning benchmarks.

Problem Definition and Notation
Let a simulator-defined MDP consist of a start state s0, a
set of possible states S, a set of possible actions A, a dis-
count factor γ ∈ (0, 1] and a stochastic function F that
maps from an input state-action pair (s, a) to a resulting
state s′ and reward r, where s′ ∼ P (s′|s, a) is sampled ac-
cording to the (unknown) transition function, r ∼ R(r|s, a)
is sampled according to the unknown reward function, and
0 ≤ r ≤ Rmax. In this paper, we will assume that the re-
ward is deterministic; our methods can be easily extended
to handle stochastic rewards. A (deterministic) policy π is
a function mapping from states s to actions a = π(s). The
value of the policy in the start state, V π(s0), is the expected
discounted cumulative reward:

V π(s0) = E

[ ∞∑

t=0

γtrt | s = s0

]
.

Let Vmax = Rmax

1−γ be the maximum possible value of any
state under any policy. The corresponding minimum possi-
ble value is zero.

An optimal policy π∗ maximizes V π(s0), and the corre-
sponding value is denoted by V ∗(s0). The action-value of
state s and action a under policy π is defined as Qπ(s, a) =
R(s, a)+γ

∑
s′ P (s′|s, a)V π(s′). The optimal action-value

is denoted Q∗(s, a). Later, we indicate these functions with
subscript R to distinguish them from the catastrophe value
function.
Definition 1 The occupancy measure μ of an MDP under
policy π is defined as

μπ(s) = EP

[ ∞∑

t=0

γtI[st = s]|s0, π
]
,

where I[·] is the indicator function and the expectation is
taken with respect to the transition distribution.
This is the cumulative discounted probability that the MDP
will occupy state s under policy π for discount factor γ. It
can be computed via dynamic programming on the Bellman
flow equation (Syed, Bowling, and Schapire, 2008):

μπ(s) = I[s = s0] + γ
∑

s−
μ(s−)P (s|s−, π(s−)). (1)

This says that the discounted probability of visiting state s
is equal to the sum of the probability that s is the starting
state and the probability of reaching s by first visiting state
s− and then executing an action that leads to state s.

It is easy to show that

V π(s0) =
∑

s

μπ(s)R(s, π(s)). (2)

We adopt μπUCB

(also written as μUCB) as the occupancy
measure computed based on the principle of optimism under
uncertainty and maximum likelihood estimates of transition
probabilities.

Let a subset of states SC ⊂ S be “catastrophic” states in
the sense that we want to limit the probability of entering
those states. Let us assume that all states in SC are absorb-
ing.
Definition 2 For a policy π, the risk in state s is defined as

ξπ(s) =
∑

t

γt
CP (st ∈ SC |s, π), (3)

which is the (discounted) probability of entering a catas-
trophic state when following π. γC denotes the catastrophe
discount factor.

As a learning algorithm explores the MDP, it collects the
following statistics. Let N(s, a) be the number of times
state-action pair (s, a) is simulated during learning and
N(s) =

∑
a N(s, a). Let N(s, a, s′) be the corresponding

number of times that s′ has been observed as the resulting
state. Let R(s, a) be the observed reward. Let P̂ (s′|s, a) =
N(s, a, s′)/N(s, a) be the maximum likelihood estimate for
P (s′|s, a).

A 1 − δ confidence interval is a pair of random variables
V (s0), V (s0) such that with probability 1 − δ, V (s0) ≤
V π(s0) ≤ V (s0). Similarly, Q(s, a) and Q(s, a) denote
the confidence bounds over the action-value functions. We
follow the “Optimism Under Uncertainty” principle, and
denote by πUCB the policy based on an upper confi-
dence bound on the action-value function, πUCB(s) =
argmaxa Q(s, a).

Definition 3 (Fiechter, 1994). A learning algorithm is PAC-
RL if for any discounted MDP (S,A, P,R, γ, P0), ε > 0,
1 > δ > 0, and 0 ≤ γ < 1, the algorithm halts and outputs
a policy π such that

P[|V ∗(s0) − V π(s0)| ≤ ε] ≥ 1− δ,

in time polynomial in |S|, |A|, 1/ε, 1/δ, 1/(1 − γ), and
Rmax.

Optimal Policies for C-MDPs

Before delving into additional definitions for C-MDPs, let’s
clarify the class of optimal policies for C-MDPs. It has been
shown that, unlike unconstrained MDPs, the optimal poli-
cies in C-MDPs are not necessarily stationary and determin-
istic and may depend on the starting state (Feinberg and
Shwartz, 1996; Zadorojniy, Even, and Shwartz, 2009). In
standard discounted unconstrained MDPs, one can find op-
timal policies that are stationary and deterministic from any
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state in O
(|S|2|A|). In a C-MDP with two objectives (the

standard value function and the risk of catastrophe), if the
two objectives have unequal discount factors, then finding
deterministic and stationary policies is NP-complete (Dol-
gov and Durfee, 2005; Feinberg, 2000; Chang, 2016). Op-
timal policies in C-MDPs with equal discount factors are
randomized and stationary for a fixed starting state. The
solution can be found by solving a linear program, where
the dual variables represent the state occupancy measure, if
the model is known. In our case where we only have one
constraint, the optimal randomized policy is called a “1-
randomized” policy (Zadorojniy, Even, and Shwartz, 2009).
This means the difference between deterministic and the 1-
randomized policy will arise in at most one state, where
the randomized policy may choose probabilistically between
two actions (Feinberg and Rothblum, 2012).

In this paper, we focus on finding a best policy in the
class of stationary and deterministic policies with perfor-
mance guarantees, even when a randomized policy is the
optimal policy. It is a challenge to present a randomized
policy to stakeholders. Feinberg (2008) points out that im-
plementation of randomized policies is not natural in many
applications, and the use of randomization procedures could
increase the variance of the expected return. Boutilier and
Lu (2016) also give an example of how randomized policy
could be undesirable.

Additional Definitions for C-MDPs

Let Π be the space of deterministic polices over the con-
strained MDP M(τ) = 〈S,A, P,RR, RC , τ, γ, s0〉. Every
policy π induces two value functions V π

R and V π
C . We will

say two policies π1 and π2 are equivalent if V π1
R = V π2

R
and V π1

C = V π2
C over all states s ∈ S. Let π denote the set

of policies equivalent to π. Let π1 and π2 be two distinct
equivalence classes of policies. We will say that π1 domi-
nates π2 if V π1

R (s0) ≥ V π2
R (s0) and V π1

C ≤ V π2
C . That is,

π1 is superior in either RR or RC or both. An equivalence
class is non-dominated if there does not exist an equivalence
class that dominates it.

Let Π(τ) be the space of deterministic policies such that
∀π ∈ Π(τ), V π

C (s0) ≤ τ . These are the feasible deter-
ministic policies. An optimal feasible deterministic policy
π∗τ ∈ Π(τ) satisfies

V
π∗τ
R (s0) ≥ V π

R (s0) ∀π ∈ Π(τ).

Values are defined in the usual way as the expected cumu-
lative discounted return:

VC(s0) = E[
∑

t

γtRC(st, π(st))],

and
VR(s0) = E[

∑
γtRR(st, π(st))].

An optimal feasible policy π∗τ is not necessarily non-
dominated. There might be another policy π′ that achieves
the same VR(s0) but has larger V π′

C (s0) > V
π∗τ
C (s0) that is

still feasible.
Define the Lagrangian MDP L(λ) = 〈S,A, P, λRR −

(1 − λ)RC , γ, s0〉 whose reward function is a linear combi-
nation of RR and RC .

PAC-RL for Constrained MDPs

We now consider the problem of finding an approximately
optimal policy by sampling from a simulator-defined Con-
strained MDP. We introduce the following parameters:
• τ defines the feasibility constraint. A policy π is feasible

if V π
C (s0) ≤ τ .

• ε defines a tolerance on the optimality of V π
R (s0).

• ν defines a tolerance on feasibility. We will accept any
policy for which |V π

C (s0) − V ∗C(s0)| ≤ ν, which means
that in the worst case, V π

C (s0) = τ + ν.
• η controls the numerical precision of the λ values.
• δ is the confidence parameter.

Definition 4 (Chang (2016)). A deterministic policy π is
called ν-feasible if V π

C (s0) ≤ τ + ν for ν ≥ 0.

Definition 5 Let ΠL be the set of all stationary determin-
istic policies that are solutions to the Lagrangian MDP for
some value of λ.

Definition 6 An algorithm is Lagrangian-PAC-SAFE-RL if,
for any C-MDP M(τ) = 〈S,A, P,RR, RC , τ, γ, s0〉 and
any parameters ε > 0, δ ∈ (0, 1), τ ∈ (0, 1], η > 0,
and ν > 0 the algorithm halts in time polynomial in
|S|, |A|, 1/(1 − γ), 1/ε, 1/ν, 1/δ, and 1/η and does one of
the following two things:

1. Outputs a policy π ∈ ΠL,η such that with probability 1−δ
the following are simultaneously true:

(a) V π
C (s0) < τ + ν (π is τ + ν feasible)

(b) V
∗(−ν)
R (s0) − V π

R (s0) ≤ ε (the value of π is never less
than ε below the value of the optimal τ − ν feasible
policy, and it may be significantly higher)

2. Outputs the message Fail, in which case with probability
1 − δ there does not exist any policy π ∈ ΠL,η such that
V π
C (s0) ≤ τ + ν.

This definition gives us control over how close to feasible
the policy is (via ν) and how close to the optimal feasible
policy its VR return is (via ε).

Confidence intervals for VR and VC for policy
evaluation

Suppose we have drawn a set of samples for various states
and actions. For any fixed policy π, we can perform ex-
tended policy evaluation (i.e., extended value iteration with
a fixed policy) to obtain lower and upper confidence bounds
on VC(s0) and VR(s0). We will denote these as V π

C(s0),
V

π

C(s0), V
π
R(s0), and V

π

R(s0). Suppose our goal is to de-
termine whether π is feasible and if it is, then to determine
confidence intervals on V π

R (s0). The policy π will be feasi-
ble with probability 1 − δ if V

π

C(s0) ≤ τ . Conversely, π is
not feasible with probability 1− δ if V π

C(s0) > τ .

Confidence intervals for VR and VC for policy
optimization

Instead of using a fixed policy, we can set a value of λ and
perform extended value iteration based on the upper confi-
dence bound of the Lagrangian objective. This will define
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the πUCB(λ) policy. More generally, we can perform binary
search on λ to find three values:
• λ is the largest value of λ ∈ Λ such that V

UCB(λ)

C (s0) ≤
τ . This means that given our current sample, πUCB(λ) is
the “best” policy (in the sense of having the largest λ) for
which we can guarantee with probability 1 − δ that it is
feasible.

• λ is the largest value of λ ∈ Λ such that V UCB(λ)
C (s0) ≤

τ . This means that given our current sample, this is the
largest value of λ that we cannot prove is not feasible.

The solid lines denote the true values of VC and VR. The
dashed lines denote the corresponding upper and lower con-
fidence bounds. For purposes of this section, let π∗ be the
policy in Π(τ, η) that maximizes V π

R (s0). That is, π∗ is τ -
feasible and among all such policies it maximizes the VR

return.

Extended Value Iteration

Classical value iteration computes an optimal policy for a
fixed MDP. Extended value iteration can compute optimal
policy for finite-sampled optimistic/pessimistic MDPs by
defining confidence intervals on the value function at each
state of the MDP based on samples from that MDP. Dif-
ferent confidence interval methods (e.g., Hoeffding bound
(Hoeffding, 1963), empirical Bernstein bound (Audibert,
Munos, and Szepesvári, 2009), multinomial confidence in-
terval (Weissman et al., 2003), etc.) at each state lead to
different confidence intervals throughout the MDP. One can
obtain robust policies from pessimistic MDPs (Tamar, Man-
nor, and Xu, 2014). Based on our experiments, the empirical
Bernstein bound is the tightest bound compared to the other
bounds.

The Empirical Bernstein Method: This approach uses
the empirical Bernstein bound. Let M(s, a) denote the sam-
ple mean of the discounted backed-up values from the suc-
cessor states that result from taking action a in state s,
and V ar(s, a) denote the sample variance of these values.
We denote the upper and lower bounds on these values as
M(s, a), M(s, a),V ar(s), and V ar(s).

M(s, a) =
∑

s′
P̂ (s′|s, a)γV (s′)

V ar(s, a) =
∑

s′
P̂ (s′|s, a)[γV (s′) − M(s, a)]2

V (s) = max
a

R(s, a) +M(s, a)+
√

2V ar(s) ln(3/δ0)

N(s, a)
+

3γVmax ln(3/δ0)

N(s, a)

(4)

The lower bounds could be defined in a similar way as
above. We need to define δ0 so that the confidence intervals
hold simultaneously with probability 1− δ. These equations
can be iterated to convergence. At convergence, with proba-
bility 1− δ, V (s0) ≤ V ∗(s0) ≤ V (s0).

Algorithm
The extended value iteration for the Lagrangian objective
computes upper and lower bounds on VR and VC in all states

and on QR(s, a) and QC(s, a) in all state-action pairs. A
binary search algorithm (see supplementary materials) on λ
finds λ and λ to within tolerance η for a given set of samples.
We will apply BINARYSEARCH to find λ and λ. For λ, we
are looking for the point λ where V

λ

C(s0) crosses τ , which
is exactly what BINARYSEARCH does. For λ, we need to
find the point where V λ

C(s0) crosses τ , determine the value
on the larger side, and then find the largest value of λ that
achieves that value. The function NEXTLARGERLAMBDA
finds the next larger value of λ that will cause the UCB pol-
icy to change by calling LAGRANGIANEVI.

The main algorithm works by maintaining an upper bound

V
UCB(λ

(−ν)
)

R (s0) on the value of the best (τ − ν)-feasible

policy and a lower bound V
UCB(λ(+ν))
R (s0) on the value of

the best (τ + ν)-feasible policy. Here the notation λ(−ν)

refers the (τ − ν) feasibility and λ(+ν) refers to (τ + ν) fea-
sibility. Sampling proceeds in a series of minibatches that
cause these bounds to shrink toward one another. Execution

terminates when V
UCB(λ

(−ν)
)

R (s0)−V
UCB(λ(+ν))
R (s0) ≤ ε.

This is summarized in Algorithm1).
The rationale is the following. The largest value that

V
∗(−ν)
R (s0) could have is V

UCB(λ
(−ν)

)

R (s0). The smallest

value that πUCB(λ(+ν)) could have is V UCB(λ(+ν))
R (s0). We

want the value of πUCBλ(+ν)) to be no less than ε below
the value of V

∗(−ν)
R (s0). We attain this by ensuring that

V
UCB(λ(+ν))

R (s0) − V
UCB(λ

(−ν)
)

R (s0) < ε.

Correctness and Polynomial Running Time

The proofs for the following claims and theorem are pro-
vided in supplementary materials.
Claim 1 For any fixed λ, the optimal policy π∗λ for L(λ) is
a non-dominated policy.

Claim 2 Let λ1 and λ2 be a pair of values such that λ2 =
λ1 − δ for some positive δ. Let π1 be a policy that optimizes
the Lagrangian for λ = λ1 and π2 be the policy that op-
timizes the Lagrangian for λ = λ2. Then one of two cases
holds:

Case 1: V π2
C (s0) = V π1

C (s0), and V π2
R (s0) = V π1

R (s0) or
Case 2: π1 
= π2, V π2

C (s0) < V π1
C (s0), and V π2

R (s0) <
V π1
R (s0).

Claim 3 There exists a value λ∗ such that ∀λ ≤ λ∗, the
optimal policy, π∗λ, of the Lagrangian MDP L(λ) is feasible
for M(τ); that is V π∗λ

C (s0) ≤ τ .

For computational efficiency, we will not consider all possi-
ble values of λ. Instead, we discretize the space by introduc-
ing a precision parameter η. Define ΠL,η to be the class of
all policies in ΠL where λ = kη, for k ∈ {0, 1, . . . , 1/η}.
We will restrict our attention to only these policies.

To obtain a polynomial time sampling algorithm, we need
to relax our goal (based on ideas from Chang (2016)). Let
ΠL,η(τ) be the set of all policies π ∈ ΠL,η such that
V π
C (s0) ≤ τ . These are the τ -feasible policies. We will
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Algorithm 1: CONSTRAINEDDDV(s0, τ, ν, F, ε, δ, γ, Rmax)

1: λ(+ν) := 0; λ
(−ν)

:= 1
2: CheckFeasibility:=true
3: loop

4: λ
(−ν)

= FINDUPPER(0, 1,max(0, τ − ν), η)

5: λ(+ν) = FINDLOWER(0, 1,min(1, τ + ν), η)
6: if CheckFeasibility then
7: LAGRANGIANEVI(0, η, δ)
8: if V

UCB(0)
C (s0) ≥ τ − ν then

9: {there is no (τ − ν)-feasible policy}
10: return No feasible policy
11: else if V

UCB(0)

C (s0) < τ − ν then
12: {there is a (τ − ν)-feasible policy}
13: CheckFeasibility:=false
14: end if
15: end if

16: if
(
λ
(−ν)

= λ(+ν)
)

and
(
V

UCB(λ
(−ν)

)

R (s0) − V
UCB(λ(+ν))
R (s0) ≤ ε

)
then

17: return
(
Success, πUCB(λ(+ν))

)

18: end if
19: Explore for a minibatch of B samples using DDV

on πUCB(λ
(−ν)

)

20: end loop

be interested in two other policy classes: ΠL,η(τ − ν) and
ΠL,η(τ + ν).

Let π∗(−ν) ∈ ΠL,η(τ − ν) be a policy that is feasi-
ble with respect to the threshold τ − ν and that among all
such policies maximizes VR(s0). More precisely, π∗(−ν) =
argmaxπ∈ΠL,η(τ−ν) V

π
R (s0).

Denote the value of π∗(−ν) by V
∗(−ν)
R (s0). Our goal

will be to output a policy π ∈ ΠL,η(τ + ν) such that
V
∗(−ν)
R (s0) − V π

R (s0) ≤ ε and to do so in polynomial time.

Claim 4 The optimal value λ∗ ∈ [λ, λ] with probability 1−
δ.

Claim 5 V
UCB(λ)
R (s0) ≤ V ∗R(s0) ≤ V

UCB(λ)

R (s0) with
probability 1 − δ.

Note that the gap between V
UCB(λ)

R (s0) and
V

UCB(λ)
R (s0) is composed of three parts. First, there is

the width of the upper confidence interval V
UCB(λ)

R (s0) −
V

UCB(λ)
R (s0). Second, there is the difference in the values

of the policies πUCB(λ) and πUCB(λ), which we can write as
V

UCB(λ)
R (s0)− V

UCB(λ)
R (s0). Finally, there is the width of

the lower confidence interval V UCB(λ)
R (s0)−V

UCB(λ)
R (s0).

To prove correctness, we must show that, under appropri-
ate conditions, the CONSTRAINEDDDV algorithm will ter-
minate at line 17. Specifically, we will prove the following
claim:

S0 GoalCAT CAT

Actions:

(a) γ = 0.95 and γC = 0.95

S0 GoalCAT CAT

Actions:

(b) γ = 0.95 and γC = 1

Figure 1: Derived policies for the GridWorld domain; solid
arrows are when λ = 1 and dotted arrows are when λ = 0.
When both policies agree on an action in a cell, only one is
shown.
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Figure 2: Value of reward and risk while varying λ and risk
threshold (τ ) for the GridWorld domain.

Claim 6 If ΠL,η(τ−ν) and ΠL,η(τ+ν) are non-empty and
0 < λ∗ < 1, then with probability 1 − δ, CONSTRAINED-
DDV will terminate at line 17.

We can also show the following.

Claim 7 If there is no (τ−ν)-feasible policy, then the CON-
STRAINEDDDV algorithm will terminate at line 10.

Theorem 1 CONSTRAINEDDDV requires polynomial
sample size and terminates in polynomial computation time.

Experiments

We report three experiments. First, we study the GridWord
domain shown in Figure 1(a) (there is one starting state, one
goal state, and two catastrophic states). Our goal is to gain
some intuition about the C-MDP formulation. Specifically,
we look at the policies for λ = 0 and λ = 1.

In Figure 1, we assume the model is known. The solid
lines show the optimal policy for λ = 1 (maximizing the
reward), and the dotted actions show the optimal policy
for λ = 0 (minimizing the risk). Notice that even for un-
equal discount factors, we are able to find a desirable policy,
which may not be optimal. The main difference between
the policies for discounted and undiscounted risk is that
for discounted risk the best stationary deterministic policy
that minimizes the risk takes the discount into account and
moves toward the goal more slowly than the undiscounted
risk policy.

In the second experiment, we solve for the optimal policy
when the MDP is known while varying λ and the constraint
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(b) Tamarisk R = 3 and H = 1
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(c) Tamarisk R = 3 and H = 2

Figure 3: Comparison of number of samples taken by each algorithm to reach to the termination point.

threshold τ . Our goal is to determine the right answer and
see the impact of τ and λ. Figure 2 shows the value of re-
ward (VR) and value of risk (VC) in the starting state for
the GridWorld domain while varying the value of λ (2(a))
and while varying the value of τ (2(b)). There is no feasible
policy when τ = 0.

In Figure 2(a), we see that when λ is close to 1, we can
easily reduce VC without any impact on VR. As λ shrinks,
VC and VR both shrink gradually, so that for values of τ in
the range (0.185 to 0.1), there continues to be little impact on
VR. However, when λ goes from 0.1 to 0.0, we see a huge
drop in VR for very little gain in VC . This kind of sudden
drop causes difficulty for obtaining PAC results. The prob-
lem is that in this region, the confidence intervals on VR will
be very wide, and it can require a huge number of training
samples to shrink them enough to achieve a width of ε.

In the third experiment, we compare the sample com-
plexity of CONSTRAINEDDDV against three benchmark al-
gorithms: GW-MLE, εg-greedy GW-MLE, εg-greedy UCB.
GW-MLE is the improved version of the algorithm of
Geibel and Wysotzki (2005), which basically maximizes
the Lagrangian defined as L(λ̂) = 〈S,A, P̂ , λ̂RR − (1 −
λ̂)RC , γ, s0〉, where λ̂ is the maximum likelihood estimate
of λ calculated over the MDP with transition probability P̂
and reward functions RR and RC . The GW-MLE algorithm
samples along the induced πλ̂ policy at each mini-batch.
UCB algorithm calculates πUCB = argmaxa QR(s, a) and
samples along the πUCB policy. Since the UCB algorithm
ignores the risk in its default operation, we have added an ad-
justable εg parameter for better exploration. The algorithms
are modified to have stopping condition similar to the lines
8 and 16 in Algorithm 1 .

We compared these algorithms on the GridWorld MDP
and two instances of the tamarisk domain. In these experi-
ments, we learn the model by sampling from the simulator.
Tamarisk problem instances are configured with the number
of river segments (E = 3) and the number of slots (H = 1)
and (H = 2) (for more detail see Taleghan et al. (2015)).
For the (E = 3, H = 1) problem, the starting state was
NTE (one site contains a native species, one is invaded by
tamarisk, and one site at the bottom of river is empty). For
the (E = 3, H = 2) instance, the starting state is NTEEEE
(one site contains a native species and an invasive species

and the rest of the sites in the river are empty). A catastrophic
state is any state in which there are no natives (species ex-
tinction). The goal state is that all sites are fully occupied by
native species. We optimized the value of εg for εg-greedy
GW-MLE and εg-greedy UCB algorithms among the candi-
date values εg ∈ {0.01, 0.1, 0.25}. After sampling a mini-
batch of size B = 1000 we update the model and calculate
the corresponding confidence bounds. We calculate λ and λ
every 8000 samples.

In these experiments, γ = γC = 0.95, δ = 0.01,
η = 0.01, and ν = 0.025. For the GridWorld domain,
ε = 0.2, and for the Tamarisk problems ε = 1. The algo-
rithms terminate either if the width of the confidence interval
falls below εRmax or if 3 million samples are drawn.

We report the number of samples drawn at termination
in Figure 3. The results are averaged over 10 indepen-
dent runs, and the vertical axis is plotted on a log scale.
Error bars indicate one standard deviation. The GW-MLE
and εg-GW-MLE algorithms perform very poorly; much
worse than CONSTRAINEDDDV. In many cases, they hit
the 3 million maximum sampling budget without achiev-
ing the desired confidence interval width. CONSTRAINED-
DDV and εg-UCB give much more similar performance, if
εg is properly tuned. CONSTRAINEDDDV almost always re-
quires smaller sample sizes, particularly for small values of
τ (which would be the values normally encountered in a real
application).

Conclusion

Many computational sustainability problems involving
MDPs must be concerned with catastrophic outcomes such
as species extinction. One approach to this is to limit the
probability of catastrophic outcomes by imposing a con-
straint on the MDP policy, which converts the MDP into a
Constrained MDP (C-MDP). Previous work on simulation-
based MDP planning for constrained MDPs has not pro-
vided formal guarantees. This paper is the first to provide an
algorithm with formal guarantees by extending the notion of
PAC-RL algorithms to PAC-Safe-RL algorithms. We proved
that this new algorithm, CONSTRAINEDDDV, is PAC-Safe-
RL. Our experiments demonstrated that CONSTRAINED-
DDV is also able to match or beat the sample complexity of
very competitive baseline algorithms that lack formal per-
formance guarantees.
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Abstract

The ability to learn from off-policy data – data generated from
past interaction with the environment – is essential to data
efficient reinforcement learning. Recent work has shown that
the use of off-policy data not only allows the re-use of data
but can even improve performance in comparison to on-policy
reinforcement learning. In this work we investigate if a re-
cently proposed method for learning a better data generation
policy, commonly called a behavior policy, can also increase
the data efficiency of policy gradient reinforcement learning.
Empirical results demonstrate that with an appropriately se-
lected behavior policy we can estimate the policy gradient
more accurately. The results also motivate further work into
developing methods for adapting the behavior policy as the
policy we are learning changes.

Introduction

Off-policy RL is necessary for data efficient reinforcement
learning. The standard way to incorporate off-policy data into
reinforcement learning is to use importance sampling. Un-
fortunately, policy improvement with importance sampling
may exhibit instability due to increased variance (Levine
and Koltun 2013; Thomas, Theocharous, and Ghavamzadeh
2015). Recent work has shown that importance sampling
can actually lead to more data efficient policy evaluation
(Hanna et al. 2017). This work introduced a method called
behavior policy gradient (BPG) and demonstrated it can find
data generation policies that give low variance importance
sampling evaluations. Here we investigate the problem of
policy improvement with a data generation policy that has
been learned with BPG. Specifically, we investigate whether
a behavior policy that gives low variance evaluation of an
initial policy can also be used to effectively estimate the di-
rection of the policy gradient and if this same policy can be
used for multiple policy gradient updates. Empirical results
show that 1) off-policy policy gradient estimates with such
a behavior policy lead to larger performance gains with a
single update and 2) that this improvement can be realized
for a limited number of policy improvement steps before
off-policy gradient estimates lead to worse performance than
on-policy gradient estimates.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Preliminaries

We assume the environment is represented as a finite hori-
zon, episodic MDP. The agent interacts with the environ-
ment in a series of episodes by selecting actions from a
policy π. Each episode can be described as a trajectory,
H , that consists of a sequence of states, actions, and re-
wards: H = S0, A0, R0, ...SL, AL, RL. The return of a tra-
jectory, denoted g(h), is the sum of rewards along the tra-
jectory: g(H) =

∑L
t=0 Rt. We assume π is a parameter-

ized, stochastic policy with parameter vector θ and write
H ∼ π to denote sampling a trajectory by following pol-
icy π for one episode. The expected return of a policy, π, is
J(π) = E[g(H)|H ∼ π].
In reinforcement learning, policy improvement is the it-

erative process of updating a policy towards a policy with
higher expected return. Denote the initial policy as πθ0

. At
step i a policy improvement method updates θi to θi+1 such
that J(πθi+1) > J(πθi). Policy improvement can continue
for a fixed number of iterations or until there is no longer an
increase in the expected return.
Naturally, policy improvement requires interaction with

the environment. We will refer to the policy that generates the
trajectories for a step of policy improvement as the behavior
policy. The policy being updated is the target policy. Methods
where the target policy is also the behavior policy are termed
on-policy; otherwise, they are off-policy.

Policy Gradient Reinforcement Learning Policy gradi-
ent methods are a popular class of reinforcement learning
algorithms used for policy improvement (Deisenroth et al.
2013). Policy gradient methods attempt to maximize the
expected return of a policy πθ with respect to the policy
parameters θ. This gradient can be derived as:

∂

∂θ
J(πθ) = E

[
g(H)

L∑

t=0

∂

∂θ
log πθ(At|St)

]
(1)

where H ∼ πθ. The simplest policy gradient method is
the REINFORCE algorithm which adapts the policy with
unbiased estimates of Eq. 1 (Williams 1992). In this form, es-
timates of the policy gradient often suffer from high variance.
Extensive work has gone in to reducing this variance in order
to scale policy gradient methods to complex problems (e.g.,
(Peters, Mülling, and Altun 2010; Greensmith et al. 2001;
Schulman et al. 2015; 2016; Gu et al. 2017)). As a result,
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policy gradient methods are a widely applied class of RL
algorithms.
Note that policy gradient methods are typically on-policy

methods in that we estimate the gradient at π with trajecto-
ries sampled from π. In practice this means that at step i of
learning, policy πi is used to collect a dataset of trajectories,
Di, Di is used to estimate (1), a gradient step is taken on θi,
and then Di is discarded and the process repeats with policy
πi+1.

Behavior Policy Search This section describes a recently
proposed off-policy method for policy evaluation that uses
importance sampling to lower the variance of policy evalua-
tion. In the next section we will adapt this idea to the policy
gradient setting.
Consider the policy evaluation setting where our goal is

to evaluate a target policy, π. The simplest approach is to
execute π for multiple episodes and average the resulting
returns. Unfortunately, this Monte Carlo estimator may have
high variance when the target policy rarely experiences tra-
jectories with high-magnitude return.

Instead of running π, we can instead run a different behav-
ior policy, πb and weight the resulting returns according to
the likelihood of seeing them under π instead of πb. This ap-
proach allows us to over-sample these rare, high-magnitude
returns and then weight them according to their true likeli-
hood. Importance sampling is an unbiased method for com-
puting the re-weighting. The importance sampled return of a
trajectory H is:

IS(H,πb) =

L∏

t=0

π(At|St

πb(At|St)
· g(H)

Given a dataset of trajectories, D, generated by πb the im-
portance sampling estimator is the mean of IS(H,πb) over
all H ∈ D.
Recent work by Hanna et al. demonstrated that it is pos-

sible to find a behavior policy that leads to lower variance
policy evaluation compared to Monte Carlo policy evaluation
(Hanna et al. 2017). Their behavior policy gradient (BPG)
method used gradient descent on the variance of the impor-
tance sampling estimator to adapt a parameterized behavior
policy towards a locally optimal behavior policy.

θi+1 = θi + αE

[
IS(H,πθ)

2
L−1∑

t=0

∂

∂θ
log πθ(At|St)

]

where H ∼ πθ. The result of running BPG for a particular
target policy π is a behavior policy, πb, that generates data
for low variance importance sampling evaluation of a π. This
low variance evaluation is only guaranteed for a static target
policy.

Off-Policy Policy Gradient

This section discusses how we can apply behavior policy
search to policy gradient methods. While there have been
many important contributions since Williams’ original REIN-
FORCE work, we will primarily discuss REINFORCE and
note that other approaches (e.g., optimal baselines (Green-
smith et al. 2001; Peters and Schaal 2008), trust-regions (Pe-
ters, Mülling, and Altun 2010; Schulman et al. 2015), etc.)

could be combined with the presented approach in future
work.

The REINFORCE method can be adapted to an off-
policy variant by using unbiased estimates of an importance-
sampled version of Equation 1

∂

∂θ
J(πθ) = E

[
IS(H,πb)

L∑

t=0

∂

∂θ
log πθ(At|St)

]
(2)

where H ∼ πb. As in policy evaluation, if πb is chosen
arbitrarily gradient estimates are likely to have high variance.
On the other hand, if we can select πb appropriately then our
gradient estimate may have less variance than the on-policy
version.

We will select πb to be a behavior policy that minimizes
the variance of an importance sampling evaluation of the
current policy. This approach allows us to directly apply BPG
to learn πb. In contrast, previous work has considered the
trace of the gradient covariance matrix as the measure of
gradient variance (Peters and Schaal 2008; Gu et al. 2017;
Ciosek and Whiteson 2017; Bouchard et al. 2016). Minimiz-
ing this variance measure is equivalent to minimizing the
variance of each component of the gradient. This measure
has been used in previous work on adaptive importance sam-
pling for stochastic gradient descent (Bouchard et al. 2016;
Ciosek and Whiteson 2017). One downside of this measure
is that it may be sensitive to the scale of the policy param-
eterization. Minimizing the variance of policy evaluation is
scale-invariant although it is not guaranteed to lower policy
gradient variance.
Another challenge for developing an off-policy REIN-

FORCE method is the need to track the current policy. If
we start with πb that gives low variance policy gradient es-
timates for the initial policy it may not give low variance
estimates after the initial policy has changed. One of our
experiments attempts to evaluate the scale of this problem.

Empirical Results

We present two experiments using the Cartpole domain im-
plented in OpenAI gym (Brockman et al. 2016). The policy
is a softmax distribution over actions where the logits come
from a linear combination of state variables. The initial be-
havior policy is trained with BPG to minimize the variance
of an importance sampling evaluation of the initial policy.
We design experiments to answer the questions 1) does a
behavior policy selected with BPG lead to better estimation
of the policy gradient direction and 2) can a behavior pol-
icy selected with BPG be used for multiple policy gradient
updates?

Policy Improvement Step Quality

Our first experiment compares the quality of the update di-
rection computed with an off-policy REINFORCE method
to the quality of the update direction computed with standard
REINFORCE. In order to make this comparison, we sample a
batch of trajectories with the initial policy and another batch
with πb. We estimate the on-policy REINFORCE gradient,
the off-policy REINFORCE gradient estimated with a be-
havior policy trained with BPG to evaluate the initial policy,
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Method Average Return (std.)
Random πb 54.92 (8.27)
On-policy 55.081 (1.31)

Optimized πb 68.656 (15.7)

Table 1: Comparison of one-step improvement in average return
when estimating the policy gradient with off-policy and on-policy
policy REINFORCE. For each behavior policy we sample 200 tra-
jectories and estimate the policy gradient direction with (2). The
gradient step size is computed with a line search. Results are aver-
aged over 50 independent runs.

Figure 1: Comparison of multi-step improvement in average return
when estimating the policy gradient with off-policy and on-policy
REINFORCE.

and the off-policy REINFORCE gradient estimated with a
randomly initialized behavior policy. For each method we se-
lect the optimal step-size for each method with a line search
on v(π). We use a line search to avoid conflating gradient
direction with gradient magnitude.
Table 1 shows that the average gradient direction com-

puted with off-policy REINFORCE leads to a much larger
increase in expected return. However, we also point out that
the variance of the performance improvement is also higher.
While in most cases expected performance increases above
the increase obtained by the other methods, the fact that the
variance of the improvement has increased may suggest that
lowering the variance of policy evaluation does not necessar-
ily lead to a lower variance policy gradient estimate.

Multi-step Policy Improvement

Our second experiment investigates if a behavior policy
trained to evaluate the initial policy can be used to estimate
the policy gradient at other policies. For this experiment, we
collect a single set of 100 trajectories with the behavior pol-
icy and adapt the target policy with off-policy REINFORCE
for 10 iterations.

Figure 1 demonstrate that an improved πb for importance
sampling evaluation can lead to faster learning compared
to on-policy REINFORCE – even without re-sampling new
trajectories. However, the improvement is relegated to the
first few iterations of policy improvement before the target
policy has changed significantly.

Discussion and Open Questions

Our empirical results have shown that off-policy policy gra-
dient estimates can give a more accurate estimate of the
direction of the policy gradient better than on-policy policy
gradient estimates. Our results also show that off-policy RE-
INFORCE with a behavior policy trained with BPG can lead
to faster initial learning but that performance degrades once
the current policy has been adapted away from the initial pol-
icy. In order to develop a complete, low variance off-policy
REINFORCE method it will be important to address the ques-
tion of how to adapt the behavior policy so that it continues
to lower variance as the current policy changes.

An alternative to adapting the behavior policy to track the
current policy is to start with a behavior policy that gener-
alizes to other policies along the trajectory of learning. One
approach towards finding such a policy would be to regular-
ize BPG so that it does not overfit to the policy it is trained to
evaluate or to use meta-learning techniques to learn a behav-
ior policy that can be quickly adapted to estimate the policy
gradient for a new target policy (Finn, Abbeel, and Levine
2017).

Conclusion

We have presented preliminary steps towards a policy gra-
dient algorithm that uses off-policy data for more efficient
updates. We have described how a recently proposed behavior
policy search method could be adapted to the policy improve-
ment setting. We then presented experiments showing that a
carefully selected behavior policy can improve the step direc-
tion of the REINFORCE method and that this same behavior
policy can be used for multiple updates before it performs
worse than an on-policy update. These results indicate that
research into how to adapt the behavior policy as the policy
being learned changes has the potential to further improve
the data efficiency of policy gradient reinforcement learning.
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Abstract

While off-policy temporal difference methods have been
broadly used in reinforcement learning due to their effi-
ciency and simple implementation, their Bayesian counter-
parts have been relatively understudied. This is mainly be-
cause the max operator in the Bellman optimality equation
brings non-linearity and inconsistent distributions over value
function. In this paper, we introduce a new Bayesian approach
to off-policy TD methods using Assumed Density Filtering,
called ADFQ, which updates beliefs on action-values (Q)
through an online Bayesian inference method. Uncertainty
measures in the beliefs not only are used in exploration but
they provide a natural regularization in the belief updates. We
also present a connection between ADFQ and Q-learning.
Our empirical results show the proposed ADFQ algorithms
outperform comparing algorithms in several task domains.
Moreover, our algorithms improve general drawbacks in BRL
such as efficiency, usage of uncertainty, and nonlinearity.

Introduction

In reinforcement learning (RL), a learning subject seeks an
optimal behavior by interacting with a dynamic environment
which maximizes the value of each state: a sum of expected
future outcomes starting from the state. Bayesian Reinforce-
ment Learning (BRL) is one of the approaches in RL that
deploys Bayesian inference in order to incorporate new in-
formation into prior information. It explicitly quantifies the
uncertainty of learning parameters unlike standard RL algo-
rithms which use point estimates of the parameters. There-
fore, an explicit quantification of the uncertainty can opti-
mize the exploration-exploitation trade-off by exploring ac-
tions with higher uncertainty more often than actions with
lower uncertainty. Moreover, it can naturally regulate the
posterior updates from the new information.

Utilizing such advantages, various algorithms have been
proposed in both model-based BRL (Dearden, Friedman,
and Andre 1999; Strens 2000; Poupart et al. 2006; Duff
2002; Guez, Silver, and Dayan 2012) and model-free BRL
(Dearden, Friedman, and Russell 1998; Engel, Mannor, and
Meir 2003; 2005; Geist and Olivier 2010; Chowdhary et
al. 2014; Ghavamzadeh and Engel 2006). However, to our

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

knowledge, only few Bayesian approaches to off-policy tem-
poral difference (TD) learning have been studied compared
to other methods due to the non-linearity in the Bellman
optimality equation. Yet off-policy TD methods have been
widely used in the standard RL. One of the most recent
influential algorithms in Bayesian off-policy TD learning
would be KTD-Q extended from Kalman Temporal Differ-
ence (KTD) (Geist and Olivier 2010). KTD approximates
the value function using the Kalman filtering scheme. It con-
siders parameters of the value function as hidden states and
tracks them through indirect observations, or rewards from
the environment. The KTD framework is applied to an off-
policy TD algorithm (KTD-Q) as well as other TD algo-
rithms (KTD-V and KTD-SARSA). They solved the non-
linearity in the Bellman optimality equation by applying the
Unscented Transform. Although the KTD framework han-
dles some important features in RL, it requires many param-
eter values to be chosen and it is computationally expensive.
Another limitation of KTD-Q is that it was proposed under
a deterministic environment assumption and it was not ex-
tended for a stochastic environment case.

This paper presents a novel approximated Bayesian off-
policy TD learning algorithm, termed as ADFQ, in fi-
nite state and action spaces which updates beliefs on Q-
values and approximates their posteriors using an online
Bayesian inference algorithm known as assumed density
filtering (ADF). ADF, also known as moment matching,
online Bayesian learning, and weak marginalization, has
been proposed independently in several fields (Opper 1999;
Boyen and Koller 1998; Maybeck 1982). It is a general
technique for approximating a true posterior to a tractable
parametric distribution in Bayesian networks. In the pro-
posed ADFQ algorithms, ADF is used to solve the prob-
lem of the posterior inconsistency caused by the max oper-
ator in the Bellman optimality equation. We proposed two
variants in ADFQ, ADFQ-Numeric and ADFQ-Approx, in
terms of a way of computing approximation statistics. We
experimented our algorithms on four different discrete do-
mains, and compared them with Q-learning and KTD-Q. It
consistently outperformed the comparing algorithms on all
the domains. We showed that ADFQ improved some of ma-
jor drawbacks of BRL such as computational complexity as
well as that Q-learning could be a special case of ADFQ-
Approx.
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Background

Assumed Density Filtering

Suppose that a hidden variable x follows a tractable para-
metric distribution p(x|θt) where θt is a set of parameters at
time t. In the Bayesian framework, the distribution can be
updated after new observation data (Dt) is drawn using the
Bayes rule:

p̂(x|θt, Dt) ∝ p(Dt|x, θt)p(x|θt)
In online learning, this update happens every time a new
data point is observed and the updated posterior is used as
a prior in the following step and so on. The previous data is
discarded after used.

When the updated posterior does not belong to its original
parametric family, it has to be approximated to a distribution
belonging to the family in order to continue the online learn-
ing. In ADF, the closest distribution in the family to the pos-
terior is chosen by minimizing the reverse Kullback-Leibler
divergence, a measure of the dissimilarity between the distri-
butions denoted as KL(p̂||p) where p̂ is an intractable dis-
tribution and p is a distribution in a parametric family of
interest. Thus, in our example, this is applied as:

θt+1 = argmin
θ

KL(p̂(·|θt, Dt)||p(·|θ)) (1)

Q-learning

RL problems can be formulated as a Markov Decision Pro-
cess (MDP) described as a tuple, M =< S,A,P,R, γ >
where S and A are the state and action spaces, respectively,
P : S × A × S → IR is the state transition probabil-
ity kernel, R : S × A → IR is a reward function, and
γ ∈ [0, 1] is a discount factor. The value function is de-
fined as V π(s) = Eπ[

∑∞
t=0 γ

trt(st, at)|s0 = s] for all s ∈ S,
the expected value of cumulative future rewards starting at
a state s and following a policy π thereafter. The action-
value (Q) function is defined as the value for a state-action
pair, Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt(st, at)|s0 = s, a0 = a] for all
s ∈ S, a ∈ A. The objective of a learning agent in RL is
to find an optimal policy π∗ = argmaxπ V

π . Finding the
optimal values, V ∗(·) and Q∗(·, ·), requires to solving the
Bellman optimality equation:

Q∗(s, a) = Es′∼P (·|s,a)[R(s, a) + γ max
a′∈A

Q(s′, a′)]

V ∗(s) = max
a∈A(s)

Q∗(s, a) ∀s ∈ S (2)

where s′ is the subsequent state after executing the action a
at the state s.

Q-learning is the most popular off-policy TD learning
technique due to its relatively easy implementation and
guarantee of convergence to an optimal policy (Watkins
and Dayan 1992; Kaelbling, Littman, and Moore 1996). Q-
learning updates an Q-value of the current state and action
pair after observing a reward R(s, a) and the next state s′
(one-step TD learning). The update is based on TD error - a
difference between the TD target,R(s, a)+γmaxb Q(s′, b),
and the current Q(s, a) with a learning rate α ∈ [0, 1] as the
below equation.

Q(s, a) ← Q(s, a) + α
(
R(s, a) + γmax

b
Q(s′, b)−Q(s, a)

)

Bayesian Q-learning with ADF

Belief Updates on Q-values

We define Qs,a as a Gaussian random variable with mean
μs,a and variance σ2

s,a corresponding to the action value
function Q(s, a) for all s ∈ S and a ∈ A. We assume that
the random variables for different states and actions are in-
dependent and have different mean and variance:

Qs,a ∼ N (μs,a, σ
2
s,a)

where μs,a �= μs′,a′ if s �= s′ or a �= a′ ∀s ∈ S, ∀a ∈ A.
According to the Bellman optimality equation in Eq.2, we

can define a random variable for V (s) as Vs = maxa Qs,a.
We assume that Vs is independent of {Qs,a}∀a∈A given the
related parameters {μs,a, σ

2
s,a}∀a∈A. In general, the maxi-

mum of Gaussian random variables, M = max1≤k≤N Xk

where Xk ∼ N (μk, σ
2
k) for 1 ≤ k ≤ N , has a following

distribution:

Pr (M = x) =

N∑

i=1

1

σi
φ

(
x− μi

σi

) N∏

j �=i

Φ

(
x− μj

σj

)
(3)

where φ(·) is the standard Gaussian probability density
function (PDF) and Φ(·) is the standard Gaussian cumula-
tive distribution function (CDF). Note that Eq.3 is no longer
Gaussian.

In the Bayesian perspective of the one-step TD learning,
the beliefs onQ = {Qs,a}∀s∈S,∀a∈A can be updated at time
t after observing a reward rt and the next state st+1 using the
Bayes rule. In order to reduce notation, we drop the depen-
dency on t denoting st = s, at = a, st+1 = s′, rt = r, and
also define a causally related 4-tuple τ =< s, a, r, s′ >.
Since the observation on Qs,a in the one-step TD learn-
ing is r + γVs′ according to the Bellman optimality equa-
tion, the likelihood becomes p(r + γVs′ |q, θ) = pVs′ ((q −
r)/γ|s′,q, θ)where q corresponds toQ and q is a value in q
corresponding toQs,a. θ is a set of mean and variance ofQ.
From the independence assumptions on Q and {Vs}∀s∈S ,
the posterior update can be reduced to an update only for the
belief on Qs,a:

p̂Qs,a(q|θ, r, s′) ∝ pVs′

(
q − r

γ

∣∣∣∣ q, s
′, θ

)
pQs,a(q|θ)

With the distributions over Vs′ and Qs,a, the resulting pos-
terior distribution is derived as follow (derivation details in
the appendix):

p̂Qs,a(q|θ, r, s′)

=
1

Z

∑

b∈A

cτ,b
σ̄τ,b

φ

(
q − μ̄τ,b

σ̄τ,b

) ∏

b′∈A
b′ �=b

Φ

(
q − (r + γμs′,b′)

γσs′,b′

)
(4)

where Z is a normalization constant and

cτ,b =
1√

σ2s,a + γ2σ2s′,b

φ

⎛

⎝ (r + γμs′,b)− μs,a√
σ2s,a + γ2σ2s′,b

⎞

⎠ (5)

μ̄τ,b = σ̄2τ,b

(μs,a

σ2s,a
+

r + γμs′,b

γ2σ2s′,b

)
(6)

σ̄2
τ,b =

( 1

σ2
s,a

+
1

γ2σ2
s′,b

)−1

(7)
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Figure 1: An example of the ADFQ update when |A| = 3, r = 0.0, γ = 0.9. The first row illustrates normal distributions with
μ̄τ,b, σ̄τ,b (green) determined by prior (blue) with μs,a = 0.0, σ2

s,a = 0.5, and a target distribution from each possible action for
the next state (red). Numerical values for the subsequent state and action pairs are uncertainty (a) b = 1: μs′,b = 1.0, σ2

b = 2.0,
(b) b = 2: μs′,b = 1.0, σ2

b = 0.1, (c) b = 3: μs′,b = 5.0, σ2
b = 0.1. The second row shows that weight value (y value of a red

dot) for each action b is determined by TD error (δτ,b, x value of the red dot) and uncertainty measures of Qs,a and Qs′,b as in
Eq.5. Each graph draws a normal distribution with zero mean and variance σ2

s,a + γ2σ2
s′,b.

Note that cτ,b, μ̄τ,b, σ̄τ,b are used only to simplify the ex-
pression and no additional parameters were introduced. The
first two rows in Fig.1 describe an example of how values of
μ̄τ,b, σ̄τ,b and cτ,b are determined. Unlike the Q-learning al-
gorithm which considers only a subsequent action resulting
the maximum Q-value in the next step (maxb Q(s′, b)) in its
update, all actions are considered in Eq.4. As found in Eq.5,
the TD error, δτ,b = (r+γμs′,b)−μs,a, is naturally incorpo-
rated in the posterior distribution with the form of Gaussian
PDF as a weight, and thus a subsequent action which results
a smaller TD error contributes to the update more by cτ,b as
compared in the column (b) and (c) in Fig.1. In addition, μ̄τ,b

is an inverse-variance weighted (IVW) average of the prior
mean and the target mean from observations. (Note that we
use a term ”target” from TD learning contexts for r + γμτ,b

and γ2σ2
τ,b.) Therefore, the averaged mean is closer to the

prior mean if uncertainty of the prior is smaller than that of
the target distribution, and vice versa (The column (a) and
(b) in Fig.1).

However, the updated posterior distribution is not con-
sistent with the prior distribution. In the next section, we
approximate the posterior to a Gaussian distribution using
ADF.

Assumed Density Filtering with Q-Beliefs

Applying Eq.1 with the posterior in Eq.4, we minimize
KL(p̂Qs,a ||p)with respect to mean μ and variance σ2 where
p = N (·|μ, σ2). When the parametric family is a spherical

Gaussian, it is easily shown that μ∗ = Eq∼p̂Qs,a (·)[q] and
σ∗2 = Varq∼p̂Qs,a (·)[q]. Therefore, the approximated pos-
terior will be a Gaussian distribution having the mean and
the variance of the true posterior as its mean and variance,
respectively.

It is fairly easy to analytically derive the mean and the
variance of the true posterior (Eq.4) when |A| = 2. The
derivation and the solutions are presented in the appendix.
However, to our knowledge, when |A| > 2, solutions be-
come too complicated or are not known. In the next sec-
tion, we present an approximated ADFQ algorithm which
provides analytic solutions for the mean and the variance as
well as reduces the algorithmic complexity.

Approximated ADFQ
If the variance of a Gaussian random variable, X ∼
N (μ, σ2), approaches 0, its CDF and PDF are approximated
to a Heaviside step function,H(·) and a dirac delta function,
δ(·), respectively. Suppose that σs,a � 1 for all s ∈ S and
a ∈ A. The product of the Gaussian CDFs in the Eq.4 is
approximated to 1 if q ≥ r + γμs′,b′ for all b′ ∈ A, b′ �= b,
and 0 otherwise. However, when q = μ̄τ,b, we cannot simply
apply the approximation since the PDF approaches infinity:

lim
σ̄τ,b,σs′,b′

→0

1

σ̄τ,b
φ
(q − μ̄τ,b

σ̄τ,b

)
·
∏

b′ �=b

Φ
(q − (r + γμs′,b′)

γσs′,b′

)

= ∞ · 0 	= 0

We define a function f(·) which is the approximation of the
above equation when the term of the product of the Gaussian
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Algorithm 1: ADFQ

Initialize μs,a, σs,a ∀s ∈ S and ∀a ∈ A
for each time step t do

at ∼ πaction(st; θt)
Perform the action and observe rt and st+1

τ =< st, at, rt, st+1 >
Compute cτ,b, μ̄τ,b, σ̄τ,b ∀b ∈ A from Eq.5 - 7
Update μst,at and σst,at using Eq.4 (ADFQ-Numeric)
or Eq.10 (ADFQ-Approx)

Table 1: ADFQ algorithm

CDFs approaches 0 (e.g. q < r + γμs′,b′ for all b′ �= b).

f(q;μ, σ) =

{
1
σ
φ
(

q−μ
σ

)
for q ∈ [μ− ε, μ+ ε], ε 
 1

0 otherwise

Then, the posterior distribution is approximated to
pQs,a(q|θ′, r, s′) ≈ p̂Qs,a(q),

p̂Qs,a(q) =
1

Z

∑

b∈A
cτ,bf(q; μ̄τ,b, σ̄τ,b) for q ∈ (−∞,+∞) (8)

where the normalization factor Z is
∑

b cτ,b. Further details
on the approximation can be found in the appendix.

Mean and Variance of the Approximated Posterior

From integrals
∫
xφ(x)dx = −φ(x) + C and

∫
x2φ(x)dx =

−xφ(x) +Φ(x) +C, we obtain the mean and the variance of
p̂s,a(q),

Eq∼p̂Qs,a (·)[q] =

∑
b cτ,bμ̄τ,b∑

b cτ,b
(9)

Varq∼p̂Qs,a (·)[q] =

∑
b cτ,bσ̄

2
τ,b∑

b cτ,b
(10)

Interestingly, the mean and variance of the approximated
posterior are weighted sums of μ̄τ,b and σ̄2

τ,b for all ac-
tions in A, respectively. We call the ADFQ algorithm which
uses the approximated mean and variance under the small
variance assumption as ADFQ-Approx and the ADFQ algo-
rithm which numerically computes the mean and the vari-
ance from Eq.4 as ADFQ-Numeric. We compared true pos-
terior, ADFQ-Numeric posterior, and ADFQ-Approx poste-
rior with different values for the parameters and presented
their results in the appendix. In most cases, ADFQ-Numeric
posterior approximates true posterior with very small errors.
ADFQ-Approx posterior tends to have a smaller mean and
larger variance than true as well as ADFQ-Numeric posteri-
ors. The final algorithm is described in Table.1.

Algorithmic Complexity

As shown in Table.1, both ADFQ-Numeric and ADFQ-
Approx require computing cτ,b, μ̄τ,b, σ̄τ,b for all b ∈ A. In
ADFQ-Numeric, mean and variance can be computed by
Eq.4 with a form of

∑
b φ(b)

∏
b′ �=b Φ(b) = (

∏
b′ Φ(b

′)) ·∑
b φ(b)/Φ(b) resulting that its computational complexity is

reduced toO(m|A|) wherem is the number of samples. For

ADFQ-Approx, the computational complexity is O(|A|).
The space complexity for both ADFQ-Numeric and ADFQ-
Approx is O(|S||A|). As a result, ADFQ-Approx algorithm
is as efficient as the Q-learning algorithm, and both ADFQ-
Numeric and ADFQ-Approx are more efficient than KTD-Q
which computational complexity is O(|S|2|A|3) and space
complexity is O(|S|2|A|2) in finite state and action spaces.

Connection to Q-learning

We can relate this result to the conventional Q-learning since
the mean of the posterior is the weighted sum of the prior
mean and the target means.

Es,a[q] =
∑

b∈A

cτ,b
Z

σ̄2τ,b
σ2s,a

μs,a +
cb∗

Z

σ̄2b∗

γ2σ2s′,b∗
(r + γμs′,b∗)

+
∑

b �=b∗

cτ,b
Z

σ̄2τ,b
γ2σ2s′,b

(r + γμs′,b) (11)

where b∗ = argmaxτ,b μs′,b. Suppose that cτ,b = 0 for all
b �= b∗ and thus the third term of Eq.11 becomes 0. Then we
can define ᾱ which corresponds to the learning rate in the
conventional Q-learning as

ᾱ ≡ σ̄2
b∗

γ2σ2
s′,b∗

=
(
1 +

(γσs′,b∗

σs,a

)2)−1

ᾱ converges to 1 when σs,a � σs′,b∗ and converges to 0
when σs,a � σs′,b∗ . Thus, it naturally provides a learning
rate - the smaller the variance of the next state (the higher
the confidence), the more Qs,a is updated from the target
information rather than the current belief. We can therefore
think of the Q-learning with a constant learning rate as a
special case of ADFQ with very small variance values in
which ratios of the variance values are constant. Since the
state transitions are decoupled, the ratio cannot be a constant
during the learning unless all the variance is not updated but
remains constant (σs′,b∗/σs,a = 1, ∀s, s′ ∈ S and ∀a, b∗ ∈
A). Therefore, in this case, the corresponding learning rate
is α = 1/(1 + γ2). For example, when γ = 0.9, it gives an
identical result to the Q-learning with α = 0.5525.

Experiments

Algorithms

The ADFQ algorithms were tested with three different ac-
tion policies: Bayesian Sampling (BS) which selects at =
argmaxa qst,a where qst,a ∼ pQst,a(·|θt), semi-BS which
performs BS with a small probability and greedily selects the
best action otherwise, and ε-greedy which randomly selects

Figure 2: Left: Loop domain, Right: Mini-Maze domain
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Loop Grid 5x5 Grid 10x10 Mini-Maze

Q-learning, ε-greedy 302.4± 12.1 150.6± 3.8 45.6± 3.9 239.7± 81.4
Q-learning, Boltzmann 288.2± 17.4 61.6± 5.5 18.0± 1.9 106.1± 10.4
ADFQ-Numeric, ε-greedy 325.5± 13.5 88.5± 4.7 21.0± 4.9 187.4± 92.8
ADFQ-Numeric, semi-BS 329.5± 0.8 100.3± 5.9 21.3± 2.4 220.2± 41.1
ADFQ-Numeric, BS 328.4± 0.8 116.9± 4.0 29.8± 3.9 204.7± 72.8
ADFQ-Approx, ε-greedy 338.0± 0.0 178.1± 5.5 82.7± 5.0 274.8± 80.3
ADFQ-Approx, semi-BS 329.2± 13.8 184.7± 4.5 80.9± 7.1 264.0± 67.3
ADFQ-Approx, BS 333.2± 3.2 135.9± 5.7 51.5± 3.3 180.9± 47.8
KTD-Q, ε-greedy 281.6± 5.2 0.6± 1.8 0.0± 0.0 20.5± 16.4
KTD-Q, active learning 157.4± 7.4 18.8± 2.7 8.0± 1.9 55.4± 8.6

Table 2: The mean and confidence interval of total cumulative rewards over 10 trials. The number of learning steps are: Loop -
1000 steps, Grid 5x5 - 2000 steps, Grid 10x10 - 2000 steps, Mini-Maze - 5000 steps

an action with ε probability, and does it greedily otherwise.
For compared algorithms, we experimented Q-learning with
ε-greedy and Boltzmann action selection rules. We also ex-
perimented KTD-Q with ε-greedy and with its active learn-
ing scheme. The active learning scheme was provided us-
ing the variance of the approximated action-value function.
We set the initial covariance of the process noise in KTD-Q
to be 0I and the initial covariance of the observation noise
to be 1 as those values were mostly used in the original
publication. The scaling factor for the sigma points used in
KTD-Q were fixed as 1. For consistency, we used the same
method for initializingQ-values, mean parameters in ADFQ
μs,a∀s ∈ S, a ∈ A, and the parameter vector in KTD-Q.
We assumed that reward values were unknown and initialize
the parameters with r0/(1 − γ) for non-episodic domains
and with r0 for episodic domains after the first nonzero re-
ward r0 was observed. The learning started after the initial-
ization. For all algorithms, the discount factor was γ = 0.9.
All other hyperparameters of the experimented algorithms
such as initial variance and ε were selected through cross-
validation and their values are reported in the appendix.

Domains

We tested our algorithms with finite learning steps (TH ) in
four different domains which include small/large state space,
non-episodic/episodic, and deterministic/stochastic environ-
ments: Loop(TH = 1000) consists of 9 discrete states and 2
actions (a,b). The domain has deterministic state transition.
There are +1 reward at state 4 and +2 reward at state 8 as
shown in Fig.2. Grid 5x5 (TH = 2000) is a 2-dimensional
5 × 5 grid with 25 discrete states and 4 cardinal actions.
There is no reward anywhere except at a goal state with
+1. The goal state is located opposite to the start state and
the agent receives a reward when it reaches the goal state.
With a probability 0.1, the learning agent slips in the grid
and moves to the right perpendicular direction. Grid 10x10
(TH = 5000) is similar to Grid 5x5 domain but on a 10×10
grid. In this domain, the agent slips with a probability 0.1
and moves to a randomly chosen perpendicular direction.
Mini-Maze (TH = 5000) is designed inspired by Dear-
den’s Maze (Dearden, Friedman, and Russell 1998) since
the KTD-Q algorithm was not able to handle the Dearden’s
Maze domain in reasonable computational time. The dia-

gram of Mini-Maze is shown in Fig.2. It has a total of 112
states and 4 cardinal actions. ”S” is the start state and ”G” is
the goal state. Three flags are located in ”F” and the agent’s
goal is to collect the flags and escape the maze through the
goal state. It receives a reward equivalent to the number of
flags it has collected at the goal state. The Black blocks rep-
resent wall and the agent stays at the current state if it per-
forms an action toward a wall. As same as the grid domains,
the agent slips with a probability 0.1.

Results

Each algorithm with different action policies was tested
10 times on each domain, and their results were averaged.
The sum of rewards (

∑
t=0,··· ,TH rt) obtained during learn-

ing is displayed in Table.2. Learning was paused at every
TH/100 step and the current policy was semi-greedily eval-
uated (used ε-greedy with ε = 0.1). In the evaluation, the
maximum number of steps is bounded by TH/50, and for
the episodic domains, it is also terminated when a goal state
is reached. Each evaluation was averaged over 10 trials, and
the results are shown in Fig.3. For simplification, evalua-
tion results of ADFQ-Numeric are reported in the appendix.
Overall ADFQ-Approx outperformed all other algorithms
including ADFQ-Numeric.

ADFQ-Numeric performs worse than ADFQ-Approx.
This is because the mean of the maximum of Gaussian
random variables is equal to or larger than the maxi-
mum of means of Gaussian random variables (i.e. E[M =
maxi=1···N Xi] ≥ maxi=1···N E[Xi]) which applies to the
likelihood distribution, p(r + γVs′ |q, θ). Thus, the pos-
terior mean can be overestimated and the overestimation
amount depends on the discount factor, γ, and variance of
Qs′,b∀b ∈ A. Simple examples showing the dependencies
are presented in the appendix. We also experimented ADFQ-
Numeric and ADFQ-Approx with γ = 0.5 in the same
domains, and ADFQ-Numeric showed similar performance
with ADFQ-Approx (see the appendix).

ADFQ-Approx with the ε-greedy action policy resulted
in the highest total rewards in three of four domains, but
ADFQ-Approx with the semi-BS policy showed similar per-
formances to the semi-greedy evaluation. In the Loop do-
main, ADFQ-Approx with BS worked the most smoothly
and converged to the maximum possible cumulative reward
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Figure 3: Cumulative rewards in semi-greedy evaluation during learning at each domain, averaged over 10 trials for each
algorithm with an action selection rule. The curves were smoothed by a simple moving average with window size 4. From top
to bottom, Loop, Grid 5x5, Grid 10x10, Mini-Maze

quickly. However, it didn’t perform well in the stochastic
domains. KTD-Q didn’t work well overall, especially in
stochastic and large domains.

Discussion

We proposed an approach to Bayesian off-policy TDmethod
called ADFQ and its two variants, ADFQ-Numeric and
ADFQ-Approx. ADFQ-Approx surpassed the performance
of ADFQ-Numeric, Q-learning and KTD-Q in various task
domains. With a smaller discount factor, ADFQ-Numeric
showed similar performances compared to ADFQ-Approx
outperforming other comparing algorithms. The presented
ADFQ algorithms demonstrate several intriguing results.

First, unlike the Q-learning algorithm, the ADFQ algo-
rithms incorporate the information of all possible actions for
the next state in the update with weights depending on TD
errors and uncertainty measures (Eq.4 and Eq.10). As men-
tioned previously, this provides intuitive update - a state-
action pair with higher uncertainty in its Q belief has a
smaller weight contributing less to the update. Therefore,
we made use of our uncertainty measuress in the value up-
date with natural regularization based on the current beliefs.
Second, we were able to connect ADFQ-Approx algorithm
to Q-learning and showed Q-learning could be a special case
of our algorithm. Third, one of major drawbacks of BRL ap-

proaches is that most algorithms are computationally more
demanding than standard RL algorithms (Ghavamzadeh et
al. 2015). However, ADFQ-Approx is computationally as
efficient as Q-learning and both ADFQ algorithms are more
efficient than KTD-Q. Fourth, we did not make any deter-
ministic environment assumption and ADFQ worked well
on stochastic environments. Lastly, the ADFQ algorithms
require only two hyperparameters, initial variance and the
discount factor, while other BRL algorithms tend to require
many hyperparameters to be chosen.

There are several limitations in the ADFQ algorithms.
Convergence analysis is not provided in this paper. This can
be achieved in a similar manner to Q-learning since the two
algorithms share a resemblance. In addition, as an initial ap-
proach, we started from finite state and action spaces. We
are extending our method to parameters of function approx-
imation in order to apply the method to a real world exam-
ple. Lastly, performance of ADFQ-Numeric is dependent on
relative numerical values of its initial mean, initial variance,
reward/s, and the discount factor. Finding a fundamental rule
for setting the values would be a future work.
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Abstract

Reinforcement Learning (RL) is a paradigm for enabling au-
tonomous learning wherein rewards are used to influence an
agent’s action choices in various states. As the number of states
and actions available to an agent increases, so it becomes in-
creasingly difficult for the agent to quickly learn the optimal
action for any given state. One approach to mitigating the detri-
mental effects of large state spaces is to represent collections
of states together as encompassing “abstract states".
State abstraction itself leads to a host of new challenges for an
agent. One such challenge is that of automatically identifying
new abstractions that balance generality and specificity; the
agent must identify both the similarities and the differences
between states that are relevant to its goals, while ignoring
unnecessary details that would otherwise hinder the agent’s
progress. We call this problem of identifying useful abstract
states the Abstraction Synthesis Problem (ASP).
State abstractions can provide a significant benefit to model-
based agents by simplifying their models. T-UCT, a hierarchi-
cal model-learning algorithm for discrete, factored domains,
is one such method that leverages state abstractions to quickly
learn and control an agent’s environment. Such abstractions
play a pivotal role in the success of T-UCT; however, T-UCT’s
solution to ASP requires a fully discrete state space.
In this work we develop and compare enhancements to T-UCT
that relax its assumption of discreteness. We focus on solving
ASP in domains with multidimensional, continuous state fac-
tors, using only the T-UCT agent’s limited experience histories
and minimal knowledge of the domain’s structure. Finally, we
present a new abstraction synthesis algorithm, RCAST, and
compare this algorithm to existing approaches in the litera-
ture. We provide the algorithmic details of RCAST and its
subroutines, and we show that RCAST outperforms earlier
approaches to ASP by enabling T-UCT to accumulate signifi-
cantly greater total reward with minimal expert configuration
and processing time.

1 Introduction

The efficiency with which an AI agent learns the dynamics
of a domain is heavily influenced by that agent’s internal rep-
resentation of the world. This is especially true for complex,
multi-faceted domains that are often found in the real world.
For this reason, AI researchers are often forced to wrestle

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with the so-called curse of dimensionality wherein the com-
plexity of a domain scales exponentially with the number of
variables used to describe it.

A traditional solution to this problem is through the use of
hierarchical layers of abstraction; rather than painstakingly
learning about every individual state possible in some do-
main, an agent can instead group large numbers of states
together and consider only this abstract representation during
the learning process. While such representations are merely
helpful for simpler domains, abstractions are essentially a
requirement when applying any form of machine learning to
domains over real-valued variables (such as one’s position in
continuous space).
The T-UCT algorithm (Menashe and Stone 2015) exem-

plifies the success of this approach by learning decision-tree-
based models from scratch in hierarchically structured do-
mains. However, T-UCT has no internal mechanism for mod-
eling continuous state, and while it is designed for domains
with factored state representations, it performs poorly on
domains whose state factors span large value spaces. When
faced with value spaces of infinite cardinality, T-UCT often
performs worse than chance.
In this work we augment T-UCT with mechanisms for

efficiently modeling actions and state transition dynamics
in continuous, factored state spaces. We call this augmented
version of T-UCT Continuous T-UCT (CT-UCT). We design
our CT-UCT augmentations in such a way that a variety of
competing abstraction synthesis algorithms can be “plugged
in" and evaluated on a single hierarchical, continuous learn-
ing task, toward the ultimate goal of enabling a CT-UCT
agent to maximize its total accumulated extrinsic reward.
In Section 2 we describe the necessary background for T-

UCT and CT-UCT as well as the past research on abstraction
synthesis. The primary challenge in developing CT-UCT is
that of retrofitting T-UCT’s discrete model-learning infras-
tructure with the necessary machinery for learning abstrac-
tions over continuous space; in Section 3 we present a novel
abstraction synthesis algorithm, the Recursive Cluster-based
Abstraction Synthesis Technique (RCAST), which achieves
this feat of identifying abstractions that can be consumed by
CT-UCT’s modeling framework.
In Section 4, we compare RCAST with alternative algo-

rithms from existing literature by plugging these algorithms
into CT-UCT and evaluating their performance on a challeng-
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ing HRL task. Finally in Section 5 we conclude and discuss
future work.

2 Background and Related Work

In this paper we focus our discussion on state abstraction
synthesis in the context of Reinforcement Learning (RL).
Thus we begin our discussion of background literature with a
brief overview of model-based RL, and then proceed to cover
the related work on state abstraction.

2.1 Model-based Reinforcement Learning

Model-based reinforcement learning is a branch of reinforce-
ment learning in which an agent uses a model to predict the
effects of its actions in the environment. In effect, while clas-
sical Reinforcement Learning is concerned with learning a
value function dependent upon R, model-based reinforce-
ment learning is additionally concerned with invoking (and
possibly learning) an approximation of P . Often, the agent’s
model of P is used as an intermediate step toward improving
the value function.
In our work we consider models based on Conditional

Probability Trees (CPTs), which are a form of decision tree
in which each internal node “splits" based on the values of a
particular state factor F . Each branch from such an internal
node denotes a value (or set of values) for F . (Jonsson and
Barto 2007) describe how such a model can encode the dy-
namics of a particular RL domain and be used to predict a
state st from its predecessor st−1 and an action at taken in
st−1 for some timestep t.
(Vigorito and Barto 2010) describe the VISA algorithm,

which uses CPTs and 〈st, at, st+1〉 histories to learn a
model of its environment from scratch. (Menashe and Stone
2015) use T-UCT (based on the UCT algorithm (Kocsis and
Szepesvári 2006)) with the CPT framework of (Jonsson and
Barto 2007) to improve learning performance and sample ef-
ficiency in comparison with VISA, however both T-UCT and
VISA assume discrete MDPs. In our work, RCAST provides
the key mechanism for relaxing this assumption of discrete-
ness by producing discrete state abstractions over continuous
value spaces.

2.2 State Abstraction Synthesis

Small, finite, and factored state spaces give rise to useful
and intuitively defined state abstraction mechanisms. (Jong
and Stone 2005) propose a method for state abstraction in
such factored state spaces through identification of so-called
“irrelevant" factors. For instance, if the state space S has
factors X and Y , then an abstract state might be a particular
assignment X = x0 with no assignment for Y . In this case,
the abstract state space S′ consists of |X| abstract states
each encompassing |Y | primitive states. (Jonsson and Barto
2005) use decision tree models of the state space toward a
similar end, where each branch encodes an assignment of
variables to values, and omitted variables represent those that
are irrelevant for a particular action model.
Rather than defining abstractions in terms of critical val-

ues, there has been ample work on defining abstractions in

terms of their relevance to “macro" actions using the op-
tions framework (Sutton, Precup, and Singh 1999). “Bottle-
neck" options are one such example where the state space
is divided into regions on either side of highly-traversed in-
termediate states (“bottleneck" states). The initiation and
termination sets of such options each designate two distinct
abstract states that can be used for planning in lieu of the
primitive state space (Menache, Mannor, and Shimkin 2002;
McGovern and Barto 2001; Stolle and Precup 2002). Macro
actions give rise to Hierarchical Reinforcement Learning
(HRL), where a single macro action may consist of many
sub-actions, and may itself comprise part of a more general
macro action. State abstraction is often a central component
of an HRL algorithm; T-UCT is no exception, as its entire
model-learning framework is concerned with identifying de-
pendencies between abstract states.

State abstractions can be more difficult to synthesize in do-
mains with continuous-valued state variables. Due to the neg-
ligible likelihood of visiting a single real-valued state multi-
ple times, an agent must instead attempt to visit the neighbor-
hoods about such values for effective planning. Planning with
neighborhoods raises the challenge of determining the appro-
priate size and shape of such neighborhoods. Option-based
state abstraction extends naturally into continuous domains,
however this does not relieve the aforementioned difficulty in
identifying continuous neighborhoods. Such neighborhoods
can be classified using a traditional supervised learning ap-
proach (Konidaris and Barto 2009), but this relies on large
numbers of sample trajectories and predefined classes used
to label the samples.

Iterative Half-Space (IHS) Abstraction Synthesis Many
alternative approaches to abstraction synthesis rely on itera-
tively dividing the state space into half-spaces using hyper-
planes (Jonsson and Barto 2001; Quinlan and others 1992;
Liu, Xia, and Yu 2000; Kohavi 1996; Fayyad and Irani 1993).
Such iterative half-space (IHS) approaches identify optimal
hyperplanes for splitting some space one at a time until all
of the splits necessary to fully describe the space’s dynam-
ics have been identified. While this technique can achieve
arbitrary levels of precision, it invariably results in creating
unnecessary abstract states as a side-effect of the iterative
halving process. Moreover, when multiple half-spaces are
required for meaningful separation of datapoints, the initial
splits must be performed with limited statistical indication of
their relevance. Thus the algorithm must split aggressively in
anticipation of high quality abstractions many iterations in
the future, and at the same time split conservatively to avoid
creating abstractions that are harmful to the learning process.
The overall effect is that such algorithms tend to be either
sample-inefficient or inaccurate.
(Fayyad and Irani 1993) tackle the state abstraction prob-

lem with unidimensional continuous factors by hierarchically
splitting continuous intervals into two parts at a time, but
even this approach suffers from creating unnecessary abstract
states and is poorly suited to continuous factors over multiple
dimensions.

Our work improves upon that of Fayyad and Irani by both
removing the need for creating unnecessary abstract states
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and enabling abstraction over continuous factors of arbitrary
dimensionality. Section 3 provides a more detailed descrip-
tion of these differences.

kd-tree Discretization k-Dimensional Trees, originally
described by (Friedman, Bentley, and Finkel 1977) provide
an effective means of partitioning continuous state with dis-
crete and succinctly specifiable bounds to arbitrary levels of
precision. Since each facet of a kd-tree is a hyperplane, any
kd-tree is equal to some combination of half-space bounds,
and thus the argument can be made that a kd-tree partitioning
can be inferred via IHS abstraction synthesis. However, such
inferrences may not always be possible within reasonable
bounds on processing time or computational complexity; an
algorithm which can identify kd-tree partitions may therefore
outperform an IHS algorithm in time-bound domains.

The Parti-Game Algorithm (Moore 1994) is an example of
how kd-tree-based abstractions can be beneficial in represent-
ing discrete decision boundaries over continuous-valued state
spaces of arbitrary dimensionality. This algorithm is designed
for deterministic goal-oriented RL problems where individual
leaves are mapped to decisions; however, its core idea of rep-
resenting decision boundaries with kd-trees shows promise
in the more open-ended abstraction synthesis problem.

(Reynolds 2000) extend the application of kd-trees to more
traditional RL problems with the Variable Resolution Model-
Free Function Approximation Algorithm. Here Reynolds
shows that kd-trees can be used to approximate action dy-
namics over continuous domains without the need for deter-
ministic state transitions or predefined goal states.
While kd-trees are used extensively in past work for the

purpose of modeling dynamics or representing decision trees,
we know of no other work where kd-trees are applied to the
Abstraction Synthesis Problem in the manner we describe
below. In Section 3 we introduce our own solution to the
abstraction synthesis problem, where we apply kd-trees to
the task of partitioning continuous, multidimensional state
abstractions.

3 The RCAST Algorithm

This section introduces RCAST, one of the primary contribu-
tions of this work and the key to enabling CT-UCT to scale to
continuous state spaces. We will first visually depict RCAST
on a hypothetical dataset in Section 3.1, and then describe an
implementation of RCAST in Section 3.2.
At each timestep t − 1 in an MDP, an RL agent chooses

an action a to take in state st, and then experiences the re-
sulting state st+1. Thus, an agent which keeps track of these
〈st, at, st+1〉 tuples can analyze them to predict future expe-
riences. A key feature of an RL model is the ability to predict
st+1 from st and a, and in a factored domain an agent may
wish to specifically predict the value of some output factor Fo

in st+1 given st and the operative action a. If Fo is causally
related to some other factor Fi, then the value of Fi in s may
be of particular relevance to predicting Fo.
The CPT framework used by VISA (Jonsson and Barto

2006) and T-UCT (Menashe and Stone 2015) enables such
factor-specific predictions. A CPT allows an agent to predict
the value of Fo given the action a and the value of Fi, but both

Figure 3.1: A hypothetical dataset D consisting of inputs on
the xy plane and output on the z axis.

of these algorithms assume that Fi and Fo take on discrete
values, and that an agent can keep track of all possible values
of Fi when predicting how a will alter Fo. CT-UCT relaxes
this assumption and allows an agent to discretely model Fi

and Fo even when they take on continuous and multidimen-
sional values by invoking an abstraction synthesizer, namely
RCAST; RCAST’s role is thus to identify useful abstractions
over Fi’s value space, so that they may be used for branching
decision trees in the CPT framework of (Jonsson and Barto
2007).

3.1 Visual Example

Before we describe the algorithmic details of RCAST we
will begin by visually depicting RCAST using a hypothetical
experience history H of 〈st, at, st+1〉 tuples for an RCAST
agent in some domain. Assume that we are interested in un-
derstanding whether some state factor Fo depends on another
Fi. For ease of visualization let us assume that dim(Fo) = 1
and dim(Fi) = 2.

Before analyzing the interaction between these two factors
we first projectH into an Rn subspace where n = dim(Fi)+
dim(Fo) = 3. This projection P : (S ×A× S)→ R

3 maps
〈st, at, st+1〉 to (x, y, z) where (x, y) is the value of factor
Fi in state st−1 and z is the value of factor Fo in state st. We
denote the image P (H) = {(x, y, z)} as D.
In Figure 3.1 we see a scatter plot representation of D.

Identifying a dependence relationship from Fi to Fo is there-
fore similar to the task of predicting z from (x, y). The shapes
and colors used in Figure 3.1, as well as all figures in Sec-
tion 3.1, are not available to the algorithm and are shown
strictly for ease of visualization.
Figures 3.3 and 3.2 show the same dataset D restricted

to Fi and Fo, respectively. From Figure 3.2 it is clear that
two distinct classes of data exist; however, our goal is not
to simply identify these classes, but also to use them for
classifying tuples in Fi. Thus we wish to partition the plot in
Figure 3.3 such that its projection into Fo’s value space also
partitions the data in Figure 3.2 according to the two obvious
classes.
RCAST creates this partitioning by first clustering data-

points in the full Fi + Fo value space (Figure 3.1) and then
using these clusters to create a labeled kd-tree in the Fi value
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Figure 3.2: A histogram of the output (z) values in the dataset
D from Figure 3.1.

Figure 3.3: A view of D from Figure 3.1 projected onto the
input (xy) plane.

space (Figure 3.3). The labeled tree describes a partition of
the Fi value space, enabling an agent to map from points in
Fi to clusters in Fo.
Figure 3.4 shows the kd-tree T generated for D. In most

areas the tree is only one layer deep, however the variety of
points found in some regions of the value space necessitate
secondary levels of refinement. Here we use a discretization
factor of δ = 3, resulting in 3dim(Fi) = 32 = 9 subdivisions
at each level, however we note that δ is configurable in the
general case.
The fully labeled T in Figure 3.5 is a classifier that maps

Fi-value coordinates to labels. The union of the regions en-
compassed by the leaves of T for some label l can therefore
be considered an abstract state over Fi which is relevant to
predicting Fo. We can divide T according to these labels,
creating a set of abstract meta-states which can then be in-
tegrated into a discrete model. Similar to the way in which
singleton values can partition a tabular space for a discrete
CPT model, these abstractions partition a continuous space
for the same purpose (see (Jonsson and Barto 2007)). In
this way we are able to discretely model Fo’s dependence
upon Fi even though these factors describe multidimensional
continuous values.

3.2 Algorithm Description

RCAST’s purpose is to analyze observed dynamics in a given
environment and identify key areas of the environment that

Figure 3.4: A kd-tree T which partitions the dataset D based
on its classes of output (z) values.

Figure 3.5: A kd-tree T with filled regions visually depicting
the labels applied to its leaves.

exhibit similar dynamics. The areas identified by RCAST
then inform model refinements which allow an agent to use
its experiences to knowledgeably plan its actions.

Algorithm 3.1a provides pseudo-code to describe RCAST.
Line 1 defines the basic inputs to the algorithm including
an input factor Fi, an output factor Fo, a dataset D, and
an orthotope Q describing the bounds of Fi. In calling this
function we assume that changes in Fo depend on Fi when
Fi’s value falls within Q. RCAST analyzes D to identify the
specifics of this relationship, returning a set of subspaces of
Q which serve as abstractions over the value space of Fi.

In Line 2 we see that the use of the � operator applied toD
and Q. This operator restricts the dataset to those datapoints
whose predecessor states’ value assignments forFi fall within
the bounds ofQ. Intuitively, this means that each state-action-
state sequence “started" in Q. Line 3 then clusters this subset
of points using Expectation-Maximization Clustering, which
produces as many clusters as necessary to maximize the
BIC score of successive Expectation Maximization iterations.
We use Expectation Maximization over Gaussian models
(implemented with OpenCV (Bradski 2000)).

Line 4 projects the clusters’ datapoints into the value space
Q of Fi so thatQ can be partitioned in accordance with these
clusters. Line 5 then hierarchically partitions Q according
to C ′ using Algorithm 3.1b as the partitioning subroutine.
Algorithm 3.1b produces a kd-tree with leaves labeled ac-
cording to the clusters they encompass. In Line 6 this tree is
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1: function RCAST(Fi, Fo, D, Q)
2: D′ ← D �Q
3: C ← EM(D′)
4: C ′ ← Fi(C)
5: T ← H-Part(Q,C ′)
6: A← SplitLabels(T )
7: return A
8: end function

(a) An implementation of RCAST.
1: function H-PART(Q, C)
2: T ← an empty kd-tree with label ∅
3: C ′ ← {c �Q|c ∈ C, c �Q �= ∅}
4: if |C ′| = 1 then
5: T.label← c.label where c ∈ C ′
6: else if diameter(Q) ≤ 1 then
7: T.label←“multi"
8: else
9: d← dimensionality of Q

10: Q ← Partition Q into δd equal parts
11: for q ∈ Q do
12: Tq ← H-Part(q, C)
13: T.children← T.children ∪ {Tq}
14: end for
15: end if
16: return T
17: end function

(b) H-Part: A hierarchical partitioning algorithm.

Algorithm 3.1: RCAST and its primary subroutine H-Part

partitioned according to its labeling, with each subtree con-
taining all the leaves for a particular label. Since each of these
leaves defines an orthotopic subspace of Q, each subtree is
associated with a distinct subspace of Q, namely the union
of its leaves’ orthotopes. Each such union is an abstraction
over the value space of Fi.

Algorithm 3.1b describes a general method for generating
a kd-tree from a set of clusters C and an encompassing value
space Q. In Line 3 the algorithm restricts its cluster set C to
only those clusters with datapoints in Q. Next, H-Parttakes
one of three actions. IfD contains only one class of datapoint,
the current subtree becomes a single leaf with its label taken
from that class (Line 5). If D contains multiple classes of
datapoints butQ is of minimal diameter1 then T is designated
as having the special label “multi" (Line 7). Otherwise, if the
diameter of Q is large enough, the algoritm subdivides and
recurses (Line 12). Ultimately the algorithm labels every leaf
with either a class label or “multi". We use a static minimum
diameter of 1 in this work.
In the context of CPTs, the partitions produced by Algo-

rithm 3.1a are used to split leaves of the CPT. (Jonsson and
Barto 2005) show that a CPT leaf can be split along some
input factor F ′

i by creating one child leaf per value of that
factor. In a sense, the discrete value space of F ′

i is partitioned
into singleton subspaces where each value of Fi comprises

1Here the diameter of an orthotope O is defined as
sup{d(x, y)|x, y ∈ O} where d is Euclidean distance.

one subspace. In the context of a continuous and multidimen-
sional Fi, singleton partitioning is not possible, so instead
Algorithm 3.1b produces the aforementioned unions of or-
thotopes to represent arbitrary subspaces of Fi’s value space,
with each union corresponding to a single leaf added to the
CPT.
Thus, we can refine a CPT model over a continuous, mul-

tidimensional Fi by partitioning its value space and then
creating one new CPT leaf per label. In Section 4 we evaluate
this approach empirically and compare against alternative
abstraction synthesis methods.

4 Experiments

This section describes a set of experiments performed to eval-
uate the effectiveness of RCAST in comparison to both IHS
and a deep regression network (DRN). While it would not
be possible to evaluate RCAST against all the alternative ap-
proaches to abstraction synthesis described in Section 2, IHS
and DRN are representative of the state of the art and serve as
reasonable proxies for most other methods. Implementation
details cannot be included due to space constraints.

4.1 The Continuous Taxi Domain (C-Taxi)

In our work we are interested in evaluating T-UCT and its
derivatives on a HRL task over a factored, continuous state
space. The Taxi domain (Hengst 2002) is a common choice
for evaluating HRL algorithms, but lacks the property of
having a continuous-valued state space. We therefore employ
a modified version of Taxi in our work, which we refer to as
Continuous Taxi (C-Taxi). Rather than the traditional 5-by-5
discrete grid, we use a 100-by-100 continuous grid containing
multiple rectangular regions in which anywhere from 1 to
1000 passengers may be picked up by the Taxi agent. More
formally, the state space of this domain is the set of 3-tuples
〈x, y, k〉 where x, y is the position of the agent in the grid
and k is the number of passengers currently held by the
agent. There are 6 actions including actions for movement
in the four cardinal directions N,S,E,W as well as the
pickup and dropoff actions P,D. When a movement action is
executed the agent is transported a uniformly random distance
between 5 and 10 units in the appropriate direction. When P
is executed in a pickup region, a uniformly random number
of between 500 and 1000 passengers is picked up. Dropoffs
always unload all passengers.

The “goal" of the C-Taxi domain is to drop off passengers
quickly; thus, the agent receives a reward of -1 for any move-
ment actions, and a reward of 0 for pickups. When the agent
executes the dropoff action D it receives a reward equal to
the number of passengers that were dropped off.

A perfect abstraction over this domain (with respect to the
pickup action and the vehicle’s passenger count) would par-
tition the grid into two distinct regions: one non-contiguous
region matching the union of the pickup regions, and a sec-
ond region perfectly complementing the first. When used as
the basis for splitting a decision tree, such abstractions would
allow an agent to reason with respect to perfect knowledge
of where pickups occur, and where they don’t.
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Figure 4.1: A comparison of the CT-UCT+IHS, CT-
UCT+DRN, T-UCT, Random, and CT-UCT+RCAST algo-
rithms over many C-Taxi domain instances.

4.2 Experiment Setup

In each experiment we evaluate a selection of HRL algo-
rithms on the task of accumulating extrinsic reward in the
C-Taxi domain. Since T-UCT is a model-learning algorithm
that relies on extrinsic reward, we modify its internal ex-
ploration selection mechanism such that it decides between
exploitation-oriented and exploration-oriented targets. Dur-
ing its target selection phase (see Section 3.2 of (Menashe and
Stone 2015)), the T-UCT algorithm selects a target context
based on its expectation of earned intrinsic reward. For the
purpose of evaluating T-UCT on its ability to earn extrinsic
reward, we modify this process such that targets are randomly
selected based on expected extrinsic reward. This allows T-
UCT and its derivatives to exploit their learned models with
respect to the domain’s reward signal. This modification is
applied to all such algorithms in this work.

We present empirical results on total reward earned in the
C-Taxi domain for the following algorithms: Random (uni-
formly random action selection), T-UCT2, CT-UCT+IHS, CT-
UCT+DRN, and CT-UCT+RCAST. The following figures
show the average results over different levels of complexity.
A domain of complexity n contains n pickup regions and n
dropoff regions. We provide results for complexities 1, 2, and
3 below. Within each complexity level, we take the average of
the results obtained over 30 different C-Taxi instances, each
having differing random placements and sizes of pickup and
dropoff regions. We then perform 10 evaluations per agent on
each such instance, and record each agent’s total processing
time and accumulated reward every 100 timesteps.

4.3 Results

Experimental results are shown in Figures 4.1 and 4.2. In
both figures, “Complexity n" indicates that n pickup regions
and n dropoff regions are generated for every instance of the
C-Taxi domain. In both result sets, values are averaged over

2We note that T-UCT cannot model continuous state and so
we use a simple tile coding over 3dim(F ) uniform tiles that evenly
divide the value space of each factor F .

Figure 4.2: A comparison of the CT-UCT+IHS, CT-
UCT+DRN, T-UCT, Random, and CT-UCT+RCAST algo-
rithms over many C-Taxi domain instances.

30 domain instances with 10 trials per algorithm per domain
instance. Shaded regions represent standard error.

In Figure 4.1 we see that RCAST significantly outperforms
every other algorithm (p� .001). Figure 4.2 indicates that
as complexity increases the performance gap only widens.
These results show that RCAST is able to efficiently han-
dle complex abstraction synthesis problems and allow for
efficient exploration and exploitation in these domains.

5 Conclusion and Future Work

In this work we have described RCAST, a new method for
synthesizing abstract states based on observed data. We have
used RCAST as the core abstraction synthesis mechanism
of CT-UCT, and thereby enabled T-UCT to produce state
abstractions for continuous space and effectively incorporate
these abstractions into its discrete decision tree model. More-
over, we have shown that RCAST is superior to alternative
approaches to abstraction synthesis with respect to total accu-
mulated extrinsic reward, and is competitive to alternatives
with respect to time and configuration complexity.

Another interesting focus for future work lies in modifying
the clustering subroutine which RCAST depends upon. There
exists a vast array of EM alternatives the present literature
which may be better suited to the problem of abstraction syn-
thesis. For instance, EM is reliant upon Gaussian likelihood
comparisons and is thus biased toward ellipsoid clusters; it
may instead be advantageous to employ a hierarchical cluster-
ing algorithm that is better equipped to generate irregularly
shaped clusters with a focus on contiguity.
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Abstract

In this paper, we present an approach to solve a physics-
based reinforcement learning challenge “Learning to
Run” with objective to train physiologically-based hu-
man model to navigate a complex obstacle course as
quickly as possible. The environment is computation-
ally expensive, has a high-dimensional continuous ac-
tion space and is stochastic. We benchmark state of the
art policy-gradient methods and test several improve-
ments, such as layer normalization, parameter noise,
action and state reflecting, to stabilize training and im-
prove its sample-efficiency. We found that the Deep De-
terministic Policy Gradient method is the most efficient
method for this environment and the improvements we
have introduced help to stabilize training. Learned mod-
els are able to generalize to new physical scenarios, e.g.
different obstacle courses.

1 Introduction

Reinforcement Learning (RL) (Sutton and Barto 1998) is a
significant subfield of Machine Learning and Artificial In-
telligence along with the supervised and unsupervised sub-
fields with numerous applications ranging from trading to
robotics and medicine. It has already achieved high levels
of performance on Atari games (Mnih et al. 2015), board
games (Silver et al. 2016) and 3D navigation tasks (Mnih et
al. 2016; Jaderberg et al. 2016).

All of above tasks have one feature in common - there
is always some well-defined reward function, for example,
game score, which can be optimized to produce the required
behaviour. Nevertheless, there are are many other tasks and
environments, for which it is still unclear what is the “cor-
rect” reward function to optimize. And it is even a harder
problem, when we talk about continuous control tasks, such
as physics-based environments (Todorov, Erez, and Tassa
2012) and robotics (Gu et al. 2017).

Yet, recently a substantial interest is directed to research
employing physics-based based environment. These envi-
ronments are significantly more interesting, challenging and
realistic than the well defined games; at the same time they
are still simpler than real conditions with physical agents,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

while being cheap and more accessible. One of the interest-
ing researches is the work of Schulman et al. where a simu-
lated robot learned to run and get up off the ground (Schul-
man et al. 2015b). Another paper is by Heess et al. where
the authors trained several simulated bodies on a diverse set
of challenging terrains and obstacles, using a simple reward
function based on forward progress (Heess et al. 2017).

To solve the problem of continuous control in simula-
tion environments it has become generally accepted to adapt
the reward signal for specific environment. Still it can lead
to unexpected results when the reward function is mod-
ified even slightly, and for more advanced behaviors the
appropriate reward function is often non-obvious. To ad-
dress this problem, the community came up with several
environment-independent approaches such as unsupervised
auxiliary tasks (Jaderberg et al. 2016) and unsupervised ex-
ploration rewards (Pathak et al. 2017). All these sugges-
tions are trying to solve the main challenge of reinforcement
learning: how an agent can learn for itself, directly from a
limited reward signal, to achieve best performance.

Besides the difficulty in defining the reward function,
physically realistic environments usually have a lot of
stochasticity, are computationally very expensive, and have
high-dimensional action spaces. To support learning in such
settings it is necessary to have a reliable, scalable and
sample-efficient reinforcement learning algorithm. In this
paper we evaluate several existing approaches and then im-
prove upon the best performing approach for a physical
simulator setting. We present the approach that we have
used to solve the “Learning to run” – NIPS 2017 com-
petition challenge1 with an objective to learn to control
a physiologically-based human model and make it run as
quickly as possible. The model that we present here has
won the third place at the challenge: https://www.crowdai.
org/challenges/nips-2017-learning-to-run/leaderboards.

This paper proceeds as follows: first we review the ba-
sics of reinforcement learning, then we describe environ-
ment used in challenge and models used in our experiment,
after that we present results of our experiments and finally
we discuss the results and conclude the work.

1https://www.crowdai.org/challenges/nips-2017-learning-to-
run

The 2018 AAAI Spring Symposium Series

338



Figure 1: OpenSim screenshot that demonstrates the agent.

2 Background

We approach the problem in a basic RL setup of an agent
interacting with an environment. The “Learning to run” en-
vironment is fully observable and thus can be modeled as
a Markov Decision Process (MDP) (Bellman 1957). MDP
is defined as a set of states (S : {si}), a set of actions
(A : {ai}), a distribution over initial states p(s0), a re-
ward function r : S × A → R, transition probabili-
ties p(st+1|st, at), time horizon T , and a discount factor
γ ∈ [0, 1). A policy parametrized by θ is denoted with πθ.
The policy can be either deterministic, or stochastic. The
agent’s goal is to maximize the expected discounted return
η(πθ) = Eτ [

∑T
t=0 γtr(st, at)], where τ = (s0, a0, . . . , sT )

denotes a trajectory with s0 ∼ p(s0), at ∼ πθ(at|st), and
st ∼ p(st|st−1, at−1).

3 Environment

The environment is a musculoskeletal model that includes
body segments for each leg, a pelvis segment, and a sin-
gle segment to represent the upper half of the body (trunk,
head, arms). See Figure 1 for a clarifying screenshot. The
segments are connected with joints (e.g., knee and hip) and
the motion of these joints is controlled by the excitation
of muscles. The muscles in the model have complex paths
(e.g., muscles can cross more than one joint and there are re-
dundant muscles). The muscle actuators themselves are also
highly nonlinear.

The purpose is to navigate a complex obstacle course
as quickly as possible. The agent operates in a 2D world.
The obstacles are balls randomly located along the agent’s
way. Simulation is done using OpenSim (Delp et al. 2007)
library which relies on the Simbody (Sherman, Seth, and
Delp 2011) physics engine. The environment is described
in Table 1. More detailed description of environment can be
found on competition github page.2

Due to a complex physics engine the environment
is quite slow compared to standard locomotion environ-

2https://github.com/stanfordnmbl/osim-rl

Table 1: Description of the OpenSim environment.

parameters description

state (st) R
41, coordinates and velocities of var-

ious body parts and obstacle locations.
All (x, y) coordinates are absolute. To
improve generalization of our controller
and use data more efficiently, we modi-
fied the original version of environment
making all x coordinates relative to the
x coordinate of pelvis.

action (at) R
18, muscles activations, 9 per leg, each

in [0, 1] range.
reward R, change in x coordinate of pelvis

plus a small penalty for using ligament
forces.

terminal state agent falls (pelvis x < 0.65) or 1000
steps in environment

stochasticity
• random strength of the psoas muscles
• random location and size of obstacles

ments (Todorov, Erez, and Tassa 2012; OpenAI Roboschool
2017). Some steps in environment could take seconds. Yet,
the other environments can be as fast as three orders of mag-
nitudes faster.3 So it is crucial to train agent using the most
sample-efficient method.

4 Methods

In this section we briefly describe the models we have eval-
uated in the task of the “Learning to run” challenge. We
also describe our improvements to the model best perform-
ing in the competition: Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al. 2015).

4.1 On-policy methods

On-policy RL methods can only update agent’s behavior
with data generated by the current policy. We consider two
popular on-policy algorithms, namely Trust Region Policy
Optimization (TRPO) (Schulman et al. 2015a) and Proxi-
mal Policy Optimization (PPO) (Schulman et al. 2017) as
the baseline algorithms for environment solving.

Trust Region Policy Optimization (TRPO) is one of the
notable state-of-the-art RL algorithms, developed by Schul-
man et al., that has theoretical monotonic improvement guar-
antee. As a basis, TRPO (Schulman et al. 2015a) using RE-
INFORCE (Williams 1992) algorithm, that estimates the
gradient of expected return∇θη(πθ) via likelihood ratio:

∇θη(πθ) =
1

NT

N∑
i=1

T∑
t=0

∇θ log πθ(a
i
t|sit)(Ri

t − bit), (1)

3https://github.com/stanfordnmbl/osim-rl/issues/78
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whereN is the number of episodes, T is the number of steps
per episode, Ri

t =
∑T

t′=t γ
t
′−tri

t′ is the cumulative reward
and btt is a variance reducing baseline (Duan et al. 2016).
After that, an ascent step is taken along the estimated gra-
dient. TRPO improves upon REINFORCE by computing an
ascent direction that ensures a small change in the policy
distribution. As the baseline TRPO we have used the agent
described in (Schulman et al. 2015a).

Proximal Policy Optimization (PPO) as TRPO tries to
estimate an ascent direction of gradient of expected return
that restricts the changes in policy to small values. We used
clipped surrogate objective variant of proximal policy opti-
mization (Schulman et al. 2017). This modification of PPO
is trying to compute an update at each step that minimizes
following cost function:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)],
(2)

where rt(θ) =
πθ(at|st)

π
θold

(at|st) is a probability ratio (the new di-

vided by the old policy), Ât = Rt − bt is empirical return
minus the baseline. This cost function is very easy to imple-
ment and allows multiple epochs of minibatch updates.

4.2 Off-policy methods

In contrast to on-policy algorithms, off-policy methods al-
low learning based on all data from arbitrary policies. It
significantly increases sample-efficiency of such algorithms
relative to on-policy based methods. Due to simulation
speed litimations of the environment, we will only consider
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.
2015).

Deep Deterministic Policy Gradient (DDPG) consists of
actor and critic networks. Critic is trained using Bellman
equation and off-policy data:

Q(st, at) = r(st, at) + γQ(st+1, πθ(st+1)), (3)

where πθ is the actor policy. The actor is trained to maximize
the critic’s estimated Q-values by back-propagating through
critic and actor networks. As in original article we used re-
play buffer and the target network to stabilize training and
more efficiently use samples from environment.

DDPG improvements Here we present our improvements
to the DDPGmethod. We used some standard reinforcement
learning techniques: action repeat (the agent selects action
every 5th state and selected action is repeated on skipped
steps) and reward scaling. After several attempts, we choose
a scale factor of 10 (i.e. multiply reward by ten) for our
experiments. For exploration we used Ornstein-Uhlenbeck
(OU) process (Uhlenbeck and Ornstein 1930) to generate
temporally correlated noise for efficient exploration in phys-
ical environments. Our DDPG implementation was paral-
lelized as follows: n processes collected samples with fixed
weights all of which were processed by the learning pro-
cess at the end of an episode, which updated their weights.
Since DDPG is an off-policy method, the stale weights of

the samples only improved the performance providing each
sampling process with its own weights and thus improving
exploration.

Parameter noise Another improvement is the recently
proposed parameters noise (Plappert et al. 2017) that per-
turbs network weights encouraging state dependent explo-
ration. We used parameter noise only for the actor network.
Standard deviation σ for the Gaussian noise is chosen ac-
cording to the original work (Plappert et al. 2017) so that
measure d:

d(π, π̃) =

√√√√
(

1

N

N∑
i=1

Es[(π(s)i − π̃(s)i)2]

)
, (4)

where π̃ is the policy with noise, equals to σ in OU. For each
training episode we switched between the action noise and
the parameter noise choosing them with 0.7 and 0.3 proba-
bility respectively.

Layer norm Henderson et al. showed that layer normal-
ization (Ba, Kiros, and Hinton 2016) stabilizes the learning
process in a wide range of reward scaling. We have investi-
gated this claim in our settings. Additionally, layer normal-
ization allowed us to use same perturbation scale across all
layers despite the use of parameters noise (Plappert et al.
2017). We normalized the output of each layer except the
last for critic and actor by standardizing the activations of
each sample. We also give each neuron its own adaptive bias
and gain. We applied layer normalization before the nonlin-
earity.

Actions and states reflection symmetry The model has
bilateral body symmetry. State components and actions can
be reflected to increase sample size by factor of 2. We sam-
pled transitions from replay memory, reflected states and ac-
tions and used original states and actions as well as reflected
as batch in training step. This procedure improves stability
of learned policy. If we dont use this step our model learned
suboptimal policies, when for example muscles for only one
leg are active and other leg just follows first leg.

5 Results

It this section we presents our experiments and setup. For
all experiments we used environment with 3 obstacles and
random strengths of the psoas muscles. We tested models
on setups running 8 and 20 threads. For comparing differ-
ent PPO, TRPO and DDPG settings we used 20 threads per
model configuration. We have compared various combina-
tions of improvements of DDPG in two identical settings
that only differed in the number of threads used per config-
uration: 8 and 20. The goal was to determine whether the
model rankings are consistent when the number of threads
changes. For n threads (where n is either 8 or 20) we used
n− 2 threads for sampling transitions, 1 thread for training,
and 1 thread for testing. For all models we used identical
architecture of actor and critic networks. All hyperparam-
eters are listed in Table 2. Our code used for competition
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Table 2: Hyperparameters used in the experiments.

parameters Value

Actor network architecture [64, 64], elu activation
Critic network architecture [64, 32], tanh activation

Actor learning rate linear decay from 1e−3 to
5e−5 in 10e6 steps with
Adam optimizer

Critic learning rate linear decay from 2e−3 to
5e−5 in 10e6 steps with
Adam optimizer

Batch size 200
γ 0.9

replay buffer size 5e6

rewards scaling 10
parameter noise probability 0.3
OU exploration parameters θ = 0.1, μ = 0, σ = 0.2,

σmin = 0.05, dt = 1e−2,
nsteps annealing σdecay1e6
per thread

and described experiments can be found in a github repo.4
Experimental evaluation is based on the undiscounted return
Eτ [

∑T
t=0 r(st, at)].

5.1 Benchmarking different models

Comparison of our winning model with the baseline ap-
proaches is presented in Figure 2. Among all methods the
DDPG significantly outperformed PPO and TRPO. The en-
vironment is time expensive and method should utilized ex-
perience as effectively as possible. DDPG due to experience
replay (re)uses each sample from environment many times
making it the most effective method for this environment.

5.2 Testing improvements of DDPG

To evaluate each component we used an ablation study as it
was done in the rainbow article (Hessel et al. 2017). In each
ablation, we removed one component from the full combi-
nation. Results of experiments are presented in Figure 3a
and Figure 3b for 8 and 20 threads respectively. The figures
demonstrate that each modification leads to a statistically
significant performance increase. The model containing all
modifications scores the highest reward. Note, the substan-
tially lower reward in the case, when parameter noise was
employed without the layer norm. One of the reasons is our
use of the same perturbation scale across all layers, which
does not work that well without normalization. Also note,
the behavior is quite stable across number of threads, as well
as the model ranking. As expected, increasing the number of
threads improves the result.

4Theano: https://github.com/fgvbrt/nips rl and PyTorch: https:
//github.com/Scitator/Run-Skeleton-Run

Figure 2: Comparing test reward of the baseline models and
the best performing model that we have used in the “Learn-
ing to run” competition.

Table 3: Best achieved reward for each DDPG modification.

agent
# threads 8 20

DDPG + noise + flip 0.39 23.58
DDPG + LN + flip 25.29 31.91
DDPG + LN + noise 25.57 30.90

DDPG + LN + noise + flip 31.25 38.46

Maximal rewards achieved in the given time for 8 and 20
threads cases for each of the combinations of the modifica-
tions is summarized in Table 3. The main things to observe
is a substantial improvement effect of the number of threads,
and stability in the best and worst model rankings, although
the models in the middle are ready to trade places.

6 Conclusions

Our results in OpenSim experiments indicate that in a com-
putationally expensive stochastic environments that have
high-dimensional continuous action space the best perform-
ing method is off-policy DDPG. We have tested 3 modifica-
tions to DDPG and each turned out to be important for learn-
ing. Action states reflection doubles the size of the training
data and improves stability of learning and encourages the
agent to learn to use left and right muscles equally well.
With this approach the agent truly learns to run. Examples
of the learned policies with and without the reflection are
present at this URL https://tinyurl.com/ycvfq8cv. Parameter
and Layer noise additionally improves stability of learning
due to introduction of state dependent exploration. In gen-
eral, we believe that investigation of human-based agents in
physically realistic environments is a promising direction for
future research.
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(a) 8 threads (b) 20 threads

Figure 3: Comparing test reward for various modifications of the DDPG algorithm with 8 threads per configuration (Figure 3a)
and 20 threads per configuration (Figure 3b). Although the number of threads significantly affects performance, the model
ranking approximately stays the same.
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Abstract

Recent advances in the field of inverse reinforcement
learning (IRL) have yielded sophisticated frameworks which
relax the original modeling assumption that the behavior of
an observed agent reflects only a single intention. Instead,
the demonstration data is separated into parts to account for
the fact that different trajectories may correspond to different
intentions, e.g., because they were generated by different
domain experts. In this work, we go one step further:
using the intuitive concept of subgoals, we build upon the
premise that even a single trajectory can be explained more
efficiently locally within a certain context than globally,
enabling a more compact representation of the observed
behavior. Based on this assumption, we build an implicit
intentional model of the agent’s goals to forecast its behavior
in unobserved situations. The result is an integrated Bayesian
prediction framework which provides spatially smooth
policy estimates that are consistent with the expert’s plan and
significantly outperform existing IRL solutions. In addition,
the framework can be naturally extended to handle scenarios
with time-varying expert intentions.

1 Introduction

Inverse Reinforcement Learning (IRL) refers to the prob-
lem of inferring the intention of an agent, called the ex-
pert, from observed behavior. Under the Markov decision
process (MDP) formalism (Sutton and Barto 1998), this in-
tention is encoded in form of a reward function, which pro-
vides the agent an instantaneous feedback for each situation
that can be encountered during the decision-making process.
While early IRL methods such as (Ng and Russell 2000;
Abbeel and Ng 2004; Ziebart et al. 2008; Ramachandran
and Amir 2007; Levine, Popovic, and Koltun 2011) as-
sume a single global reward function to explain the en-
tire data set, recent methods relax this modeling assumption
by allowing the intention of the agent to change with time
(Nguyen, Low, and Jaillet 2015), or by hypothesizing that
the data set is composed of several parts. For example, Dim-
itrakakis and Rothkopf (2011) propose a hierarchical prior
over reward functions to account for the fact that different
trajectories in the data set may reflect different intentions,
e.g., because they were generated by different domain ex-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

perts. Similarly, Babes et al. (2011) follow an expectation-
maximization based clustering approach, grouping individ-
ual trajectories according to their underlying reward func-
tions. Choi and Kim (2012) extended this idea by proposing
a nonparametric Bayesian model in which the number of in-
tentions is a priori unbounded.

In this work, we go a step further and start from the
premise that, even in the case of a single expert or tra-
jectory, the demonstrated behavior can be explained more
efficiently locally within a certain context than by a sin-
gle global reward model. As an illustrative example, con-
sider the task shown in Fig. 2, where the expert approaches
a set of intermediate goal positions before finally heading
toward a global goal state. Despite the simplicity of the
task, the encoding of such a behavior in a global intention
model requires a reward structure that contains a compara-
bly large number of redundant state-action based rewards.
Alternative solution strategies include task-dependent ex-
pansions of the agent’s state representation, e.g., to mem-
orize the last visited goal (Krishnan et al. 2016), or they re-
sort to more general decision-making frameworks like semi-
MDPs / options (Bradtke and Duff 1995; Sutton, Precup, and
Singh 1999) to achieve the necessary level of abstraction.

By contrast, the framework presented in this paper em-
ploys a rather simple, time-invariant representation of the
task based on the intuitive concept of subgoals, which al-
lows to efficiently encode the expert behavior using a task-
appropriate partitioning of the state space. Our framework
is based on the principle of Bayesian nonparametric inverse
reinforcement learning (BNIRL) (Michini and How 2012)
which, in its original form, is unable to generalize from the
expert behavior. Building upon concepts from Bayesian pol-
icy recognition (Šošić, Zoubir, and Koeppl 2018), which ap-
plies a similar form of state space clustering but on a purely
subintentional level, we remedy this deficit and extend the
BNIRL idea to learn a compact implicit intentional model of
the expert’s goals. The result is an integrated Bayesian pre-
diction framework which provides spatially smooth policy
estimates that are consistent with the expert’s plan and sig-
nificantly outperform existing IRL solutions. Interestingly
enough, our algorithm outperforms the baseline methods
even when the expert’s true reward structure is dense and
the underlying subgoal assumption is violated.
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2 Related Work: Revisiting BNIRL

The goal of Bayesian nonparametric inverse reinforcement
learning is to build a model for the intention of an agent
using demonstration data. Based on an MDP description
of the observed task, the problem is formalized on a finite
state space S using a time-invariant state transition model
T : S × S × A → [0, 1], where A is a finite set of ac-
tions available to the agent at each state. For notational con-
venience, we represent the states in S by the integer val-
ues {1, . . . , |S|}, where |S| denotes the cardinality of S . In
BNIRL, it is assumed that we can observe a number of D
expert demonstrations provided in the form of state-action
pairs,D = {(sd, ad)}Dd=1, where each pair (sd, ad) ∈ S×A
consists of a state sd visited by the agent and the correspond-
ing action ad taken. Note that the model makes no assump-
tion on the temporal ordering of the demonstrations, i.e.,
each pair is considered to arise from a specific but arbitrary
time instant of the agent’s decision-making process. In the
following, we write s := {sd}Dd=1 and a := {ad}Dd=1 to ac-
cess the collections of expert states and actions, respectively.

In contrast to the classical MDP formalism and most other
IRL frameworks, BNIRL does not presuppose that the ob-
served expert behavior necessarily originates from a single
underlying reward function. Instead, it introduces the con-
cept of subgoals (and corresponding subgoal assignments)
with the underlying assumption that, at each decision in-
stant, the expert selects a particular subgoal to plan the next
action. Each subgoal is herein represented by a certain re-
ward function defined on the system state space; in the sim-
plest case, it corresponds to a single reward mass placed at
a particular goal state in S , which we identify with a reward
function Rg : S → {0, C} of the form

Rg(s) :=

{
C if g = s,

0 otherwise,
(1)

where g ∈ {1, . . . , |S|} indicates the respective subgoal
location and C ∈ (0,∞) is some positive constant. Note
that, in BNIRL, the number of subgoals is unbounded, even
though the state space is assumed to be finite. We sum-
marize this infinite collection of subgoals in the multiset
G = {gk}∞k=1 ∈ ×∞

k=1 S and adopt the assumption that
p(G) =

∏∞
k=1 pg(gk). The subgoal assignment in BNIRL

is implemented using a set of indicator variables z̃ = {z̃d ∈
N}Dd=1 that annotate each demonstration pair (sd, ad) with
its unique subgoal index. Having targeted a particular sub-
goal gz̃d while being at some state sd, the expert is assumed
to choose the next action ad according to a softmax decision
rule, π : A × S × S → [0, 1], which weighs the expected
returns of all actions against one another,

π(ad | sd, gz̃d) ∝ exp
{
βQ∗(sd, ad | gz̃d)

}
. (2)

Herein, Q∗(s, a | g) denotes the state-action value (or Q-
value) (Sutton and Barto 1998) of action a at state s under
an optimal policy for the subgoal reward function Rg .

The softmax policy π models the expert’s ability to max-
imize the future expected return in view of the targeted sub-
goal, while the coefficient β ∈ [0,∞) is used to express
the expert’s level of confidence in the optimal action. The

prior distribution over indicators p(z̃) is modeled by a Chi-
nese restaurant process (CRP) (Aldous 1985), which assigns
the event that indicator z̃d points to the jth subgoal the prior
probability

p(z̃d = j | z̃\d) ∝
{
nj if j ∈ {1, . . . ,K},
α if j = K + 1.

Herein, z̃\d := {z̃d} \ z̃d is a shorthand notation for the
collection of all indicator variables without z̃d. Further, nj

denotes the number of assignments to the jth subgoal in z̃\d,
K is the number of distinct entries in z̃\d, and α ∈ [0,∞)
is a parameter controlling the diversity of the assignments.
The joint distribution of demonstrated actions a, subgoals G,
and subgoal assignments z̃ (Fig. 1a) is thus given as

p(a, z̃,G | s) = p(z̃)
∞∏
k=1

pg(gk)
D∏

d=1

π(ad | sd, gz̃d). (3)

Posterior inference in the BNIRL model refers to the
(approximate) computation of the distribution p(z̃,G |D),
which allows to identify potential subgoal locations and the
corresponding subgoal assignments based on the available
demonstration data. For further details, the reader is referred
to the original paper (Michini and How 2012).

2.1 Limitations of the BNIRL Model

Subgoal-based inference is a well motivated approach to
IRL that has shown promising results. Yet, the original
BNIRL model proposed by Michini and How comes with a
significant drawback: due to its particular modeling assump-
tions, the framework is restricted to pure subgoal extraction
and does not inherently provide a meaningful mechanism to
forecast the expert behavior based on the inferred subgoals.
The reason lies in the design of the framework which, at its
heart, treats the subgoal assignments z̃ as exchangeable ran-
dom variables (Aldous 1985). By implication, the induced
partitioning model p(z̃) is agnostic about the covariate in-
formation in the data set and the resulting behavioral model
is unable to reasonably propagate the expert knowledge to
new situations.

To illustrate the problem, let us investigate the predictive
action distribution that arises from the original BNIRL
formulation. Without loss of generality of our claim, we
may assume that the method has perfectly inferred all
subgoals G and corresponding subgoal assignments z̃ from
the demonstration set. Denoting by a∗ the predicted action
at some new state s∗, the model yields

p(a∗ | s∗,D, z̃,G) =
∑
z̃∗

p(a∗ | z̃∗, s∗,D, z̃,G) × . . . (4)

. . . p(z̃∗ | s∗,D, z̃,G) (�)
=

∑
z̃∗

p(a∗ | z̃∗, s∗, gz̃∗)p(z̃∗ | z̃),

where z̃∗ is the latent subgoal indicator belonging to s∗.
Herein, p(a∗ | z̃∗, s∗, gz̃∗) can be either the softmax decision
rule π(a∗ | s∗, gz̃∗) from Eq. (2) or the optimal deterministic
policy for subgoal gz̃∗ , depending on whether we aspire
to describe the noisy expert behavior at s∗ or want to
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determine the optimal action according to the inferred
reward model. Note that the second equality in Eq. (4),
indicated by (�), follows from the conditional independence
properties implied by Eq. (3), which can be easily verified
using d-separation (Koller and Friedman 2009) on the
graphical model in Fig. 1a.

As Eq. (4) reveals, the predictive model is characterized
by the posterior distribution p(z̃∗ | s∗,D, z̃,G) of the latent
subgoal assignment z̃∗ of state s∗. The intuition being that,
in order to generalize the expert’s plan to a new situation,
we need to take into account the gathered information about
what would be a likely subgoal targeted by the expert at s∗.
Now, the problem with BNIRL is that the latter distribution
is modeled without consideration of the actual state s∗ (or
any other observed variable) and effectively reduces (�) to
the CRP prior p(z̃∗ | z̃), which due to its intrinsic exchange-
ability property only considers the frequency of the readily
inferred subgoal assignments z̃. Clearly, a subgoal selection
strategy that is solely based on relative subgoal frequencies
is of limited use when it comes to predicting the expert be-
havior at new states: the resulting subgoal assignment mech-
anism will inevitably ignore the structural information of the
demonstration set and consistently produce the same sub-
goal assignment probabilities at all states, irrespective of the
actual situation of the agent. By contrast, a reasonable as-
signment mechanism should inherently take into account the
context of the agent’s current state s∗ when deciding about
the next action.

Note in particular that the selection strategy proposed in
Eq. (19) of (Michini and How 2012) falsely claims to solve
this problem because the alleged conditioning on the query
state has no actual effect on the involved subgoal indica-
tor, as shown by Eq. (4). The only way to remedy the prob-
lem without modifying the model is via an external post-
processing scheme such as the waypoint method described
in (Michini et al. 2015).

3 Distance-Dependent Bayesian Inverse

Reinforcement Learning

In this section, we introduce a redesigned inference frame-
work, which we by analogy to BNIRL refer to as distance-
dependent Bayesian nonparametric IRL (ddBNIRL). We de-
rive our model by making two important modifications to
the original BNIRL framework that address the previously
described shortcomings on the conceptual level. We begin
with an intermediate model, which introduces a subtle yet
important structural modification to the BNIRL framework.
In a second step, we generalize that new model to account
for the structure of the control problem itself, which finally
allows us to extrapolate our predictions to unseen states. As
part of this generalization, we present a new state space met-
ric that arises naturally in the context of ddBNIRL. In con-
trast to BNIRL, the resulting framework can be used like-
wise for subgoal extraction and action prediction. Moreover,
following a Bayesian methodology, the presented approach
provides complete posterior information at all levels.

3.1 The Intermediate Model

As a first step toward generalization, we establish a link
between the model partitioning structure and the underly-
ing system state space. For this purpose, we replace the
demonstration-based indicators z̃ = {z̃d ∈ N}Dd=1 with a
new set of variables z := {zi ∈ N}|S|

i=1. Unlike z̃, these
variables do not operate directly on the data but are instead
tied to the elements in S . Although they formally represent a
new type of variable, we can still imagine that they are gen-
erated through a CRP. Accordingly, as illustrated in Fig. 1b,
the joint distribution in Eq. (3) changes to

p(a, z,G | s) = p(z)

∞∏
k=1

pg(gk)
D∏

d=1

π(ad | sd, gzsd ).

3.2 The ddBNIRL Model

The intermediate model makes it possible to reason about
the policy (or, more suggestively, the underlying state-to-
action rule) at visited parts of the state space. Yet, it is
unable to extrapolate the gathered information to unvisited
states, as explained in detail in Section 2.1. This problem
is solved by replacing the exchangeable prior distribution
induced by the CRP with a non-exchangeable one, gener-
ated by the distance-dependent Chinese restaurant process
(ddCRP) (Blei and Frazier 2011). In contrast to the CRP,
which assigns states to partitions, the ddCRP assigns states
to other states, based on their pairwise distances. These
“to-state” assignments are described by a set of indicators
c = {ci ∈ S}|S|

i=1 with prior distribution p(c) =
∏|S|

i=1 p(ci),

p(ci = j) ∝
{
ν if i = j,

f(di,j) otherwise.

Herein, ν ∈ [0,∞) is called the self-link parameter of the
process, di,j denotes the distance from state i to state j, and
f : [0,∞) → [0,∞) is a monotone decreasing score func-
tion. Note that the distances {di,j} can be obtained via a suit-
able metric defined on the state space (see next paragraph).
The state partitioning is then determined by the connected
components of the induced ddCRP graph. Our ddBNIRL
joint distribution (Fig. 1c) thus reads as

p(a, c,G | s) = p(c)

∞∏
k=1

pg(gk)
D∏

d=1

π(ad | sd, gz(c)|sd ), (5)

where z(c)|s denotes the partition label of state s arising
from the considered indicator set c.

The Canonical State Metric for ddBNIRL The use of
the ddCRP as a prior model for the state partitioning in
Eq. (5) inevitably requires some notion of distance between
any two states of the system in order to compute the involved
function scores {f(di,j)}. When no such distance measure
is provided by the problem setting, a suitable (quasi-)metric
can be derived from the transition dynamics of the system,
which turns out to be the canonical choice for our subgoal
problem. Consider the Markov chain governing the state
process {st} of an agent under some specific policy π. For
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Figure 1: Comparison of all discussed models. Shaded nodes: observed variables. Double strokes: deterministic dependencies.

any ordered pair of states (i, j), the chain naturally induces
a value Tπ

i→j , called a hitting time (Taylor and Karlin 2014;
Tewari and Bartlett 2008), which represents the expected
number of steps required until the state process, initialized
at state i, eventually reaches state j for the first time,

Tπ
i→j := E

[
min{t ∈ N : st = j} | s0 = i, π

]
.

In the context of our subgoal problem, the natural quasi-
metric to measure the directed distance between two states i
and j is thus given by the time it takes to reach the goal
state j from the starting state i under the corresponding opti-
mal subgoal policy πj(s) := argmaxa∈A Q∗(s, a | j)}, i.e.,
di,j := Tπj

i→j . For ddBNIRL, this choice is particularly ap-
pealing since the subgoal policies {πj} are already available
during the inference procedure. The corresponding distances
{di,j} can be computed efficiently in a single policy evalu-
ation step since they correspond to the optimal (negative)
expected returns at the starting states for the special setting
where the respective target state is made absorbing with zero
reward while all other states are assigned a reward of −1.
Note that, in order to implement a desired degree of locality
in the model, the scale of the decay function f can be easily
calibrated based on the quantiles of the resulting distances.

4 Prediction and Inference

Having introduced our subgoal model, we now explain how
it can be used to generalize the expert behavior. We first fo-
cus on the task of action prediction at a given query state
and then explain in a second step how the necessary infor-
mation can be extracted from the demonstration data. Along
the way, we also give insights into the implicit intentional
model learned through the framework.

4.1 Action Prediction

Similar to the work by Abbeel and Ng (2004), we consider
the task of predicting an action a∗ ∈ A at some query state
s∗ ∈ S that is optimal with respect to the expert’s unknown
reward model. However, in contrast to most existing IRL
methods, our approach is not based on point estimates of the
expert’s reward function but takes into account the entire hy-
pothesis space of reward models to compute the full poste-
rior predictive policy from the expert data. Mathematically,
this task is formulated as computing the predictive action
distribution p(a∗ | s∗,D), which captures the entire informa-
tion about the expert behavior contained in the demonstra-
tion set D. We start by expanding the distribution with the

help of the latent state assignments c,

p(a∗ | s∗,D) =
∑

c∈S|S|
p(a∗ | s∗,D, c)p(c | D).

The conditional distribution p(a∗ | s∗,D, c) can be ex-
pressed in terms of the posterior distribution of the subgoal
targeted at the query state s∗,

p(a∗ | s∗,D) =
∑

c∈S|S|
p(c | D) × . . .

. . .
∑
i∈S

p(a∗ | s∗, c, gz(c)|s∗ = i)p(gz(c)|s∗ = i | D, c),

where we used the fact that the prediction a∗ is condi-
tionally independent of the demonstration set D given the
state partitioning structure and the corresponding subgoal
assigned to s∗ (that is, given c and gz(c)|s∗ ). From the joint
distribution in Eq. (5), it follows that

p(gk | D, c) = 1

Z(D, c)pg(gk)
∏

d:z(c)|sd=k

π(ad | sd, gk), (6)

where Z(D, c) is the corresponding normalizing constant.
Using this relationship, we get

p(a∗ | s∗,D) =
∑

c∈S|S|

1

Z(D, c)p(c | D)
∑

i∈supp(pg)

pg(gz(c)|s∗ = i)

. . . ×
∏

d:z(c)|sd=z(c)|s∗
π(ad | sd, gz(c)|s∗ = i)p(a∗ | s∗, c, gz(c)|s∗ = i).

In contrast to the summation over states, whose compu-
tational complexity is determined by the support of the
subgoal prior distribution pg and which grows at most
linearly with the size of S , the marginalization with respect
to the indicator variables c involves the summation of |S||S|
terms and becomes quickly intractable even for small state
spaces. Therefore, we approximate this operation via Monte
Carlo integration, which yields

p(a∗ | s∗,D) ≈ 1

N

N∑
n=1

∑

i∈supp(pg)

p(gz(c{n})|s∗ = i | D, c{n})

. . . × p(a∗ | s∗, c{n}, gz(c{n})|s∗ = i),

where c{n} ∼ p(c | D). The final prediction step can be
performed, e.g., via the maximum a posteriori (MAP) policy
estimate, π̂(s∗) := argmaxa∗∈A p(a∗ | s∗,D). Our infer-
ence task, hence, reduces to the computation of the posterior
samples {c{n}}, which is described in the next section.
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4.2 Partition Inference

Based on the joint model in Eq. (5), we obtain the posterior
distribution p(c | D) in factorized form as

p(c | D) = p(c)

∞∏
k=1

∑

gk∈supp(pg)

p(gk)
D∏

d=1

π(ad | sd, gz(c)|sd )

= p(c)

|z(c)|∏
k=1

∑

gk∈supp(pg)

∏
d:sd∈Ck

π(ad | sd, gk)p(gk), (7)

where Ck denotes the kth state cluster induced by the assign-
ment c, i.e., Ck := {s ∈ S : z(c)|s = k}, and |z(c)| is the
total number of clusters defined by c. As explained by Blei
and Frazier (2011), the indicator samples {c{n}} can be ef-
ficiently generated using a fast-mixing Gibbs chain. Starting
from a given ddCRP graph defined by the subset of indica-
tors c\i := {cj} \ ci, the insertion of an additional edge ci
will result in one of three possible outcomes: in the case of
adding a self-loop to the ddCRP graph (ci = i), the under-
lying partitioning structure stays unaffected. Setting ci �= i
either leaves the structure unchanged (if the target state is
already in the same cluster as state i), or creates a new link
between two clusters. In the latter case, the involved clusters
are merged, which corresponds to a merging of the asso-
ciated sums in Eq. (7). According to those three cases, the
conditional distribution for the Gibbs procedure is given as

p(ci = j | c\i,D) ∝ . . . (8)⎧
⎪⎪⎨
⎪⎪⎩

ν if i = j,

f(di,j) if no clusters are merged,

f(di,j)
L(Czi∪Czj )

L(Czi )·L(Czj )
if clusters Czi and Czj are merged,

where L(C) denotes the marginal action likelihood of all
demonstrations accumulated in state cluster C,

L(C) =
∑

g∈supp(pg)

∏
d:sd∈C

π(ad | sd, g)pg(g).

4.3 Subgoal Inference

It is important to note that the sampling scheme described
in the previous section is a collapsed one as all subgoals
of our model are marginalized out during inference. In fact,
the ddBNIRL framework differs from BNIRL and other IRL
methods in that the reward model of the expert is never made
explicit for predicting new actions. Nonetheless, if desired
(e.g., for analyzing the expert’s intentions), an estimate of
the subgoal locations can be obtained in a post-hoc fash-
ion from the subgoal posterior distribution in Eq. (6) for any
given assignment c. Two examples are provided in Fig. 2.

5 Simulation Results

In this section, we present experimental results for our algo-
rithm, which we separate into two parts: a proof of concept
and conceptual comparison to BNIRL, and a performance
comparison with related algorithms.

3 1

2

(a) data /MAP partitioning (b) predictive MAP policy

(c) first subgoal posterior (d) third subgoal posterior

Figure 2: Results for the original BNIRL data set.

5.1 Proof of Concept

To illustrate the differences to BNIRL and provide further
insights into the latent intentional model learned through our
framework, we adopt the original BNIRL data set with the
state-action pairs depicted in Fig. 2a. The environment con-
sists of |S| = 20 × 20 = 400 grid positions, where the
black center bar indicates inaccessible wall states. Eight ac-
tions are available to the agent, which result in noisy state
transitions toward the indicated motion directions. Figure 2
summarizes our results, which we computed from a poste-
rior sample returned by our algorithm at a low temperature in
a simulated annealing schedule (Kirkpatrick et al. 1983), as-
suming a uniform prior distribution over subgoals. Compar-
ing the results to those in (Michini and How 2012), we ob-
serve three fundamental differences: i) in contrast to BNIRL,
which has no built-in generalization mechanism, our method
returns a predictive policy comprising the full posterior ac-
tion information at all states (due to space constraints, we
show only the MAP estimate); ii) exploiting the spatial con-
text of the data, ddBNIRL is inherently robust to demonstra-
tion noise, resulting in a notably smoother data partitioning;
iii) for each trajectory segment, we obtain an implicit repre-
sentation of the associated subgoal in the form of a posterior
distribution, without the need of assigning point estimates.
Interestingly, the subgoal distribution corresponding to the
green state partition has a comparably large spread on the
upper side of the wall. This can be explained intuitively by
the fact that any subgoal located in this high posterior re-
gion could have potentially caused the green state sequence,
which circumvents the wall from the right. At the same time,
the green area exhibits a sharp boundary on the left side
since a subgoal located in the upper left region would have
more likely resulted in a trajectory coming from the left.
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Figure 3: Average value loss based on 100 Monte Carlo runs. The width of the shaded areas indicates one standard deviation.

5.2 Random MDP

To thoroughly evaluate the prediction accuracy of our
model, we consider a class of randomly generated MDPs
similar to the Garnet setting in (Bhatnagar et al. 2009). The
transition dynamics {T (· | s, a)} are sampled independently
from a symmetric Dirichlet distribution with concentration
parameter 0.01, where we set |S| = 100 and |A| = 10.
For each repetition of the experiment,NR states are selected
uniformly at random and assigned rewards that are, in turn,
sampled uniformly from the interval [0, 1]. All other states
are assigned zero reward. Then, we compute an optimal de-
terministic policy π∗ with respect to a discount factor of 0.9
and generate a number of expert trajectories of length 10.
Herein, the expert selects the optimal action with probabil-
ity 0.9 and a random suboptimal action with probability 0.1.
The obtained state sequences are passed to the algorithm and
we compute the normalized value loss of the reconstructed
policy as L(π∗, π̂) := ‖V∗−Vπ̂‖2 / ‖V∗‖2, whereV∗ and
Vπ̂ represent the corresponding vectorized value functions.
As baseline methods, we adopt the subintentional

Bayesian policy recognition (BPR) framework presented in
(Šošić, Zoubir, and Koeppl 2018), as well as maximum-
margin IRL (Abbeel and Ng 2004), maximum-entropy IRL
(Ziebart et al. 2008), and vanilla BNIRL. Since BNIRL has
no built-in generalization mechanism (Section 2.1) and the
waypoint method does not straightforwardly apply to the
considered scenario of multiple unaligned trajectories, we
further compare our algorithm to an extension of BNIRL,
which we refer to as BNIRL-EXT. Mimicking the ddBNIRL
principle, the method accounts for the spatial context of the
demonstrations by assigning each state to the BNIRL sub-
goal of the closest demonstration pair, according to the dis-
tance metric described in Section 3 — however, after the
actual subgoal inference. When compared to ddBNIRL, this
provides a reference of how much is effectively gained by
modeling the spatial relationship of the data explicitly.

Figure 3 shows the loss over the size of the demonstra-
tion set for different reward settings. For small NR, both
BNIRL(-EXT) and ddBNIRL significantly outperform the
remaining methods since the sparse reward structure allows
for an efficient subgoal-based encoding of the expert behav-
ior, which enables the algorithms to reconstruct the policy
from even minimal amounts of demonstration data. How-
ever, the BNIRL(-EXT) solutions drastically deteriorate for

denser reward structures. In particular, we observe a clear
difference in performance between the cases where we do
not account for the spatial information at all (BNIRL), in-
clude it in a post-processing step (BNIRL-EXT), and ex-
ploit it during the inference itself (ddBNIRL). Interestingly,
ddBNIRL still outperforms the baselines in the dense reward
regimes, even though the subgoal-based encoding loses its
efficiency here. In fact, the results reveal that the proposed
approach combines the merits of both model types, that
is, the sample efficiency of the intentional models (max-
margin /max-entropy) required for small data set sizes, as
well as the asymptotic accuracy and fully probabilistic na-
ture of the subintentional Bayesian framework (BPR).

6 Conclusion and Outlook

Based on BNIRL, we presented a novel method for data ef-
ficient IRL that leverages the spatial context of the demon-
stration set to learn a predictive model of the expert behav-
ior. In the considered benchmark scenarios, it outperforms
all reference methods while additionally capturing the full
posterior information about the learned subgoal representa-
tion. However, like most other IRL algorithms, our method
is agnostic about the temporal context of the demonstrations,
and hence, the current model relies critically on the assump-
tion that the expert’s policy is spatially consistent. In fact, in
its present form, the framework is unable to model trajectory
crossings, because the diverging expert actions at the cross-
ing points would need to be explained as a result of subop-
timal behavior rather than as a consequence of changing in-
tentions (e.g., when the expert spontaneously targets a differ-
ent subgoal at an already visited state). For our algorithm to
work, this means that either the underlying ground truth re-
ward function has to be time-invariant or that it must be pos-
sible to resolve the expert’s temporal subgoal schedule via
an appropriate partitioning of the state space (as in Fig. 2).
Currently, we extend the framework such that it can handle
scenarios with time-varying goals. Based on the presented
model, this requires only a minor step since the proposed
distance-aware modeling concept allows us to incorporate
the required temporal context by making only minor mod-
ifications, i.e., by switching from a spatial to an appropri-
ate (spatio-)temporal distance metric. Preliminary results on
real robotic data indicate a drastic reduction of the average
subgoal localization error over BNIRL by more than 70%.

349



References

Abbeel, P., and Ng, A. Y. 2004. Apprenticeship Learning
via Inverse Reinforcement Learning. In International Con-
ference on Machine Learning, 1.
Aldous, D. J. 1985. Exchangeability and Related Topics.
Springer.
Babes, M.; Marivate, V.; Subramanian, K.; and Littman,
M. L. 2011. Apprenticeship Learning about Multiple In-
tentions. In International Conference on Machine Learning,
897–904.
Bhatnagar, S.; Sutton, R.; Ghavamzadeh, M.; and Lee, M.
2009. Natural Actor-Critic Algorithms. Automatica 45(11).
Blei, D. M., and Frazier, P. I. 2011. Distance Dependent
Chinese Restaurant Processes. Journal of Machine Learning
Research 12(Aug):2461–2488.
Bradtke, S. J., and Duff, M. O. 1995. Reinforcement Learn-
ing Methods for Continuous-Time Markov Decision Prob-
lems. In Advances in Neural Information Processing Sys-
tems, 393–400.
Choi, J., and Kim, K. 2012. Nonparametric Bayesian Inverse
Reinforcement Learning for Multiple Reward Functions. In
Advances in Neural Information Processing Systems, 305–
313.
Dimitrakakis, C., and Rothkopf, C. A. 2011. Bayesian Mul-
titask Inverse Reinforcement Learning. In European Work-
shop on Reinforcement Learning, 273–284.
Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P.; et al.
1983. Optimization by Simulated Annealing. Science
220(4598):671–680.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Krishnan, S.; Garg, A.; Liaw, R.; Miller, L.; Pokorny, F. T.;
and Goldberg, K. 2016. HIRL: Hierarchical Inverse Rein-
forcement Learning for Long-Horizon Tasks with Delayed
Rewards. arXiv:1604.06508 [cs.RO].
Levine, S.; Popovic, Z.; and Koltun, V. 2011. Nonlinear
Inverse Reinforcement Learning with Gaussian Processes.
In Advances in Neural Information Processing Systems, 19–
27.
Michini, B., and How, J. P. 2012. Bayesian Nonparametric
Inverse Reinforcement Learning. In Machine Learning and
Knowledge Discovery in Databases, 148–163.
Michini, B.; Walsh, T. J.; Agha-Mohammadi, A.-A.; and
How, J. P. 2015. Bayesian Nonparametric Reward Learn-
ing from Demonstration. IEEE Transactions on Robotics
31(2):369–386.
Ng, A. Y., and Russell, S. J. 2000. Algorithms for Inverse
Reinforcement Learning. In International Conference on
Machine Learning, 663–670.
Nguyen, Q. P.; Low, B. K. H.; and Jaillet, P. 2015. In-
verse Reinforcement Learning with Locally Consistent Re-
ward Functions. In Advances in Neural Information Pro-
cessing Systems, 1747–1755.
Ramachandran, D., and Amir, E. 2007. Bayesian Inverse

Reinforcement Learning. International Joint Conference on
Artificial Intelligence 1–4.
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Abstract

Policy gradient methods are often applied to reinforcement
learning in continuous multiagent games. These methods per-
form local search in the joint-action space, and as we show,
they are susceptable to a game-theoretic pathology known
as relative overgeneralization. To resolve this issue, we pro-
pose Multiagent Soft Q-learning, which can be seen as the
analogue of applying Q-learning to continuous controls. We
compare our method to MADDPG, a state-of-the-art ap-
proach, and show that our method achieves better coordina-
tion in multiagent cooperative tasks, converging to better lo-
cal optima in the joint action space.

Introduction

Multiagent reinforcement learning (or MARL) is a type of
Reinforcement Learning (RL) involving two or more agents.
The mechanism is similar to traditional reinforcement learn-
ing: the environment is some current state (which the agent
can only sense through its observation), the agents each per-
form some action while in that state, the agents each receive
some reward, the state transitions to some new state, and
than the process repeats. However in MARL, both transi-
tions from state to state and the rewards allotted are func-
tions of the joint action of the agents while in that state.
Each agent ultimately tries to learn a policy that maps its
observation to the optimal action in that state: but these are
individual actions, not joint actions, as ultimately an agent
cannot dictate the other agents’ actions.

Multiagent Learning has been investigated comprehen-
sively in discrete action domains. Many methods have been
proposed for equilibrium learning (Littman 1994; 2001;
Hu andWellman 2003; Greenwald, Hall, and Serrano 2003),
where the agents are trying to learn policies that satisfy some
equilibrium concept fromGame Theory. Almost all the equi-
librium learning methods that have been proposed are based
on off-policy Q-learning. This is not surprising, as multia-
gent equilibrium learning is naturally off-policy, that is, the
agents are trying to learn an equilibrium policy while explor-
ing the environment by following another policy. However,
this situation does not apply to continuous games, that is,
games with continuous actions. When RL must be applied to

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

continuous control, policy gradient methods are often taken
into consideration. However, in the past, it does not combine
with off-policy samples as easily as the tabular Q-Learning.
For this reason, RL has not been able to achieve as good per-
formance in continuous games as it has in discrete domains.

In this paper, we consider cooperative games, where
the agents all have the same reward function. Cooperative
MARL problems can be categorized based on how much in-
formation each agent knows. If we have a central controller
to control the learning process of each agent, then we have
centralized training with decentralized execution (Oliehoek,
Spaan, and Vlassis 2008). If the agents are learning con-
currently, and each agent is told what the other agent or
agents did, then the problem is known as a joint action
learner problem. If the agents are learning concurrently but
are not told what the others did, then we have an independent
learner problem.
When the information is limited for learners in coop-

erative games, as is the case with independent learners, a
pathology called relative overgeneralization can arise (Wei
and Luke 2016). Relative overgeneralization occurs when
a suboptimal Nash Equilibrium in the joint space of ac-
tions is preferred over an optimal Nash Equilibrium because
each agent’s action in the suboptimal equilibrium is a better
choice when matched with arbitrary actions from the collab-
orating agents. For instance, consider a continuous game in
Figure 1. The axes i and j are the various actions that agents
Ai and Aj may perform (we assume the agents are perform-
ing deterministic actions), and the axis rewards (i, j) is the
joint reward received by the agents from a given joint action
〈i, j〉. Joint action M has a higher reward than joint action
N . However, the average of all possible rewards for action
iM , of agent Ai is lower than the average of all possible re-
wards for action iN . Thus, the agents tend to converge to
N.

In this paper, we first analytically show how relative
overgeneralization prevents policy gradient methods from
achieving better coordination in cooperative continuous
games. This is even true in centralized training if we are
not using the information wisely. Then we tackle the rela-
tive overgeneralization problem in these games by introduc-
ing Multiagent Soft Q-Learning, a novel method based on
Soft Q-Learning and deep energy-based policies (Haarnoja
et al. 2017). Our method is similar to MADDPG (Lowe et al.
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Figure 1: The relative overgeneralization pathology in con-
tinuous games.

2017), a recently proposed centralized learning algorithm.
Thus, it belongs to the centralized training with decentral-
ized execution paradigm. In this setting, since the training
is centralized and we use the information wisely, it avoids
the co-adaptation problem in Multiagent RL and greatly re-
duces the sample complexity, as the environment for agents
is stationary.

Background

In this section, we first give an introduction to Markov Deci-
sion Processes (MDP) and various generalizations. We then
introduce policy gradient methods.

Markov Decision Processes and Stochastic Games

AMarkov Decision Process (or MDP) can be used to model
the interaction an agent has with its environment. An MDP
is a tuple {S,A, T,R, γ,H} where S is the set of states; A
is the set of actions available to the agent; T is the transition
function T (s, a, s′) = P (s′|s, a) defining the probability of
transitioning to state s′ ∈ S when in state s ∈ S and taking
action a ∈ A; R is the reward function R : S × A �→ R;
0 < γ < 1 is a discount factor; and H is the horizon time
of the MDP, that is, the number of steps the MDP runs.1 An
agent selects its actions based on the policy πθ(a|s), which
is a distribution over all possible actions a in state s param-
eterized by θ ∈ R

n.
The concept of an MDP can be extended to partially ob-

servable (POMDP) settings, where agents do not directly
sense the state s. Rather, they receive some observation o
sampled from a distribution conditioned on s.

MDPs can also be generalized to a cooperative multi-
agent settings, called a Cooperative Stochastic Game or
CSG. This is a game with n agents (or players), defined
by the tuple {S,A, R, T, γ,H}, where S is the state space,
A = A1 × ... × An is the joint action space of n agents,

1Any infinite horizon MDP with discounted rewards can be
ε-approximated by a finite horizon MDP using a horizon Hε =
logγ(ε(1−γ))

maxs,a |R(s,a)| (Jie and Abbeel 2010)

R : S × A → R is the reward function for each agent i,
and T (s,�a, s′) = P (s′|s,�a) is the transition function, where
�a = 〈a1 · · · an〉 ∈ A is the joint action of all agents. Thus
the reward the agents receive and the state to which they
transition depends on the current state and agents’ joint ac-
tion. Each agent i determines its action using a policy πi.
We will also use −i to denote all agents except for agent
i. A POCSG can be thought as taking CSG into a partially
observable setting.

In the multiagent setting, a rational agent will play
its best response to the other agents’ strategy. If all
agents are following a policy that implements this
strategy, they will arrive at a Nash equilibrium de-
fined as a solution where ∀i Ri(s, π

∗
1 , . . . π

∗
i . . . π

∗
n) ≥

Ri(s, π
∗
1 , . . . , π

∗
i−1, πi, π

∗
i+1, . . . , π

∗
n) for all of the strate-

gies πi available to agent i. π∗
i denotes the best response

policy of agent i.

Policy Gradient Methods

In single agent continuous control tasks, it is common to
apply a policy gradient method to determine an optimal pol-
icy. We describe that process here. To start, we define the
expected return J(θ) of a policy πθ as

J(θ) = EPθ(τ)

[
R(τ)

]
=

∑
τ

Pθ(τ)R(τ), (1)

where Pθ(τ) is the probability distribution over all possible
state-action trajectories τ = 〈s0, a0, s1, a1, . . . , sH , aH〉
induced by following policy πθ, and R(τ) =∑H

t=0 γ
tR(st, at) is the discounted accumulated re-

ward along trajectory τ . We want to compute the gradient
∇θJ(θ), so that we can follow the gradient to a local
optimum in the space of policy parameters. To do this we
use the likelihood-ratio trick (Williams 1992), where we
write the gradient as

∇θJ(θ) =
∑
τ

∇θPθ(τ)R(τ) =
∑
τ

Pθ(τ)
∇θPθ(τ)

Pθ(τ)
R(τ)

=EPθ(τ)

[∇θ lnPθ(τ)R(τ)
]

(2)

and estimate it by performing m sample trajecto-
ries 〈τ (1), . . . , τ (m)〉, calculating the correspond-
ing terms, and then taking the average, that is,
∇θJ(θ) ≈ 1

m

∑m
j=1∇θ lnPθ(τ

(j))R(τ (j)). This pol-
icy gradient method can also use off-policy samples by
introducing importance sampling, where we scale each term
in the empirical expectation by Pθ(τ)

Q(τ) , where Q is another
distribution from which our off-policy samples come. The
intuition behind Equation 2 is that the reward term R(τ)
scales the gradient proportionally to the reward along the
trajectories.

One problem with using this likelihood-ratio estimator in
practice is that it suffers from a large variance, and thus
requires a great many samples to give an accurate estima-
tion. There are various methods proposed to deal with this.
A first approach is to replace the Monte Carlo estimation
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of the reward along trajectories R(τ) with a value func-
tion. This leads to the Stochastic (SPG) and Determinis-
tic Policy Gradient (DPG) Theorems (Sutton et al. 1999;
Silver et al. 2014), shown below respectively:

∇θJ(θ) =

∫

S

ρπθ (s)

∫

A

∇θπθ(a|s)Qπθ (s, a) da ds

= Es∼ρπθ ,a∼πθ

[
∇θ lnπθ(a|s)Qπθ (s, a)

]

∇θJ(θ) =

∫

S

ρπθ (s)∇θπθ(s)∇aQ
πθ (s, a)|a=πθ(s) ds

= Es∼ρπθ

[
∇θπθ(s)∇aQ

πθ (s, a)|a=πθ(s)

]
,

where ρπθ (s′) =
∫
S

∑∞
t=1 γ

t−1P (s)P (s → s′, t, πθ) ds
is the discounted distribution over states induced by pol-
icy πθ and starting from some state s ∈ S. Specifically,
P (s→ s′, t, π) is the probability of going t steps under pol-
icy π from state s and ending up in state s′. The theorems
introduced a class of algorithms (Peters and Schaal 2008;
Degris, White, and Sutton 2012) under the name actor-critic
methods, where the actor is the policy π and the critic is the
Q-function.
The actor-critic algorithms have also been used in an off-

policy setting through importance sampling (Degris, White,
and Sutton 2012). Recently, another method called a replay
buffer (Mnih et al. 2013) has drawn people’s attention for
being able to do off-policy learning with actor-critic algo-
rithms (Lillicrap et al. 2015). In this method, we store all the
samples in a buffer and at every step of learning we sample a
mini-batch from this buffer to estimate the gradient of either
Q-Function or policy.

Related Work

The idea of learning to cooperate through policy gradient
methods has been around for a long time, but mainly for
discrete action domains (Banerjee and Peng 2003). Peshkin
et al. have applied the REINFORCE policy gradient to both
CSG and POCSG tasks. However, as we will show later, a
naive use of this gradient estimator is dangerous in the mul-
tiagent case. Nair et al. proposed Joint Equilibrium-Based
Search for Policies (JESP), applied to POCSGs. The main
idea here is to perform policy search in one agent while
fixing the policies of other agents. Although this method is
guaranteed to converge to a local Nash Equilibrium, it is es-
sentially a round-robin single agent algorithm.
Recently, with the boom of Deep Reinforcement Learn-

ing (DRL), deep MARL algorithms have been proposed to
tackle large scale problems. One of the main streams is
the centralized training with decentralized execution. Fo-
erster et al. proposed a method to learn communication
protocols between the agents. They use inter-agent back-
propagation and parameter sharing. Foerster et al. studied
how to stablize the training of multiagent deep reinforc-
ment learning using importance sampling. Two actor-critic
algorithms have been proposed in (Foerster et al. 2017a;
Lowe et al. 2017). They argue that by using a central critic

we can ease the training of multiple agents, and that by keep-
ing a separate policy, the agent can execute with only its
local information, which makes it possible to learn in POC-
SGs. Among these two algorithms, MADDPG (Lowe et al.
2017) is most relevant to us. It uses the learning rule from
DDPG (Lillicrap et al. 2015) to learn a central off-policy
critic based on Q-learning, and uses the following gradient
estimator to learn the policies for each agent i:

∇θiJ(θ
i) = Es,a−i∼D

[
∇θiπ

i
θi(ai|oi)∇aiQ(s,�a)|ai=πi

θi
(oi)

]
,

where θi is the agent i’s policy parameters, D is the replay
buffer, and oi is the local observation of agent i. During the
centralized training process, the critic has access to the true
state s = [o1, . . . , on]. But at execution time, each agent
only has access to oi.

Multiagent Actor-Critic Algorithms

As we described earlier, if we have limited information for
our agent, we can suffer from the relative overgeneralization
problem. In this section, we demonstrate how this affects the
actor critic algorithm. We will first derive the policy gradi-
ent estimator for the cooperative multiagent case and then
discuss several problems that occurs if we naively use this
estimator, which will shed light on the reasons why Multia-
gent Soft Q-Learning may be useful.
Proposition 1. For any episodic cooperative stochastic
game with n agents, we have the following multiagent
stochastic policy gradient theorem:

∇θiJ(�θ) =

∫

s

ρπ
1,··· ,πn(s)

∫

Ai
∇θπ(a

i|s)
∫

A−i
π−i(a−i|s)Qπ1,··· ,πn(s,�a) da−i dai ds

The proof of this proposition is provided in Proof A at
the end of this paper. From Proposition 1, we can see that
the policy gradient for agent i at each state is scaled by
Qπi(s, ai) =

∫
A−i

π−i(a−i|s)Qπ1···πn(s,�a)da−i, which
are the joint-action Q-values averaged by the other agents’
policies. Their are several problems with this estimator.
First, for any agent i, the joint-action Q-function is an on-
policy Q-function. That is, it is learned under policy πi, and
π−i which is not the best response policy of other agents.
Thus, the joint-action Q-function may not scale the gradient
in right magnitude. Second, if we are an independent learner
and play as Ai in game shown in Figure 1, we only have
access to Qπi(s, ai), since this value is averaged by other’s
policies, the value of the action 〈iN 〉 would be higher than
the value of action 〈iM 〉 even under the optimal Q-function,
thus mistakenly scaling the gradient to towards 〈iN 〉.
MADDPG solves the previous two issues by using the

following methods. First, it uses the replay buffer (Lilli-
crap et al. 2015) to learn an off-policy optimal Q-function
very much like what we learn for Q-Learning (Silver et al.
2014). This is not doable with traditional importance sam-
pling based off-policy learning. Second, it’s using the cen-
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tralized training method which gives it direct access to the
joint-action Q-function, but not the policies.

However, MADDPG fails to use the optimal action for
gradient scaling, making it still vulnerable to the relative
overgeneralization problem. To see that, consider its gradi-
ent estimator,

∇θiJ(θ
i) = Es,a−i∼D

[
∇θiπ

i
θi(ai|oi)∇aiQ

∗(s,�a)|ai=πi
θi

(oi)

]

We see that for agent i, it tries to ascend the policy gradient
based on Q∗(s,�a), where a−i is from the replay buffer D
rather than the optimal policy, which is another way of aver-
aging the Q-values based on others’ policies. As we showed
in Figure 1, this average-based estimation can lead to rela-
tive overgeneralization.

Multiagent Soft Q-Learning

In this paper, we propose MARL method for cooperative
continuous games. We show that on the one hand, our
method is an actor-critic method, which thus can benefit
from the centralized training method, with one central critic
and multiple distributed policies. And on the other hand, our
method resembles Q-Learning, and thus, it efficiently avoids
the relative overgeneralization problem. We first introduce
Soft Q-Learning and then describe how we use it for multi-
agent training.

Soft Q-Learning

Although Q-Learning has been widely used to deal with con-
trol tasks, it has many drawbacks. One of the problems is
that at the early stage of learning, the max operator can
bring bias into the Q-value estimation (Fox, Pakman, and
Tishby 2016). To remedy this, Maximum Entropy Reinfor-
cment Learning (MERL) was introduced, in which tries to
find the following policy:

π∗
MaxEnt = argmaxπ

∑
t

E(st,at)∼ρπ [r(st, at) + αH(π(·|s)]

where H(π(·|s)) is the entropy of the policy. The parame-
ter α controls the relative importance of the reward and en-
tropy: when it goes to 0, we recover ordinary RL. From this
objective, a learning method similar to Q-Learning can be
derived, called Soft Q-Learning (Haarnoja et al. 2017). Its
learning algorithm is

Qsoft(st, at)← rt + γEst+1
[Vsoft(st+1)] ∀st, at,

Vsoft(st)← α log

∫

A

exp(
1

α
Qsoft(st, a

′))da′.

Haarnoja et al. have shown that by using this update rule,
Qsoft and Vsoft can converge to Q∗

soft and V ∗
soft respectively,

and by driving α→ 0, Q-learning with a hard max operator
can be recovered. For this reason, Haarnoja et al. named this
Soft Q-learning.

Once we have the learned Q-function above, we can get
the optimal max entropy policy as

π∗MaxEnt(at|st) = exp(
1

α
Q∗soft(st, at)− V ∗soft(st)) ∝ Q∗soft(st, at).

A nice property of this policy is that it spreads widely over
the entire action space in continuous control tasks. Thus, if
we have such a policy, and if there are multiple modes in
the action space, we can find them much more effectively
than with more deterministic policies (e.g. Gaussian policy)
which are typically used in actor-critic algorithms. However,
since the form of this policy is so general, sampling from it
is very hard. Soft Q-Learning solves this issue by using Stein
Variational Gradient Descent (SVGD) (Liu and Wang 2016)
to approximate the optimal policy through minimizing the
KL-divergence:

DKL =

(
πθ(·|st)

∣∣∣∣ exp ( 1
α
Q∗

soft(st, at)− V ∗
soft(st)

))
, (3)

where policy πθ(·|s) is our approximate policy. Since
− 1

αQ
∗
soft(st, at) can be viewed as an energy function, and

the authors are using a deep neural network to approximate
the Q-function, they call this a deep energy-based policy. It
has been demonstrated that using the Soft Q-Learning with
deep energy based policies can learn multimodal objectives.
In Soft Q-Learning we need to learn both the Q-function
and the energy-based policy π(·|s). Thus, Soft Q-Learning
can be thought as an actor-critic algorithm. Now consider
the multiagent case. To make it clear, we first recall how we
can achieve coordination in a discrete domain. In discrete
domains, when we have the Q∗(s, a) function, we simply
apply the argmax operator to it and then let each agent do
its own part of the optimal action. This is possible since we
can do global search in the joint-action space for a given
state. Now, with Soft Q-Learning and a deep energy-based
model, we can mimic what we did in the discrete case. In this
situation, we start with a high α to do global search in the
joint-action space, then quickly anneal the α to lock on some
optimal action, like the argmax operator. It has been shown
that by annealing the α, we can get a deterministic policy
from deep energy-based policies (Haarnoja et al. 2017).

Algorithm 1: Multiagent Soft Q-Learning
input: A central critic Q, N policies for all N agents,

α, and the epoch start to annealing t
for episode = 0 to M do

Update central critic Q using the method from
Soft Q-Learning.

for agent = 1 to N do
Update the joint policy for agent i using
equation (3)

end
if episode ≥ t then

anneal α
end

As we described before, Soft Q-Learning is also an actor-
critic method. Thus, we can borrow the idea of learning
a centralized joint action critic with Soft Q-Learning from
MADDPG. Then for each of the agents, instead of learn-
ing a mapping for its own observation to its own action, we
learn a mapping from its own observation to the joint-action.
When the agent interacts with the environment, it just per-
forms its own part of the joint action. We start the learning
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with high α value and let it explore the joint action space,
we then quickly anneal the α to let each agent find a better
local optima in joint-action space. Our algorithm is given at
Algorithm 1.

Figure 2: The Max of Two Quadratic game. The dots mark
the two local optima in the joint action space while the star
marks the joint action of the two agents. The contour shows
the reward level.

Experiments

To show that our Multaigent Soft Q-Learning method can
achieve better coordination, we consider the Max of Two
Quadractics game from previous literature (Panait, Luke,
and Wiegand 2006). This is a simple single state continu-
ous game for 2 agents, one action dimension per agent. Each
agent has a bounded action space. The reward for a joint ac-
tion is given by following equation

f1 = h1 ×
[− (a1 − x1

s1

)2 − (a2 − y1
s1

)2]

f2 = h2 ×
[− (a1 − x2

s2

)2 − (a2 − y2
s2

)2
)
]
+ c

r(a1, a2) = max(f1, f2)

where a1, a2 are the actions from agent 1 and agent 2 re-
spectively. In the equation above, h1 = 0.8, h2 = 1, s1 =
3, s2 = 1, x1 = 5, x2 = 5, y1 = −5, y2 = −5, c = 10
are the coefficients to determine the reward surface (see Fig-
ure 2). Although the formulation of the game is rather sim-
ple, it poses a great difficulty to gradient-based algorithms
as, over almost all the joint-action space, the gradient points
to the sub-optimal solution located at (-5, -5).

We trained the MADDPG agent along with our Multagent
Soft Q-Learning agent in this domain. As this was a simple
domain, we used two-hidden-layer networks with size {100,
100}, and we trained the agents for 150 epochs for 100 steps
per epoch. The training was not started until we had 1000
samples in the replay buffer. Both agents scaled their reward
by 0.1. For our Multiagent Soft Q-Learning agent, we started
the annealing at epoch 100, and finished the annealing in 15
epochs. We started with α = 1, and annealed it to 0.001.
For the rest of the parameters, we used the default setting

Figure 3: The average reward for both algorithms. Multia-
gent Soft Q-Learning finds the better local optima quickly
after we anneal α.

from the original DDPG (Lillicrap et al. 2015) and Soft Q-
Learning (Haarnoja et al. 2017) papers. In addition, to mimic
the local observation setting where centralized learning was
suitable, we gave the two agents in both algorithms differ-
ent observation signals, where the first agent would always
sense the state as 〈0〉, and the second agent would always
sense it as 〈1〉. Then the state for the central critic was 〈0, 1〉.
The result is in Figure 3. However, the plot is an aver-

age over all 50 experiment runs, and hence, may hide some
critical information. On closer investigation, we found that
Multiagent Soft Q-Learning converged to the better equilib-
rium 72% of the time, while MADDPG never converged
to it.

Conclusion and Future Work

In this paper, we investigated how to achieve better controls
in continuous games. We showed why the traditional policy
gradient methods is not suitable for these tasks, and why the
gradient-based method can fail to find better local optima
in the joint-action space. We then proposed Multiagent Soft
Q-Learning based on the centralized training and decentral-
ized execution paradigm, and showed that, we can achieve
much better coordination with higher probability. And since
we are using centralized training, the co-adaption problem
can be avoided, thus, making our method sample-efficient
compared to independent learners. We argue that Multiagent
Soft Q-Learning is a competitive RL learner for hard coor-
dination problems.

There are some issues that we haven’t been able to in-
vestigate thoroughly in this work. First, so far we have only
applied our learner in the single state games. To better under-
stand the algorithm, we would like to try our algorithm on
sequential continuous games with hard coordination prob-
lems. Second, as we show in the experiment, with Soft Q-
Learning we are not able to converge the better equilibrium
for 100% of the time. In the future, we would like to inves-
tigate different annealing methods to improve the conver-
gence rate. Last, we notice that Multiagent Soft Q-Learning
models the joint action of all the agents, and thus the dimen-
sion of the action can explode with more agents. To solve
this issue, we will investigate how to apply Soft Q-Learning
in the independent learner case, where the algorithm scales
well.
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Proof A

We first denote �π as the joint-policy. This proof requires
that P (s), P (s′|s,�a), πi(ai|s),∇θiπ

i(ai|s), and Q�π(s,�a)
be continuous in all parameters and variables s, s′,�a. This
regularity condition implies that V �π(s) and ∇θiV

�π(s) are
continuous functions of θ and s. S is also required to be
compact, and so for any θ, ||∇θiV

�π(s)|| is a bounded func-
tion of s. The proof mainly follows along the standard
Stochastic Policy Gradient Theorem. We assume agent i fol-
lows the policy πi(ai|s) parameterized by θi. We denote π−i

as the joint policy of all agents but agent i, and a−i as the
joint action of all agents except agent i. For notation sim-
plicity, we denote:

∫

A−i
π−i(a−i|s)f(a−i) da−i

=

∫

A1

π1(a1|s) · · ·
∫

Ai−1

πi−1(ai−1|s)
∫

Ai+1

πi+1(ai+1|s) · · ·
∫

An
πn(an|s)f(a−i)

dan · · · dai+1 dai−1 · · · da1

Using this new notation the proof follows:

∇θiV
�π(s)

=∇θi

∫

A1

π1(a1|s) · · ·
∫

An
πn(an|s)Q�π(s,�a) d�a

=

∫

A−i
π−i(a−i|s)∇θi

∫

Ai
πi(ai|s)Q�π(s,�a) dai da−i

=

∫

A−i
π−i(a−i|s)

∫

Ai

[
∇θiπ

i(ai|s)Q�π(s,�a)

+ πi(ai|s)∇θiQ
�π(s,�a)

]
dai da−i

=

∫

A−i
π−i(a−i|s)

∫

Ai

[
∇θiπ

i(ai|s)Q�π(s,�a)

+ πi(ai|s)
∫

S

γP (s′|s,�a)∇θiV
�π(s′) ds′

]
dai da−i

We used Leibniz integral rule to exchange order of deriva-
tive and integration using the regularity condition and ex-
panding Q�π(s,�a) above. We use Pπ(s′|s, t) as short for
P (s→ s′, t, π). Now we iterate the formula,

=

∫

A−i
π−i(a−i|s)

∫

Ai

[
∇θiπ

i(ai|s)Q�π(s,�a) + πi(ai|s)
∫

S

γP (s′|s,�a)
[ ∫

A−i
π−i(a−i|s′)

∫

Ai

(
∇θiπ

i(ai|s′)Q�π(s′,�a)

+ πi(ai|s′)
∫

S

γP (s′′|s′,�a)∇θiV
�π(s′′) ds′′

)
dai da−i

]
ds′

]

dai da−i

=

∫

A−i
π−i(a−i|s)

∫

Ai
∇θiπ

i(ai|s)Q�π(s,�a)daida−i

+

∫

S

γP �π(s′|s, 1)
∫

A−i
π−i(a−i|s′)

∫

Ai
∇θiπ

i(ai|s′)Q�π(s′,�a)daida−ids′

+

∫

S

γP �π(s′|s, 1)
∫

S

γP �π(s′′|s′, 1)∇θiV
�π(s′′) ds′′ ds′

=

∫

S

∞∑

t=0

γtP �π(s′|s, t)
∫

A−i
π−i(a−i|s′)

∫

Ai
∇θiπ

i(ai|s′)Q�π(s′,�a) dai da−i ds′

=

∫

S

∞∑

t=0

γtP �π(s′|s, t)
∫

Ai
∇θiπ

i(ai|s′)
∫

A−i
π−i(a−i|s′)Q�π(s′,�a) da−i dai ds′

In the final line we use Fubini’s theorem and exchange the
order of integration using the regularity condition so that
||∇θiV

�π(s)|| is bounded. We then take the expectation over
the possible start states s:

∇θiJ(θ) =∇θi
∫
S

P (s)V
�π
(s) ds =

∫
S

P (s)∇θiV �π(s) ds

=

∫
S

∫
S

∞∑
t=0

γ
t
P (s)P

�π
(s
′|s, t) ds

∫
Ai

∇θiπi(ai|s′)
∫
A−i

π
−i

(a
−i|s′)Q�π(s′,�a) da−i dai ds′

=

∫
S

ρ
�π
(s
′
)

∫
Ai
∇θiπi(ai|s′)

∫
A−i

π
−i

(a
−i|s′)Q�π(s′,�a) da−i dai ds′
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Abstract

We explore Deep Reinforcement Learning in a parameter-
ized action space. Specifically, we investigate how to achieve
sample-efficient end-to-end training in these tasks. We pro-
pose a new compact architecture for the tasks where the pa-
rameter policy is conditioned on the output of the discrete ac-
tion policy. We also propose two new methods based on the
state-of-the-art algorithms Trust Region Policy Optimization
(TRPO) and Stochastic Value Gradient (SVG) to train such an
architecture. We demonstrate that these methods outperform
the state of the art method, Parameterized Action DDPG, on
test domains.

Introduction
Deep Reinforcement Learning (DRL) has achieved success
in recent years, including beating human masters in Go (Sil-
ver et al. 2016), attaining human level performance in Atari
games (Mnih et al. 2015), and controlling robots in high-
dimensional action spaces (Lillicrap et al. 2015). With these
successes, researchers have begun to explore new frontiers
in DRL, including how to apply DRL in complex action
spaces. Consider for example the real time strategy game
StarCraft, where at any time during play we may choose
among different types of actions to be able to finish our
goals (Vinyals et al. 2017). For example, we may need to
choose a building to construct and then select where to build
it; or choose a squad of armies and direct them to explore
the map. Critically, instead of having a single action set, we
may have several sets of actions, either continuous or dis-
crete, and to get a meaningful action to execute, we must
choose wisely among these sets.

In this paper, we explore how to apply DRL to tasks with
more than one set of actions. Specifically, we consider tasks
with parameterized action spaces (Masson, Ranchod, and
Konidaris 2016), where at each step the agent must choose
both a discrete action and a set of continuous parameters for
that action. Tasks with this kind of action space have been
proposed in the Reinforcement Learning (RL) community
for a long time (Stone et al. 2006) but have not been ex-
plored much.

One approach to handle a RL task with a parameterized
action space is to do alternating optimization (Masson, Ran-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

chod, and Konidaris 2016). Here, we break the task into
two separate subtasks by fixing either the parameters or dis-
crete actions and then applying RL algorithms alternating
between the induced subtasks. Although this method can
work, it has a huge sample complexity because every time
we switch the subtask, the previous experience is no longer
valid as the environment is different.

Thus, a sample efficient alternative is to train the poli-
cies for discrete actions and parameters at the same time.
There have already been steps in this direction. Hausknecht
and Stone simultaneously train two policies which can pro-
duce the values for discrete action and parameters respec-
tively and then select the action to execute based on their
values. There are two main drawbacks of this method. The
first is that the parameter policy does not know what dis-
crete action is selected at execution time. Thus, the parame-
ter policy needs to output all the parameters for all the dis-
crete actions at every step. As a result, the output size of the
parameter policy can explode if we have high dimensional
parameters with large discrete action sets. The second prob-
lem is that neither the policies nor the training method are
aware of the action-selection procedure after the action and
parameter values are produced. Therefore, the method may
be missing a crucial piece of information for it to succeed.

In this paper, we propose a new architecture for parame-
terized action space tasks. In our method, we condition our
parameter policy on the output of the discrete action policy,
thus greatly reducing the output size of the parameter policy.
Then we extend the state-of-the-art DRL algorithms to effi-
ciently train the new architecture for parameterized action
space tasks. In experiments we show that our methods can
achieve better performance than the state of the art method.

Background

Before we delve into the architecture and algorithms, we
first present a mathematical formulation of Markov Decision
Processes (MDPs) along with some relevant policy gradient
algorithms. Then we present Parameterized Action MDPs
(PAMDPs). Lastly, we discuss some of the previous work in
PAMDPs that is related to our paper.

MDPs and Policy Gradient Methods

Markov Decision Process A Markov Decision Process
(or MDP) can be used to model the interaction an agent has
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with its environment. A MDP is a tuple {S,A, T,R, γ,H}
where S is the set of states; A is the set of actions avail-
able to the agent; T is the transition function T (s, a, s′) =
P (s′|s, a) defining the probability of transitioning to state
s′ ∈ S when in state s ∈ S and taking action a ∈ A; R
is the reward function R : S × A �→ R; 0 < γ < 1 is a
discount factor; and H is the horizon time of the MDP, that
is, the MDP runs for only H steps.∗ An agent selects its ac-
tions based on a policy πθ(·|s), which is a distribution over
all possible actions a in state s parameterized by θ ∈ R

n.

Policy Gradient Methods One of the major approaches to
deal with continuous control problems in MDPs is to apply
a policy gradient method. In policy gradient methods, we
are trying to use gradient ascent to optimize the following
objective

J(θ) = Es∼ρπθ [V
πθ (s)]

=

∫

S

ρπθ (s)V πθ (s) ds,
(1)

where s is the state visited, and ρπθ (s) is the distribution
over all states induced by executing policy πθ. Many algo-
rithms have been proposed to optimize this objective, in-
cluding REINFORCE (Williams 1992), GPOMDP (Bax-
ter and Bartlett 2001), and Trust Region Policy Opti-
mization (TRPO) (Schulman et al. 2015), where we col-
lect a set of trajectory samples with the form τ =
〈s0, a0, s1, a1, . . . , sH , aH〉 and use them to evaluate the
gradient of J(θ). It turns out that sometimes, it is ben-
eficial to learn an additional value function Q(s, a) or
V (s) to reduce the variance in estimating the gradient of
J(θ). This leads to a family of algorithms named “actor-
critic” algorithms where the “actor” is the policy π and the
“critic” is the value function. This family of algorithms in-
cludes the Stochastic Policy Gradient Theorem (SPG) (Sut-
ton et al. 2000), the Deterministic Policy Gradient The-
orem (DPG) (Silver et al. 2014), and so on. In addition,
DDPG (Lillicrap et al. 2015) is an extention of DPG to the
DRL setting by using a replay buffer to assist off-policy
learning.

Parameterized Action MDPs

The MDP notation can be generalized to deal with parame-
terized tasks, e.g., actions with parameters. Here, instead of
having just one set of actions, we have multiple sets of con-
trols: a finite set of discrete actions Ad = {a1, a2, . . . , an}
and for each a ∈ Ad, a set of continuous parameters Xa ⊆
Rma . Thus, an action is a tuple (a, x) in the joint action
space,

A =
⋃

a∈Ad

{(a, x)|x ∈ Xa}.

MDPs with this action space are called Parameterized Ac-
tion MDPs (PAMDPs) (Masson, Ranchod, and Konidaris
2016).

∗Any infinite horizon MDP with discounted rewards can be
ε-approximated by a finite horizon MDP using a horizon Hε =
logγ(ε(1−γ))

maxs,a |R(s,a)| (Jie and Abbeel 2010).

Previous Work on Parameterized Action MDPs

Tasks with parameterized actions have been a research topic
in RL for a long time (Stone et al. 2006). Zamani et al. con-
sidered tasks with a set of discrete parameterized actions
(2012). However, their algorithm which is based on Sym-
bolic Dynamic Programming, is limited to MDPs with inter-
nal logical relations.

We adopt the Parameterized Action MDP setting
from (Masson, Ranchod, and Konidaris 2016). In their work,
they train the policy in an alternative fashion. They first
fix all the parameter policies, and hence induce an MDP
with action set A of only discrete actions. Then they use
Q-learning to learn a discrete policy in that MDP, and upon
convergence, they fix the discrete policy, and start training
the parameter policy. They show that this method can con-
verge to local optima.

Rachelson, Fabiani, and Garcia used parameterized ac-
tions to deal with continuous time MDPs where the param-
eter for all the actions is the waiting time (2009). Thus, they
have a unified parameter space. Sharma, Lakshminarayanan,
and Ravindran did a similar approach where they extended
TRPO to control the repetition of the action, that is, how
many steps an action should execute (2017). They argued
that the repetition times can be considered as a parameter for
their original control signal. However, the repetition times
are drawn from a fix set of integers, which is not a continu-
ous signal.

The method that has the closest connection to our work
is (Hausknecht and Stone 2015), which extended the DDPG
to a parameterized action space. In this algorithm, the policy
outputs all the parameters and all the discrete actions, and
then selects the (a, x) tuple with the highest Q-value.

Hierarchical Approaches in PAMDPs

In this paper we propose a new, more natural architecture
to generate actions for parameterized action tasks. In our al-
gorithm, we have one neural network for the discrete policy
and one neural network for the parameter policy. Our pa-
rameter policy π(x|s, a) takes two inputs, the state s and the
discrete action a sampled from discrete action policy π(a|s).
Then the joint action is given by (a, x) ∼ π(a, x|s) =
π(a|s)π(x|s, a). Since the action a is known before we gen-
erate the parameters, we do not need the post processing step
of determining which action tuple (a, x) has the highest Q-
values. And since the parameter policy knows the discrete
action a, the output size of parameter policy remains con-
stant.

Previously, this architecture was not plausible in policy
gradient methods due to the fact that we have to sample the
discrete action in the middle of the forward pass, and the
gradient cannot flow back to the discrete action policy in the
backward pass due to the sampling operation. In this section,
we describe two algorithms, Parameterized Action TRPO
(PATRPO) and Parameterized Action SVG(0) (PASVG(0))
that solve this problem.

Before we delve into the algorithms, we first introduce
some notation. We use πΘ(a, x|s) to denote our overall pol-
icy, where a is the discrete action, x is the the parame-
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ter for that action, and Θ is all parameters for the model.
Our policy can be broken into two separate policies using
conditional probability πΘ(a, x|s) = πc

θx
(x|a, s)πd

θa
(a|s),

where θa and θx are the parameters for discrete action policy
πd(a|s) and continuous parameter policy πc(x|a, s) respec-
tively, and Θ = [θa, θx].

Parameterized Actions TRPO

Among all the policy gradient algorithms, TRPO and DDPG
achieve the best performance as they are able to optimize
large neural network policies (Duan et al. 2016). Thus, we
consider how to apply these two algorithms in PAMDPs.

We first consider how to optimize our policy using
TRPO’s technique. In the TRPO, we are solving the follow-
ing optimization problem:

maximizeθ Lθ′(θ) = Es∼ρθ′ ,a∼πθ′

[
πθ(a|s)
πθ′(a|s)Qθ′(s, a)

]

subject to KLθ′(θ) = Es∼ρθ′ [DKL(πθ′(·|s)||πθ(·|s))] < δ,

where θ′ and θ are the parameter vectors before and after
each policy update respectively, and L is the surrogate loss.
Qθ(s, a) indicates the Q-function fitted using the samples
from policy parameterized by θ. The idea behind TRPO is to
optimize the policy in a stable way such that the new policy
distribution after each update will not be too different from
the old one. This is achieved through the KL-divergence
constraint between the policy distributions before and after
the parameter update.

A similar idea has been explored before in the natural
policy gradient (Kakade 2002), where the objective func-
tion is replaced with linear approximation ∂Lθ′ (θ)

∂θ (θ − θ′)
and the KL-divergence is replaced with a quadratic approx-
imation (θ′ − θ)TA(θ′ − θ). The positive semidefinite ma-
trix A in the quadratic term is the Hessian matrix of con-
straint, e.g., A = ∂2

∂2θKLθ′(θ). However, when the pol-
icy model becomes large, A becomes very expensive to
compute and store. What is special about TRPO is that it
uses a Hessian-free optimization method (Martens 2010;
Pearlmutter 1994) and conjugate gradient descent method
to avoid the explicit formation of the Hessian matrix. There-
fore, TRPO only has a slight increase in the computation
cost for optimizing large neural networks.

To apply the TRPO in PAMDPs, we first write down the
optimization problem using our notation, which is

maximizeΘ Es∼ρΘ′ ,(a,x)∼πΘ′

[
πΘ(a, x|s)
πΘ′(a, x|s)QΘ′(s, a, x)

]

subject to Es∼ρΘ′ [DKL(πΘ′(·|s)||πΘ(·|s))] < δ

The objective can be further expanded to

Es∼ρΘ′ ,(a,x)∼πΘ′

[
πc
θx
(x|a, s)πd

θa
(a|s)

πc
θ′x
(x|a, s)πd

θ′a
(a|s)QΘ′(s, a, x)

]

Notice that, in the objective function, the samples are col-
lecting using Θ′ instead of Θ. Thus, in training time, we can
just take the gradient of objective function w.r.tΘ to achieve
end-to-end training like normal supervised learning, and do
not need to use any trick.

However, some changes are needed to meet the constraint
of TRPO as there is no closed form solution for comput-
ing KL-divergence between two joint distributions. Here, we
rewrite the KL-divergence constraint into conditional diver-
gence using the chain rule.

Es∼ρΘ′ [DKL(πΘ′(·|s)||πΘ(·|s))]

=Es∼ρΘ′

[
DKL(π

d
θ′a
(·|s)||πd

θa(·|s))

+ Ea∼πd
θ′a

(a|s)
[
DKL(π

c
θ′x
(·|s, a)||πc

θx(·|s, a))
]]

=Es∼ρΘ′

[
DKL(π

d
θ′a
(·|s)||πd

θa(·|s))
]

+ Es∼ρΘ′Ea∼πd
θ′a

(a|s)

[
DKL(π

c
θ′x
(·|s, a)||πc

θx(·|s, a))
]

Thus, we can use samples to estimate both the objec-
tive function and KL-divergence. However, we notice that
we can further reduce the variance of estimating the KL-
divergence by using the analytical form of discrete action
policy π(a|s). That is, the KL-divergence can be written as

Es∼ρΘ′

[
DKL(π

d
θ′a
(·|s)||πd

θa(·|s))
]

+ Es∼ρΘ′

[
π(a|s)DKL(π

c
θ′x
(·|s, a)||πc

θx(·|s, a))
]

Using this form of constraint allows us to estimate the di-
vergence between two policies even when we do not have
samples for some discrete actions.

Parameterized Actions SVG(0)

Now we propose our second method based on the reparam-
eterization trick.

One thing that makes the policy gradient methods special
is that the samples we need to estimate the gradient come
from the policy we are optimizing. That is, the objective usu-
ally takes the following form,

Epθ(x)[f(x)].

We can write the gradient of expectation w.r.t θ in this way:
∂Epθ(x)[f(x)]

∂θ
=

∂

∂θ

∫

x

pθ(x)f(x) dx

=

∫

x

∂pθ(x)

∂θ
f(x) dx.

Since we lost the term p(x) in the integral after we take
the gradient, it’s no longer an expectation, hence, we can
no longer use samples from p(x) to estimate it.
To solve this problem, people made the following changes

to the gradient,
∂Epθ(x)[f(x)]

∂θ
=

∫

x

∂pθ(x)

∂θ
f(x) dx

=

∫

x

p(x)

(
1

p(x)

∂pθ(x)

∂θ

)
f(x) dx

= Epθ(x)

[
∂ ln pθ(x)

∂θ
f(x)

]
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This trick is the foundation for most of the policy gradient
methods in RL.

Recently, another trick has been used to attack the same
problem in the unsupervised learning community (Kingma
and Welling 2013; Rezende, Mohamed, and Wierstra 2014).
The idea is that a continuous random variable z can be ob-
tained by first taking a noise variable ε and then determinis-
tically transforming it. For example, a gaussian random vari-
able z ∼ N (μ, σ2) can be reparameterized into a noise ran-
dom variable ε ∼ N (0, 1) with a deterministc transforma-
tion gμ,σ(z) = μ + σε. By applying this technique, we can
optimize an expectation using samples from a noise distri-
bution as follows

Epθ(x)[f(x)] =

∫

x

pθ(x)f(x) dx =

∫

ε

p(ε)f(gθ(ε)) dε

Then the gradient can be easily written as

∂Epθ(x)[f(x)]

∂θ
=

∫

ε

p(ε)

(
∂f

∂g

∂g

∂θ

)
dε = Ep(ε)

[
∂f

∂g

∂g

∂θ

]

This method has been successfully used in Variational Au-
toencoders (VAE) for various works (Walker et al. 2016;
Sohn, Lee, and Yan 2015). It has also been applied to RL
to train Stochastic Value Gradient (SVG) Learners (Heess
et al. 2015). Recently, Jang, Gu, and Poole (2016), Mad-
dison, Mnih, and Teh (2016) generalized the reparameter-
ization trick to deal with discrete random variables with
the Gumbel-Softmax trick. In the discrete case, a ran-
dom variable x can be drawn from a discrete distribution
{p(x1), p(x2), . . . , p(xn)} by the Gumbel-Max trick (Mad-
dison, Tarlow, and Minka 2014),

x = argmaxi[gi + ln p(xi)]

where gi ∼ Gumbel(0, 1). The Gumbel-Softmax trick re-
place the argmax operator in the above with a continuous
differentiable softmax operator. With this change, we can
now draw samples as

x =
exp

[(
(gi + ln p(xi)

)
/t
]

∑n
i=1 exp

[(
(gi + ln p(xi)

)
/t
]

where t is the “temperature” used to control the tradeoff be-
tween bias and variance. This trick has been applied to the
RL setting as well, including imitation learning (Baram et
al. 2017) and multiagent RL (Mordatch and Abbeel 2017).

For our problem, the key observation is that the two steps
of decision making in a parameterized action policy (choos-
ing from a discrete action and then determining the param-
eters for it), is very much like the paradigm in VAE (2013).
In the VAE setting, the encoder of the VAE takes a sample
x from the dataset, and generates a latent variable z from it.
Then the decoder takes z and reconstructs x out of it. For our
situation, the discrete action policy first takes the state s as
input and generates a discrete action a, then determines the
parameters x based on action a using the continuous param-
eter policy. Thus, we can roughly think of our discrete action
policy and continuous parameter policy as the encoder and
decoder in VAE respectively.

π(x|s, a)

η

Q(s, a, x)

st
xt

at

at
+

f(s, η)

Figure 1: The training flow of the PASVG(0) agent. The
black lines indicate the forward pass of the training, and the
dash lines indicate the backward pass of the training. The
dash box marks the reparameterized policy f .

We start with the objective function in (1) and write it in
parameterized action setting.

J(Θ) =

∫

s

ρπΘ(s)V πΘ(s)ds

= Es∼ρΘ

[∑
a

πΘ(a, x|s)Q(s, a, x)

]

= Es∼ρΘ

[∑
a

πθa(a|s)Q(s, a, πθx(x|s, a))
]

For the last step in the previous derivation, we use the DDPG
formulation. Then we apply the reparameterization trick.
Following the convention in (Heess et al. 2015), we use η
to represent the auxiliary noise variable instead of ε in the
VAE setting.

J(Θ) = Es∼ρΘ

[∑

η

p(η)Q(s, fθa(s, η), πθx(s, fθa(s, η)))

]

where a = fθa(s, η) is the discrete action policy after reparame-
terization. Then the gradient w.r.t Θ is simply

∂J(Θ)

∂Θ
= EρΘEp(η)

[
∂

∂Θ
Q(s, fθa(s, η), πθx(s, fθa(s, η)))

]

Since we are reparameterizing our stochastic policy for a
0-step value function (Q-function), similar to Heess et al.’s
method, thus we name our algorithm Parameterized Action
SVG(0) (See Figure 1 for the training flow).

However, there is one critical difference between our
work and Heess et al.. In our work, we do not need to in-
fer the noise variable since we are not using any dynamic
model. To see this, we rewrite the gradient estimation us-
ing the Bayes’ rule, following the method from (Heess et al.
2015),

∂J(Θ)

∂Θ
= EρΘ

Eπ(a,x|s)Ep(η|a,x,s)
[

∂

∂Θ
Q(s, fθa(s, η), πθx(s, fθa(s, η)))

]
(2)

Heess et al. use this method to infer the noise ζ of
their reparameterized approximate dynamic model s′ =
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Figure 2: Platform domain

g(s, a, ζ). Thus, they need to learn the p(ζ|s, a, s′) which
is similar to p(η|a, x, s) in our case. However, for us, we
use the sample η and generate a, x from it. Hence, we do
not need to learn the model p(η|a, x, s). Instead, we can just
record the value of η when we are collecting the training
samples.

The last part of the algorithm is to make the gradient esti-
mation not depend on the samples collected by π(a, x|s), as
the policy is constantly changing. We use the replay buffer
from DDPG to solve this issue and turn our algorithm into
an off-policy algorithm to improve sample efficiency.

Experiments

We conducted our experiments using the Platform domain
from (Masson, Ranchod, and Konidaris 2016) (See Fig-
ure 2). In this domain, we control the agents (cyan block) to
jump across several platforms while avoiding enemies (red
blocks) and falling off the platforms. This domain has three
discrete actions to choose from: run, jump, and leap. A jump
moves the agent over its enemies, while a leap propels the
agent to the next platform. Each of the actions take one pa-
rameter which determines the speed along the x-axis. More
details of the domain can be found in the original paper.

We implemented the Parameterization Action DDPG†
(PADDPG) algorithm from (Hausknecht and Stone 2015)
as our comparison baseline which is considered as the state
of the art. Specifically, we implemented the PADDPG algo-
rithm following the settings and parameters from the original
paper except for the size of the hidden layers. In the original
paper, PADDPG used a huge network with four hidden lay-
ers with size {1024, 512, 256, 128}, which is rare in DRL
community for tasks with continuous signals. We followed
the DDPG paper (Lillicrap et al. 2015), which used two hid-
den layers with sizes {400, 300} for the neural networks. We
also implemented their invert-gradient trick, as they claimed
that this was the only way to make the learning work in a
bounded parameter space.

For our PATRPO agent, we adopted the setting
from (Duan et al. 2016), where we had three hidden layers
with sizes {200, 100, 50} for the policies. We used ReLU
for activation, and Softmax and Tanh for the output layers of
the discrete action policy and continuous parameter policy
respectively. For our PASVG(0) agent, we also used neural
networks with two hidden layers of sizes {400, 300} and
ReLU for activation. For the output layer, we used Gumbel

†This is the DDPG algorithm for parametereized action spaces,
not to be confused with the DDPG algorithm from (Lillicrap et al.
2015) for continuous control.

Figure 3: Comparison on Platform domain of three learn-
ers. The x-axis shows the training epochs. The y-axis shows
the average reward. Solid lines are average value over five
random seeds. Shaded regions are standard deviation.

Softmax for the discrete action policy and Tanh for the con-
tinuous parameter policy.

We trained all the agents using 100 epochs with 10000
samples per epoch. For the online method, we had a replay
buffer with size 107 and we did not start the training until
we had 104 samples in the replay buffer, which is a stan-
dard setting in DRL experiments. We used 0.005 as the step
size for PATRPO agent and 10−3 and 10−5 as the learn-
ing rate for the value function and policies respectively for
the PASVG(0) agents. We fixed the temperature to 1.0 for
the Gumbel-Softmax layer and kept it for the entire training
process.

The experiment results are shown in Figure 3. The plot
of PADDPG is very interesting: we found that it can learn
to successfully finish the game at an early stage of learn-
ing, but would quickly unlearn that policy and converge to
something else.

We then noted that, although we are using Tanh to bound
the output of our parameter policy, which corresponded
to the squash-gradient method in (Hausknecht and Stone
2015), we managed to make it work for our methods, which
suggests that there are more training options than the invert-
gradient method suggested by (Hausknecht and Stone 2015).
Our PATRPO method achieved the best performance among
all three learners, and unlike PADDPG learner, it maintained
its performance after obtaining its best learned policy. The
PASVG(0) learner converged to a local optimum with aver-
age reward of around 0.4. By examining the game, we found
that this corresponded to avoiding the first enemy but failing
to land on the second platform. One of the possible reasons
was that the learner was conducting joint-learning, which
is very similar to cooperative multiagent learning, and thus
may converge to a local optima.

We further investigated this joint-learning issue by try-
ing two different step sizes for the PATRPO agent. Figure 4
shows the result of using larger step size parameters. As we
can see, both of the agents can achieve a good performance
in relatively short period of time with much lower variance.
But once they learn the optimal policy, their performance
starts to drop and the variance becomes much larger. How-
ever, PATRPO still manages to maintain a decent perfor-
mance which is far better than the PADDPG algorithm. This
shows that a more stable method is desirable for learning in
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Figure 4: Different step size parameters for PATRPO agents.
δ = 0.05 in red and δ = 0.01 in green.

Figure 5: Comparison on the Platform domain for different
KL-Divergence estimation methods.

the parameterized action space.
Last, we conducted an experiment using different tech-

niques for estimating the KL divergence in PATRPO. The
experiment as illustrated in Figure 5 showed that none of
them makes much of a difference in this small domain.

We also tested our algorithm in the HFO domain intro-
duced by (Hausknecht and Stone 2015). In this domain (Fig-
ure 6), we controlled an agent to score a goal. For the sim-
plicity, we did not have a goalie. We had three actions in
this domain, dash with parameters power and direction,
turn with parameter direction and kick with parameters
power and direction. Thus, different actions required differ-
ent numbers of parameters. For our agents, if we outputed
more parameters than we actually needed, we just took the
first part of the output and ignored the remainder. This do-
main had a 59-dimensional state space, which was much
larger compared to the platform domain, and thus we trained
our agents using larger neural networks and with more sam-
ples. Due to time constraints, we only trained our PATRPO
agent and PADDPG in this domain for 100 epochs with
50000 steps per epoch.We used three hidden layers with size
{400, 300, 200} for both PATRPO and PADDPG agents.
Figures 7 shows the result on this domain. As we can see,

again, the PATRPO agent achieved stable performance in
this domain while PADDPG demonstrated a large variance
in its performance. We also note that the performance of the
PADDPG algorithm is far worse than in the original paper.
One of the possible reasons for this is due to the difference in
the neural network sizes. But since our PATRPO agent can
achieve stable learning in this domain with a much smaller
neural network, this suggests that a large neural network is
not necessary in this domain.

Figure 6: An example of Half Field Offense Domain, with
no goalie.

Figure 7: Comparison on Soccer domain for PATRPO and
PADDPG agents on three different random seeds.

Conclusion and Future Work

We presented two algorithms for learning effective control
in parameterized action space. We demonstrated that our
method can learn better policy in these setting compared to
PADDPG method. However, we found that learning could
be unstable due to the joint-learning between the discrete
action policy and parameter policy. An interesting future di-
rection would be to find more stable methods for this do-
main. We would like to study these methods in the context
of more complex domains (in soccer for example) particu-
larly involving more agents.
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Abstract 
We believe user experience in complex work domains is 
shaped by the effectiveness of technology in jointly accom-
plishing work goals. Function allocation between humans 
and smart technology is an important part of effectiveness, 
in turn, an important contributor to user experience. We 
study operation of equipment for the International Space 
Station, using procedure automation with flexible function 
allocation. We discuss automation goals, their impact on 
suitable function allocation, and the role of flexible function 
allocation. We offer examples and propose guidelines.  

Bios & Research Background   
Dorrit Billman is a cognitive scientist with background in 
learning and in human factors of tools for complex cogni-
tive work. She has researched tools for ecological model-
ing, collaborative intelligence, and mission planning. 
Debra Schreckenghost is a Senior Scientist at TRACLabs. 
She has conducted research in the areas of adjustable au-
tonomy, human interaction with automation, and real-time 
performance assessment of robots and automation. 
 Our research investigates design of procedures, proce-
dure automation software, and particularly, how users in-
teract through software to operate complex equipment. 
From observing users working with a variety of function 
allocation policies, we have identified a number of issues 
around teaming with smart technology. 

Source Domain 
We investigate user-automation interaction in accomplish-
ing technical work, specifically, operation of habitat sys-
tems for the International Space Station. Currently, work is 
carried out manually by astronauts following written pro-
cedures, with support from Mission Control. Future opera-
tions will rely more on automation, and reduce dependence 
on Mission Control. Our studies investigated users carrying 
out (simulated) operations using the PRIDE procedure au-
tomation software (Billman, Schreckenghost, & Billing-
hurst 2015). Technically, the PRIDE software is a 

knowledge-based system that uses a hierarchical task lan-
guage to automate system monitoring and control 
(Schreckenghost, et al 2008). Behaviorally, it captures the 
knowledge developed at the organizational and individual 
level for operating equipment safely and effectively, and 
allows both automatic and teamed execution of procedures. 
  In work domains, particularly safety-critical, technical 
domains, the key elements of user experience are effec-
tiveness and efficiency in accomplishing work goals. Con-
tributions of the technology to these goals are more typi-
cally described as usefulness and usability. However, the 
centrality of these aspects to “user experience” cannot be 
over-emphasized; people’s experience is deeply shaped by 
their ability to work effectively.  
 We believe that ability to team with and use “smart 
technology,” to accomplish goals is important in many 
domains. We expect there will be important cross-domain 
commonalities, particularly in the design issues and trade-
spaces, while appropriate solutions will vary to meet do-
main needs. We discuss the issues and design trade-spaces 
concerning how work should be coordinated and distribut-
ed across human and artificially intelligent entities. We in-
vite discussion of domain similarities and differences.  

Work Distribution in Procedural Domains  
Procedural work domains are those where work is mean-
ingfully organized around individuated, discrete actions, 
and correct ordering of the actions is important and some-
what standard. Typically, the importance of sequencing 
comes from physical or process constraints, but it could al-
so be driven by benefits from establishing a standard order. 
Procedural work contrasts with continuous control, which 
dynamically adjusts control parameters to maintain a con-
trol policy. It may also contrast with domains where work 
is composed of discrete actions, but sequence is less im-
portant or less standard; creative work might provide ex-
amples. We do not imply that all work in “procedural do-
mains” involves procedures, but that procedures can cen-
trally contribute to accomplishing work goals. We focus on 
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mixed initiative procedure execution, involving one person 
who is working concurrently with automation on one or 
more procedures. 
 Supporting procedural work involves several design 
considerations. The foundational design guidance is de-
rived from an analysis of the work domain, including char-
acteristics of the work goals, users, technology, and work 
context. Without a sound understanding of the work needs, 
procedure automation software is unlikely to be helpful. A 
second source of design guidance and constraint comes 
from the design of procedures appropriate to the domain. 
The high-level goal of a procedure is typically to effect 
productive change, or to mitigate the effects of anomalies. 
Additional goals may include safety and risk management, 
efficiency, consistency, and appropriateness for execution 
by available human operators with available technology. 
Where automation is used, it is a valuable strategy to use 
procedures to organize how the automation contributes. A 
third source of design guidance comes from the capabilities 
of the entities available to execute these procedures and the 
reasons for using automation to execute the work. In pro-
cedural domains automation is often introduced to execute 
component actions originally executed only by humans; in 
such cases, automation is introduced into an existing work 
process. Alternatively, automation may be used for new 
tasks, tasks that people cannot do themselves, or cannot do 
safely. If both the human and the automation are capable of 
carrying out certain units of work, whether a whole proce-
dure or a subset of actions within it, then there are choices 
in how work should be distributed among humans and au-
tomation and a function allocation policy is needed.  
 Design of a function allocation policy should be in-
formed by the overall purpose of automating work. Design 
of function allocation needs to specify the units of work 
that can be allocated (e.g. an action, all actions of a type, a 
whole procedure, etc.). In addition, allocation may concern 
who does the unit of work (e.g. manually plugging a device 
in vs. automatically switching on current), or may concern 
who selects an action for execution (e.g. a user selects a 
command to automatically change a component). If there 
are function allocation choices, there may also be flexibil-
ity in which allocation is chosen. This may serve a domain 
need for flexibility in the work more generally. 

Goals Served by Function Allocation 
Function allocation, or distribution of work across team 
members, should be guided by the objectives important in 
the domain.  Function allocation can serve multiple, some-
times conflicting objectives, beyond the overall goal of the 
specific procedure. Some goals favor maximal automation, 
such as minimizing human slips in initiation and execution 
of actions or protecting humans from hazards. Some goals 

favor maximal allocation to humans, as when conditions 
for actions are hard to specify at time of design or when 
human capabilities are hard or costly to automate. Further, 
some goals favor mixed allocation, such as requiring users 
to issue critical commands while automatically verifying 
that commands have the intended effect, keeping humans 
in the loop to maintain situation awareness, or gaining as-
surance from cross-checking between human and automa-
tion assessment. 
 Flexible function allocation enables the user to select 
which of these allocation policies best matches current op-
erational goals. Adjusting function allocation may help  i) 
maximize usable human time, ii) aid human monitoring, 
learning, skill maintenance, engagement, or understanding 
of system operation, and iii) balance workload and safety 
considerations for changing conditions, resources, or goals. 
 Frequently, multiple goals, possibly in competition, are 
in play. In our domain, a key goal is effective use of human 
time. Astronauts have high workload and limited time, so 
freeing time is an important goal for automation use.  
 We are particularly interested in flexible function alloca-
tion. Effective operations can require flexibility in what is 
done and who does it. For example, in current practice 
changes to procedures may be required when equipment 
ages or is modified. Flexible allocation would allow a shift 
from automatic to manual execution for this adaptation. In 
addition, certainty that a procedure is appropriate and will 
have the intended effect may drop if a new component is 
installed or systems are configured in a nonstandard way. 
In such cases it may be particularly valuable to have a per-
son closely monitoring and manually initiating procedure 
actions. Conversely, as equipment, context, and procedure 
become well-established, automatic execution may be most 
effective. The state of the human operator will also influ-
ence the relative benefit of automated vs manual execution. 

Allocation Goal: Freeing Human Time  
In our studies we were interested in how design of function 
allocation affects availability of useful human time. While 
improved quality of work is a reason for human or human-
automation teaming, greater efficiency is also a motivation. 
With the types of procedures executed in our domain, 
much of the execution time is a function of the equipment 
operated, not the operator actions. When the person does 
not need to be actively involved, this can free up operator 
time for manual work in parallel activity. 
  Team-work costs vs. task-work benefits. As with hu-
man collaboration (McGrath, 1984), time on teamwork, 
such as coordination, reduces time available for task-work. 
In general, the team-work added should be less than the 
task-work reduced. In our domain, team-work added time 
at handoffs and automation failure. There may be other 
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costs, such as awareness or workload. For example, users 
sometimes deviated from the allocation plan when it stipu-
lated frequent handoffs. When a small block of automated 
actions occurred between actions to be done manually, us-
ers sometimes did these to-be-automated actions manually, 
apparently to avoid the team-work cost of task switching. 
 Guidance: Substantial costs in human time occur at task 
handoffs between manual and automated execution. Prima-
ry benefits to freeing human time come from contiguous 
stretches of automatable actions. Proportion or number of 
automated actions may be less consequential than their dis-
tribution. There may be a tradeoff between maximizing the 
amount of automated work and minimizing handoffs. 
 One strategy is to allocate commands to a person and 
verification of command effects to automation. This can 
increase team-work costs due to frequent handoffs between 
humans and automation. If frequent handoffs are required, 
the handoff cost should be minimized in other ways, e.g., 
design the automation to automatically resume when man-
ual actions are complete. 
  Handoff frequency. Minimizing the handoff frequency 
and maximizing the time span of automated actions be-
tween handoffs is often beneficial. The longer the user has 
between manual actions, the larger the block of time avail-
able for other work. Reducing handoffs reduces time spend 
on team-work. For example, when users encounter short 
stretches of automatable actions between manual ones, 
they often did the automatable actions manually to elimi-
nate the time-costs of the skipped handoffs. 
 Guidance: When condition dependencies permit, the ac-
tions in procedures intended for human-automation execu-
tion should be grouped and ordered into Manual Only ac-
tion sets and Automatable action sets. This can reduce the 
frequency of required human-automation handoffs. Note 
that this order principle may compete with others, such as 
grouping actions together that accomplish the same goal. 
 Interruption. Interruptions disrupt human work at 
handoffs, for user approval, procedure completions, or 
anomalies. Interruption from team-work should minimize 
impact on task-work. This may be mitigated by designs 
conveying, information about importance and urgency.  In 
PRIDE, the automation pauses when a manual-only action 
is reached, for user approval, an automated action fails, or 
the procedure completes. While the user should be made 
aware of all these pauses, there usually is more urgency in 
responding to a manual action requesting approval, or for 
the failure of an automated action.  
 Guidance. The automation interface should draw the op-
erator’s attention when it stops doing task-work and indi-
cate why it stopped. The saliency of these notices should 
be designed to balance the urgency and importance of in-
formation with the potential for unnecessary distraction. 
 Situation awareness with automation. The goal of re-
ducing human time interacting with automation performing 

procedural work must be balanced against the need for the 
human to maintain awareness of the domain systems and 
automation behavior. Procedures that are performed with 
less human involvement can require providing information 
about both the system states and the task completion to ori-
ent the user when intervention is required.  
 The use of procedures as the basis of automation is in-
tended to make the automated actions more transparent to 
the user. We found it useful to provide a user interface that 
annotated the procedure text with information about what 
actions had been taken, what states had been changed, and 
what action the automation is currently performing. 
 Guidance. Situation awareness and problem solving with 
procedures may be improved by including in the procedure 
information about what system states or environmental 
conditions the procedure actions are intended to change 
and what system states or environmental pre-conditions are 
assumed to be true before actions are executed. 
 An automation system also might provide information 
on activity in multiple tasks. This could inform awareness 
of probable workload and could guide changes in order or 
timing of requests for manual actions. Prioritizing actions 
across tasks is research issue in aviation autoflight systems. 

Allocation Goal: Flexibility 
If procedure designers could perfectly predict the condi-
tions and goals in force when a procedure would be exe-
cuted, it would be possible in principle to specify an opti-
mal allocation policy. However, in any complex domain 
complete forethought is unlikely. Flexible allocation is 
more valuable when the domain is more complex, less un-
derstood, has lower degrees of predictability or when nor-
mal operations include high variability in system and user 
behavior. These traits characterize technical operations in 
dynamic environments. Even anticipated variation can 
have a high planning cost. Flexible allocation is less valua-
ble in highly predictable domains, where standardization is 
possible and useful, e.g., in aiding handoffs, or collecting 
data about system performance during operations.  
  Scope and nature of flexible allocation. Function alloca-
tion may be done by the designer when a procedure is writ-
ten; by the operator in advance of procedure execution (al-
location replanning); or by the operator during execution 
(reactive allocation). Flexible allocation is only possible 
for actions that can be done manually or automatically. If 
these are few, flexible allocation may not be worthwhile. 
To illustrate benefit, some tasks can require reallocation 
when components used in the task have been replaced or 
repaired, and the user should execute relevant actions 
manually to ensure the new component responds normally.  
 Guidance. Prior to design, benefits of flexible allocation, 
should be assessed relative to automation goals. Flexible 
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allocation adds complexity for the operator, as well as de-
velopment costs, so there should be commensurate task-
work benefit. Avoid adding complexity without benefit.  
  Methods for changing function allocation. Where flex-
ibility is beneficial, the operator should have methods for 
planned and reactive allocation. Planned allocation might 
be used to standardize routine allocations, e.g., automating 
all verify instructions. Reactive allocation can be used to 
‘short cut’ a local inefficiency, e.g., doing a few actions 
manually to avoid the overhead of shifting to automatic. 
Methods for reactive and planned reallocation will differ 
e.g., for reactive reallocation, we provided a simple way to 
stop automation when the currently executing action com-
pletes. Multiple methods were provided for planned reallo-
cation, including reassignment of actions throughout a pro-
cedure. 
  Users may need to coordinate interactions among pro-
cedures, particularly if procedures can be run in parallel. 
  Guidance. If allocation during execution is valuable, 
methods should inform the operator which actions and pro-
cedures can be re-allocated. The team-work costs of re-
allocation should be less than the task-work benefit. De-
termining the goodness of flexible function allocation re-
quires understanding the intended benefit and assessing 
whether this benefit was found. If freeing human time is 
the goal, interaction methods should reduce time needed 
from humans. Other goals, such as human safety, may re-
quire other methods, such as cross-checking.   
  Transparency of function allocation. The types of work 
units that can be flexibly allocated should be clear. In our 
case, a procedure as a whole, a functional set of actions (a 
step), and a single procedure action could each be flexibly 
assigned. Any unit could be executed manually, but only 
some automatically. Thus, if the user selected automatic 
execution for a whole procedure, automation stopped when 
a manual-only action was encountered.  

 One procedure interface we evaluated required the user 
to infer which actions could be automated (by recognizing 
that automatable lines required a telemetry read-out or 
command button). A number of users had difficulty with 
this. After a redesign, each procedure action was explicitly 
marked as manual only (M) or automatable (A). Using this 
new interface, very few users had difficulty in knowing 
which actions would execute automatically, which manual-
ly, and where automation would pause. As a second exam-
ple, after a manual action the automation might resume on 
its own, or require an explicit user action to resume.  
 Guidance. The procedure automation interface for exe-
cuting flexible allocation plans should show users which 
actions are currently marked for automated versus manual 
execution and what allocation choices are available. The 
handoffs during execution should be clear, showing when 
the automation will act, and when user action is expected. 

Conclusion 
In technical work domains, we suggest that a core driver of 
positive user experience when using automation is effec-
tiveness in accomplishing the joint work. We discuss the 
issues that emerge in designing ‘team-work’ as well as 
‘task-work’ for mixed initiative operation of equipment. A 
key element is function allocation. We suggest the follow-
ing design guidance will be helpful for managing the dis-
tribution of work among humans and smart technical sys-
tems, in multiple work domains.  

• Goals of Automation. The goals of automating 
should guide design of the interaction to control work al-
location. Interaction needed for flexible function alloca-
tion has costs in development and use, which should be 
weighed against intended benefits of flexibility. 
• Automation Transparency & Directability. Auto-

mation technology should transparently show how work 
is and can be distributed. Such technology should pro-
vide directability of how work is distributed, thus provid-
ing flexible allocation. 
• Multiple Contexts. Automation is more adaptable if 

work-allocation can be assigned in various contexts, such 
as automation technology design, procedure writing and 
work design, operations planning, and operations execu-
tion including parallel execution of tasks. 
• Alignment with Structure of Human Work. To im-

prove flexibility, the representation of work used in func-
tion allocation should be aligned with how people think 
of and do the work. Allowing work to be allocated at 
multiple levels of abstraction and granularity increases 
adaptability of the automation; work may be distributed 
at the level of an individual action, a functional group of 
actions, a simple procedure, or a complex procedure with 
nested sub-procedures.  
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Abstract

With the increasing ubiquity of artificial intelligence and ma-
chine learning applications, systems are emerging that require
non-ML experts to interact with machine learning at the train-
ing step, not just the final system. These users may not have
the skills, time, or inclination to familiarize themselves with
the way machine learning works, so training systems must
be developed that can communicate the necessary informa-
tion and facilitate effortless collaboration with the user. We
consider how to utilize techniques from qualitative coding, a
human-centered approach for manual classification, and build
better user experience for ML training.

Introduction

Technology has always been designed to assist humans in
completing their tasks. As it advanced, particularly in com-
puting, the types of tasks that technology could address
shifted from simple (performing calculations or formatting
text) to more complex (language understanding and image
recognition). While complex AI applications are on the rise,
their deployment still requires significant human effort, of-
ten by domain experts who have little understanding of how
AI works. Thus when training a machine learning (ML)
model, domain experts must work with ML experts, making
ML solutions for many tasks too costly or simply infeasi-
ble. If we are to realize the full potential of machine learning
(and, by extension, AI), we must begin building systems that
can be deployed or at least improved by end-users.

User experience (UX) seeks to create products that are
not only useful and usable, but also motivating and pleasur-
able. Toward this end, UX practitioners employ a human-
centered practice that we believe is essential for building AI
or ML solutions useful by domain experts without ML fa-
miliarity. Such solutions must communicate effectively with
users about their domain, without bogging them down inML
detail.

Classifier Training for non-ML Experts

Even when ML expertise is unnecessary or can be mini-
mized, the requirement of extensive domain expertise can
be a significant barrier to adoption. In specialized domains

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such as law or finance, expert time is expensive. Method-
ologies that reduce the required number of labeled examples
may not be enough: very large datasets can still make the
labeling task impractical.

Nevertheless, complete automation of the training process
is not only infeasible, but also inadvisable. Human oversight
creates trust in the model once it is deployed.

Qualitative Coding

Qualitative coding (QC) (Saldaña 2015) is a manual classifi-
cation method commonly employed in the humanities and
behavioral sciences to extract meaning from data such as
text, imagery, and video. The subset of QC called grounded
theory particularly has much in common with traditional
machine learning (Muller et al. 2016), especially in the way
that theories (or models) are built from the data. With this in
mind, we posit that QC can form an interface for ML train-
ing, facilitating interaction and structuring dialogue around
the data for analysis. QC may be ideal for building an ML
platform that domain experts can comfortably use, without
significant ML expertise.

(Shneiderman 1982) argued that direct manipulation in a
desktop interface provides a better experience for non-expert
computer users. Similarly, we believe that QC supports di-
rect manipulation of data, creating an intuitive yet still effi-
cient experience. QC practitioners commonly use note cards
or post-its to represent data, physically grouping post-its to
cluster data points. Attaching meaning to movement in the
ML training interface should increase communication band-
width, allowing domain experts to communicate about their
data not only linguistically, but also behaviorally.

Insights from the Field

We have recently conducted interviews with developers
building custom interfaces for clients to train classification
models on unstructured text documents. In these systems,
out of the box, the ML software is able to classify documents
with limited accuracy. For improved accuracy, domain ex-
perts must train the system further by labeling data.

Our interviews have surfaced several pain points during
ML training. Interaction quickly becomes repetitious, with
experts providing feedback about the classification of sev-
eral data items, iteration after iteration. Developers observed
that users find labeling documents burdensome.
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One method of mitigating this tedium is to simplify the
feedback task: instead of asking how the document should
be classified, users might indicate only whether the current
label is correct. Yet this requires a system that can:
• identify documents that likely should have the current la-

bel
• decide which of those documents need manual labeling,

ie. which examples, once manually labeled, will most im-
prove the model. Indeed, such a capability might also be
used to reduce the number of feedback task iterations do-
main experts must perform.

When relevance is more nuanced, answering a yes/no ques-
tion about correctness might be too simple to produce a good
model. Ranking of relevance might be a good compromise,
but as feedback complexity grows, so does subjectivity be-
tween coders. How should a model account for the possibil-
ity that two domain experts may have differing ideas on rele-
vance? In QCmethodology, memos allow coders to compare
notes on why they picked certain codes, and statistical inter-
coder agreement scores measure overall cross-coder consis-
tency.

Another way of reducing the tedium of feedback is to vary
the task, and spread it across multiple expressive modalities
(e.g. language, behavior, vision and sound). We believe that
the movement and highly visual nature of QC coding and its
data displays will be quite helpful in this regard.

Nearly all developers mentioned the difficulty of commu-
nicating the confidence the ML model has in its classifi-
cations to non-ML experts. Domain experts should priori-
tize feedback about high confidence classifications that are
wrong, and about lower confidence classifications in gen-
eral. Domain experts often misinterpreted confidence scores,
believing that they were being provided with classifications
already known to be incorrect. This often led them to pro-
vide inaccurate feedback.

The obvious solution is to train users about confidence
scores. However, a domain expert who specializes in a field
that does not regularly utilize probabilities neither needs nor
wants to learn what confidence scores mean. Instead, as one
developer observed, rather than asking domain experts to fo-
cus on certain documents based on classification confidence,
we might highlight those documents in display (and perhaps
filter out documents not needing attention, again reducing
feedback task iterations).

How can QC structure interaction with ML?
Our goal is to increase the utility and accessibility of ML al-
gorithms by making interaction with them understandable,
efficient and engaging enough to allow domain experts to
train them, and to explain their results to their peers. To
achieve this, we will hide algorithmic detail with QC-based
interaction focused around data, and with ML classifiers
treated as collaborative coding partners.

Below, we sketch the specific challenges of human-ML
interaction and explore how QC addresses (Nielsen and
Molich 1990)’s usability heuristics.
• Recall. Manually creating an ML training set is diffi-

cult, but evaluating much larger ML algorithm results is

daunting, requiring users to recall and navigate connec-
tions between dozens of labels and thousands of examples
(or more). QC-based codebooks (label indexes), data dis-
plays (using note cards and post-its), memos and histories
help domain experts remember and navigate through such
large collections of information.

• Error correction. Errors during model building can come
from either the human or the ML. QC relies on iterative
reflection to correct errors. Data displays provide the con-
text in which errors can be identified, while using displays
to communicate how well training examples cover the
data, how well training labels (or classes) fit data features,
and examples that significantly influenced the classifier
provide multiple opportunities for finding and resolving
errors.

• Iteration. ML training requires extensive iteration, and
evaluating the results of each iteration is difficult, partic-
ularly for domain experts. QC supports manual iteration
with improved measures of coding accuracy, and a focus
on key data examples. Labeling in iterations also breaks
the task into more manageable pieces, mitigating fatigue,
attention drift and stress for the user.

• Collaboration. For reasons of efficiency, reliability and
trust, classification in many applied settings is intensely
collaborative. Collaboration in QC is inbuilt, supporting
the dialog of live partners with displays and intercoder
agreement measures. The ML is considered an additional
partner, so providing human-ML interaction on par with
human-human interaction is essential.

• Efficiency. ML often assumes that users already know
how to label the training set, how to label it efficiently,
and that they will label examples one data dimension at
a time. QC includes grounded coding, with codes emerg-
ing as researchers encounter the data; and simultaneous
coding, with researchers attaching multiple codes to each
data item. These techniques also support users learning
the task as they perform it, as it is flexible enough that
novices to the training task itself can effectively inter-
act with the system from the start. Even during practice,
users can contribute to training, even if some of their input
needs to be changed later.

• Interaction. Many domain experts structure data by push-
ing paper representations of their data into piles and many
QC researchers still prefer this manual coding experience
to the digital one offered by qualitative coding software.
Current ML systems cannot support such a natural inter-
action. We envision tabletop and wall displays that repro-
duce this intuitive experience to allow domain experts to
create training sets and evaluate classification results.

Structuring a Dialogue Beyond Words

In a human-machine partnership, what should the interaction
look like? QC methodologies are often described as struc-
turing a dialogue around and about the data. Extending that
metaphor into a design consideration provides a strong foun-
dation for building ML software that helps non-expert users
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work in partnership with the machine to complete their de-
sired task.

Although it is common to consider a dialogue as an ex-
change of words, communication around a subject need not
be linear, synchronous, or restricted to language. For exam-
ple, using visual representations to summarize data or non-
verbal behaviors to convey ancillary information are alterna-
tive techniques that can carry a dialogue without human (or
computer) language.

With this in mind, we consider what a dialogue about
training a classifier might look like. Crucially, it is vital that
the system is structured so that the machine communicates at
a human level, accommodating users at all levels of technical
expertise. In this setup, the burden of driving the conversa-
tion and managing the task remains on the system, but the
user remains the ultimate authority, with the final say should
there be a dispute. Table 1 shows a possible task breakdown
between the human and machine partners.

We imagine an interface where the system continually
communicates the state of the model in training. This could
be via visualizations of the progress of the model as it ap-
proaches a trained state. In addition to providing information
to the user, a complete solution for communication requires
a system that can properly decode the user’s state to fully
understand the user’s actions. For example, if the user hesi-
tates when labeling a data point, the system might learn that
this behavior means the label should be applied with a lower
confidence score.

Human Partner ML Partner
labels docs gives feedback on model

manages the knowledge manages the data
corrects errors finds possible errors

manages task breakdown
learns from user’s actions

Table 1: Task breakdown between Human and System

Consider an ML classifier that groups data items into two
categories: relevant and irrelevant. In a tabletop display that
reproduces QC interaction, a domain expert is training the
ML. A visualization shows that the ML model has not yet
classified a third of the data, and that another 5% of the data
is poorly fitted. Directly in front of the expert, dozens of
data items are represented by cards. Two piles of cards are
labeled “relevant” and “irrelevant,” another “unlabeled,” and
a fourth “revisit.”

The expert drags one of the unlabeled cards to the center,
where it expands, showing additional detail. She considers
for a moment, then swipes the card rapidly toward the “rel-
evant” pile. The card spins and curves on its way to the pile
where it settles in with an audible plop, and the visualiza-
tion updates as a result, with only a quarter of the data still
unclassified. The expert then brings another unlabeled card
to the center. This data item is more difficult, and she con-
sults her own and others’ memos in the QC codebook before
swiping the card to the “irrelevant” pile. The classifier notes
the expert’s hesitation and marks the labeling of this data
item as “uncertain.”

Bridging the Disconnect between Humans and

Machines

Understanding how humans communicate with machines
is key to building effective interactive systems (Suchman
1987), like those being developed for ML classifier train-
ing. UX’s human-centered approach is particularly valuable
in this regard. For example, the human tendency to anthro-
pomorphism can be leveraged to enrich human-machine in-
teractions (Levillain and Zibetti 2017)(van Allen 2017). By
treating human-machine interaction as a form of human-to-
human communication, we might improve interaction, par-
ticularly for non-technical users. Today’s technology may
finally be enabling systems that realize this vision and the
vision of affective computing (Picard and Picard 1997): per-
ceiving, understanding and expressing – communicating –
with users not just by language and example, but by behav-
ior and emotion. This sort of interaction is rapidly becoming
necessary as human machine dialog enters all phases of our
daily lives and indeed our lifetimes.
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Abstract

The User Interfaces and Scheduling and Planning (UISP)
Workshop had its inaugural meeting at the 2017 Interna-
tional Conference on Automated Scheduling and Planning
(ICAPS). The UISP community focuses on bridging the gap
between automated planning and scheduling technologies
and user interface (UI) technologies. Planning and schedul-
ing systems need UIs, and UIs can be designed and built using
planning and scheduling systems. The workshop participants
included representatives from government organizations, in-
dustry, and academia with various insights and novel chal-
lenges. We summarize the discussions from the workshop as
well as outline challenges related to this area of research, in-
troducing the now formally established field to the broader
user experience and artificial intelligence communities.

1 Introduction

One of the earliest areas of research within artificial intelli-
gence (AI), planning and scheduling (PS) studies the selec-
tion of sequences of actions to accomplish tasks. This field
broadly encompasses studying the representation of knowl-
edge and information, such as representing goals, tasks and
constraints, and developing problem solvers using search
methods and heuristics. Automated planning and scheduling
technologies have been used in applications ranging from
supply chain management to robotics to space mission plan-
ning. Many of these technologies were designed by mem-
bers of the International Conference on Automated Planning
and Scheduling (ICAPS) community.

Although many useful techniques and formulations for
problem definitions and solutions have been devised by the
PS community, the algorithms and methods are often not
very friendly to users outside the research community. With
some exceptions, capturing knowledge and plan display is
done via text files, without any guide or visual aids. This
approach is suitable for researchers, but not users of plan-
ning and scheduling systems, which is a barrier to wider
adoption of innovations in the field. In particular, the utility
of PS technology for those outside the community is often
constrained by the user interface (UI) design. Members of

the ICAPS community as a whole have noted that applica-
tion developers are overlooking automated PS technologies
in domains where it should be used, and the lack of good
UIs may be one reason for this.

Recent advances in interfacing modalities such as natural
language processing (Munteanu et al. 2017) and augmented
reality (Chi, Kang, and Wang 2013) call for an investigation
of novel ways to facilitate human-planner interaction. While
natural language processing systems have been developed
over at least the past twenty years, the advent of commod-
ity spoken language systems and natural language process-
ing systems (Tractica 2017) provides exciting opportunities
for integration with automated PS. Augmented reality is a
‘rising’ technology that, when coupled with computer vision
systems, can provide new, potentially disruptive methods for
supporting plan execution, if not planning. There is also the
potential for automated PS to help design UIs. Workflows
for many different UI tools can be constructed using plan-
ning systems (St. Amant 1999) as well as other automated
reasoning technologies. Historically, there have been a small
number of investigations of this type.

The User Interfaces and Scheduling and Planning (UISP)
workshop1 featured two invited talks, eight presented papers
(Freedman and Frank 2017), and a panel. We summarize the
main content of the workshop in Sections 2 and 3. Based
on the positive response to this workshop, in Section 4 we
propose future directions for the community as well as an
invitation to connect with other related communities.

2 The UISP 2017 Workshop

2.1 Themes in Invited Talks

User Interfaces for eXplainable Planning (XAIP) This
talk focused on the need and challenges of designing UIs
to enhance transparency and explicability in PS systems.
While the topic of explainable AI (XAI) is mainly concerned
with learning techniques (i.e., explaining neural networks),
the topics of trust and transparency are also very relevant
to PS. Moreover, AI Planning is potentially well-placed to

1http://icaps17.icaps-conference.org/workshops/UISP/
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Figure 1: Snapshots of interfaces discussed in the workshop. Clockwise from top-right corner, these correspond to presentations
from authors of (Magnaguagno et al. 2017; Bryce et al. 2017; Chakraborti et al. 2017; Bonasso et al. 2017; Benton et al. 2017;
Sengupta et al. 2017). Salient features of these interfaces are discussed in Section 2.2 and also summarized in Table 1.

be able to address the challenges that motivate the research
on XAI. Plan Explanation is an area of planning where
the main goal is to help humans understand the produced
plans. This involves the translation of the planner outputs
(e.g., PDDL plans) in forms that humans can easily under-
stand; the design of interfaces that help this understanding
(e.g., spoken language dialog systems); and the description
of causal and temporal relations for plan steps. Note that
making sense of a plan is different from explaining why a
planner made decisions, which is a key element of XAIP.
However, the PS community’s work in this area forms a solid
basis upon which XAIP can be further developed.

This talk was based on Fox, Long, and Magazzeni (2017),
which contains an overview of related work in XAIP from
the planning community. Langley et al. (2017) more recently
used Explainable Agency to refer functionalities that an au-
tonomous agent must have in order to explain their deci-
sions. Some of these ideas appeared earlier: Smith (2012)
presented Planning as an Iterative Process in his AAAI in-
vited talk, discussing the broad problem of users interacting
with the planning process, which includes questions about
choices made by the planner. A number of challenges for
UISP in the area of XAIP were identified, including:

• UISP should help the user explore the space of alternative
plans so that the user can make an informed choice;

• UISP should provide a set of plans, rather than a single
plan, so that the user can choose plans according to dif-
ferent metrics (e.g. preferring efficiency vs. risk);

• UISP should facilitate the integration between PS technol-
ogy and domain knowledge since human expertise should
play a role in defining heuristics for a specific domain;

• UISP should allow the user to accept only part of a plan
(rather than accepting of rejecting it as a whole);

• UISP should allow the user to add new (high-priority)

goals and modify the planning model at execution time;

As noted in the Introduction, in the last few years, plan-
ners have becomemore powerful. PS is used in new (critical)
domains (e.g., mining, energy, air/urban traffic control, etc.)
that require more complex solutions (e.g., continuous non-
linear models, differential equations, fluid dynamics, etc.).
Prior work in explaining plans should be revisited and ex-
tended to handle these new complex scenarios.

‘Want to Field Your PS System? Suck it Up!’ (Chal-
lenges) This presentation surveyed case studies from a
company’s experience creating customized PS solutions for
clients. It is frequently the case that PS technology can
be applied to solve existing problems, or one can rethink
of the solution to an existing problem as a planning or
scheduling problem. However, it is also important to keep
the clients’ specifications in mind, which may require addi-
tional changes that are typically not considered at the time
of designing PS technologies.

Real world problems have often been solved in some way
already, which has several implications. First and foremost,
the customer or stakeholders have a preconceived notion of
what the problem is with respect to activities, constraints,
preferences, and methods to produce good solutions (typi-
cally, but not always, heuristics for producing a plan). More
importantly, from the UI point of view, there is an existing
UI and a body of knowledge about what that UI should look
like. Examples include specific UI elements (icons, Gantt /
PERT chart elements), color choices (often with very spe-
cific meanings), desired layouts, and so on. This combina-
tion of pre-existing knowledge, process, and UI design of-
ten constrains the use of PS technology. Examples include
specific knowledge that is hard to model or integrate with
existing solvers, the inability to redisplay plans after new
solutions are generated (either as a result of replanning or
top-K plans), and the inability to display certain forms of
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planner output (e.g. explanations).

2.2 Themes in Presentations

PRIDE-AVR is an integration of the PRIDE (Izygon, Ko-
rtenkamp, and Molin 2008) system – which helps author,
model and execute procedures that NASA flight controllers
and astronauts use to manage plans – with mixed reality
technologies. The system (Bonasso et al. 2017), shown in
Figure 1(4), is demonstrated on three use-cases: (i) an aug-
mented reality browser; (ii) a virtual/hybrid reality demon-
stration; and (iii) an on-board graphics-based system used to
train astronauts for extravehicular activities.

CRADLE is a plan recognition algorithm (Mirsky, Gal,
and Tolpin 2017) that analyzes users’ interactions with the
interface of a financial services company. The algorithm is
used to decrease the amount of information that an analyst
needs to consume in order to flag abnormalities and other
patterns from among the various traces of a user’s interac-
tions with the financial system.

WEB PLANNER is a cloud-based planning tool that pro-
vides code editing and (search) state-space visualization ca-
pabilities. The tool (Magnaguagno et al. 2017) consists of
three main interface components, shown in Figure 1(1): (i)
a text-based domain and problem editor as well as a plan
visualization in text; (ii) various tree-based visualizations of
the search-space; and (iii) a Dovetail visualization, which
tracks the progress of ground predicates through the state-
space from the initial to goal states.

Conductor combines the plan synthesis problem with do-
main modeling. It uses a “visualization metaphor derived
from metro maps to display facts as transit routes and step
preconditions as stations” (Bryce et al. 2017) as shown in
Figure 1(2). Insets show the visualization of these fact routes
in a toy planning domain (left) and in a NASA Extravehicu-
lar Activity procedure (right).

CHAP-E (Benton et al. 2017) aims to improve aircraft
pilots’ situational awareness and decision making. It uses
hierarchical plan representations (Figure 1(5)) and causal
links (inset) to provide “guidance toward executing proce-
dures based on the aircraft and automations state and assists
through both nominal and off-nominal flight situations.”

RADAR is a plan authoring tool (Sengupta et al. 2017)
that explores the different roles of an automated planner in
the deliberative process of a human planner in the loop, be-
yond just plan synthesis. It is the first-of-its-kind paper to
explore the scope of decision support across the full spec-
trum of the automation hierarchy (Parasuraman and Riley
1997), especially as it relates to the role or “personality” of
the automated planning assistant. Use cases are provided in
a mock emergency response scenario as seen in Figure 1(6).

Æffective introduces augmented reality as an alternative
vocabulary of communication in proximal operation of
robots for projection of intentions and real-time feedback
for replanning during a plan’s execution (Figure 1(3), bot-
tom right inset). The system (Chakraborti et al. 2017) also
uses electroencephalographic signals (Figure 1(3), top right

inset) to close the communication loop for preference learn-
ing and plan monitoring. A centralized dashboard (Figure
1(3), left inset) visualizes the shared brain of the agents (hu-
mans and robots) in a semi-autonomous workspace.

Complexity Metrics denote the complexity of various
workflows (plans, schedules) with an eye towards collabo-
rative, planner-assisted settings. The work’s (Talamadupula,
Srivastava, and Kephart 2017) main motivation is to high-
light existing metrics for human comprehensibility of plans
and schedules, devise a framework for evaluating existing
workflows according to such metrics, and to motivate the
planning community to incorporate some of these metrics
into the plan synthesis process.

3 Challenges for UISP Research:

Panel Discussion

The workshop included a panel discussion with representa-
tives from academia and industry who have built a variety of
PS systems, both with and without UIs. A summary of some
key issues discussed by the panelists follows.

The PS research community is primarily focused on
designing and evaluating algorithms to solve well-formed
problems, ranging from scheduling and temporal reasoning
to generating optimal policies to manage systems in the pres-
ence of uncertainty, and many problems in between. Rarely
does our community build UIs for our systems, and when we
do, it is typically for our own consumption (modeling inter-
faces, search space visualization, and so on). More crucially,
the PS community is not the typical application customer,
and therefore neither ‘owns’ nor understands the desired UI
that a customer wants. In the words of one panelist, “The
user will sense and perceive your planning and schedul-
ing system entirely through its user interface.” This under-
appreciation of customer and particularly UI needs must be
addressed to broaden the use of PS technology.

The PS community should also recognize that many ap-
plications can benefit from only a subset of existing PS al-
gorithms. To be successful, PS algorithms must solve the
customers’ problem effectively; we may not need the full
features of an AI planner to succeed. A related challenge is
to approach problems without unnecessarily resorting to the
language of AI planning, which, though formal and precise,
is often hard to understand. For instance, the machine learn-
ing community claims to ‘make smart decisions from data’.
What is the analogous way of describing what PS technol-
ogy can do for the customer?

Integrating PS algorithms with user-friendly UIs requires
‘bridging the gap’ between the customers’ implicit and ex-
plicit needs, as well as the capabilities of the algorithms that
can be brought to bear to solve the problem. An ideal team
consists of the PS algorithm developers and system engi-
neers, human factors or user experience designers who can
represent the customer and oversee usability testing, and the
project manager who oversees the team and manages project
costs and the schedule. The mix of skills on the team ensures
coverage of all the key elements for a successful project, but
requires significant interaction and integration among team
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Paper ↓ / Feature → GUI NL MR BCI BE Synthesis Execution Modeling Visualization Mixed-Initiative
PRIDE-AVR � � � � � � � � � �
CRADLE � � � � � � � � � �
WEB PLANNER � � � � � � � � � �
Conductor � � � � � � � � � �
CHAP-E � � � � � � � � � �
RADAR � � � � � � � � � �
Æffective � � � � � � � � � �
Complexity Metrics � � � � � � � � � �

Table 1: Features of PS interfaces presented at the workshop. (GUI = Graphical User Interface; NL = Natural Language; MR =
Mixed Reality; BCI = Brain-Computer Interface; BE = Backend support for planner; Synthesis = plan generation; Execution =
plan execution; Modeling = learning and authoring of planning models; Visualization = visualization of planning and execution;
Mixed-Initiative = human involved in the plan generation process)

members. User experience and human factors must under-
stand the power and capability of PS algorithms, and PS
algorithm developers must recognize limitations on the so-
lution due to the customer needs, ability to formalize the
problem, and limitations imposed by the UI design.

Design iterations are critical to project success. Uncer-
tainty about good design and capability is reduced by iter-
ation; customers take ownership of the project as they pro-
vide feedback, and iteration can lead to the introduction of
more powerful PS algorithms as users begin to appreciate
what they offer. Model-based planning should be very well
suited to design iteration, since models are declarative and
therefore easily changed. In order to take full advantage of
this, however, integration with the UI must be equally easy.
One challenge of achieving integration is that most PS sys-
tems do not produce a ‘standard’ output format. Defining a
standard output that can be easily integrated with UIs would
reduce integration challenges. Many applications have pre-
existing UIs; thus merely ensuring a PS output standard will
solve only part of the problem. Despite these limitations, an
interesting challenge for the PS community is to assess exist-
ing applications and their associated UIs while considering
some systems engineering questions: is there a set of ‘canon-
ical’ UIs that cover a large number of applications? Can the
community define a set of PS output standards (e.g. for plan
generation, replanning, plan recognition, plan explanations,
etc.) that cover these applications?

Finally, while it is unreasonable to expect the entire PS
community to actively work on UIs, there was discussion
about creating some competitions or design challenges to
stimulate interest in this area. Such a competition would
differ from the International Planning Competition (IPC)
and Knowledge Engineering for PS (KEPS) challenges — it
would focus solely on designing UIs for PS systems. While
it is tempting to say that the underlying algorithms can be
separated from plan displays, some amount of explanation
will be required when replanning is performed (and it will
be). Ultimately, deep algorithm design decisions may need
to be exposed as part of the explanation.

4 Future Directions

Natural language techniques were conspicuous by their ab-
sence. Interactions in this space are especially useful while

communicating with non-experts in daily life. Recent work
looked at verbalization of plans and intentions in natural lan-
guage (Tellex et al. 2014; Perera et al. 2016) in the context of
human-robot interactions. This is an area for future growth
in UISP. Perhaps the applications featured in the workshop
were geared towards more structured settings with experts in
the loop, where more efficient interfaces can be engineered.
On the other hand, mixed reality is rapidly emerging as a
major player in the space of UIs for human-computer in-
teraction. The PS community seems to have also responded
to the exciting opportunities of this emerging technology,
with two out of the eight presentations departing from tradi-
tional GUIs to mixed reality systems (Bonasso et al. 2017;
Chakraborti et al. 2017). A second workshop will be held
at the ICAPS 2018 conference. In addition to working with
the PS community, it will be important to reach out and es-
tablish collaborations with sister communities such as Intel-
ligent User Interfaces (IUI), Human-Computer Interaction
(CHI), Human-Robot Interactio (HRI and Ro-Man), and So-
cial Computing (CSCW). This will produce the ideal teams
that synergize algorithm developers and designers.

5 Discussion

The recently established UISP research community aims to
bridge the gap between PS and UI technologies. The first
workshop both introduced current work in this area and
identified related challenges that apply to the general user
experience of the AI community. With the increase in inter-
face modalities and ubiquity of AI amongst users’ lives, the
research and collaboration opportunities have potential for
also bridging the gap between AI and people.
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Abstract 
This is a proposal for a presentation on the relation between 
Machine Learning and design for trust at the Designing the 
User Experience of Artificial Intelligence symposium as 
part of the 2018 AAAI Spring Symposium Series in Palo 
Alto, CA. Trust is at the bedrock of our human social sys-
tem. Historically, the financial businesses have been based 
on how it could trust customers, and not the other way 
around. Today customers request — in addition to compe-
tence, security and lending capability — honesty, legibility, 
transparency and other key attributes of the trust relation-
ship with a data-driven bank. We will share our experiments 
and approaches that use Machine Learning techniques to 
tackle mistrust and foster a trustworthy relation with our 
customers. 

 Introduction�  
Fabien Girardin is Co-CEO at BBVA Data & Analytics, a 
center of excellence in financial data analysis that aims at 
revolutionizing the banking industry in the domains of 
marketing intelligence, customer advisory, risk, fraud and 
the automation of financial processes. With a broad spec-
trum of interdisciplinary skills, he guides teams in trans-
forming algorithmic research and experiments into value 
propositions, services, products and experiences that are 
future forward. 
 Pablo Fleurquin is Data Scientist at BBVA Data & Ana-
lytics with extensive experience in describing, analyzing 
and modelling the delay dynamics of a paradigmatic socio-
technical complex system such as the air-transportation 
system. He uses his knowledge in Complex Network Theo-
ry, Graph Analytics and Machine Learning to develop 
online credit card fraud analytics, risk scoring solutions 
and pricing strategies. 
 This paper reports on our investigation and experiments 
that explore how the specific design of Machine Learning 
algorithms can consolidate trust in financial services. This 
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work aims at orienting today how people experience bank-
ing in the near future. 

An Evolution of Trust 
Trust is part of a social contract with both rational and 
emotional bonds. Trust cannot be delivered, but actions can 
be taken in order to enrich it. For instance, financial busi-
nesses are based on their capacity to measure risk to grant 
a loan or accept a transaction. Historically, quality, trans-
parency and altruism was demanded on the side of the 
customer. In consequence, a bank is often perceived as a 
partner people need to live with, but that are prone to mis-
lead, provoke unfair situations and take advantage of 
opaque processes. That situation is changing with regula-
tors and society, in various parts of the world, demanding 
openness for both protection of personal data and therefore 
breaking bank’s monopoly in measuring risk. 
 Nowadays the increasing amount of digital footprint of 
bank customers provide with a much deeper vision to 
measure risk and opening new means to build trust. New 
analytical capacities like Machine Learning allow to trans-
form these new datasets into personalized experiences, 
customized advisory with accurate forecasts, increased 
access to loans with less risk, as well as automated interac-
tions. 
 Those technological opportunities also create design 
challenge that may drive mistrust between banks and their 
customers. The practice of data science must carefully 
resolve an increasing amount of dysfunctional solutions 
based on partial data or in bad quality data. Importantly, 
Machine Learning errors have totally different implications 
depending on the domain: the consequences are very dif-
ferent if we are recommending a financial product, a movie 
or helping with illness diagnose. Those solutions have the 
potential to erode trust and disengage customers, besides 
posing a risk proportional to the kind of service provided. 
A lot of research interest has been put recently on adversar-
ial examples. These are subtle and unnoticeable changes to 
model inputs that an attacker intentional designs to cause 
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the algorithm to make a mistake. For instance, in the facial-
recognition field where the industry and government intel-
ligence agencies have put a lot of effort, a recent paper has 
shown how by changing a small part of the image is 
enough to make you a different person in a machine’s eyes 
(Sharif et al. 2017). Another research group has also shown 
that street-signs recognition algorithms for self-driving cars 
are also prone to adversarial examples. Subtle changes that 
a human will recognize can make an algorithm confuse a 
stop sign with a speed limit one (Papernot et al. 2017). In 
addition, discrimination like unfair access to societal goods 
is becoming pervasive and has reinforced the threat. We 
have to highlight that these technological threats, as op-
posed to adversarial examples, happen without any explicit 
wrongdoing in Machine Learning modelling. Two of the 
main reasons behind such a pervasive problem are sample 
size disparity and encoded human biases in data. The for-
mer is easy to grasp, basically minority groups are by defi-
nition under-represented in data sample, which leads to 
higher error rates on these groups. The latter, is part of the 
data and in most cases is indistinguishable from it. Biases 
come in many flavours: demographic, geographic, behav-
ioural and temporal biases. Examples are becoming ubiqui-
tous such as 2013 Ally Financial 98M US$ suit on auto-
loan discrimination (McDonald and Rojc 2014). In this 
particular case, the Consumer Financial Protection Bu-
reau’s (CFPB) used an algorithm to infer a borrower’s race 
based. Other border-line use of technology is in recidivism 
models such as the LSI-R in the United States (Whiteacre 
2006). These solutions help the judicial system to assess 
the danger posed by each convict.  A work by Caliskan et. 
al. 2017 showed how pre-existing biases and stereotypes 
permeate semantically derived word associations models. 
It is clear, though, that algorithms inherit human biases, 
that pervade historical data, and the situation is even worse 
when these are camouflaged into a black-box model. 
 Up to this point, we believe any data-driven organization 
like a bank we must be transparent and responsible through 
their decision-making process, being it algorithmically 
driven or not. Hence, they must detect and address poten-
tial problems to enrich a trustful relation with their cus-
tomers. Our work in that domain explores the foundations 
of trust from a Machine Learning perspective with the 
basic attributes of fairness and transparency. 
 Fairness is always the result of a comparative process 
(Xia et al. 2004). This can be twofold; as a comparative 
process with a past personal situation or a comparative 
process with another person independently of time. For 
example, in the former case, we can consider a price in-
crease in a certain product, given incomplete market in-
formation, as unfair. In this, anticipating the buyer discrep-
ancies and the transparency of the vendor explaining why 
price has increase can reduce the sensation of unfairness. 
In the latter case, we base our fairness assumptions by 

comparing to others. Things are more intricate, because 
one must address, subjectively, how alike one is to the 
comparative others. If there is a price reduction in a certain 
product for people considered as peers, odds are that the 
comparison will provoke an unfair situation. A good ex-
ample of it was the uproar that took place with Amazon 
dynamic pricing model when people realized that the mod-
el had charged some people more than others (Weisstein et 
al. 2013).  Unfairness of the second type can be explicitly 
solved in the feature selection phase (Grgic-Hlaca et al. 
2018) or including fairness metrics as another component 
of the algorithm development (our experiments 2 & 3). 
 In addition, transparency also known as Machine Learn-
ing interpretability is a key part of the toolset to tackle 
mistrust in algorithmic decision-making processes. It can 
be used to promote fairness of the first and second type, 
and moreover pervade the organizational culture with ethi-
cal responsibility.  As the great 20th-century physicist 
Richard Feynman puts it: “if you cannot explain something 
in simple terms, you don’t understand it”.  This maxima 
that is so accepted in the hard sciences, it is not that ex-
tended in Data Science. It implies a bidirectional associa-
tion between explainability and understandability, which 
ultimately oppose transparency against blackbox-ness. It 
should be noted though, that black-box algorithms are not 
exclusively those of a non-linear nature; high dimensional 
and heavily tuned Generalized Linear Models can be also 
vastly opaque (Lipton 2016). Fortunately, interpretability 
frameworks clear the way to take-apart the machine and 
explain its pieces (our experiment 1) (Ribeiro et al. 2016; 
Lakkaraju et al. 2017).  

An Evolution of Automation 
Automation in the banking industry has come a long way 
since the 1970s with innovations like the Automated Teller 
Machine (ATM) and the Electronic Fund Transfer at Point 
of Sale (EFTPOS) (Consoli 2008). Automation is in the 
DNA of such an information driven industry. In the last 
years with the advent of cheap distributed databases, cloud 
services and computational power automation pivoted to 
enrich decisions algorithmically by incorporating vast and 
varied new data sources. Nowadays, many banks follow a 
digital agenda focusing on sales automation. By doing so, 
personalized offers reach customers at the right moment, 
and, in addition, automating servicing ‘Do it Yourself’ 
experiences allow for huge cost reductions on mature high 
margin products. Also, data-driven banks employ Machine 
Learning to perform more fine-grained assessment of risks 
and provides customized advisory. 
 According to McKinsey Global Institute Report (2016) 
Machine Learning is having a significant impact on retail 
banking, especially on improved forecasting and predictive 
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analytics boosting a radical customer personalization ap-
proach (Henke et al. 2016). Nevertheless, the evolution of 
automation should come along with that of trust, but this 
coevolution is far from clear. According to an Accenture 
poll 87% of US consumers plan to use bank branches be-
cause of greater added value and in-person trustworthiness 
(Accenture 2016). Still, in general, the most valuable 
channel is online but not precisely because of trust as it is 
the reason behind branch channel value. Automation might 
move from traditional transactional interactions to a mean-
ingful “relational” interaction. In an increasingly digital 
era, consumers are looking for experiences rather than 
merely servicing; a world where banks come to customers 
rather than customers go to the bank. Therefore, the inter-
play between automation and customer experience should 
come along together with trust, and this area is where we 
are putting our research efforts: how the design of automa-
tion together with Machine Learning can create trustwor-
thy relationships with our customers.   

Experiments on Trust and Machine Learning 
We are currently conducting experiments that aim at un-
derstanding techniques to design for trust with Machine 
Learning 
 

•� Experiment 1 is about interpretability and trust in 
credit risk scoring: Algorithmic transparency is 
openness about the purpose, structure and under-
lying actions of the algorithms used to search for, 
process and decision making. This experiment ex-
plores one way of making a black-box algorithm 
transparent using LIME (Ribeiro et al. 2016) as an 
interpretability framework. By implementing this 
framework we can answer customer questions 
such as: why I have been rejected? Not only for 
the customer but also for the financial regulator 
which opens the possibility to use more sophisti-
cated non-linear models. As well as helping risk 
analysts on the model development process. 

•� Experiment 2 is about learning to bid in real time 
using a fair strategy: An approach on dynamic 
pricing that uses Reinforcement Learning (RL) 
(Sutton and Barto 1998) to keep a balance be-
tween revenue and fairness. This work helps max-
imize revenues while taking into account fairness 
and equity that prevent a negative customer per-
ception of unfair price differences that can destroy 
a trustful relation. We demonstrate that RL pro-
vides two main features supporting fairness in dy-
namic pricing: on the one hand it is able to learn 
from recent experience adapting the prices policy 
to complex market dynamics; on the other hand 

RL can include a trade off between short and 
long-term objectives, integrating fairness into the 
model’s core. Specifically Q-learning is used to 
provide a simple way for agents to learn sequen-
tially by trial and error (Watkins and Dayan 
1992). In the context of our experiment it is used 
to, for each action performed by an agent, modify 
the state of the environment (related to fairness) 
while providing a reward (the price bid).   

•� Experiment 3 explores a fair approach on Rec-
ommender Systems (RS): While RS aim to pro-
vide an appealing list of items to users, most algo-
rithms suffer from a bias in the recommendation 
towards popular items. As a consequence, the rec-
ommended list often goes away from the true in-
terest of users. On the other hand, less popular, 
long-tail items are desirable for recommendations 
because of their novel and diverse character. In 
this experiment, we explore the concept of fair-
ness in recommender systems, so that all items 
have the same chance to be presented to users. 
Two techniques that allow keeping a balance be-
tween popular and niche products in the recom-
mendation are introduced. A new loss function 
that it is explicitly designed to deal with missing 
information, forbids a predicted zero preference to 
unseen products. This makes every product avail-
able in the recommendation. Second, a popularity-
scaling factor is included in the loss function dis-
tributing the recommendation itself in a better 
way. 

Conclusions 
Trust is a complex term with multiple dimensions investi-
gated in psychology, sociology, economics, information 
systems and even philosophy. From a Machine Learning 
perspective, we realize to only grasp the tip of the iceberg. 
With the new wave of Machine Learning solutions, value 
is created with an accumulation of touch points that feed 
algorithms with behavioural data. Technology can provide 
attributes to build trust like competence, quality, simplici-
ty, and convenience. We have seen that Machine Learning 
technique can help contribute to further experiences of 
trust like transparency and fairness. We believe that trust is 
built through the intensifying relations, feedback loops, 
virtuous cycles, ‘data network effects’, and the capacity to 
understand and react on customer’s intentions, emotions, 
and behaviours. 
 We believe that models are not sanitized abstractions of 
reality; on the contrary, explicitly or not, they are being 
created with our biases and unfair judgments. These must 
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not be seen solely as profit seeking machines, because the 
choices they made in the end are fundamentally moral.  
 In addition, we are exploring ways to include fairness 
and transparency as central elements of model develop-
ment, that eventually will foster a trustful relation with 
bank customers. We have learned one way of making 
opaque algorithms transparent positioning us one step 
ahead of the new regulatory demand which comes into 
force next year under the European Union General Data 
Protection Regulation (GDPR). Using model interpretabil-
ity, we can fulfil the regulatory “right to explanation” and 
give feedback to customers on the decisions that affect 
them, as well as help data scientists and analysts on the 
process of training and assessing models.  Regarding fair-
ness, we are gathering empirical evidence that Reinforce-
ment Learning is a model capable of learning revenue 
maximization while providing a more egalitarian dynamic 
pricing strategy between groups of customers. Concerning 
recommender systems, we developed a way of effectively 
dealing with the extended bias in recommendation towards 
popular items. Avoiding this bias means new responsible 
ways for the banking industry to increase its sales and 
profits by potentially selling in a vast and unexplored mar-
ket. 
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Abstract

We present a methodology where we identify simple struc-
ture in data, if such structure exists, and present it to end-
users, enabling them to interact with data or manipulate a
machine learning model. We share our bounding box algo-
rithm which distills complex information into a small set of
range rules which yield naturally intuitive visualizations. We
demonstrate a few cases where simple, actionable descrip-
tions lead to quantitative improvements in an AI pipeline.

Introduction

Big, complex data and sophisticated learning models are
black-boxes to end-users, who often are not data scientists.
This, however, does not absolve these end-users from re-
sponsibility for the decisions made upon recommendations
from a trained Artificial Intelligence (AI) model in domains
where mistakes are costly. An interface which bridges the
gap between AI and human understanding is necessary to
make big data and machine learning more accessible. Our
aim is to identify simple structures in data and reveal inter-
pretable information to inform the end-user’s decision mak-
ing, improving their comprehension of the data and model.

We define desired properties of simple structure which
form a natural user experience. Humans are adept at rea-
soning in low (1, 2, and 3) dimensional spaces, making this
a pragmatic criterion for maintaining simplicity. Further-
more, the low-dimensional description must involve input
features with intuitive physical relevance. Input features of-
ten undergo transformations which facilitate AI processing
but preclude human reasoning. It follows that simple struc-
ture should exhibit both of these desiderata - defined in the
native feature space and limited to only a few features.

Any learning model with an emphasis on explainability
can be used to find patterns that fit this description (Fiterau
and Dubrawski 2013). We chose to use a bounding box find-
ing algorithm to illustrate the impact of actionable simplic-
ity. Bounding boxes are primed for success because each box
is defined in a two-dimensional subspace. We force the al-
gorithm to operate in the native feature space so it selects
intuitive features.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example of a bounding box in a regression task.

An example of a bounding box found in a regression task
on a popular benchmark dataset (”mpg” (Lichman 2013))
is shown in Fig. 1. The color labels correspond to mileage
per gallon, and this box zones in on a high mean cluster.
This box captures simple structure showing that vehicles
with low engine displacement and low horsepower get bet-
ter mileage per gallon of gasoline. Visually communicating
simple structure with end-users makes it easy to interpret the
meaning of the model. We will show how information like
this can inform end-users to make smart decisions to im-
prove the performance of their data and predictive models.

The Bounding Box Algorithm

Our bounding box algorithm performs a combinatorially
exhaustive search across all axis-aligned, two-dimensional
projections of the input feature space, looking for range
rules that capture salient patterns which satisfy customizable
objective criteria. Functionally, we aim to capture in these
boxes statistically distinct data distributions, if they exist.

A box can be fit in a classification or regression setting, as
seen in Figure 1 or 2. The resulting decision boundary is the
perimeter of a box, and the box only fits the data that falls
within its ranges. Each box cannot draw any conclusions for
data outside its purview.

The complexity of the box finding algorithm scales
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Figure 2: Sample bounding-box decision list.

with the number of features in the data. We may achieve
speedups, in part, by binning individual samples to an im-
posed grid which minimizes the number of calls to the data
structure which identifies optimal range rules. This allows
us to find good boxes very quickly, or optimal boxes if given
more time. Utilizing a binary search tree helps return 2D
range rules in O(n2 log(n)) time, rather than O(n4) time
that would be required in a naive approach. By adjusting pa-
rameters, this algorithm is capable of running on most data
sets of arbitrary size in minutes, if not seconds.

In classification tasks, parameters for the algorithm in-
clude a lower bound on both purity and support size of data
in the box. Purity sets a homogeneity constraint for sam-
ples inside a box. Support size sets the minimum number
of samples that must reside inside a box. Variance can be
used instead of purity as a box consistency metric for re-
gression tasks. All boxes identified in a data set that meet
the minimum purity and support constraints are returned for
any post-processing or visualization.

Next, we share a few use cases, however the list is not
comprehensive. It is possible to introduce bounding boxes
in any AI pipeline to enhance the end-user experience.

Simple Structure in Big Data

Interacting with big data does not always need to be com-
plicated. In fact, for any given set of data, there are usually
some samples which are easier to classify than others. This
led us to thinking that easy data may exhibit some discrim-
inative, low-dimensional structure which can be leveraged
in a classification task. If found to be true for a given set of
data, this means some data may not require a complicated,
comprehensive description for confident model predictions.
If a large portion of a data set can be described very simply,
this would make the task of understanding trends in big data
much less daunting.

Table 1: Properties of datasets. All are randomly split 70/30
for train and holdout sets.

DATA SET SAMPLES FEATURES CLASSES

BASEBALL 1055 16 3
PROTEIN 842 71 8
STATLOG 2100 19 7
SPECTRAL 428 101 10
THYROID 2103 28 2

To increase the descriptive power of bounding boxes for
this task of identifying easy data, we form a decision list,
as seen in Figure 2. The figure shows that different classes
of data cluster in different subspaces, allowing us to change
perspective to find multiple simple explanations. In order to
produce this list, we find a single box, remove data inside
from future consideration, and repeat until no boxes meet
the support and purity constraints. This chains together mul-
tiple box descriptions so we have a method for combining
the simple structures we find in data. The list is roughly or-
ganized by descending support size - the largest boxes are
usually found first and subsequent boxes gradually describe
smaller patterns left behind.

Bounding boxes provide a simple description to all data
inside, therefore any sample that is captured by a box is con-
sidered easy. If a data sample does not fall within the bounds
of any box in the decision list, then that sample is considered
hard. Our goal is to find out how many samples in a given
data set are easy, and whether the easy data exhibit discrim-
inative simple structure.

For this experiment, we consider five publicly available
datasets for classification tasks. Table 1 contains details
about each data set. Running this algorithm is sometimes
more art than science - instead of hand tuning input pa-
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Table 2: Training data coverage, holdout data accuracy, and
decision list length for multiple data sets

DATA SET % COVERAGE % ACCURACY NUMBER

BASEBALL 57.4 ± 3.4 99.6 ± 0.2 1.6 ±0.5
PROTEIN 16.2± 4.4 100.0±0.0 2.8 ± 1.2
SPECTRAL 30.4 ± 7.4 99.1 ± 1.8 1.2 ± 0.4
STATLOG 38.2±11.0 100.0 ± 0.0 3.8±1.7
THYROID 54.2 ± 7.8 99.4 ± 0.2 4.6 ± 3.6

AVERAGE 39.2% ± 15.3 99.6% ± 0.3 2.8 ± 1.3

rameters based on characteristics of each dataset, we con-
sistently set purity high and support low. High purity is the
most restrictive - we will only search for boxes which are
completely homogenous inside. Setting support low (mini-
mum 5 samples in a box) makes purity the only true filter for
box candidates. Running the algorithm in this way provides
a lower-bound on the amount of data that we will be able to
tag as easy data. By relaxing the purity constraint and hand
tuning the support criterion to a specific data set, we would
be guaranteed to capture more easy data.

Table 2 shows the coverage of the resulting decision lists
in training data, the prediction accuracy on holdout data, and
the number of boxes that comprise the decision list. The
coverage of the boxes on training data is the most impor-
tant detail for describing how much data is easy. Over half
of the Baseball and Thyroid data sets could be captured by
bounding boxes, as could an average of 39.2% of data over
the five sets. The variability in coverage corresponds to the
separability of classes in the data. The lowest coverage was
obtained for the protein dataset, which had 8 unique class
labels. The spectral set has more classes, but a larger imbal-
ance, which makes one class more prevalent than all others.

Stating that just under 40% of data between these sets is
easy does not mean much if we happen to be severely over-
fitting the training data. The second column shows predic-
tion accuracies only for holdout data that falls within a box.
Any holdout data that is not captured by a box in the list
does not detract from the accuracy. One reason the accura-
cies are so high is because we demanded that all identified
boxes must contain samples with homogenous class labels.
The patterns captured by the boxes in training data general-
ize quite well to holdout data.

Lastly, the number of boxes is important for demonstrat-
ing the visibility of these simple structures in data. The av-
erage length of the decision list was less than three boxes,
meaning that approximately forty percent of the data can
be described with just three 2D range rules. As the wide
confidence bounds indicate, the results are highly variable
for different data sets, which is why it is important to tune
the bounding box algorithm for each data set. For example,
hand-tuning purity=.9 and support=50 for a single exper-
iment with Statlog image segmentation data yields 77.3%
training data coverage with 12 boxes which achieve 96%
accuracy on holdout data (see Figure 2 for the first half of
the list).

We can use this bounding box decision list in conjunc-
tion with a more powerful multivariate model to fall back on
when the boxes do not provide output. Such a staged learn-
ing model offers comprehensibility and accuracy. Thus, the
complexity of the prediction for a particular query is only as
complicated as it needs to be. Tuning this staged model in-
volves adjusting the length of the box decision list. If it turns
out that a multivariate model achieves the highest accuracy
without the aid of bounding boxes, then the data has no sim-
ple structure useful for this task. Otherwise, simple structure
can be leveraged to make a positive impact.

Building Smarter Sets of Data

Consider a radiation threat detection system. Vehicles are
scanned, as they cross international borders, for dangerous
radiological signatures varying from improperly contained
medical isotopes to nuclear weapons. Robust systems must
be trained and validated on both benign and threat data,
however, this is difficult because data corresponding to true
threats either is rarely collected from the field, or is classi-
fied. A common solution to this type of problem is to re-
serve all empirically collected threat data for the validation
set, and carefully synthesize simulated threat data to use for
training.

Nuclear physicists are responsible for modeling complex
physical processes which often requires generating partially
synthetic, featurized data. Engineering a high-fidelity sim-
ulation over a large number of complex features is incred-
ibly difficult and prone to omissions. Multiple small errors
or oversights can lead to significant distribution drifts. Tra-
ditional machine learning assumptions, such as data being
identically distributed between training and validation sets,
may easily and unknowingly be violated as a result. This
may negate generalization guarantees of any learning model,
and this flaw may only be discovered after costly deploy-
ment procedures. Thus, it is critical to ensure that synthetic
data is the most faithful representation of empirically col-
lected data as possible.

Figure 3: Significant gap illustrated between training (syn-
thetic, blue) and validation (empirical, red) data

In order to find out how this synthesized data differs from
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data in the field, we define a binary classification task be-
tween training and validation data. This reveals subspaces
where the distributions of select variables are significantly
different between the train and validation data. Figure 3,
shows a proxy example to illustrate the difference between
synthetic and empirical data. The box highlights a definite
mismatch in the distribution of x-axis and y-axis variables
in the largest cluster. This information can guide the simu-
lation process to make adjustments to address the gap, yet
leave the other matching distributions unchanged.

Approximating the high dimensional divergence between
the classes as a collection of actionable range rules allowed
nuclear physicists to tackle one problem at a time. Through
an iterative process, these 2D axis-aligned range rules offer
a simple action item for data engineers to adjudicate. We
have found that addressing shortcomings of the data in this
manner improves the prediction accuracy of an existing AI
pipeline without needing to make changes to the learning
model itself. Generating smarter data accomplishes the same
task as engineering a smarter learning model.

Contradictory Pattern Detection

A common occurrence in ensemble learning methods in-
volves two or more models giving a single query different
predictions. A simple way to resolve the contradiction would
be to pick a classification that matches a majority of models
in the ensemble. However, this may not always be the best
strategy. Disagreements between models may signal an issue
with the featurization of the data rather than just expected
variability due to bootstrapping. Or perhaps the bootstrap-
ping procedure generates poor learning models which could
be discarded and replaced by changing tuning parameters.

(a) Green is similar to red (b) Green is similar to blue

Figure 4: In different subspaces, the green diamond looks
like it may belong to either the red or blue class. This is an
example of a contradiction between the two models.

We search for simple explanations for disagreements be-
tween multiple models using the bounding box algorithm. In
this demonstration, we train a random forest model contain-
ing an even number of decision trees. We allow the random
forest to resolve internal contradictions if plurality exists be-
tween models, however, in the case of a tie, we try to find

a simple explanation for why this large-scale disagreement
manifests. Both the conflicting sample and the respecting
leaf nodes of interest are identified. A binary classification
task is defined between the samples that each tree identifies
as most similar to the query in conflict.

In Figure 4, red samples belong to the first decision tree
(T1) and blue samples belong to the second decision tree
(T2). The conflicting query is marked with a green diamond.
Out of the many projections identified, two are hand se-
lected which most clearly show the cause of the disagree-
ment. Based on the Figure 4a, T1 seems justified to classify
the query as red. Similarly, Figure 4b suggests T2 has rea-
son to classify the query as blue. Instead of just presenting a
tie as the result of a vote, we are able to present a physical
manifestation for the cause of the tie. This not only allows
an end-user to collapse the tie with their own adjudication,
but they may also alter the learning model to prevent the tie
from repeating in a similar situation. In any case, presenting
the end-user with a visual narrative for a contradiction will
facilitate a correction making the data or model more robust.

Conclusion
By leveraging simple structures in data we craft a visual in-
terface for end-users which enables them to interact with
data and learning models. Our method for finding simple
structures is fast, intuitive, and model-agnostic, allowing it
to be used in many different ways when explainability is de-
sired. Meaningful patterns that were previously buried under
massive amounts of data are now able to be identified and
guide an action plan for improving an AI pipeline by build-
ing smarter data, choosing appropriate models, or resolving
contradictions between multiple models.

We have shown a few use cases where simple structure
makes a big impact. Big data often has hidden simplicity that
can be used to present information of interest to end-users.
Domain experts can iteratively address shortcomings in syn-
thetic data to create a more effective set of data. Detecting
contradictory patterns allows end-users to resolve disagree-
ments in ensemble methods and prevent identical confusion
from happening in the future. We continue to study the util-
ity of actionable simplicity across a variety of domains and
applications where AI is meant to be an extension of human
reasoning, not an autonomous substitute.
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Abstract 
This paper discusses the technical process and artistic intent 
of a concept music album co-authored by a human and Arti-
ficial Intelligence. The project finishes with an album of 
several compositions. The album begins with a composition 
that is generated by the author alone, a self taught musician 
and a technologist. The compositions that follow are co au-
thored by an open source neural network and the author. 
The neural network is trained by the author, who has turned 
his compositions into mathematical data which can be fed to 
the neural network. The album ends with a composition that 
is completely generated by the trained neural network. The 
goal of the project is to express the rise of Artificial Intelli-
gence in a musical way and speculate on the future of Arti-
ficial Intelligence. The author uses music, mathematics, and 
the emerging machine learning field to create a musical sto-
ry. It aims to question about the future where automation 
takes over the human labor in various fields including crea-
tive areas like music production and art making. 

 Context   
The project is driven by two forces: the author’s love for 
music composition and artificial intelligence. The author is 
a self-taught musician who has indulged himself in the 
process of music composition for a long time. For the past 
5 years, the author has been constantly working on creating 
music and has recently ventured into using AI as a tool for 
creating music.  
 The author in these five years of music learning has been 
involved in various other studies related to emerging tech-
nologies and several art projects. In this time, he heard 
about Artificial Intelligence and fell in love with the idea 
that a machine can replicate him and help him to produce 
music that he is unable to give time to. He considers ma-
chine learning as a tool to replicate his brain and generate 
a body—in the computer—that he can share his soul 
with. 
 This thinking has led him to work on researching about 
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Artificial Intelligence and machine learning that he sup-
poses will be taking over the world very soon. The author’s 
constant effort to achieve a system that can replicate his 
style of music production has finally led him to a neural 
network and a mathematical system that clones his musical 
passion. 
 The author aims to generate an album where machine 
learning is used to make music and the compositions are 
used as a medium to express the rise of Artificial Intelli-
gence. Along with this he aims to speculate on the future of 
Artificial Intelligence and figure out the possible ways A.I. 
will assist humans in the future. 
 

Process 
The process involved an analytical approach to the art of 
music making. The author analyzed the process of making 
music, then gathered and converted the process into data; 
number and sequences, which can be used to generate a 
system that will clone his music making. 
 To eliminate the amount of errors, the author first lim-
ited the notes on the piano and the scale (for each composi-
tion) that he and the neural network can work with. C Nat-
ural Minor, C# Melodic Minor, G# Hungarian Gypsy Scale 
were selected for the three compositions. Two octaves (15 
keys) were selected for each composition. The author than 
composed the first one-minute brief piece, called “Necessi-
ty is the Mother of Invention” that describes the world be-
fore AI and computers. The composition consists of chords 
and melody. Chords (limiting to 3 notes played at once) 
had one variable which was the sequence of notes on the 
piano while melody had two variables; time and note se-
quence. The selected two octaves of the piano scales and 
their respective keys were numbered from 1-15 and these 
numbers were used to get the sequence from the author’s 
first composition. Three kinds of sequences were extracted; 
the chord notes, the time between each note in melody and 
the note in the melody. The value of these sequence was 
normalized between 0-1. These sequences where then used 
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to make data sets (input and target data) to feed to the SRN 
network generated in the open source software. Three neu-
ral networks were trained to give three different sequences; 
for chord notes, melody notes and melody time. 
 The trained system was finally used to make the other 
two compositions, where the first one was composed by 
the author, the second one by the neural network and the 
author, and the album concludes with a music piece com-
pletely generated by the trained neural network.         

References 
Alpaydin, E. 2016. Machine learning: the new AI. Cambridge, 
MA: The MIT Press. 
Russell, S. J., & Norvig, P. 2016. Artificial intelligence: a modern 
approach. Boston: Pearson. 
Perricone, J. 2007. Melody in songwriting: tools and techniques 
for writing hit songs. Boston, MA: Berklee Press. 

 

387



 
Towards Natural Cognitive System Training Interactions:  

A Preliminary Framework  

Erik Harpstead,*1 Christopher J. MacLellan,*2 Robert P. Marinier III,2 Kenneth R. Koedinger1  
1Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213 

2Soar Technology, Inc. 3600 Green Court, Suite 600 Ann Arbor, MI 48105 
* These authors contributed equally and should be considered co-first authors. 

eharpste@cs.cmu.edu, chris.maclellan@soartech.com, bob.marinier@soartech.com, koedinger@cmu.edu 
 
 
 

Abstract 
Researchers have developed cognitive systems capable of 
human-level performance at complex tasks (e.g., Watson 
and AlphaGo), but constructing these systems required sub-
stantial time and expertise. To address this challenge, a new 
line of research has begun to coalesce around the concept of 
cognitive systems that users can teach rather than pro-
gram.  A key goal of this research is to develop natural ap-
proaches for end users to directly train these systems to per-
form new tasks. However, what makes training interactions 
natural remains an open research question that we begin to 
explore in this paper. To lay the foundation for this explora-
tion, we review the human-computer interaction literature to 
identify characteristics of systems that have historically 
been natural for end users to interact with. Based on this re-
view, we propose a framework for cognitive system training 
interactions that decomposes interaction into patterns, types, 
and modalities, all of which support the acquisition of dif-
ferent kinds of knowledge. Finally, we discuss how this 
framework characterizes existing research within this space 
and how it can guide future research.  

Introduction    
In recent years, there has been a growth of research and 
development in the area of cognitive systems, or systems 
capable of higher-level processing and reasoning with 
structured representations using techniques informed by 
cognitive science (Langley, 2012). For example, IBM's 
Watson and Google's AlphaGo systems have demonstrated 
that it is possible for cognitive systems to achieve human-
level performance at complex tasks. However, cognitive 
systems still remain largely out of reach for the general 
public (Laird et al., 2017). A major factor contributing to 
this disconnect is that our daily lives are filled with a wide 
range of tasks across multiple domains, whereas today's 
state-of-the-art cognitive systems are implemented to per-
form specific tasks in specific domains. Extending special-
ized cognitive systems to support a wider range of tasks 
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requires substantial time and expertise (e.g., the base IBM 
Watson system that famously beat two Jeopardy! champi-
ons required over a century of AI expert development 
time). 

To address this challenge, cognitive systems researchers 
have begun exploring approaches for users to create and 
extend the capabilities of cognitive systems by teaching 
them, rather than by programming them. This emerging 
area of research, which has been referred to as Interactive 
Task Learning (Kirk & Laird, 2014; Laird et al., 2017) and 
Apprentice Learning (MacLellan, 2017; MacLellan, 
Harpstead, Patel, & Koedinger, 2016), aims to develop the 
computational and cognitive theory needed for building 
systems that support natural interactions and that possess 
general capabilities for learning across a wide range of 
domains and contexts. Similar to how research and devel-
opment on computing hardware enabled the transition from 
corporate mainframes to personal computers, this research 
area aims to support the transition from monolithic cogni-
tive systems (e.g., Watson) to personal cognitive systems 
(e.g., Forbus & Hinrichs, 2006). 

The longer-term goal of our research program is to de-
velop a user-centered approach for teaching cognitive sys-
tems. For the moment, we will focus on the issue of natu-
ralness and in particular the naturalness of the training in-
teractions these systems afford. In doing so, we draw on 
the human-computer interaction perspective that an under-
standing of interaction is central to the design and devel-
opment of usable technology. In this paper, we first review 
commonly recognized characteristics of natural interaction 
from the HCI literature and propose a preliminary frame-
work that characterizes the space of training interactions 
that cognitive systems could support. Ultimately, we intend 
this work to lay the foundation for the development of per-
sonal cognitive systems that users can naturally teach.  
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What Makes an Interaction Natural? 
In order to create an initial framework for natural training 
interactions, we must first contend with what it means for 
an interaction to be natural. While it is common to think of 
gesture and speech as lending naturalness to an interaction, 
the prior literature highlights that an interaction is not nec-
essarily natural by virtue of its physical modality. Norman 
(2010) argues that so called natural user interfaces (e.g., 
speech- and gesture-based) are not inherently more natural 
than graphical user interfaces (e.g., screen-based widgets). 
For example, gestural interfaces lack the affordances to let 
users know what gestures they support, whereas graphical 
user interface widgets, such as buttons, readily advertise 
their supported interactions. In general, this work suggests 
that the naturalness of a modality alone is neither necessary 
nor sufficient for making an overall interaction natural. 

Given that naturalness does not derive from modality, 
then what makes interaction natural? To address this ques-
tion, we reviewed the HCI literature on natural interactions 
and identified four common characteristics of systems that 
support naturalness: they (1) support the goals of the user, 
(2) do what the user expects, (3) allow the user to work the 
way they want, and (4) leverage users' experience to mini-
mize training. In this section, we review each of these 
characteristics. 

Supports the goals of the user. Systems supporting 
natural interactions should be able to support what users 
want to do (i.e., their goals). One temptation in developing 
these systems is to overemphasize ease of use at the ex-
pense of limiting what users can achieve. Myers, Hudson, 
and Pausch (2000) refer to this balance as the threshold and 
ceiling of tools. Thresholds refer to the barriers a user must 
overcome to use a tool, whereas the ceiling describes what 
the tool enables users to do. Many systems attempting to 
support natural interactions emphasize a low threshold, but 
often ignore the ceiling. For example, it is easy to interact 
with Siri, but it only supports built-in commands—it is 
unable to learn new commands. To overcome this risk, 
systems should be developed with end-user goals and in-
tents in mind (e.g. the desire to teach Siri new user-defined 
commands), so that the developers can ensure the system 
does not limit users' capabilities. 

Does what the user expects. A common theme in re-
search on natural interactions is an emphasis on the expec-
tations users have for a system (Myers, Pane, & Ko, 2004). 
Humans typically follow patterns, scripts, or norms when 
engaging in everyday interactions (Bicchieri, 2006), which 
make it possible for the humans involved in the interaction 
to know how to respond. For example, tutors generally 
expect that their pupils will attempt to solve problems be-
fore asking for help. Systems that aspire to naturalness 
should support naturally occurring patterns of interaction 
and be aware of users’ expectations within these patterns. 

It is worth noting that these patterns may arise from a us-
er's particular cultural background (e.g., what roles their 
culture ascribes to teachers and students) or from their per-
sonal experiences (e.g., whether they are a Mac or PC us-
er). Additionally, systems attempting to be natural should 
not require users to learn new (unnatural) patterns of inter-
action—deviations from typical scripts make it difficult for 
users to know what the system will do next and how to 
respond accordingly. 

Allows the user to work the way they want. Given that 
natural systems support users’ goals they should also let 
users execute those goals the ways they prefer or expect to. 
A key idea from the ubiquitous computing literature is that 
computing systems should become invisible because they 
seamlessly support the ways users want to do something 
(Weiser & Brown, 1996). They should not impede users or 
force them to achieve goals in unpreferred ways. For ex-
ample, a common trend is to build systems around a speech 
interaction paradigm, but there are many situations where 
speech is an unnatural form of communication. In his study 
of architectural designers, Schön (1982) found that sketch-
es of designs often better supported communication and 
reasoning than verbal articulations. This finding suggests 
that systems aiming to support natural architectural design 
should prefer sketch-based interactions over speech. 

Leverages users experience to minimize necessary 
training. One of the most pervasive ideas within research 
on natural user interfaces is the idea of instant expertise 
(Wigdor & Wixon, 2011), or the idea that users should not 
have to learn how to control a system because the modality 
used is one they have immediate familiarity with. In the 
words of Buxton (Larsen, 2010), "[natural user interfaces] 
exploit skills that we have acquired through a lifetime of 
living in the world, which minimizes the cognitive load and 
therefore minimizes the distraction”. Common approaches 
within this space include voice- and text-based natural lan-
guage and gestural interfaces that take advantage of users' 
lived experiences interacting with other people. Addition-
ally, many users have extensive training with artificial in-
terfaces, such as QWERTY keyboards, that may be natural 
for many application contexts, so it is worth noting that 
these artificial modes of interaction should not be dis-
counted. 

A Preliminary Framework for  
Cognitive System Training Interactions 

In order to design cognitive systems that support natural 
training interactions, we require a better understanding of 
how these systems could hypothetically interact. In this 
section, we will propose a framework for cognitive system 
training interactions that aligns with the four characteristics 
noted in the previous sections. We do not intend for this 
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work to be complete but hope that it provides a useful lan-
guage to start talking about naturalness in the context of 
cognitive systems and their instructional interactions with 
users.  

The framework characterizes four dimensions of training 
interactions between an agent and a human. First, we as-
sume the goal of an interaction is to change some aspect of 
an agent’s knowledge. The interplay between agents and 
trainers follow instructional patterns. Within patterns, 
trainers engage in several types of interaction, and these 
interactions can be done through various modalities. Table 
1 shows these four aspects of training interactions and pre-
sents examples of each. 

Knowledge. The goal of any training interaction is to 
update the learner's knowledge. There are many types of 
knowledge that might be included in a cognitive system. 
However, within the literature, there are several generally 
accepted types of knowledge (Laird, Lebiere, & 
Rosenbloom, n.d.). For our preliminary framework, we 
include six such kinds of knowledge: goals, which fully or 
partially describe desirable states of the world; beliefs, 
which represent an agent's current worldview; concepts, 
which support semantic inference and enable an agent to 
augment its worldview with additional non-observable 
information; experiences, which organize past situations 
and problem-solving episodes; skills, which describe pro-
cedures for changing the world and updating beliefs; and 
dispositions, which specify an agent’s problem-solving 
orientations (e.g., whether to explore or exploit). Our cur-
rent focus is primarily on symbolic forms of knowledge 
arising from interactions with a trainer, but future exten-
sions of the framework might also include sub-symbolic 
knowledge (e.g., learning probabilistic grammar 
knowledge for parsing English sentences or equations as in 
Li et al. (2015)). Further, we do not mean to imply that all 
cognitive systems must support all of these knowledge 
categories but rather that the nature of the knowledge being 
changed will likely dictate choices across the other dimen-
sions of the framework. 

Patterns. Within human-human instructional settings 
there are many naturally occurring interaction and training 
patterns. These patterns govern the relationship between 
trainer and trainee and establish the contours for how train-

ing interactions play out. Inspired by existing systems 
(Hinrichs & Forbus, 2014; Kirk & Laird, 2014; MacLellan 
et al., 2016) and instructional practice (Chi & Wylie, 2014; 
Koedinger, Booth, & Klahr, 2013), our framework high-
lights several possible patterns. At its most simple, learning 
could be primarily passive, with agents observing training 
behaviors without active input from instructors. Increasing 
complexity, agents can have some control over their ac-
tions and receive rewards from the environment or an in-
structor (operant conditioning) or instructors can explicitly 
coach an agent, without requiring agent decision making 
(direct instruction). An even more complex pattern, ap-
prentice learning (MacLellan et al., 2016), incorporate as-
pects of both of these approaches—both explicit instruc-
tion and feedback on agent actions. Additionally, many 
other instructional patterns are possible, such as after-
action review, Socratic learning (Chi & Wylie, 2014), and 
collaborative learning (Olsen, Belenky, Aleven, & 
Rummel, 2014). 

Types. Within a pattern, an instructor and trainee engage 
in many types of interactions. For example, within the ap-
prentice learning pattern (MacLellan et al., 2016), an in-
structor issues a command, which specifies the task for an 
agent to perform. If the agent does not know how to per-
form the task, then it might request a demonstration from 
the instructor, who provides one. On subsequent tasks, the 
agent might attempt the task (i.e., provide the instructor 
with a demonstration) and request feedback (i.e., a reward) 
on this attempt. Finally, the instructor provides the agent 
with the appropriate reward. Under this pattern, this pro-
cess continues until the agent is correctly performing all of 
the tasks. Our framework also includes interaction types 
for supporting Direct Instruction (Hinrichs & Forbus, 
2014; Kirk & Laird, 2014), which allow instructors to di-
rectly inform agents about the world ("TicTacToe is a two-
player game"), spotlight agents attention on particular parts 
of the world ("This [pointing] is a block"), and annotate 
demonstrations ("This is the move action [demonstrate 
drawing of X on board]") to facilitate efficient learning. 
The types listed in Table 1 are drawn from existing sys-
tems as well as the literature on communicative acts 
(Allen, Blaylock, & Ferguson, 2002; Traum & Hinkelman, 
1992). This is not meant to be an exhaustive list, but is 

Table 1. A Framework for Designing Natural Training Interactions for Cognitive Systems 

Knowledge Patterns Types Modalities 
• Goals 
• Beliefs 
• Concepts 
• Experiences 
• Skills 
• Dispositions 

• Passive Learning 
• Operant Conditioning 
• Direct Instruction 
• Apprentice Learning 
• After-Action Review 
• Socratic Learning 
• Collaborative Learning 

• Command 
• Clarify 
• Acknowledge 
• Inform 
• Spotlight 
• Annotate 
• Reward 
• Demonstrate 
• Request <type> 

• Command-Line Interface 
• Control device 
• GUI 
• Sketch 
• API 
• Gesture 
• Speech 
• Text 
• Multi-modal 
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representative of the types that commonly occur in current 
practice. It is important to note that when we refer to inter-
action types we are interested in the overall instructional 
act being performed and not how it is being performed. For 
example, orders delivered via a command line interface or 
spoken natural language are both instances of the command 
type. 

Modalities. The different types of interactions ultimate-
ly ground out in particular modalities of interaction, with 
many different modalities, or potentially multiple simulta-
neous modalities, supporting each type. For example, 
command-line or graphical-user interfaces, are both capa-
ble of supporting all of the interaction types listed in Table 
1. Typically, systems that claim to support natural interac-
tion leverage modalities commonly used in human-human 
interaction as the primary modes of interaction. For exam-
ple, the Microsoft Kinect enables gesture- and speech-
based interactions. A key aspect of modalities from our 
perspective is that they are cast in terms of what the trainer 
is doing and not necessarily how an action is being detect-
ed by an agent. For example, a gesture such as waving 
could be detected using either visual sensing with a camera 
or gyroscopic sensing with a wearable device (e.g., Taylor, 
Quist, Lanting, Dunham, & Muench, 2017); in either case, 
the trainer would be using a gestural modality. 

These four dimensions intentionally map to the four 
characteristics highlighted in the previous section. In par-
ticular, in the context of training, supporting a user's goals 
consists of supporting of the types of knowledge transfer-
ence they are trying to achieve. Users' expectations regard-
ing training will derive from the social instructional pat-
terns they have experience with. Thus, in order to naturally 
support training interactions, it is important for system 
designers to be aware of the interaction patterns that users 
expect. Further, users will want to interact in certain ways 
and system designers should be aware of the different 
types of interactions they want to perform. Finally, for 
each type of interaction, system designers should leverage 
modalities that draw on users' prior experience. 

Other Existing Frameworks 
The concept of decomposing human-agent interactions 
using a framework is not new and multiple decompositions 
exist in the prior literature. For example, Laird et al. (2017) 
divide interactive task learning systems by the mode of 
communication used (natural language or demonstration) 
and the type of knowledge taught (goals, concepts, actions, 
and procedures). Our work differs in that it also emphasiz-
es the importance of higher-level interaction patterns, such 
as passive learning, direct instruction, and apprentice learn-
ing. Many interactive task learning systems use a pattern 
similar to apprentice learning, so this dimension may have 

less variation within that literature. Additionally, we make 
a distinction between interaction types and modalities be-
cause it is possible for interactions to be communicated via 
different modalities, such as a demonstration (an interac-
tion type) being communicated using sketch, speech, or a 
graphical user interface (different modalities).  

Another related line of work is Bartneck and Forlizzi’s 
(2004) human-robot interaction framework, which, like our 
framework, has categories for patterns—called norms—
and modalities. However, this framework focuses on ro-
bot’s social interactions with humans more generally, ra-
ther than training interactions specifically, and so does not 
have dimensions for the types of knowledge being taught. 
Additionally, we emphasize interaction types, which form 
an intermediate layer of abstraction between patterns and 
modalities. Finally, as their work emphasizes the physicali-
ty of robots, it also distinguishes systems by the form they 
take (e.g., abstract or anthropomorphic). However, as our 
work is less concerned with the physical embodiment of 
agents, we do not make this distinction, but it is not in-
compatible with our current thinking. In general, while 
many existing frameworks share commonalities with the 
one proposed here, their focus is either more general (in-
teraction broadly) or directed toward a different kind of 
interaction (non-training interactions). Thus, we believe 
our framework combines prior ideas, but still presents a 
novel perspective on interaction that is better aligned with 
our high-level goal of building cognitive systems that are 
natural for end users to train. 

Discussion and Future Work 
In proposing this initial framework, we aim to achieve 
three objectives. First, we attempt to highlight what we 
view as a key opportunity within cognitive systems re-
search: to better understand the space of training interac-
tion and develop cognitive systems that are natural and 
efficient for users to teach and interact with. Recent re-
search efforts, such as Rosie (Kirk & Laird, 2014), the 
Companion Architecture (Forbus & Hinrichs, 2006), and 
the Apprentice Learning Architecture (MacLellan et al., 
2016), have begun exploring different combinations of 
patterns, types, and modalities to support training interac-
tions with end users. Each of these systems represent par-
ticular choices across the dimensions of our framework. To 
reach a more complete understanding of the space of train-
ing interaction design, researchers should explore addition-
al approaches and new combinations of approaches in or-
der to explore the space more broadly and ultimately direct 
work toward designing more natural means for training 
cognitive systems. 

Second, organizing training interactions along an or-
thogonal set of dimensions enables a modular approach to 
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the challenge of building cognitive systems to support nat-
ural training interactions. Individual researchers or devel-
opers need not contend with the whole problem and can 
instead focus on addressing subproblems. For example, 
one team of researchers might investigate which patterns 
are best for acquiring skills knowledge, whereas another 
team might investigate which patterns are best for acquir-
ing concepts. Because these decisions are orthogonal, both 
teams can benefit from each other's work and integrate 
their findings within the common structure of the frame-
work to support the development of systems that can natu-
rally learn both skills and concepts. Thus, the framework 
supports the unification of independent research efforts, 
even if these efforts do not explicitly describe their work 
within this framework.  

Finally, towards the goal of actually building cognitive 
systems that people can naturally train, we intend our 
framework to provide a language for formulating scientific 
hypotheses about how such systems should interact with 
users to best achieve naturalness. Much of the existing 
work implicitly assumes that choosing natural approaches 
for only one of the components of the framework (patterns, 
types, or modalities) establishes the overall naturalness of a 
system. For example, Hinrich and Forbus (2014) empha-
size the use of multiple natural modalities, such as text and 
sketching, whereas MacLellan et al. (2016) emphasize the 
use of a natural pattern. Central to our framework, howev-
er, is the hypothesis that different combinations of patterns, 
types, and modalities of interaction are better suited for 
updating different kinds of knowledge. Thus, we believe 
that systems that are natural for users to teach will not only 
support a wide range of patterns, types, and modalities, but 
flexibly choose the appropriate combination based on the 
type of knowledge being communicated, the trainer’s pref-
erence, and potentially other contextual factors. There is 
evidence that learning in humans follows a similar logic, in 
that different kinds of knowledge are best taught by differ-
ent forms of instruction (Koedinger, Corbett, & Perfetti, 
2012). Given that an artificial intelligence need not repre-
sent a natural system, there is no inherent reason to transfer 
this logic (Simon, 1983). However, if we want to support 
humans in naturally training such systems, then it becomes 
important to understand these relationships and how they 
might impact different kinds of training. In conclusion, it is 
our hope that this framework will focus attention on this 
issue, provide a language for talking about training interac-
tions and their naturalness, and guide future research on 
this exciting frontier of personal cognitive systems. 
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Abstract 
This paper engages with the challenges of designing ‘im-
plicit interaction’, systems (or system features) in which ac-
tions are not actively guided or chosen by users but instead 
come from inference driven system activity. We discuss the 
difficulty of designing for such systems and outline three 
Research through Design approaches we have engaged with 
- first, creating a design workbook for implicit interaction, 
second, a workshop on designing with data that subverted 
the usual relationship with data, and lastly, an exploration of 
how a computer science notion, “leaky abstraction”, could 
be in turn misinterpreted to imagine new system uses and 
activities. Together these design activities outline some in-
ventive new ways of designing User Experiences of Artifi-
cial Intelligence. 

Introduction   
There has been a growing interest in technology pre-

empting our needs, with at least the potential of systems 
that are contextual, anticipatory and personalized, drawing 
on objects and bodies embedded with sensors and actua-
tors. While progress has been at times halting, we are no 
longer surprised at the idea of cars that automatically park 
themselves, toilet paper that preemptively replenishes 
stock, or virtual assistants that sensitively diagnose diseas-
es. These smart technologies potentially offer the possibil-
ity to transform our everyday lives, catalyzing a shift from 
explicit interactions towards implicit interactions. 

One way of characterizing these possibilities is in a 
change from explicit to implicit interactions (Ju and Leifer 
2008).  While explicit interactions demand our immediate 
attention for direct engagement or manipulation, implicit 
interactions rely on peripheral information to seamlessly 
behave in the background until appropriately shifted into 
attention. Systems like the Google Nest automatically 
change household temperature based on the predicted pres-
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ence of household inhabitants, offering a tantalizing sense 
of systems that pre-empt our needs.  

Yet, in reality the inevitable choreography between im-
plicit and explicit interactions and the resulting user expe-
riences are far from seamless, secure and sure. Automatic 
doors jerk and stutter, digital products and services uncan-
nily act upon our behalf, manipulating our emotions, or 
curating filtered experiences without an ability to inquire 
or intervene. Content is hidden from us without our per-
mission, and in extreme cases, systems take pre-emptive 
actions – resetting for system upgrades just before a talk, 
or suspending activity until impossible conditions are satis-
fied. 

In our own recent work, we have focused on how AI and 
Machine Learning techniques can be used to support the 
choreography between these implicit and explicit user and 
system actions. Working in this area is challenging because 
while a system might pre-empt a user action, error rates - 
as well as unforeseen actions - can hinder utility. It is not 
clear that focusing simply on automating existing applica-
tions and system actions is as useful as expected – the track 
record of pre-emptive system actions is mixed at best.  

What is perhaps needed is a design perspective on im-
plicit systems, deploying design methods to understand and 
conceptualize how the developing form of AI systems 
might be deployed in actual systems. In our research, we 
are focusing on exploring new application areas for implic-
it systems. That is, exploring what new actions and activi-
ties systems might engage in rather than simply automating 
existing ones. One major resource in this work has been 
design research, an area that has pioneered thinking about 
and approaching what systems can do in new ways.  As 
Kelley, one of the founders of IDEO puts it, “enlightened 
trial and error outperforms the planning of flawless intel-
lect (Winograd 2006).”  So rather than set out with clear 
sense of what our systems will do, we are attempting to 
instead test and explore how implicit systems might work 
in a design led way. More broadly, our research goals can 
be broken down into three potential contributions:  
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1.� Surveying and challenging existing user interac-
tions with ubiquitous and smart technology to ex-
pose design opportunities. 

2.� Understanding Machine Learning as an actual 
limited part of systems that can be approached 
and shaped by designers and users. 

3.� Unpacking the social implications of implicit in-
teractions across information, interfaces, and in-
frastructures. 

While both our overarching project and this design re-
search are at early stages, we are approaching our develop-
ing design process and artifacts themselves as ways to ac-
quire new knowledge (Zimmerman, Forlizzi, and Evenson 
2007). In this position paper, we outline and detail the pro-
gress of three such methods that correspond to each of the 
potential contributions, and share resulting reflections and 
questions that contribute to the design of meaningful and 
appropriate user experiences of Artificial Intelligence. In 
the first method, we have explored the creation of a design 
workbook to map varied conceptual approaches and defini-
tions of implicit interaction. In the second method, a work-
shop on designing with data was employed to explore and 
understand how data can be used in novel ways. Lastly, in 
the third method we have developed a simple system that 
rethinks a technical notion (“leaky abstractions”) to ex-
plore new types of system behavior. 

A Design Workbook on Implicit Interaction 
Our first approach has been the creation of a design 

workbook to collaboratively unpack definitions and impli-
cations of implicit interaction while exploring opportuni-
ties for intelligent system action. A design workbook is a 
collection of design concepts, proposals and related mate-
rial that creates a design space in which participants can 
engage with or expand upon design ideas, issues, and in-
vestigations (Gaver 2011). While design workbooks can be 
beneficial for designers working alone or in teams, its 
recognition that complex designs emerge slowly and often 
through the synthesis of tacit relationships between an ar-
ray of concepts, affords its position as a boundary object 
for multidisciplinary teams and in particular communi-
cating the intellectual rigor of design (Gaver 2011; Wolf et 
al. 2006).  

As our project work is comprised of multiple academic 
disciplines from differing philosophical and methodologi-
cal backgrounds (i.e. Artificial Intelligence, Social Scienc-
es, and Interaction Design), our design workbook serves as 
a design space in which intentions, objectives and aspira-
tions can be communicated and aligned. Ultimately, as 
Interaction Design strives to unpack and overcome barriers 
of designing novel and consequential products and services 
with and for Artificial Intelligence, we are equally interest-

ed in exposing the black box of design for participation and 
collaboration. 

Our design workbook is composed of five sections. The 
first section Implicit: Meanings, Definitions, Terms is a 
collection of words from meetings, workshops and emails 
that have been used to describe or define implicit interac-
tion. The content of this section has been particularly im-
portant in challenging prior definitions of implicit while 
revealing disciplinary assumptions and mental models 
through subsequent card sorting exercises. The second sec-
tion Examples: Interactions, Services, Systems is a visual 
collection of projects that both inspire and provoke while 
more importantly affording concrete examples for col-
leagues to reference during project activities. The third 
section Domains: Situations, Contexts, Opportunities is 
another visual collection, yet of problem spaces, complex 
challenges and interesting areas that prompt ideation and 
foreground an alignment in meaningful real-world applica-
tions. The fourth section Technology: Data, Activations, 
Inferences is a list of existing and aspirational data streams 
and sources that has been a key starting point in latter en-
gagements with data as a design material. The fifth and 
final section is Projects: Concepts, Abstracts, Briefs and 
serves as a working portfolio of completed and potential 
projects from speculative academic abstracts to utilitarian 
ideas to disturbing provocations. 

One example of such a provocation is the project brief 
written for Designing and Prototyping a Pee-ometer to 
Investigate Training in Machine Learning: 

Machine Learning is increasingly prevalent in every-
day interactions with technology, affording personali-
zation and prediction in the design of user experienc-
es. This ability contributes to ongoing discussions of 
Machine Learning as a design material, in particular 
to the explicit and implicit training of system deci-
sions. This project investigates interactions to initiate, 
influence, and correct machine learning while reflect-
ing upon the user experience of engaging in machine 
training. How could and should we enable users to 
train and re-train Machine Learning algorithms? And 
how might user training of algorithms in turn inten-
tionally or unintentionally train users? 

This project explores these questions through the de-
sign and prototyping of a pee-ometer, a connected 
wearable that predicts when a user has to pee based on 
body movements. Following foundational research, 
design workshops and cultural probes that investigate 
the training of non-technological objects, people and 
animals, a pee-ometer with a tangible user interface 
will be designed and prototyped to predict pee habits, 
suggest user actions and respond to user training.  
 
While this project brief is obviously not advocating that 

there should be pee-ometers, by conceptually surfacing and 
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potentially prototyping the possibility of such a device, 
working on the brief simultaneously reveals social ten-
sions, relational frictions and interactional loops with smart 
technology while inviting those working on it to extend 
technical practices, such as training, into the design space. 
Thus, as the project navigates multi-disciplinary collabora-
tions and investigates novel intelligent systems such as 
semantic avatars (Nilsson, Sahlgren, and Karlgren 2016), 
our design workbook serves as an arena for participation, 
critique and discourse. 

A Workshop on Designing with Data 
Our second approach has been to investigate through de-

sign workshops what diverse data sources might mean and 
how they can be used to think about implicit system action. 
A growing body of research in the HCI Design Research 
community has been investigating data as a design material 
(Brown, Bødker, and Höök, 2017; Dalton et al. 2017; 
Boucher and Gaver 2017), i.e. a material that is approacha-

ble and shapeable by designers and possibly end users. 
Within our current work on implicit systems, data as a de-
sign material can be more specifically expressed as some-
thing that enables system action without that action being 
necessarily well defined. Indeed, from the perspective of 
building AI (or a Machine Learning model), data is an ab-
solute requirement. We cannot learn anything if there is no 
learning material available. Data for a Machine Learning 
model is typically connected to a task the model is sup-
posed to perform. If we want to categorize images, then we 
need labelled images to learn from. If we want to classify 
sentiment in text, then we need text examples of how the 
various sentiments are expressed. Thus, more traditional 
approaches to designing with data often focus on clear ap-
plications of what a system needs to do. For example, in 
some cases training data is collected and used to train sys-
tems which can then engage in the task unguided. We, in-
stead, opted for what might be perceived as a backwards 
approach, starting with data as a material from which to 
ideate potential use cases, application domains, and system 
activities. 

Our design process began with self-data collection in 
which screenshots from the authors’ computers were taken 
every minute over a six-week period of time. While we 
wrote a program that utilized Google's image recognition 
API to convert these screenshots to text, we decided in 
parallel to inquire into the conceptual properties and ar-
rangements of the gathered data by using a framework of 
materials experiences to investigate the practices, or situat-
ed 'ways of doing', between people and data (Giaccardi and 
Karana 2015). For our first workshop on designing with 
data, a script was used to randomly generate 'booklets' of 
data from the screenshot database of the first author for 
each of the other five workshop participants. Each booklet 
of data consisted of 20 screenshots from varying time in-
tervals, i.e. across the entire six weeks, a week, a day, an 
hour and 20 consecutive minutes. The screenshots were 
then indiscriminately 'shaped' by the designer, or workshop 
leader and data owner, in which a series of predetermined 
filters, distortions, zoom lenses and effects were applied. 
At the beginning of the workshop, the data booklets were 
handed out to each participant to first familiarize with be-
fore handing out a series of five prompt cards to extract 
and map inferences, reflections and discussions from the 
data. The cards included questions regarding ownership, 
contexts, emotions, aspirations, and ecosystems. The work-
shop concluded with a speculative exercise in which partic-
ipants were asked to imagine how different actors, from 
specific colleagues and technologies to more general per-
sonas and services, might misuse mapped inferences. 
Structured to design disruptions, the concluding step situ-
ated the experienced properties and performances of the 
data in external and consequential contexts. 

Figure 1: Example pages from design workbook, including  
a) sketch diagram of smart implicit interactions, b) photos of 

outdoor domain opportunities, c) annotated sketches following 
multidisciplinary workshop, d) concept investigating screen-
shots as a data source e) fictional abstract of emotional ava-

tars, and f) abstract of in-progress project Leaky Objects 
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Prior to the workshop, our application ideas and direc-
tions for the captured data centered on actions such as ad-
vertising and recommendations that could be based on text 
extracted from the screenshots. Through the materializa-
tion of data and by taking an unconventional approach 
relative to the development of Machine Learning models, 
we were able to open a design space regarding how this 
data could be used to present more complex representa-
tions and aspects of users in new and different ways. For 
example, our subsequent conceptual directions that are 
driving current ideation included activity and inactivity 
hierarchies, behavioral adjustments in response to data 
tracking, enhancing rather than obscuring, social traces of 
data sharing, and the pacing of rhythms and routines. 
Therefore, investigating data as a material to understand 
the strange and perhaps even hidden aspects of online and 
computer based activity has enabled us to reimagine new 
possibilities of how systems might approach data through 
activities centered on how humans make sense of data. 

A Prototype on Asymmetrical Interactions 
Our third approach has been the prototyping of a simple 

informational infrastructure, or a custom Internet of Things 
application, to understand and design counter-strategies for 
asymmetrical interactions of data-driven systems in use. 
Prototyping is an established, interdisciplinary method 
employed by design researchers and interaction design 
practitioners for multiple purposes including but not lim-
ited to understanding an intended experience (Buchenau, 
Francisco, and Suri 2000). While prototypes can also re-
veal potential implications of proposed products, services 
and systems, it is less clear how designers might engage 
with the underlying informational infrastructures of data-
driven devices and applications, such as those supported by 
Artificial Intelligence, to not only expose but also trans-

form their functioning. This engagement by designers to 
materialize or open up an infrastructure for either design or 
local user intervention (Davoli and Redström 2014), is of 
particular interest to our work regarding conflicts of agen-
cy and concerns regarding privacy. Therefore, in addition 
to design explorations into new application areas, an ongo-
ing prototype in which we are investigating the materiali-
zation of an everyday data-driven infrastructures is the 
autobiographical design probe Leaky Objects (Helms 
2017). 

Prompted by a change in communication patterns ob-
served by the first author of this paper, the design probe 
initially intended to investigate how people might indirect-
ly communicate with shared things about each other. Fol-
lowing the deployment of simple sensors within a domestic 
context and the development of a custom web application 
in which the status of these sensors could be requested 
from an Arduino, the prototype next sought to overcome 
obvious asymmetries in agency by incorporating a mecha-
nism to reveal when sensor information is accessed. For 
example, as one sensor is a photocell attached to a floor 
lamp that checks the status of the light, a custom power-
switch was appropriated into an awareness indicator, caus-
ing the light to flicker when its status is remotely request-
ed. While the prototype introduced the concept of leaky 
objects, a playful reimagining of the computer science no-
tion leaky abstraction, to describe the phenomenon in 
which shared objects leak implicit information that results 
in unintentional communication, it additionally surfaces 
the potential for further investigations into counter-
strategies of obfuscation as the inherently unfinished and 
messy nature of a prototype creates an opening for the de-
sign of further interactions, appropriations, and hacking. 

While we have used the prototyping of a simple infor-
mational infrastructure as a design method to investigate 
the potential social implications of implicit interactions in 
data-driven systems, we also hope to engage interaction 
designers in discussions on potential strategies of ap-
proaching the complex challenges of asymmetry in con-
cerns of agency and privacy. As we continue to engage 
with more complex and layered data streams that afford 
Artificial Intelligence and Machine Learning techniques to 
support implicit interactions, we plan to continue an in-
creased engagement in prototyping as a method for the 
design of meaningful and responsible user and system in-
teractions. 

Symposium
We will share our work in a 20-minute presentation format. 

Figure 2: Screenshot ‘booklets’ with inferences, reflections, and 
discussion points from workshop participants 
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Abstract 
Designing systems and services with AI functionality as part 
of a care experience presents a range of challenges and op-
portunities. Limitations with sparse or missing data can 
make algorithmic training difficult, while the opaqueness of 
some black box methods muddies the process of interpreting 
outcomes. Human expertise and knowledge need to be care-
fully integrated at appropriate stages to inform both the AI 
approach and the fulfillment of the overall care cycle. Tack-
ling this complex problem space requires a multidimension-
al and multi-stage approach integrating technical, social, 
medical, design and HCI knowledge. Based on our work 
creating therapeutic AI systems for cognitive and physical 
training, we propose six key system design challenges for 
consideration. 

 Introduction   
Over the next decade, artificial intelligent technologies are 
expected to achieve unprecedented awareness and under-
standing of people (Stone 2016). While the timetable and 
full extent of these expectations may vary (Brooks 2017), 
as designers, we are clearly at an important juncture in 
terms of grappling with AI as an increasingly significant 
form of design material (Holmquist 2017). In recent years, 
we have engaged with this material within the context of 
designing and deploying therapeutic systems for mental 
and physical wellness and healing. Our work is focused 
less on making machines that care or do caring tasks, and 
more on conceptualizing and orienting the entire care expe-
rience from the person’s point of view - with AI in mind. 
This means considering the diversity of human actors in-
volved in creating and experiencing AI health systems, 
including system designers, patients, doctors, caregivers, 
and family members. It also involves consideration of the 
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perceived impact of AI systems; physically, socially, and 
personally.  
 Building on this approach and our experience working 
within mental health and rehabilitation contexts, we pro-
pose a number of issues that we believe are important for 
AI wrangling designers to consider and address. We re-
view two cases of our work in related health care domains, 
highlighting incidents and issues encountered therein, and 
derive an initial set of questions for consideration when 
designing with AI in mind. 

Design Cases 

Interactive Neurorehabilitation for Stroke 
Stroke is a leading cause of serious long-term disability in 
the United States and the most common neurological dis-
order worldwide (Benjamin 2017). While physical therapy 
training has demonstrated increased likelihood of recovery 
(Krakauer 2005), the realization of such therapy in the clin-
ic over long periods of time is difficult for multiple reasons 
including availability of facilities and experts, financial 
cost, and the intense patient effort required (multiple times 
a week for several years). In response, home based, patient 
administered approaches have emerged as a potential via-
ble solution, which can be effective in conjunction with 
therapy in the clinic or even as the primary mode of thera-
py (Anderson 2002). 
 Developing automated or semi-automated healthcare 
systems for unsupervised or lightly supervised use in the 
home presents multiple personal, technical, and design 
challenges (Baran 2015). Primary issues include patient 
adherence; recreating a supervised therapist experience 
without the therapist present; and system constraints, in-
cluding system size, system complexity and robustness, 
and home privacy intrusion. While automated therapy in 
the home is a future end-goal for AI based systems, for 
now, semi-automated approaches are currently most ap-
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propriate, whereby the therapist visit occasionally in per-
son or by video conference to evaluate patient progress and 
evolve the therapy protocol. In response to these challeng-
es and realistic constraints, we are currently developing the 
HOMER system, which uses custom designed therapy ob-
jects, a combined computer vision and machine learning 
approach, and an interactive tablet interface to administer 
an adaptive training protocol (Kelliher 2017).  
 For our system to work, we need to be able to semi-
automatically and accurately measure and assess patient 
movement quality while they are engaged in therapy activi-
ties in the home. However, developing computational 
agents to assist with this need is hampered by two signifi-
cant factors. First, there is little readily available patient 
data to train a system, while second and more fundamental-
ly, there is a lack of consensus among physical therapists 
regarding the standardized, quantitative evaluation of 
movement quality components and the influence of such 
components on overall functional ability (Levin 2009). In 
practice, therapists typically select which components to 
focus on based on their individual and collective experi-
ence and training, rather than a standardized ontology of 
component level labels for movement quality (Wolf 2001). 
These two factors combine to make it very challenging for 
a technological rehabilitation system (whether supervised 
or unsupervised) to reproduce both a complex therapy ex-
perience and a reliable approach for movement quality 
assessment.  
 From a design perspective, it is also vital that our system 
be accepted by the patient and/or the caregiver, meaning 
the system needs to occupy a small physical footprint, be 
straightforward to use and maintain, provide accurate and 
helpful feedback, and above all, to assist in motivating the 
patient to adhere to the training schedule and protocol. Our 
light weight tabletop system consists of a custom fit mat, 6 
customized therapy artifacts and their container, a table 
mounted depth camera and mini-computer module, and a 
tablet device with a custom web application (see Fig 1.). 
This system can easily fit temporarily or semi-permanently 
on a kitchen table or spare room desk, and is designed for 
straightforward assembly, power charging, and data down-
load. The feedback approach can be adapted to the abilities 
and progress of the patient (e.g. more lenient for moderate-
ly impaired or when the patient is fatigued).  

The form and function of the objects in our system re-
quires design consideration of the inter-relationships be-
tween the perceived affordances of the objects, the goals of 
the therapy protocol, the ability of the computational com-
ponents of the system to capture the participant activity, 
and the desired therapy outcome with respect to everyday 
life activities. As such, the set of objects in our system (see 
Fig. 1b) are designed to support cross-mapping, problem 
solving, and generalizable activity strategies through their 
open-ended affordances, combinatorial possibilities, and 

perceived correlation with diverse artifacts of daily living 
(e.g. pushing a button, using an iron, writing with a pen, 
turning a key etc.)  
 
 
 

 
Figure 1. a) The interactive stroke rehabilitation system including 

mat, objects, tablet and mounted camera; b) set of 6 3D printed 
therapy objects 

 

Creating functional and compelling interactive home based 
therapeutic systems requires a participatory and iterative 
design approach. Introducing sensing and control technol-
ogies (e.g. cameras and wearable sensors) into the home 
necessitates direct conversations between designers and 
home dwellers as to the nature of the data captured, access 
to that information, and transparency about how the AI 
components of the system are trained to potentially inter-
pret it. In addition, the strength of the system is in the po-
tential for knowledge and growth in both the human and 
computational agents as the system is tried out, refined, 
and improved based on the quality and subsequent analysis 
of the quantitative and qualitative data collected.  

Digital Mental Health Futures   

Functional brain imaging has been useful in mapping the 
neural circuitry of psychiatric disorders and promises a 
new understanding of the underlying neural mechanisms of 
psychotherapy with implications for identifying the most 
effective treatment for an individual (Linden 2006).  Draw-
ing on this research and an analogy to optogenetics, the 
controlled use of light to activate specific neurons, we 
speculated about creating an AI that could tailor talk thera-
py sessions by learning the most effective therapeutic tech-
niques for an individual’s experiential and neural response 
(Barry 2009). In our wildest imaginations, we envisioned 
that an open source collection of therapeutic techniques 
could also help the psychiatric community track biological 
evidence and patient preferences for or against any given 
therapeutic technique.  
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 We built an initial prototype and ran an exploratory 
study to examine the idea of using machine learning to 
create the most efficacious therapy session for an individu-
al. The AI “therapist” followed a standardized therapeutic 
protocol. First, it surveyed study participant communica-
tion preferences and anxiety levels. Then, it assembled and 
delivered a tailored therapy session as sequential units of 
therapeutic techniques delivered via audio. The therapeutic 
units guided the participant to reflect on anxiety reinforc-
ing behaviors and learn new techniques for anxiety reduc-
tion. The AI measured participant anxiety levels after each 
unit of therapy and then optimized the session for content 
that reduced anxiety. We did not incorporate brain imaging 
into this speculative design exploration. We did engage in 
discussions with mental health professionals, developers, 
designers, and study participants about the possible impli-
cations of feedback loops between patients, AI, fMRI, and 
a therapist working in concert to treat psychiatric disorders. 

 During debriefing discussions with 32 study partici-
pants, 29 considered the AI helpful overall and completed 
their session with lower levels of anxiety than when they 
began. The three participants with rising anxiety cited cog-
nitive overload of therapeutic techniques or were annoyed 
by the voice of the AI therapist. Some participants were 
intrigued by the idea of an AI therapist being more “neu-
tral” than a human one and by a real-time feedback system 
that responded to their emotions. Others identified possible 
divergence between what a patient, the AI, and a therapist 
might consider the “best” set of therapeutic techniques. 
Mental health professionals questioned the algorithm re-
sponding to anxiety interval measures because an immedi-
ate rise in anxiety may mean a therapeutic technique is 
uncomfortable but not necessarily ineffective. Ethical is-
sues about trusting AI system intentions and concerns 
about AI monitoring of mental health and brain activity 
were expressed.  

 Design issues emerged through use of our speculative 
prototype that call out tensions between biological health, 
the lived experience, and what it means to be understood 
by a therapist, whether AI or human. We advocate that 
speculative designs be used to generate possibilities and 
identify risks for AIs as participants in therapeutic treat-
ments, especially to help ensure that AIs are well designed 
to meet the needs of patients before they are introduced 
into care experiences.  

Design Questions 
In reflecting on our design cases we identified six key 
questions for designers to consider as AIs grow in their 
complexity and capability. In exploring these questions, as 
a design community, we can observe how AIs understand 
and respect the person’s point of view.  

How does human behavior, captured and analyzed 
and interpreted by AIs influence care opportunities 
and decisions?  

How, or should, humans and AIs reach consensus on 
interpretations of data (when sometimes even humans 
can’t agree)?  

How are both personalization and scalability rede-
fined and designed in an era of big data, missing da-
ta, and sparse data?  

How should we design autonomous and semi-
autonomous systems that provide therapeutic value 
and will be anticipated, accepted, and embraced by 
human actors in diverse environments? 

How should AIs be designed, adapted, and regulated 
as trusted members of care teams?  

How can design help identify, anticipate, and address 
ethical issues that may emerge when AIs are involved 
in care?  

 
We believe that mindful consideration of these questions 
teams is particularly important in healthcare contexts 
where complex issues concerning emotions, power, inclu-
sion, decision making, and responsibility are key human 
variables. Working with the powerful material of AI in 
such environments presents the potential for tremendous 
advancement as practiced within a reflective and careful 
design framework.  
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Abstract 
Crime prediction technology – we have seen it in the mov-
ies, but what has in the past been pure fiction is now quickly 
becoming a reality. Predpol, HunchLab and ComStat are all 
different types of relatively new crime prediction software, 
or “predictive policing” software, that demonstrate how al-
gorithms and other technologies can be used within urban 
infrastructures to predict crime. However, utilizing these 
technologies and algorithms to collect data to predict crime, 
which is invariably subject to and tainted by human percep-
tion and use, can lead to a number of adverse ethical conse-
quences – such as the amplification of existing biases 
against certain types of individuals based on race, gender or 
otherwise.  On the other hand, if data can be gathered by 
some artificial intelligence (AI) means – thereby removing 
the human component from such data collection, can doing 
so result in more efficient and accurate crime prediction? 
Furthermore, will we in doing so also reshape the aesthetic 
of urban nature, especially when one takes into account the 
constant evolution of AI? 

 Introduction   
Insectile Indices is a speculative design project that consid-
ers how electronically augmented insects could be trained 
to act as sophisticated data sensors, working in groups, as 
part of a neighborhood crime predictive policing initiative 
in the city of Los Angeles, 2027.  This project is not only 
an investigation into the ethics of this controversial idea, 
but also an aesthetic exploration into the deliberate altera-
tion to a natural wildlife ecosystem of insects.  
 In 2007, the Defense Advanced Research Projects 
Agency (DARPA) asked American scientists to submit 
proposals to develop technology to create insect-cyborgs, 
the results of which led to a plethora of troubling and wor-
risome commentary. Rather than build off of a frightening 
narrative that discusses the potential sinister militaristic use 
of such technology, this project does the opposite and ima-
gines instead an aesthetically pleasing utopia where these 
insect-cyborgs have social utility and work towards the 
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public good of humanity.  Insectile Indices also plays with 
the idea of aesthetics in our future techno-driven world by 
addressing whether we are more apt to silently “turn the 
other cheek” to more pervasive surveillance if these insect-
cyborgs become more aesthetically pleasing to the eye. 

Speculative Scenario: Los Angeles, 2027 
Nowadays, we commonly encounter beautiful cyborg 
moths in the city of Los Angeles that secretly conduct sur-
veillance on our daily life. Initially, research in this area 
was limited to robots created to imitate insect behavior, but 
technology was further developed to manipulate the bodies 
of insects for surveillance in the city. There are numerous 
reasons to use insects to monitor city – namely, because of 
an insect’s high sensitivity to smell, ease in which their 
DNA can be modified and programmed, and their power 
and ability to swarm in great numbers. Designers and sci-
entists that in this field believe that the insect contains a 
gigantic breadth of evolutionary experience of solving 
problems in both artificial and natural ecosystems and, as 
such is the most guaranteed source of innovation for sur-
veillance as a result of nature’s billion years of evolution. 
Also, it is more efficient and sustainable to grow insect 
bodies for mass production, rather than mass-producing 
robots, which require expensive materials. 

Background 
As mentioned above, in 2007, DARPA asked American 
scientists to submit proposals to develop insect-cyborgs, 
with the objective of somehow developing “micro air vehi-
cles” – ultra-small flying robots capable of performing sur-
veillance in dangerous territories. To that end, Cornell 
University researchers were successful in implanting elec-
tronic circuit probes into tobacco hornworms as early as in 
the pupae growth stage. Specifically, the hornworms 
passed through the chrysalis stage to mature into moths 
whose muscles can be controlled with the implanted elec-
tronics (Bozkurt, Gilmour and Stern 2008). Various insect 
species such as dragonflies, beetles, cockroaches and 
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crickets were used for Cornell’s research in creating the 
cybernetic organism. The lifespan of the resulting “cybug” 
also increased through converting heat and mechanical en-
ergy that the insects naturally generated (Aktakka et al. 
2008).  
 Twenty years after this research, this technology has 
trickled down to everyday life in the city of Los Angeles. 
Cybug farms are prevalent in the suburbs of Los Angeles, 
and produce up to 70 million Cybugs a year. AI manages 
the quality control of these Cybug breeds – for example, 
ensuring caterpillars suitable for surveillance and support-
ing the successful metamorphosis of these insects to create 
healthy Cybugs. Full-grown moth Cybugs are freshly 
stored at special designed vehicles in low temperatures, 
and are safely transported to the Cybug Hotel in Los Ange-
les. 
 Even though the AI system and its predictive policing 
algorithms intentionally omits certain data points in order 
to eliminate existing ethical biases, AI alone still cannot 
fully avoid learning the bias from data suggested from hu-
mans. The Cybug is able to avoid this. For example, the 
Cybug substitute initial police inspections by using its bio-
logical sensors to gather crime data and sends it to the Cy-
bug Hotel. And, it makes core decisions on behalf of the 
police, such as where to deploy more police officers, Cy-
bugs, or how to control navigation to crime scenes for effi-
ciency. Therefore, Cybugs and the police department ac-
complish their objectives through “symbiotic autonomy” to 
substitute the unnecessary labor of police inspection with 
Cybugs. 
 

 
Figure 1: The Cybug Policing Vehicle, 2027 

Cybug Hotel 
The Cybug Hotel is the AI center that manages the city in-
frastructure.  It analyzes data foraged by the Cybugs and 
controls their movements.  All the data gathered are stored 
as memory by the Cybug Hotel. And, the Hotel sends 
feedback to operate urban infrastructures such as street-

lights, mass transportation, and the police. As a result, eve-
ry system in the city is interconnected because of the ac-
tions of the insect cyborg. 
 The Cybug Hotel system analyzes the data, such as the 
pattern of events in the city, and determines the optimal 
route and method for the Cybugs to investigate neighbor-
hoods. This interaction between different moth Cybugs and 
the Cybug Hotel is based on electric signals that help them 
react rapidly on the constant change, stream and influx of 
data. The Cybugs rotate back to the Hotel every four to six 
hours to recharge its energy and to report data to the AI 
system. 
 

 
Figure 2: The Cybug Hotel, 2027 

Jobs 
The Cybug infrastructure has also created numerous jobs, 
such as the Cybug gardener, analyst and collector. The 
gardeners are specialized to breed the insect body and in-
spect the biological process of the growth, so that every in-
sect satisfies Cybug standards for deployment to the city. 
Cybug analysts keep track of the evolution of the species, 
and limit the interaction between wild and genetically 
modified Cybugs. And, more importantly, they analyze the 
data aggregated by the Cybug Hotel, which was initially 
collected by the Cybugs. Finally, the Cybug collectors are 
responsible for gathering dead Cybugs so that it keeps 
track of their evolutionary processes, and so their remains 
can be recycled.  

The Species 
The form and pattern of the Cybug body is developed by 
AI system. The method used to design the pattern of the 
moth Cybug wings is based on “Image Hallucination” - 
image recognition produced by artificial neural net-
works.  The visual patterns generated by neural network 
are applied to the redesign of the insect’s biological body, 
which is powered by algorithms that are modeled after the 
evolutionary process of the insect. There are three different 
electronically augmented moth species that are designed by 
the system and located at the Cybug Hotel: the Hyalophora 
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Cecropia moth, the Antheraea Polyphemus moth and the 
Lunar moth. 
 The Hyalophora Cecropia moth, which is a blue colored 
moth, gathers audio from the Los Angeles urban landscape, 
secretly listening or recording your voice or mechanical 
sounds implying problems occurring in Los Angeles. The 
species has been used for foraging sound data, such as 
conversations in intimate urban spaces such as elevators, 
alleys or homes to detect suspicious dialogue. While this 
moth used to be found as far west as the Rocky Mountains 
and as far north as many Canadian provinces on maple 
trees, it is now only produced on Cybug farms for human 
surveillance purposes and difficult to find in the wild due 
to the prevalence of these Cybug farms. 
 Antheraea Polyphemus, the red moth species, is used to 
catch images and track movements of everyday life – much 
like that of a CCTV camera. But, the Cybug is more effec-
tive in this regard as it camouflages into the city landscape 
as compared to a CCTV. This type of moth was wide-
spread in continental North America, with local popula-
tions found throughout subarctic Canada and the United 
States. But, like the Hyalophora Cecropia moth, it is now 
largely produced in Cybug farms. 
 And finally, the Lunar moth detects suspicious odors. 
This moth is commonly used for investigating chemical 
compounds such as explosives, drugs and weapons, rather 
than its historical and evolutionary use to detect phero-
mones and other attractants in flowers.  Lunar moths are 
also known for their ability to effectively swarm when 
needed and, as such, can effectively perceive suspicious 
chemical odors to help people quickly notice danger and 
escape.   
 Most mature moths in wildlife can live around one to 
two weeks, but the genetically modified Cybugs can live 
up to one month with proper electrical energies controlling 
the body. When the Cybug eventually dies, microprobes 
that were initially inserted in the body are then recycled 
upon death for future use at the Cybug farm.  
 

 
Figure 3: Crime Scene, 2027 

Swarm Behavior 
The Cybugs swarm based on received data to inform of 
dangers and prevent crimes. There are three commonly 
known Cybug group swarm behaviors - trap building, 
flocking and synchronization, all of which are learned from 
the evolutionary group patterns of other wild insects and 
animals. 
 Trap building behavior is derived from the Amazonian 
ant species Allomerus Decemarticulatus. The trap resem-
bles a honeycomb, but works like a web. After building the 
honeycomb-like structure, the Cybug secretly waits for a 
suspicious individual, and then traps them by swarming, 
which substitute the traditional police search. Flocking be-
havior is emulated from bird migration patterns, which im-
proves the Cybug’s efficiency of flying from one spot to 
another. Finally, synchronization behavior, which is de-
rived from the fireflies’ bioluminescence during mating 
season, allows the Cybugs to be released into the urban in-
frastructure with the necessary synchronized data from the 
Cybug Hotel to complete its mission and achieve its objec-
tives. Ironically, all of the swarm behavior considered 
beautiful, making spectators to catch the moments through 
video and photo for social media entertainment.  
 

 
Figure 4: Swarm Behavior, 2027 

Conclusion 
The role of the Cybug Hotel, in conjunction with Cybugs, 
is to efficiently make decisions for policing the city with-
out human bias, which are determined by social structure, 
religious beliefs and political environments and cannot 
avoid subjective standards of what is right or wrong. How-
ever, this speculative scenario implies AI as part of “na-
ture,” which evolves with wild and artificial factors. Even 
though, the idea of “nature” and “ethic” inherently conflict 
with one another, the Cybug, as part of a “natural” ecosys-
tem, attempts to reconciles this conflict by making ethical 
decisions instead of human. 
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 Cybug Hotel metaphorically represents a “hotel”, which 
is a sterile and universalized space meant for tourism in 
modern society. The AI system remains as mystical place 
that symbolizes the identity of a neighborhood, exhibited 
as a government’s political product to serve the public. 
And, the idea of tourism doesn’t come from the ontological 
question “what this insect is,” but instead the functional 
question “what does the Cybug do for public”? AI manipu-
lates the instinct of wild insects for crime prevention and 
for the public utility, rather than for its historical and natu-
ral function of pollinating flowers or evolutionary prolifer-
ation. This denies insects of their role within wild nature 
for another form of nature itself – namely, as artificial na-
ture ecosystem for the sake of the society. Cybug Hotel an-
alyzes the data from residence’s facial expression, gesture, 
smells and voices, which help construct a ‘seamless transi-
tion’ between AI and humans, which has the effect of mak-
ing technology invisible in the urban nature. And, it is this 
idea of ‘seamlessness’ that connects with the fusion of 
man, AI and the Cybug. 
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Abstract

In this position paper, we argue that UX designers should take
an increasing responsibility for the process and tools used
in the generation of training data for machine learning algo-
rithms. We provide a number of annotated examples from our
UX practice within the medical imaging domain to highlight
different ways that a UX approach can help to select training
data set, facilitate initial generation and ensure that the final
systems become self-sufficient on training data, so that the
systems can efficiently improve performance over time.

Introduction

One of the most important developments from a UX per-
spective in the machine learning (ML) domain is that al-
gorithms today are able to improve their performance by
adding more training data. This entails that processes and
tools for the generation of training data can have a large im-
pact on the success of ML projects. In many domains, the
designers of the teaching systems do not themselves hold
the expertise required to create training data, which means
that human-centered design methods can play a key role in
building systems that aid generation of training data.

This teaching aspect of building machine learning sys-
tems has recently received some attention. In Simard et al.
(2017) the authors emphasize the role of the teacher and
their interaction with data as a key factor for building ma-
chine learning systems at scale and argue for making ma-
chine teaching a discipline in its own. Cramer and Thom
(2017), identifying and reflecting upon the impact of design
decisions on ML outcomes, pose a series of questions re-
lating to how the role of curators and annotators affect the
ultimate end-user experience.

To emphasize the role of UX practice for generating train-
ing data we will highlight some key ideas illustrated by ex-
amples drawn from our work within a specific domain: med-
ical imaging. We will describe four interactive systems that
have been created and used within digital pathology, i.e. di-
agnosing and reviewing digital gigapixel-sized microscopic
images of tissue samples such as biopsies and surgical spec-
imens.

These examples together describe a typical two-step pro-
cess we have used when designing new ML-based systems.
First, we need to bootstrap a large enough dataset so that

the algorithm used in the first version of the system per-
forms sufficiently. Second, we need to ensure that the system
can collect training data automatically when it is deployed,
i.e, by receiving user corrections. This will make the sys-
tem self-sufficient on training data, enabling a continuous
improvement of the ML model. Our four annotated exam-
ples of this process are based on our own experience as UX-
designers active in the medical imaging field. Two of the
examples are prototypes and two are finished products that
we have either designed ourselves or followed closely.

Efficient bootstrap teaching

An early step in the creation of an ML-based system, when
no prior training data exist, is to somehow create an initial
dataset. For pathology images this typically consist of draw-
ing outlines over tissue regions and classifying these. Be-
cause it is a highly specialized domain this usually means
engaging pathologists, who tend to be rather expensive
teachers. Since it is important to make efficient use of these
individuals and their knowledge, it seems sensible to align
the design of the teaching environment with their experi-
ence.

Rapid interactive segmentation A well-known semi-
automatic approach to assigning categories to visual regions
is an interactive segmentation tool. The user of such tools
typically use a paintbrush-style interaction to assign areas
to given categories (called ”seeds”), and while doing so, ar-
eas similar to the one marked are also assigned to the same
category (McGuinness and O’Connor 2010).

When we applied a human-centered design perspective to
the construction of such a tool we gained valuable insights;
for our initial prototype (see figure 1), the interaction was
experienced as a trading of control between human and ma-
chine, where the human waits for the machine response af-
ter drawing an area. After a noticeable delay, the results are
received and the human can make a correction, wait again,
and then repeat the process. Typically, the user would be
both intrigued and annoyed by the automatic assignment of
the areas that were not specifically drawn over, sometimes
resulting in long back-and-forth correction cycles without
noticeable progress.

In a revised version, we aimed for rapid fine-grained in-
teraction where spreading would be constructed as an in-
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Figure 1: The initial version of our interactive segmentation
tool. The user draws a path and waits for the response.

Figure 2: The revised segmentation tool. The user draws and
results update in realtime, here shown for three points in
time.

cremental and collaborative effort between user and system,
rather than being computed slowly but accurately in every
coarse-grained step (see figure 2). The tool was changed so
that the threshold required for spreading increased with the
distance from the original area. Additionally, we added pre-
computations so that results of user input typically arrive in
less than 40ms, a time during which the user is not blocked
from giving more input. We postulate that the more fine-
grained interaction lets the user gain an intuitive understand-
ing of the underlying mechanism and its limitations by ob-
serving many predictions over time. Overall, we believe this
real-time version of the tool to be novel and much prefer-
able to using traded control, an effect we hope to validate in
future work.

Creating intrinsic rewards Another approach to boot-
strapping the initial training data set is to design a useful
manual tool that generate training data as a side-effect. This
approach is somewhat similar to the ESP game (von Ahn

Figure 3: A manual tool to help pathologists to keep track of
mitotic figures. This is used to generate training data for a
future algorithm.

and Dabbish 2004), a two-player guessing game that created
labeled training data as a side-effect of play. In the medical
domain with professional users it would be inappropriate to
deploy games to generate training data. Instead, the manual
tool should aid the clinician in their decision making as a
result of providing the tool with labels.

We have created one such tool to support pathologists in
manual mitotic counting (figure 3). In this diagnostic task,
the pathologist should go through ten fields of view in the
highest magnification and count the number of mitotic fig-
ures. When performing this task it can be challenging to
keep track of the number of mitotic figures as well as the
number of fields of view. In the tool, this task is supported
by keeping track of the reviewed area when navigating in the
image. The user can also click on detected mitotic figures,
which are then stored. Upon completion, the mitotic density
can be derived using the number of stored mitotic figures
and the total tracked area. Even though the tool works by
rather simple means, it still turns out to be very useful for
the pathologist. The side-effect is that every time a mitotic
figure is clicked on, a training data example is generated.
Additionally, the tracked areas that were reviewed but not
clicked on can be used as examples of non-mitotic figures.
By deploying this tool into a delivered product, it will gen-
erate a bootstrapping dataset of mitotic figures that can be
used to train a ML-based detection system.

Designing for user corrections

Once ML systems are deployed, user corrections of the ML
predictions can be used to generate additional training data.
However, the UX designer needs to design specifically for
this possibility. Our experience so far indicates that the most
important factors for this type of design are to make sure that
machine errors become apparent and that the class labels are
chosen in such a way that they are easy to interact with.

This can be exemplified by ML systems used to quantify
immunostains. Immunostaining is a technique used to chem-
ically visualize protein expression in cells. A common pro-
tein used to quantify proliferation in tumor cells is KI-67.
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Figure 4: An example of a symmetric input-output ML-
system of cell counting system for Ki-67 stainings.

When using the KI-67 immunostain, the nucleus becomes
brown if the cell is positive for this protein and appears blue
from the background staining if it is not.

When designing an ML pipeline, two apparent choices of
class labels for this problem exists: pixel labels and nuclei
labels placed on the center of the nuclei. If pixel labels are
used, pixels belonging to positive and negative nuclei can be
visualized to the user as an overlay on top of the original im-
age, occluding the nuclei. The user can then accept the result
as is, or revert to manually counting the cells. If nuclei labels
are used, the result can be visualized by placing glyphs on
the center of each detected nucleus. This makes it is easier
for the user to detect errors, since less ink is used to visual-
ize the result and the original image becomes more visible.
It also becomes easier to perform correction of misplaced
markers since less precision is needed to click on markers
than on pixels.The second approach was implemented as a
product, and is shown in Figure 4.

This product illustrates the seminal principle of direct ma-
nipulation (Shneiderman 1982) that the result is presented in
an input-output symmetric way where the user can directly
manipulate the labeled data. By designing the system to al-
low for such direct manipulation and providing an intrinsic
reward in terms of the actual nuclei count, user corrections
can directly be used to retrain and improve the underlying
machine learning model.

Another example of an ML direct manipulation interface
is our patch gallery prototype shown in Figure 5, where the
goal is to estimate the distribution of classes in an area. In
this prototype, we generate a grid pattern over a user se-
lected area and extract a small image patch for each point
in the grid. We then feed each patch to an ML algorithm that
classifies the patches into different categories, which is then
shown in a sorted gallery. Each defined class in the trained
model is shown as patches in the same gallery, and the user
can then 1) click on a patch to see it in the main view to get a
sense of its context in the tissue, and 2) change a label by ei-
ther dragging the patch to the correct category or by clicking
on the button or the corresponding shortcut key.

Figure 5: Patch gallery prototype, samples from the tissue
is generated and classified by an ML algorithm into three
classes.

Both these systems share the property with the mitotic
counter in the previous section that the generated parame-
ter can be derived from manual input only. If the nuclei de-
tection algorithm failed to detect any nuclei, the user could
still manually click on all the nuclei to calculate the KI-67
index. However, the amount of clicking would likely over-
whelm the user. These user correction systems do not strictly
need an ML component, but practical usability requires au-
tomated support with a certain level of prediction accuracy.

Another crucial factor when designing this type of user
correction system is that the user correction accuracy needs
to be higher than that of the ML component alone, in order
for the generated training data to add value when retraining
the ML model.

Discussion

In the design of these tools, we have paid special attention to
ensuring that manual, unassisted, work-flows are preserved
and as outlined in the previous section, compatible with the
assisting tools. Furthermore, as the performance of models
improve using the self-generating training data, we expect
that our initial user interfaces need to be redesigned or aug-
mented with interactions that are adapted to ML components
with much higher performance. It is our ambition to design
these so that the user can step through these ”levels of in-
telligence”, providing corrections and simultaneously teach-
ing and verifying results at different levels, forming a veri-
fication staircase (Molin et al. 2016) as opposed to a steep
cliff where the user has to validate all or nothing. We believe
one possible way to achieve this could be to create our ab-
stractions so that the user can always decompose a higher
abstraction in terms of a lower one, an idea similar to the
hierarchies of ecological interface design (Vicente and Ras-
mussen 1992) that we hope to explore in future work.

As pointed out by Dove et al. (2017), the interaction
design community is still new to using ML as a design
material. We are thus cautious to move beyond annotated
examples towards more compact formulations of genera-
tive knowledge such as design patterns or principles at this
stage. The examples described here may form the basis of
transferable design knowledge when generalized to domain-
independent visual reasoning tasks including an ML compo-
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nent. However, we need further studies in order to refine and
validate this approach.

Conclusion

In this paper, we presented a number of annotated exam-
ples of how to manage training data generation from a UX
perspective. The pattern emerging from these examples is
that many of our ML projects become two-step processes.
First, a training data set is created so that the initial trained
ML model can reach an accuracy that will be acceptable to
early-adopter users. Then by using different data collection
methods designed into the first version of the product, it be-
comes self-sufficient in terms of training data. This allows
the product to improve over time. As this process contin-
ues, the ML component will at some point become so good
that the initial user interface might no longer be valid, and
needs to be adapted to an ML component that performs on a
higher level. How this is done is a promising area of further
research. Our current plans involve a systematic explorative
design effort of automation performance in the design of
human-automation collaboration for visual reasoning tasks.
Hopefully this will lead us toward the abstraction of genre-
related generative design knowledge.

Looking at ML-based product development from the view
of training data generation, we can learn that decisions made
by the UX designer have an enormous impact on project suc-
cess. Each step of training data generation needs to get the
motivations right so that users are willing and able to pro-
vide corrections. The choice of what the training data set
should consist of and thus what the ML model should pre-
dict is tightly connected to how the user interface should
look, behave and be interacted with.

We challenge all UX professionals to take charge of the
ML development cycle to make use of this powerful tech-
nology in the medical domain.
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Abstract 
In our ongoing speculative design project entitled Topos, 
we propose a public-facing, tangible user interface (TUI) 
that makes legible and accessible the AI systems embedded 
in near-future urban landscapes. By imagining AI as a pub-
lic service, Topos interrogates the creation of public trust 
between people and AI systems through the medium of 
physical structures in public space. We propose that urban 
landscapes will contain “AI-parks” containing trees of 
knowledge that physicalize machine learning (ML) path-
ways that take on or augment the responsibilities of city 
departments and bureaus. The trees of knowledge are TUIs 
where humans can read and revise the inputs that civic AI 
systems learn from—an interaction that we call “pruning”. 
Topos suggests that the interactions between AI systems 
and humans should be embodied and spatial in nature, so 
as to highlight the ways in which civic-oriented AI systems 
will directly affect the lived environments and multiple in-
frastructures of the urban landscape. 

 AI-Embedded Urbanism�  
Artificial intelligence (AI) is everywhere, and sooner rather 
than later, it will control a city near you. When a city’s in-
frastructure is embedded with autonomous AI systems that 
can track pedestrians on the sidewalk, redirect driverless 
cars, and predict the rate of gentrification, the machine-
readable city will become increasingly illegible and inac-
cessible to humans. Could the city know itself better than 
you—the citizen—could ever know it? 

This question is at the center of Topos, which addresses 
the possibility of ubiquitous AI systems, and anticipates 
the shadows they might throw on the urban landscape. If 
the inner-workings of AI systems that drive the city are 
neither visible nor tangible, then how we design AI inter-
                                                
Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

faces can illuminate the algorithmic dimension of the city 
for the people living in it. Topos imagines that the hidden 
intelligent systems controlling the city are made open and 
legible to citizens in the form of physical, manipulable, 
tree-like structures. How might pruning and tending these 
civic interfaces—these trees of knowledge—literally and 
figuratively reshape the urban landscape? 

Designing AI into Public Spaces�  
We propose a new typology1 (Steuteville, 2006) of public 
space that combines the mechanical qualities of urban 
dashboards with the permeable and spatial qualities of pub-
lic parks. These new “AI-parks” contain trees of 
knowledge that physicalize what is otherwise invisible to 
citizens: the algorithms, decision trees, and neural nets that 
have taken on the responsibilities of city departments and 
bureaus. 

AI-parks are maintained by civic workers, who tend, 
prune, and shape trees of knowledge so that the AI-
embedded city can reflect public interests and, ideally, the 
public good. Trees of knowledge provide public insight to 
how civic data is being transformed by the various AI di-
mensions of the city. 

If AI-parks are where civic affairs are conducted in plain 
sight and in real time, then trees of knowledge are tangible 
user interfaces (TUIs) that form a relationship between civ-
                                                
 
1 A term that we are borrowing from the fields of architecture and urban 
planning. A typology is commonly defined as an “ordered assembly of 
building types” (Steuteville, 2006). We are expanding this term to en-
compass buildings and other well-defined or bounded spaces (such as 
public parks). Each of these types has a unique function (the activities that 
a space can contain), configuration (the relationships of internal spaces 
within the larger building or space), and disposition (the way the function 
and configuration of one building or space interacts with the buildings or 
spaces around it) (Steuteville, 2006). As opposed to simply being a new 
“type” of space that already fits into an assembly of familiar public spac-
es, we characterize our proposed AI-parks as constituting a typology; each 
park will have its own set of functions, configurations, and dispositions 
that connect it to other AI-parks and the urban landscape at large. 
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ic AI systems and the humans they are meant to support. 
Through the TUI, citizens and civic workers are able to 
read and revise these AI systems by interacting with them 
through the physical environment. 

Informed by Shannon Mattern’s survey of city control 
systems, we determined that these trees of knowledge 
would function as AI-interfaces, civic symbols, and plat-
forms of alternative governance. Although trees of 
knowledge do the same work as urban dashboards by “ren-
der[ing] a city’s infrastructures visible and mak[ing] tangi-
ble...various hard-to-grasp aspects of urban quality-of-
life,” (Mattern, 2015) they are not slick graphical summar-
ies of the variables and metrics that describe the city from 
one quantifiable moment to the next. Trees of knowledge 
have tangled branches and gnarled roots—they are com-
plex and non-reductive interfaces that embody what Mat-
tern would call “dirty (un-‘cleaned’) data” (Mattern, 2015). 

As a project, Topos is still answering the question of 
what these branching interfaces actually look and feel like, 
but moving away from reductive screen representations 
and toward more information-rich physical forms is central 
to our design motivations. 
Design no.1: Experiential and Spatial Prototype 
In order to play out our proposed human-to-AI interaction, 
we created an experiential prototype that simulated the 
reading and revision experience that our trees of knowledge 
would enable. Because AI systems don’t naturally lend 
themselves to a tangible form, we confronted the reality 
that it is impossible to capture something as complex as a 
neural net in a determinate form. 

As seen in figure 1, our first prototypes for the trees of 
knowledge were civic monument-scaled forms that manu-
ally contract and expand. The outer faces of this form serve 
as input layers and output layers for the neural nets that 
learn from city data in different ways; by unfolding and 
expanding the form, citizens and civic workers can respec-
tively read and revise the hidden layers—where AI systems 
transform city data into intelligence. 

Figure 1. Installation view of experiential prototypes for citizen 
interaction with trees of knowledge. 

Editable trees of knowledge enable citizens to add, sub-
tract, emphasize, or de-emphasize elements on input layers 
in order to create different short- or long-term outcomes on 
civic matters—ranging from self-driving car congestion to 
urban green space development. Civic workers take these 
citizen annotations into account as they modify learning 
pathways in the hidden layers. 
Design no.2: Visual and Animated Prototype 
In the second iteration of Topos, we focused our energies 
not on what the human-to-AI interaction itself would look 
like, but rather how the act of “pruning” these trees of 
knowledge would affect the urban landscape at large. 

In addition to producing an illustration that allowed us to 
rethink and redesign the trees of knowledge physically and 
structurally, we illustrated what a city full of AI-parks and 
their corresponding trees of knowledge might look like (see 
figure 2). To understand how these representations would 
lend themselves to our proposed human-to-AI interaction, 
we developed a short animated video wherein an anony-
mous citizen prunes a tree of knowledge, and the effects of 
their inputs to the physicalized AI system are simulated in 
an abstracted cityscape. 

Figure 2. Illustration of what an urban landscape full of AI-parks 
and their corresponding trees of knowledge might look like. 

AI and the “Right to the City” 
At its core, Topos envisions a model of AI-embedded ur-
banism that guarantees what Henri Lefebvre calls the 
“right to the city”—an idea and social movement that ad-
vocates for the participation of individual and collective 
agents alike to shape the city (Lefebvre, 1996). It is in this 
image that cities have already attempted to model initia-
tives to formalize and concretize “the right to the city” for 
their inhabitants. 

Knowing that an urban landscape unmodified by AI sys-
tems can ultimately sacrifice “the right to the city” to the 
hyper-present demands of privatization and capital, it is 
imperative for interaction designers to take on the problem 
of designing civic AI interfaces that will not allow this 
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human right to recede into the shadows. It is easy for AI 
systems to reproduce more of the world we already have, 
but it will be up to designers to bring the complexities and 
contradictions of human-to-city interaction to the surface.  
When the intelligence of city government is outsourced to 
or augmented by artificial intelligence, designers must en-
sure that all citizens are still guaranteed the right to reshape 
their cities in collaboration with AI systems. 

Taking Topos into The Real World 
We want to take this symposium as an opportunity to bring 
our speculative design proposition about creating trust be-
tween humans and AI systems into conversation with more 
practical applications of interaction design and user experi-
ence strategy for AI. If Topos were implemented in a real 
world context, we acknowledge that our proposal of giving 
citizens their “right to the city” by interacting with trees of 
knowledge could go very wrong, very quickly. For in-
stance, a citizen could tend to or prune the trees of 
knowledge in a damaging way—adding or taking away in-
puts that disrupt an existing balance of function, configura-
tion, and disposition (Steuteville, 2006) between the AI-
park and its outputs in the larger urban landscape. 

By speaking to machine learning experts, we hope to 
learn more about how an AI system might actually deal 
with such damaging inputs—and therefore strengthen the 
argument that we are trying to make through Topos. How 
do AI systems "learn" from inputs that come later and are 
not part of the initial training data? Could we potentially 
design a “defense mechanism” into the trees of knowledge 
in order to regulate or prioritize inputs from citizens ac-
cording to a greater sense of public good? If AI-parks put 
citizens in touch with AI systems (which are in themselves 
an extension of governance) through trees of knowledge, 
how can our TUI model the ability to both revise and har-
moniously negotiate with an AI system and all of its exist-
ing inputs? Provided with answers to these questions, we 
hope to better connect our speculative vision of human-to-
AI interaction in Topos with emerging real-world applica-
tions of AI in civic contexts. 
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Abstract 
Google Clips is an intelligent camera designed to capture 
candid moments of familiar people and pets. It uses com-
pletely on-device machine intelligence to learn to only focus 
on the people you spend time with, as well as to understand 
what makes for a beautiful and memorable photograph. Us-
ing Google Clips as a case study, we’ll walk through the 
core takeaways after three years of building the on-device 
models, industrial design, and user interface—including 
what it means in practice to take a human-centered approach 
to designing an AI-powered product. 

 

Google Clips is a small form-factor camera that operates entirely 
offline using on-device AI. It can be stood up, held, or clipped 

onto things to capture candid photos of familiar people and pets. 

Human-centered machine learning 
As was the case with the mobile revolution, and the web 
before that, machine learning will cause us to rethink, re-
structure, and reconsider what’s possible in virtually every 
experience we build. In the Google User Experience (UX) 
community, we’ve started an effort called “human-
centered machine learning” to help focus and guide that 

conversation. Using this lens, we look across products to 
see how machine learning (ML) can stay grounded in hu-
man needs while solving for them—in ways that are 
uniquely possible through ML. Our team at Google works 
across the company to bring UXers up to speed on core 
ML concepts, understand how to best integrate ML into the 
UX utility belt, and ensure we're building ML and AI in 
inclusive ways. 
 Note that in this article, I will refer to ML as the process 
of training models and AI as the system architecture. 
 Just getting more UXers assigned to projects that use 
ML won’t be enough. It’ll be essential that they understand 
certain core ML concepts, unpack preconceptions about AI 
and its capabilities, and align around best-practices for 
building and maintaining trust. Every stage in the ML 
lifecycle is ripe for innovation, from determining which 
models will be useful to build, to data collection, to annota-
tion, to novel forms of prototyping and testing. 
 We developed the following “truths” as anchors for why 
it’s so important to take a human-centered approach to 
building products and systems powered by ML: 
• Machine learning won’t figure out what problems to 

solve. If you aren’t aligned with a human need, you’re 
just going to build a very powerful system to address a 
very small—or perhaps nonexistent—problem. 

• If the goals of an AI system are opaque, and the user’s 
understanding of their role in calibrating that system are 
unclear, they will develop a mental model that suits their 
folk theories about AI, and their trust will be affected. 

• In order to thrive, machine learning must become multi-
disciplinary. It's as much–if not more so—a social sys-
tems challenge as it's a technical one. Machine learning 
is the science of making predictions based on patterns 
and relationships that've been automatically discovered 
in data. The job of an ML model is to figure out just how 
wrong it can be about the importance of those patterns in 
order to be as right as possible as often as possible. But 
it doesn't perform this task alone. Every facet of ML is 
fueled and mediated by human judgement; from the idea 
to develop a model in the first place, to the sources of 

The 2018 AAAI Spring Symposium Series

414



��������	
���������������������
�	����
�������	
������
��
��
����	��������
�	��	
������
	���
����������
�������
��
 � 	���
		 ����
�� � ��� � ��
 � ����
�
����
� �������
		
���������
		�������
����	������
����������������
����
��
��	
���	����
���������������
�
��

��������	
����������������
����������

��

�����

������������������
!�	��
�����
���
�������"
���������������������	#���������
���������	��������
��	�������������������
������
�����
���
	�������
����$��������������"�����!�	�	�
	�
�����
���
������
�����
��	�����	
����%��%����
��
�
��
�	�����
�����	�	��&��������
��	�����������

����
���	�������

�%
�����	
�	���
������������
��	��������
����
��	������
	
�� � �������� � ��� � ��
	
���� � �
���
	 � ��� � ��
� � �����

	
��
	��*	����
	�������
�����
��
�������
������
������
��������������	��

���	�
��������
��������	���������
�
	
�	
	�

+�������
����������������������������
��
���	��
����

�%��
%���
���������
��
���
��
����
������/�+�������

����������������
�����
������	���	�
�����������	��
���
��
����
��/�+�������
�������������"�����
�������"
���

����������	��
 ������� ���
���"
����������������������
	�������"
�����������
��	��
���
����
����
��� ������	

��
�	����������	�������
����
��/�*������������
������
���
�������������
���������	�
����������
����
�������	

����
���������
���
����
��	������
��	�����	��������$	
��	��	��
/�!��	
����
��	���������
���

�����		��
���
������
�
�
������
�	������	��
������
����
��� �!���$	
������
�	
��������������


����	��������������������������������	���	���	������	�	������
����������	��������������������	���	������	��	����	����������
�	�����������������������������������	���	��	�������������

���������������������
+�
���
�	����
����
�����
		� ���
���	����
		���0�
	���
��	1����
���
���"
����	���������	��������$���������������
�� ��� ����" ���� ������
 � ��
�� �������� ��
 � ���
� �������
�����/ �!�	 � 	 ���
�
 � ��
 � ����������� ��2345�
�
��	
�
��	�����1�&
	���
���
���������
��
������������
��
���
���� ��
����� � ��
 � ��	" � ������ �!�
 � ��
��� ���	 � �������1

#�6���!�
��	�+������
�3��	��
��7����	�3�����
����������
���89#<�=
89#>

?�	����������������$���
��������
���	"����
���
��
��������
*6D�	
���������������

��������
��
����	�������
��
���
�
���������	����%��%���
����������
���������
��������
������
������
�������
����
�

!�
����	
	��������������6����������"������	����
�%
��������������
���	��6�	
�������������������
�����������	
�	�����	����
������������	�F�����	�����!�
���
��
�	
�	��		��	��
�
���
%���������������������
��
�
����
����
		� � 6 � ����
� � �� � ��� � �
���
 � ��� � �
�
 � �����������
��
�������
���	����������
�����������
�	��%���"	���
�

�����
������
��������+
�
��
������	���
���H�������
���������
������������
��������	
�������"H����
�	��
�����

���
��
��	
 � � � ��
 ���������� ������
����� ������"
�� ��
�����F������	�����������
����	�����������
���!��
��
����

�
��������
����������
�������
���
������
��
����������%
��������	�
����
�0�
	������+������"
	����
������
���%
�
��/�

����������	����������������!��"������	�����������	�����	�������
���������	��������	�����������	������������	�������!�	����

�������	��	���!�����#�	������������������	����������$����%	�&
���������	��������������������	�����������!�������%������!����
������������	���������	����	����������������!���������������

����������'��������������������������������	������������������
��������	�������	�����	����!��������	����������������	���	��	�	

������!����������������&������������������������������

�����������
�
!�
�	�����������������������"���	�����		�������������

������K	���$���
����
����
�	������
�����������	��
������
������
�
	�����������������F�	� ���	�����������������
�
+
������������N
������
�	����	��������
��������
���
���
 � �� � ����	� � ������� � ������� � ����� � ���	� � ��� � 	����%
�
������P��������6��
���
����	�������
�	�������
�
�����
�%

	����
���
�����������������������������
���������
	
�	
D����0��"���
������
���������
���
��������
�	��	�����
��
����"������������������
�

!�
	
�
�����
��
��
��	�
���	
�������� ��
������ ����
�
���������������	�������
��
���	��
�		
		������		���%
���	��������������
����������������
��N
���	��
����	���"

	���"�����
�����
�
�
��
�������
������
����"��!�
��
����
�������%�
����������%�������
��	��������	�������	�	��"��
������������������
���������������
�����
������
�	���
�
��� � ������� � ���� � 
��
���� � 45 � �� � �	���
� � ��
 � ��	�
	��
�������
��	H
��������
�	��
�
����������0��
�����
�
�������	��"
�����	����	
������
����
���������	�������
�%

415



�
����	���
	H������
�	������������������������
����
�%
�
���
������
��0��
��
������	��������	��P�	��������

�
�
�����������
����Q���	����������%�
��%��������
����
���"
	�
��
��	�
������(���)�!��(�*��!�	���	���
�
���

����������
�*6�K�������$����	�
������
	�������
D���
��
�
����� ��
�
$	 �	��
�	������ � K��
���
��
$ � ���� ����
�	����	
��������	����������
�
���N
���������	�
��"����
��
�����
����
����������
����+
��

�
������
	
������
��
������	����
�����������
���	"������������
��
�������

����������
��

3��		�
����	���
����
������
����
���
������������
���
���������6�$	������
������	�������	���		��
�������
�	�
��
�����
		����R%�%S%2�V
����������������������������Y
��������
����
�� �
����� � ��
����������
�� �����	�
�"
Q���	�����
������������������������	��"
��������������
	��� ����� ��
� ���
������
 ����� �	����	�� 	 �	����������

���		�
��Z

+������		�
��� ����
	������
��
� �!��"������ ����
0��"H����
��
�H��	��	���
��	���
������������� ����%
��������
��� � �
���
� ������
	 � ����
�����
	 � ���� ����$�
	

�������
�����*�������	������
����	�����

����"��*	
�����	�������������	�����
��
���
�
���������
�$�
�	����
	����
0��������
����
		���
��
�����
��	
��?���3��	������
�
�����
�����������

�
�����		�
�����
��

��
�����
	�
��� � ��	� � ���� � 
��� � 
�����
� � Q�
�� � ������� � ����

�

�
������
��
��
	
�����
������
�	�
������
�������
$�

����������
�����������"
��*������
��������������
�����

���������
��������������������
�

�������
+
��

�
�������������
�	����������������"
���"
1�����	
�������������
����
����0��"�����	��"�����
�
��	�������%
�
		�

+�������%	��������������	����������	����	��������	����!����&
����������!��"������������	���	��	�������	���������������
�	���������������������	����!�������	����	��������������������

�	��������!�����+���������	�/��������	��������������������	������&
�������!���������!������������������	���	������	����	��!��������
����������!���0�������!�������������������	���	�������/���������
�	�������!���������!�����	����������������������	�����������
��������	����	������#�	���������	�����������������!�����	�����

�����
����
+
��

�
�������������
�	�������	��������	�����
		�����
��������+���������
�������
�����������
��
�
��������
�
��������
���
������
������
�
��
������
�����
�F�	���	�����
�	���
�����
��
��
��

���	��������������	���	�������	����������������������������	���&
����	�������������������!���!����%	�����������	���������	

���������������&��	���������	�	�������������

����������

?������� � 	 � 	��� � � � ����
�	���
 � �� � ������������ � [��
����������
������	��
��
�������
�����
�����������	
��
���	������� ���	��� �4��
��
�� ����$�
� ��
���
� ���"��
����������
��
����
�� ����������������	�����
�	����
+���������������	����
�����
���������
�
���
�
�����
��
�������	�	���	��������������������	
�����	�������
	��"

��
�������������
�	�
���������
�������������		�
����
��
�$�
��

������
�����
�

!�����
&�
�	��������
���������	�	��
������
���"
����������
�
����
������
�	����������	D � ��
�
$	 �� � ����
 ����
�����

���"���������
���	�������[������
�$��	

�����������"

��	Z��R����[��$�
�����
������	���	���������"����������
�
������P����������
�	��

�
������������
���

+
���������
����
�	������������

����
�
����
����	1
\ ����1�!�
�	���
�����
������
���		���	������������

	������������
���
��&��$�����������������������������
	��
�����

\ "�
���1������
�����������������
	��������������
��������
�����������
	���
������
���������������!���������%
���
����
��	���������
��	������
	��
���0����
	�

\ #�����1 �*�
 ����� � �� ��� ������ ��� �� � 	���� ������ ���
����
/����
�	�������������������
�
�������������
	
���$�
�
������
����	�������������������

�����"
����
���
�$���		
��������������
��	�

���
�����
��$��$$����	
R�
������
��
�	��	��
���
	�
����3��	���	��
���	
���
�����

�����������������	�����
���	����
���
���������

�����%�
��
 �����������%��
	
���� ������
 ��
������ ��
��
������H��������
������	��
���"���
��������
	�V
���
���	
	��
		����
���������
��	��
��
	����$���
���	�����

416



������
�����
		�����������
��0��"��������
������������
�

���������
��
������
����Y� �*����
���	����
����
�%
	���� � ��F
��� � ��� � �
$�
 � ���"
� � ���� � �� � 
�	��
 � �H��

�������
����
���
���
��
��������
�����
��H������
����
%
����	��������������������
��+����	�����
�
������H���
6��
���
�
������H	���	������
����
����������
��	
��	��	
���
��	
�

���������������
+������
�
�������	������	
��%
���������
��
�
���	���
��
��
������ � � ���
������
���������
���6��
	��� �*� ���

	����������
����F
����������
�������"��������������
����
���������������		������	���������������%��
�
�����*6%
���
�
�����������

�
������
�

+�
���
��
����������������	����������
%�
����
�
�
��

����	��������
	��
�	�����F���������
����
	������
�	�


��
�
��
	�	

�������
	��"
�1��������2����������0�	��
2�������P���F�	������
�����������N���$���
������������

������	��
������"
���
��6���4������]
���������	
�	1
3����������%����������	���������	��������������!�	��	�
�����	�������������!�����������������!������������	���!�����
�	����������&������������/��	�*�*���	��
�
���	�%������
�6�	����������	��
�����	����D��	�����
������
���������
��
����������
���

�	����"

�����
�������
������
���
�����
�	�	�
���$	��������P�������$	�	���������
�
��
��
�

��������
�����������
������
	������	
�������
���������
������������
�������������

��
�	��	1
\ +
��
�
�	�������
���
���"
�����
�������������	��

	�����
��
������
������
�
���
����������
�������
�%
���������
����
����^��
��������	�		�
�	�$����0�
���
*6D��$	����
����
������
������������������	���
�����
������
���
�������
��	����������

\ +
��
�
�	�������
������
���
�
�
������������
�
����
	�
�"�� � ��
 � 	��
 � �������
D � ���"�� � �

� � �������	
������*6%
����
�������
	��+
��
�
���"�����
��	��"

�����	���������������
��
�
�
��
�����	������
�
����


�	
�����������������
�����
�

\ +
� ������� ���� ��
���
	��	 ��
�
 �	��
� ������ � 	� ��

���
����	
��
	 ����
������������ ��� � �����
�
		 ���
�
�
���
����$����
���
����
����

R�
����
���
�	����
������������+
��
�����
��
����
���%
��������
��������
��6���������
��������������	����	����
����
�	���
	��������
��
�
���� � ����
���"� �+
����
���
	������
��
����
���������������
�������
�������������

���
����+
����
�	��
��������
��	
��������
������	�������%
�����D��������
��
	��	��������
����������������	��
�����%
�������*����
�	���
���	
�	����
����
��	������������

�
�
		���� � ������� � ��	 ���� � ��!��� � �
���	
 � �� ��������
��
��������"�������
������
�K���
����
$������
�
�
�	����
��
�����$����������
������������
�
���
�����
��
�����
�%
	��������������� ��
����
�����	����"������� ��	��
����	
�������
�������������
�����
��
��������������
�����
���%
���
�

1������������	���	����	��������	����!��������������������
	�����������	�����'����������/������	����������	������4����/
�����������������/���!���������	���+�������������%���������
�����������������5��!����'6����	�����������	��������+���������
	���	������������7�������������	���5��!����06���	��������������&

�	�������	��	�����������	�	�����'��������������������	�������
�������������������	�������	����5��!����
6��������7����������

�����������	����	���	������

!������ � ��	 �����
		 ��
 ��	���
�
� ������
� � ��������
��������������������
	�������*6%���
�
���������1���"

� � ��� � ��� � ��"
 � �� � 6� � ����
� � �� � ����	
� � �$	 � �
��	%���%
�����	����
 ��	
��� � �� ���������
����������������	
�$	
�
�������
����	�����+N�������RN�����������������	�����
	�
�����
���45����
�	��!�
�����
����"
	�������
���������
��
��������������	����
���V����	������
		����
��������%
��
 � ���� � ��������� � 	������
 ��
�
����
��� � 	� � �$	 ����

��	�������	���������		Y� ����
� ��
�����
��������	 ����
�
���
��	���	�������
������
���
������
��
�����
����
����������������V��
��
����Y���������

7����������������������������	���!����������������	���	��8�
�����	�����������������������������������	���	������������

���������������������������	����!!������	�9�!!����:�������8�
������!���������	����������������%	�����	���������	������	���	

	������������

417



6����
�����
������	��F
�����������
�	����N�������
�%
�
�����	�����	�$����		��
���������
�����	������$��
�
�
�
�� ������ ����"
 � ��������� � 	������
 ��
�
����
��� �45
	�	�
�	������
�
���
�����%��

�H�	������	�������	��
%
��
���	�	��
������������
�
��	���
��	
������������������
	�
������
���������
H�
���	
���
������	��������
��
��NN��	�
��
��P����$	���
�	
�����	���NN�
		��������"
	
45�	���	
���Z�6�$	�������
��	��	����������������������

����	�������������K�$�	���
�
��	����
�
��
������
	��
	��
����������
�
��
���������
��	��
��������"	�	������
�"
�����������*�����������
������
������������������
	�
�
���	���

�
������
������������������������	�����
�	��%
���
����
�
��������
		�����3��	�	�$��F�	��������"

�	�
�
�
�
	�����"	������
��	�V����������	
���
���������Y���$	
����� � ������	��� � ��%�
������ � ��� ���������� ���
� � ��
�
+
��
��������
��	
�	�����������������������

;����	���	���������	����������������������������������	����	
	���������������������������������	��	���	������

%�
���������������
�
P���
%��
�������
�����
�������*6� �����������������%
������	������"
���
������
�	����
������
�����������	
�������
������������������ ��
����������"���� ���
��
�
���
������������
��
�������6�������
���
��������������%
��
�
�
��
��
����������������������D������������
����	
	

"���������
��	������	
��
	�������
���������������	��*	
�����%�
��
�
� ���������
�	� ��
����
��� ��
�
����	���%
������������	���
������
������	����������	�
��������
����
�� �����*6��������	����	�����
�
��
������������	1
��������������
		����������

�	�����������	
������
��� �
��
��
������� ��������� ������
 �����
	� � ��� ��
%
	�������������
������8����������������

!�
����
��� �*6�	������$� ��
� ��� ���� ��
��

��
 � �� ��

���	���"������	���������	�����	����������������������
��
	���
������
��
��	

���
��

��
����	
��
	�

8� *���
���� � 2���� � 6��
��
��1 � * � 3���
����� � ?���
���"� � Q��
�����
#_`8

418



 
 

FutureCrafting: 
A Speculative Method for an Imaginative AI 

  
Betti Marenko 

Central Saint Martins, University of the Arts London 
b.marenko@csm.arts.ac.uk 

 
 
 

Abstract 
The issue I explore with this position paper concerns domi-
nant cultural scripts around Artificial Intelligence (AI) and 
the need to imagine different narratives in light of machine 
learning’s autonomous performativity. The aim is to offer a 
philosophical reflection, not only to sidestep narratives of 
techno-determinism, dystopia and existential risk to man-
kind, but also to speculate on how to imagine a (more) be-
nevolent AI based on uncertainty and the co-evolution of 
humans and technology. The paper presents the speculative 
methodology I call FutureCrafting: a forensic, diagnostic 
and divinatory method that investigates the possibility of 
other discourses, equally powerful in building reality, con-
structing futures and having tangible impact. FutureCrafting 
is speculation at the juncture of design and philosophy, piv-
oting around the open-ended figuration of the what if…? It 
articulates collaboration rather than competition, coevolu-
tion rather than antagonism, and privileges the indetermi-
nate and the imaginative. To conclude, the paper makes ref-
erence to the non-human intelligence of the octopus and to 
how this can inform a more imaginative AI. 

 Algorithm Narratives  
As the cultural object of our present, the algorithm fore-
grounds a dominant techno-deterministic narrative that 
portrays computation as an almost mystical notion (Finn 
2017) or even as a theocracy (Bogost 2015). In such a nar-
rative, rationalization and logic coexist with deep myth – 
the ancestral belief in invisible forces. On one hand, we, 
users/content providers, like to believe that algorithms are 
efficient, logical, and clean procedures (they are not). On 
the other, we embrace a faith-based approach, the same 
conviction that ancient seekers would have had in the 
murmuring of an oracle.  

Algorithms create reality in ways that are both alluring 
and evident, opaque and controlling. We use them “as 
pieces of quotidian technical magic” (Finn 2017, 16). We 
trust them with our many choices - partners, music, books; 
we are given or denied credit, job, insurance; we are fed 
tailored search results and social media updates. And yet, 

we hardly understand how they work; indeed, not even the 
programmers know. The simplistic notion of algorithms as 
procedural problem-solving entities, i.e. what turns ques-
tions into answers (according to Google) does no longer 
suffice. In particular, it cannot account for the uncertainty 
growing at the core of computation (Parisi 2013, 2017). 
New narratives are needed, that can turn uncertainty into 
an asset rather than reducing its ambiguity and providing 
explanations that rely solely on human-centered models. 
 

 
AI Speculation 

 
The importance of speculation emerges when we consider 
that Machine Learning’s (ML) way of working is highly 
inductive, unlike traditional deductive AI approaches. ML 
starts from real observable behaviors expressed and cap-
tured in the the form of data. From here, verifiable models 
of given behaviors are built; a range of tasks (clustering, 
classifying, categorizing, matching) is performed; then, 
similar future behaviors are predicted.  

With ML performing a continuous automatic revision 
and refinement of models based on a constant supply of 
fresh data, we enter a meta-digital phase (Parisi 2017), 
where new levels in the automation of registration, mobili-
zation and communication are taking place. As the opera-
tive mode of AI shifts from validation to discovery through 
inductive data-retrieval and recursive training, at the core 
of this process we find uncertainty, indeterminacy, and 
unknowns. When the machine no longer simply searches 
for information but combines and recombines data to train 
itself, contingency enters the process and must be account-
ed for. This has profound implications on current AI narra-
tives, and it must inform how to imagine and conceptualize 
near future AI.  

Digital theorist Luciana Parisi (2013; 2017) argues that 
if AI is rooted on uncertainty, then it must be understood as 
a non-conscious form of cognition, possessing its own non-
human way of learning. To clarify: this does not mean to 
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advocate an overbearing machine rationality antagonist to 
humankind. Rather, it means to acknowledge that what 
machines can do does not coincide necessarily with how 
they think. What is needed, then, is a speculative critique 
of ML, inspired by abductive reason - the formulation of 
interrogative hypotheses (such as what if…?) - and finely 
attuned to the contingent, the unpredictable and the uncer-
tain (Marenko 2015). This is speculation in action – Fu-
tureCrafting – a method that prioritizes imagination over 
direct observation, and that aims at capitalizing on the in-
determinate. Speculative approaches to design (Dunne and 
Raby 2014) and the field of ‘design fiction’ (Coles 2016) 
have shown how to deploy design to suggest alternatives to 
the existent, ranging from the possible to the implausible, 
so to provoke debate, critique and reflection. Though Fu-
tureCrafting resonates with (and stems from) similar con-
cerns and is likewise engaged with expanding the remit of 
what design can do, it puts however greater emphasis on 
the theoretical framework that supports its methods. Ac-
knowledging a legacy of philosophical ideas, concepts and 
discourses is a crucial aspect of FutureCrafting, one that 
both grounds and propels forward its endeavor. The prac-
tice of contesting received notions of technology, inventing 
new modes of human-machine interaction, and speculating 
on different futures, cannot be disjoined from the risky 
business of operating at the edge of thinking. Here is where 
the power of the imagination in seizing alternative possibil-
ities becomes a radical tool for change and acquires politi-
cal valence. The challenge then would be: how to exploit 
the potential of digital uncertainty in ways that feed into 
new collaborative models of human-machine interaction? 
(Marenko and Van Allen 2016).  
 

 
The Robot Does Not Exist 

 
French philosopher and technologist Gilbert Simondon’s 
work is illuminating here (2017). His notion of technogen-
esis, that is, the evolution of technical objects, is based on 
the idea of the co-habitation of humans and technology. 
Technical objects, including algorithms and AI, are always 
the temporary concrete expression of a morphological 
spontaneous evolution, which depends neither on natural 
processes nor on human design exclusively. Far from 
evolving in isolation, technical objects are the result of a 
process where internal parts converge and adapt according 
to a principle of internal resonance. This process (concreti-
zation) describes a coming together of functions by which 
the object acquires an internal coherence that propels it 
beyond the intention of its inventor. Even though they are 
designed and made by human beings, then, technical ob-
jects have a life of their own (Schmidgen 2012).  

This argument is important for two reasons. First, it pro-
vides an epistemological shift that fully integrates technol-

ogy into culture. The boundary between the natural and the 
artificial, the animate and the inanimate, the human and the 
non-human becomes blurred. Put differently, we can say 
that humans are always already among machines and, more 
broadly, among everything that is not human. Likewise, 
technical objects and, more broadly, everything that is not 
human, are always already among, and co-evolving with, 
humans. The second implication of Simondon’s techno-
genesis is that it helps us frame and understand how tech-
nical objects, as they evolve, acquire autonomy – a valua-
ble insight to use to conceptualize ML and to speculate 
imaginatively on AI. Indeed, this means something else 
too: that to talk about ‘artificial’ intelligence is incorrect. 
There is only one intelligence, constantly morphing and 
evolving. Perhaps this is the real meaning of what Simon-
don wrote in 1958: “The robot does not exist”. 

 
 

Conscious Exotica 
 

But how can we exercise our human imagination to specu-
late on alternative AI narratives? An interesting viewpoint 
is presented by computer scientist Murray Shanahan who 
poses provocative questions concerning what he calls ‘the 
space of possible minds’ where humans could encounter 
radically alien and exotic forms of cognition (2016). By 
stating that “there’s no reason to suppose that a human’s 
capacity for consciousness could not be exceeded by some 
other beings”, he takes the reader on an imaginative jour-
ney exploring this possibility.  

What matters greatly is the method. In describing his 
experiment as “fanciful”, Shanaham shines a light on the 
significance of adopting a speculative frame of inquiry 
when dealing with AI’s uncharted territories. He positions 
a number of diverse human and non-human entities on a 
diagram whose two axes maps human likeness (H-axis), 
and capacity for consciousness (C-axis). A creature like the 
octopus, for instance, scores high on the C-axis (it is cogni-
tively sophisticated), but low on the H-axis (it is quite hard 
to comprehend from our human perspective).  

“The most exotic sort of entity would be one that was 
wholly inscrutable, which is to say it would be beyond the 
reach of anthropology” (Shanahan 2016). In other words, 
humans would need to think in radically non-
anthropocentric ways, even reappraising what human con-
sciousness is. It may be, continues Shananan, that a shift is 
required, from a monolithic notion of consciousness – 
made of memory, world and self awareness, capacity for 
empathy, emotional and cognitive integration - to a dis-
aggregated, more distributed form of consciousness. To 
successfully speculate on imaginative AI, then, one route is 
to bypass the need to mimic human biology and to look 
instead at what non-human intelligences have to offer.   
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Cephalopod Cognition 
 

Recent research on cephalopods, and the octopus in partic-
ular, show that these creatures may be specialists in dis-
tributed control systems (Grasso 2014, Godfrey-Smith 
2016). Some types of octopuses (the common octopus Oc-
topus vulgaris), possess fewer neurons in the brain than in 
the peripheral nervous system. With two thirds of its neu-
rons located in the arms, the octopus has effectively two 
brains. Its neural system is exceptionally decentralized. Its 
arms are autonomous agents. Thanks to such a decentral-
ized information processing system, the octopus can pro-
vide an innovative perspective on neural architecture and 
efficient distributed cognition (Laschi 2016). The octo-
pus’s brain does not issue top-down commands for every 
small movement of the arms. While the brain initiates mo-
tion, the lower motor centers control the precise neuromus-
cular activity. Experiments have shown that a severed arm 
will continue to act, search for food, and once found, it will 
bring it to the place where the mouth is supposed to be. 
Even more remarkably, the octopus’ limbs do not need 
comprehensive direction to produce the desired movement, 
but respond to environmental stimuli in adaptive ways. 
Each one of the eight arms can be taken as a complex dis-
tributed information processing structure, able to act and 
problem-solve autonomously. For instance, while the octo-
pus is busy checking a cave, a tentacle can be engaged with 
prodding a shellfish.  

As a paradigmatic example of embodied and distributed 
cognition, it is no wonder that the octopus has become a 
model for soft robotics and AI research. This has led to the 
first entirely soft octobot recently developed by Harvard 
scientists (Burrows 2016). Also, inspired by the octopus’ 
behavior, roboticist Alfonso Íñiguez (2017) has designed a 
system with a CPU that does not spend resources in mi-
cromanaging coprocessors, exactly like the octopus’ cen-
tral brain does not spend resources in micromanaging its 
arms. The potential of mimicking the complex neural sys-
tem of the octopus is also studied by the U.S. defense con-
tractor and industrial corporation Raytheon (2016), con-
ducting robotics experiments with a network of machines 
that work together in a semi-autonomous way through co-
ordination by a central command unit and a pack of inde-
pendent agents. Applications are envisioned in the design 
of self-balancing biped robots thanks to the central brain’s 
ability to delegate (Íñiguez 2017). There are parallels here 
with ‘edge computing’ - advanced on-device processing 
and analytics (Talluri 2017) where AI computation is 
pushed to the edge of the network (rather than the cloud) as 
close to the sensor/actuator as possible.  

As perhaps the closest form of alien intelligence that we 
can study, the octopus is the blueprint for the development 
of an autonomous AI with neural networks that adapt to, 
and learn from, the environment. It could offer the seed of 
a new narrative rooted on non-human consciousness. 

FutureCrafting 
 

Scholarship at the intersection of design and sociology 
indicates the need to combine speculative design methods 
with humanities methodologies to capture social events 
that are ontologically open, processual and emergent (Mi-
chael 2012, Smith 2016). I would argue that AI’s future 
narrative landscape demands a speculative approach. Ex-
panding on this “inventive problem-making” (Michael 
2012) FutureCrafting reconceptualises contingency and 
rethinks uncertainty by treating them both as a material to 
work with, rather than as a risk or a threat to avoid.  

FutureCrafting gives shape to the future, and does so 
here and now. Future is about speculating, but avoiding the 
trap of escaping into a fantasy of what the future could or 
should be. Instead, FutureCrafting captures the future, 
grabs it and brings it back to the here and now, so to in-
form the present. Which is the Crafting part: crafting per-
tains exquisitely to the now. FutureCrafting is speculation 
by design, a performative rather than descriptive strategy, 
whose interventions are designed to prompt, probe, and 
problematize, to inject ambiguity and even the non-rational 
and the non-sensical. To borrow philosopher Isabelle Sten-
gers’ words on “speculative methodologies”, FutureCraft-
ing is a practice that “affirms the possible, that actively 
resists the plausible and the probable targeted by approach-
es that claim to be neutral” (Stengers 2010, 57). 

Framed in this way, FutureCrafting is a strategy and a 
stratagem to conjure new figures of thought. It provides a 
set of tools at once forensic, diagnostic, and divinatory. It 
is forensic because it concerns things taken as witnesses so 
to articulate the existent. It is diagnostic because it invents 
explanatory hypotheses in an interrogative fashion – as 
said, it relies on abduction, and it is unconstrained by a 
priori theory or a posteriori verification. It is divinatory, 
because it attracts future images around which new 
thoughts can coalesce.  

FutureCrafting gives priority to imagination over direct 
observation, searches for the least familiar hypotheses, 
those with no verifiable answer, and leans toward the pro-
duction of what is not there yet. It is driven by the question 
what if? Precisely because it has affinity with practices 
bent on divining, predicting and conjuring, it is a fine in-
strument to probe what ML is doing today and will be do-
ing tomorrow.  

 
Bio 

Betti Marenko is a design theorist, academic, and educator. 
She has a background in philosophy, sociology and cultur-
al studies, and a decade of experience in design education. 
Her interdisciplinary approach brings together design stud-
ies, continental philosophy and the analysis of digital cul-
tures to investigate the relationships between design, socie-
ty and technologies, and their role in shaping possible fu-
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tures. Betti’s work features regularly in international con-
ferences, collections and peer-reviewed journals such as 
Design and Culture, Design Studies and Digital Creativity. 
She is the co-editor of Deleuze and Design (Edinburgh 
University Press 2015, with Brassett) - the first book to use 
Deleuze and Guattari to provide a new theoretical frame-
work for the theory and practice of design. She is Contex-
tual Studies Programme Leader for Product Design, Cen-
tral Saint Martins, University of the Arts London, UK. 
 

Statement 
I am currently writing a book titled Digital Uncertainty. 
Between Prediction and Potential in Algorithmic Culture, 
which investigates the new contingent logic of planetary 
computation and its impact on society, publics and subjec-
tivities. The book looks at the effects of the growing au-
tonomy and unpredictability of digital technologies, ma-
chine learning algorithms and AI. By connecting philoso-
phy and computational theory to design, my research 
brings a holistic interdisciplinary approach to the issue of 
digital uncertainty and launches a debate on its unexplored 
potential. I am interested in bringing into dialogue AI de-
velopers, interaction and speculative designers, program-
mers and engineers, to provide new insights around digital 
experience, interrogate current theoretical positions and 
inform interdisciplinary debates on human-machine inter-
action. The symposium will offer this opportunity. 
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Abstract

Cybernetics was influential in the early age of AI and might
hold the keys towards making AI systems more interactive.
Our panel will explore cybernetics as a useful framework
for designers of artificially intelligent (AI) systems. Our four
panelists—Hugh Dubberly, Deborah Forster, Jody Medich,
and Paul Pangaro—will each discuss how they have used cy-
bernetic theory in their own work. We will then delve into a
discussion about the future design of AI systems and the areas
where cybernetic theory may prove useful for user experience
design.

Cybernetics and Artificial Intelligence (AI) have often been
closely associated and even equated with each other, though
they each take different approaches to understanding and
developing intelligent systems (Papert 1988). While AI fo-
cuses on the creation of intelligent systems based on com-
puters, cybernetics is broadly interested in understanding
communication and control within interacting systems—
systems which can be biological, mechanical, computa-
tional, or social (Wiener 1961). Moreover, cybernetics is in-
terested in understanding and designing the interaction be-
tween intelligent systems and elevates action and interac-
tion as a means of generating intelligent behavior (Pangaro
2006). By examining systems from the perspective of inter-
action that has been lost in the current-day AI boom, we
believe we will discover a useful framework for the user ex-
perience design of any intelligent system.

New technological advances now allow for AI to be
widely used in everyday products and services that interact
with people. With these advances, designers should under-
stand and equip themselves with tools for creating systems
that can learn and adapt with their users to meet people’s
needs. Learning and adapting to the needs of a system are the
goals of both designers and cybernetics (Dubberly and Pan-
garo 2015). It has been suggested, and we agree, that cyber-
netics is the “silent partner” of design (Glanville 1999), and
provides a useful framework for assisting designers in creat-
ing intelligent human-centered systems (Krippendorff 2007;
Dubberly and Pangaro 2015).

In this panel, we plan to discuss the topic of cybernetics in
relation to the design of AI systems that interact with peo-
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ple. Our goal for the conversation will be to explore how
cybernetics can be useful for the user experience design of
AI systems. We will discuss how cybernetics has influenced
the ways our panelists view the world and how it has shaped
their own work. We will then devote the majority of our dis-
cussion to the ways that cybernetic theory can benefit de-
signers in creating new intelligent systems. Some questions
that we will explore include:

• What role will designers play when creating systems that
learn on their own?

• What aspects of communication design are important for
facilitating smooth user interaction with intelligent sys-
tems?

• How will designers and users control and update how sys-
tems behave?

• How can designers use and manage interactions with
many intelligent systems distributed across the user’s en-
vironment and the Internet?

Panelists

Throughout the years, cybernetics has championed itself as
a way of understanding and making change in the world
across many disciplines. It has brought together people and
encouraged discussion from mathematicians, biologists,
engineers, anthropologists, sociologists, designers, and
economists. We look to bring together a group of people
from different backgrounds within academia and industry
to share their perspectives on cybernetics and design.

Hugh Dubberly is a design planner and teacher. At Apple
Computer in the late 80s and early 90s, Hugh managed
cross-functional design teams and later managed creative
services for the entire company. While at Apple, he
co-created a technology-forecast film called Knowledge
Navigator, that presaged the appearance of the Internet
in a portable digital device. While at Apple, he served at
Art Center College of Design in Pasadena as the first and
founding chairman of the computer graphics department.
Intrigued by what the publishing industry would look
like on the Internet, he next became Director of Interface
Design for Times Mirror. This led him to Netscape where
he became Vice President of Design and managed groups
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responsible for the design, engineering, and production of
Netscapes Web portal. Hugh graduated from Rhode Island
School of Design with a BFA in graphic design and earned
an MFA in graphic design from Yale.

Deborah Forster is a primatologist and cognitive scientist,
currently a research specialist at the Contextual Robotics
Institute at UC San Diego. She studied social complexity
and distributed cognition in olive baboons in Kenya, devel-
oping a state-space (and time series) approach to analyzing
complex social behavior. Forster applied this relational sys-
tems framework in her work with car designers, intelligent
driver support systems research, architecture education,
social robotics research, art-science collaborations, and
movement education practice. Her current projects support
interdisciplinary design teams developing infant biometrics,
automated pain detection in horses and other animals,
cognitive robotics, and autonomous transportation research.

Jody Medich creates superhumans, not supercomputers.
She uses perceptual computing (AI, machine learning,
AR/VR, robotics, sensors, etc.) to make technology as
easy to control as our own body and mind; creating tools
that help humans become more powerful. Today, she is
Director of Design for Singularity University Labs, where
she incubates solutions to Global Grand Challenges using
exponential technologies. Her previous work includes User
Experience (UX) design for DARPAS Big Dog, Principal
Experience Designer on Microsoft HoloLens, Principal UX
at LEAP Motion, and UX Strategy for Toyota’s AiCar.
Jody is also a practicing artist with an MFA in Painting and
Design + Technology from the San Francisco Art Institute.

Paul Pangaro is Chair and Associate Professor for MFA
Interaction Design at the College for Creative Studies in
Detroit. His career spans roles as teacher and curriculum
designer; chief technology officer, product designer, and
co-founder in tech startups; consultant in organizational
effectiveness and innovation; and future-caster all from the
perspective of cybernetics as a frame for understanding and
designing systems for conversation. He holds a BS from
MIT in Humanities/Computer Science and a Ph.D. from
Brunel (UK) in Cybernetics where his dissertation advisor
and then collaborator in government research contracts was
Gordon Pask, founder of Conversation Theory.
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Abstract 
We share two prototypes that explore different aspects of 
the design and application of inclusive AI. This approach to 
inclusive AI Design seeks to engage typically excluded 
communities, such as individuals of varying socioeconomic 
status, race, age, gender (and those who do not identify with 
a gender), as well as to critique and explore alternatives to 
conventional AI Design. 

 Introduction
There are many ways to approach intelligence and many 
definitions of artificial intelligence. This paper uses Nils J. 
Nilsson’s definition: “Artificial intelligence is that activity 
devoted to making machines intelligent, and intelligence is 
that quality that enables an entity to function appropriately 
and with foresight in its environment” (Nilsson 2010). 
Similarly, there are multiple ways to approach Artificial 
Intelligence (AI) Design. This paper presents an inclusive 
approach to Artificial Intelligence (AI) Design, which we 
frame as being part of a practice we call Knowledge De-
sign. Referencing Alison Adam (Adam 1998), in this prac-
tice, knowledge encompasses the artificial life and intelli-
gence spectrum, while at the same time honoring different 
ways of thinking and knowing. Thus, the process of AI 
Design we propose is collaborative and it defines the con-
text of the “knowledge” upon which an entire (intelligent) 
system is structured. In other words, Knowledge Design 
allows for conversations about wanted and unwanted bias 
in AI systems, while also modeling an inclusive approach 
to authoring and sourcing contexts and data.  

We see AI Design as a material practice of working with 
code and context (or sociocultural considerations) to frame 
and generate computational experience. In essence, this 
can be simply and reductively stated as AI Design = (code 
x material x context) + (experience x form). In this paper 
we combine development concepts with physical objects 
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(such as products) and digital materials (code) to produce 
form and critically intelligent cultural interactions.  
 Under the umbrella of Knowledge Design, we present an 
approach to AI Design that is inclusive, embodied, and co-
creative. In practice, this translates to collaboratively inter-
rogating concepts (knowledge) with stakeholders, creating 
prototypes and bringing those prototypes to a community. 
We share two research projects, “Intelligent Protest” and 
“Accumulative Collaboration,” which address the question 
of how we conduct AI Design from an inclusive perspec-
tive and how this approach generates conversation and co-
creation with a range of communities not typically includ-
ed in the design and implementation of AI systems (on 
excluded communities, see Byrnes 2016). Our process al-
lows us to co-create and train data inclusively—with and 
for the community the intelligent system will serve. Fur-
ther, these projects demonstrate an embodied approach to 
the creation of training data, which allows us to generate 
new conversations and insights, design for excluded com-
munities, and explore models for training individually cu-
rated algorithms or systems trained by specific nontradi-
tional user types.

Excluded communities, included bodies 
The inclusive AI Design utilizes an embodied approach to 
conducting training that can generate unique data tied to a 
location or object. In our research we ask questions such 
as, what does it mean to use computer vision to allow ac-
cess to buildings, parking garages, cars and apartments, 
and what are the social implications of purchasing products 
with pre-trained data sets over products that include all 
members of a community (and can be trained on small 
sample data)?   

 Overall, an embodied approach to AI Design offers two 
advantages. First, participants with limited exposure or 
understanding of intelligent systems encounter less of a 
barrier when they are able to engage with a system through 
their body. Instead of introducing linear regression in train-
ing a data set, for example, or relying on participants’ 
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computer literacy (which can be exclusionary), the partici-
pant interrogates the system through facial expressions or 
hand gestures. This empowers participants with any level 
of knowledge to engage with a system, and the form of 
engagement often looks and feels like play, which conveys 
to participants that there is no “correct” way of interrogat-
ing a system. This playful, embodied approach to co-
creation and research allows for a very wide range of feed-
back and insights. In “Intelligent Protest,” participants en-
gaged with the system through their bodily presence and 
facial expressions, and in “Accumulative Collaboration” 
through simple hand gestures. 

 Second, an embodied approach to co-creation and train-
ing of data sets also reinforces inclusive design by design-
ing with and for all bodies. Designing with different bodies 
from the outset can allow us to think about what it means 
to design across variances in hair, beard, skin, size, ability 
and so forth, especially in the digital space, not only to 
effectively design these products, but to reduce bias in 
things like auto tagging and image recognition. Although 
we need to approach AI Design from an inclusive perspec-
tive so these technologies can work on all bodies, we must 
also consider ways to guard against potential discernments 
from machine learning advances, such as algorithms that 
purportedly identify sexuality (Wang and Kosinski 2017;
significantly, this paper is now under ethical review), and 
the ramifications of using such tools in conservative socie-
ties. An embodied, community-generated training data 
approach allows the AI Designer to decrease algorithmic 
bias, such as the other race effect (own race bias) evi-
denced in face recognition algorithms (Phillips, et al., 
2011).  Recognizing that human bias can be translated to 
bias evidence in algorithms, this embodied approach to co-
creating with typically excluded communities allows the 
AI Designer to include and acknowledge multiple, diverse, 
and varied bodies and experiences.

Methodology 
Dara Blumenthal’s research proposes that living-sensory
embodiment is an ongoing process, and looks at the body
as beyond being enfleshed (Blumenthal 2014). Paul Dour-
ish suggests that everyday human interaction is embodied
(Dourish 2001), but while he highlights embodiment and
offers guidelines, he refrains from offering a model or
methods for embodied approaches to human-computer
interaction (HCI). We apply this lens of embodiment to AI
Design, updating “interactive system” to “intelligent sys-
tem” in Dourish’s argument, while additionally taking the
step of sharing methods for engaging in an embodied re-
search practice.

Embodied Approach, Different Data 
Performative Prototyping (Sweidan 2016) is a proprietary
method that harnesses movement-based research to proto-
type from an embodied perspective. Performative Proto-
typing updates HCI research methods to engage embodied
thinking in the research process (specifically in the ideation
and prototyping phases). The AI Designer leads the partic-
ipant through an imagined scenario or a designed system
which requires movement and physical engagement. Per-
formative Prototyping intersects traditions of dance im-
provisation and somatic research with HCI. It draws from
“critical making” (Ratto and Boler 2014) in that the act of
prototyping is framed as a means of interrogating and un-
packing the assumptions and conceptual framework of the
designed artifact. Performative Prototyping also draws
from qualitative research practices in the HCI space, such
as the “think aloud" methodology (Lewis and Rieman
1993) which includes a debriefing process involving exten-
sive questioning of the participant following the embodied
action/enactment. Performative Prototyping is both diver-
gent and affords a low barrier for participation since basic
movements (such as walking) can be harnessed to allow
workshop participants to engage in basic system design.

In practical terms, collaborative, embodied AI Design 
entails using AI systems and machine learning tools to
encourage human-to-human and human-to-machine con-
nections. Our research does not result in one finished prod-
uct, but rather a collection of prototypes, designed for ex-
periences in the AI Design space. These prototypes serve 
as tools that help us envision how to design for and with 
intelligent systems, allowing us to move outside of the 
product-driven design space into the inclusive, intelligent 
experiential space.

The two projects we present include the following meth-
ods:  

● Co-creation and community research: we con-
ducted research in various locations with different 
communities in Los Angeles. We intentionally 
sought to prototype with audiences that were var-
ied in age, race/ethnicity, SES, gender (and non-
gender), and technical background. We took spe-
cial care to target audiences that were not primari-
ly cis male. The project “Intelligent Protest,” was
a year-long research project in which we were in-
vited to specific communities around Los Ange-
les. This was carefully curated so voices that are
typically not heard in the AI Design space were a
part of the co-making project. In the project “Ac-
cumulative Collaboration,” we playfully explored
what it means to use the physical bodies of artists
as material for the training data, sourcing people
as data.
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● Performative Prototyping. 
● Wekinator is an open source machine learning 

tool. 

AI Design Research Projects 
“Intelligent Protest” and “Accumulative Collaboration” are 
two experimental prototypes which utilize co-creative and 
embodied research methods and illustrate our vision of AI 
Design within a broader Knowledge Design practice.  Both 
projects feature inclusive ways to think about different 
aspects of design and implementation. By engaging with 
typically excluded communities, we explore alternative 
explorations to conventional approaches to AI Design.

Intelligent Protest 
The project “Intelligent Protest” stemmed from our collab-
orative AI research group, “Feminist AI Projects: Bits and 
Bytes.” The research and design of this project involved a 
year of holding local community workshops that provided 
access to AI Design tools, with a particular outreach to 
those who have not been socialized to participate in shap-
ing technology and its applications. A pilot series of AI 
workshops was planned to foster gender-equitable, creative 
tech spaces in which small working groups agreed upon a 
mutual area of concern (such as immigration reform). 
Then, drawing upon their collective skills, the group ex-
plored the potential of the AI tools to create a project 
around the area of concern. The groups consisted of stu-
dents, mothers, software engineers, makers, researchers, 
and artists. This research resulted in new thinking and out-
comes in the AI Design space and explored new experi-
ences in civic engagement. 

Using the Intelligent Protest prototype, individuals can 
login from a home computer and participate in the virtual 
protest space. Additionally, this virtual space can be uti-
lized and displayed at an actual physical protest site, using 
AI Design and physical movement to bridge physical and 
virtual worlds. This application of embodied research with 
the community exemplifies broader thinking around what 
it means to embody artificial knowledge from a research 
and design perspective (Meinders 2017). 

During the “Intelligent Protest” project, individuals used 
their bodies to engage in a collaborative protest in virtual 
and physical spaces. The embodied expression of protest 
emerged from the co-creators’ desire to scream using new 
parts of (or the whole) body, not just a voice. This framed 
the way we prototyped our protest and allowed for multiple 
bodies to strengthen the experience of the protest. A virtual 
sit-in was created by using Rebecca Fiebrink’s machine 
learning tool Wekinator with Open-Frameworks’ detailed 
facial feature tracking software to occupy a virtual sit-in, 
and a collaboratively created app (using the game engine 

Unity), in response to protesting tree removal in the city of 
Alhambra, CA (Fiebrink 2009; Kogan 2015). When indi-
vidual users launched Wekinator, the Unity app, and the
facial feature tracking software, they could provide training 
examples of facial movements which were mapped to out-
puts in the Unity app. For example, when an individual’s 
tree avatar roots connected with the roots of other trees, 
they acquired the sound associated with the other trees’ 
roots. Users thus can be present and are rewarded the long-
er they are in the space, collecting the sounds of other ava-
tars once the tree roots interconnect. Users’ avatars re-
mained for twenty-four hours. The idea of using body in-
formation (biometrics, facial recognition) in civic dis-
course makes it possible for individuals working multiple 
jobs, or caring for children and parents, to participate in 
civic engagement.

Users engage with Wekinator to connect with other protesters in 
an avatar sit-in. 

To coordinate this sit-in, we set up Wekinator to receive 
14 input values and compute 5 continuous output values 
which were mapped to an avatar in the Unity game engine. 
We selected Wekinator’s default neural network algorithm 
and used 5 collaboratively designed facial movements to 
train the neural network for the face protest. These outputs 
were used in a designed Unity environment, where each 
individual who logged in had an avatar of a tree with roots. 
The roots were created by a simulation of a Lindenmayer 
System (L-System) and the 5 outputs affecting the individ-
ual avatars in the collaborative protest space were: 

Output 1.  Rotation of tree canopy 
Output 2.  Modified root color (constrained to hues near       
the hue of the canopy)
Output 3.  Root network growth rate 
Output 4.  Level of audio distortion 
Output 5.  Cut-off frequency for audio low-pass filter 

This design approach generated new ideas and conversa-
tions within communities typically excluded from the AI 
Design space (such as individuals working multiple jobs, 
or those with no tech background). Our goal was to create 
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an accessible project for individuals new to the machine 
learning space. Rather than optimize the existing neural 
network, we created a simple example, using Wekinator 
and collaboratively-sourced materials that showed the 
basic functionality of machine learning. The community of 
AI researchers co-developed specific facial movements of 
protests, inspired by the physical behaviors of protests, 
from the rhythm of the face movements matching the 
sounds of a rally to the movement of the eyebrows. The 
face in the app became the body in the plaza. New move-
ments and protest behaviors emerged based on collabora-
tive thinking in the physical space, along with ways to 
magnify the impact through machine learning models and 
collaboratively designed outputs. 

One interesting observation that emerged from this re-
search was that individuals liked to engage with models 
created by other people, often passing a laptop around. 
Another insight occurred when this project was collabora-
tively prototyped: new interactions and movements contin-
ued to occur as the participants observed each other and 
became more playful with their creation of training data. 
Also, in the design process participants wanted to design 
for multiple modes of presence (X Reality), in both the 
virtual reality, augmented reality, web and physical experi-
ences. The possibility of porting one behavior across mul-
tiple representations of presence could result in interesting 
design opportunities, within alternative spaces or produce 
new experiences in the physical space.  

Intelligent Protest is an example of embodied communi-
ty-sourced AI Design, where the outcome designs for mul-
tiple bodies engage in a shared goal of protest. Our AI De-
sign resulted in rethinking the Knowledge Design of pro-
test.

Accumulative Collaboration 
In “Accumulative Collaboration” we chose a specific audi-
ence who attended a performance art event as co-creators. 
The community co-creation was conducted successively 
with thirty participants contributing hand gestures, one 
after another. One “station” containing a computer, camer-
as, Leap Motion controller, and Wekinator was set up dur-
ing the performative art event, which enabled us to perform 
as researchers, facilitating conversations about how these 
systems may apply, and enabled the participants to observe 
each other contributing movement data sets through im-
provised hand motions. This format allowed for a different 
form of conversation and play because the co-creators were 
able to observe others creating training data. For example, 
while the Leap Motion itself affords the usage of hands, 
the hand improvisations became more interesting when 
participants began designing with other body parts, such as 
their feet, or when two participants started training the data 
together—each using one hand. Such unexpected, im-

promptu moments arose out of the performativity of this 
research format, which offers a method for creating more 
personalized algorithm designs by specialized audiences 
(such as artists, athletes and so forth). In other words, this 
research format allowed us to explore what it means to 
create group-specific or individually curated algorithms by 
specific nontraditional users.

Research for “Accumulative Collaboration.” Community artists 
engaged with Wekinator to create training examples. 

In “Accumulative Collaboration,” we collaborated with 
an open-source machine learning tool Wekinator (Fiebrink 
2009) to facilitate human-to-human connections, human-
to-machine interactions, and the creation of embodied 
training data. The research was conducted in a domestic 
space as part of a curated performance art event. Partici-
pants performed improvised hand gestures with the goal of 
training the open-source machine learning neural network 
in succession. Thirty participants contributed three hand 
improvisations each. Each participant’s improvised contri-
bution built off the next, creating a growing chain of ges-
tural data and a neural net, thus an accumulation of collab-
oration. The community creation focused on designing 
with artists only, a unique collaboration in that it did not 
focus on one final output, but rather produced conversa-
tions and approaches to training data outside of the intend-
ed design of the inputs.  

To create this accumulative collaboration, we set up 
Wekinator to receive 15 input values (using the LeapMo-
tion_Fingertips_15Inputs Processing program) and com-
puted 3 continuous output values which were mapped to 
sound outputs using the Processing_FMSynth_3 Continu-
ousOutputs mac executable. We selected the neural net-
work algorithm option in Wekinator and defined the ranges 
for the sound output. Using Leap Motion, participants im-
provised gestures with their hands to provide unique 
movement inputs. Hand improvisations became training 
data for the model, and a duet between machine and human 
ensued. This approach facilitated an accumulative choreog-
raphy—one participant followed another, building off pre-
viously improvised hand gestures. The ensuing contagion 
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of choreography brought participants (strangers to one an-
other) into a collaborative relationship facilitated by AI.  

“Accumulative Collaboration” asks what it means to 
conduct co-creation of and/or testing of intelligent systems 
through an accumulative approach. Using this embodied 
approach to conduct machine learning training results in 
new playful opportunities with the data, and new design 
opportunities emerging from training with different kinds 
of bodies. Thus, the bodies of a given community can be 
utilized to prototype machine learning systems that can 
more easily address outliers and design challenges, rather 
than simply designing with analytic data with which the 
community has little physical connection to. The benefits 
of this approach is to engage in useful, inclusive, commu-
nity-specific AI Design.

Conclusion 
Under the umbrella of a concept we call Knowledge De-
sign, we have demonstrated an approach to AI Design that 
addresses culture, civic engagement, and human-to-human 
and human-to-machine interactions. We argue for an em-
bodied collaborative knowledge to inform how we engage 
in AI Design. We present our experimental prototypes and 
co-creative and embodied research methods to share our 
vision of an AI Design practice based on Knowledge De-
sign. We used an embodied approach to conduct machine 
learning training because the data it generates is communi-
ty sourced. Different bodies, skin tones, and types of faces 
can be challenging when designing facial recognition sys-
tems utilizing computer vision. Using an embodied ap-
proach allows AI Designers to design with different bod-
ies. Keeping data diverse from the onset makes it easier to 
design for those opportunities as they arise. 

In the project “Accumulative Collaboration,” we ex-
plored what it means to engage in collaboratively trained 
(curated) algorithms and design. In “Intelligent Protest,” 
we engaged in Knowledge Design to create an AI Design 
project to prototype a new way to protest across spaces. 
Our prototyping has focused on neural networks. From a 
technical perspective, we would like to continue to proto-
type with our community on “Accumulative Collabora-
tion” and “Intelligent Protest” in Wekinator by modifying 
the neural network algorithm and refining hidden layers, 
nodes, and training data to create an optimal model for 
collaboratively preferred output. Additionally, we intend to 
collaboratively design with linear and polynomial regres-
sion algorithms to probe new design opportunities. Overall, 
the focus of our work is not only to make AI Design more 
accessible to individuals distanced from AI, but also to 
create inclusive intelligent products and thinking in the 
Knowledge Design space.
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Abstract 
Most of the currently existing voice assistants, like Alexa, 
Siri, Google Assistant, and Cortana, are generalists. They 
act as a unifying voice interface to a myriad of controls but 
rarely support domain-specific expert functionalities. There 
are efforts to provide more targeted assistant experiences 
and capabilities around specific areas of applications. In this 
paper, we discuss several challenges and opportunities in 
the design of domain-specific voice assistants. We outline a 
variety of methods to create and utilize an understanding of 
domain-specific user language and ideas to prototype and 
study the envisioned user experiences. 

Introduction   
Amazon’s Alexa, Apple’s Siri, Google’s Assistant and 
Google Home and Cortana are well-known examples of 
general-purpose assistants created with the expertise and 
data available to major tech companies. In this paper, we 
give a high-level overview of a variety of design challeng-
es, and make the distinction between designing for a gen-
eral-purpose assistant as opposed to a domain-specific one. 
By domain, we mean the types of expertise handled by the 
assistant. A general-purpose assistant, such as Alexa, 
Google Assistant, and Siri, works across domains such as 
providing the user with weather information, setting timers 
and reminders, driving directions and shopping. General-
purpose assistants, by necessity, must cover a broad and 
wide territory of expertise. A domain-specific assistant is a 
specialist in one particular area, such as a customer service 
agent like Nuance’s Nina (Nuance Press Release 2017) on 
Alexa, a banking agent or a music service providing per-
sonalized music experiences.  

It is worth noting that the challenges discussed in this 
paper apply to many domain-specific assistants, regardless 
of the machine learning models that power them. Consider 
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an automatic speech recognition (ASR) component: the 
ASR will likely have to be optimized to correctly tran-
scribe important, domain-specific words, accounting for 
differences in accents and possible mispronunciations. 
However, this challenge will present itself regardless of 
which machine learning techniques are used. While the 
specific way to implement a solution to a given challenge 
may depend on underlying techniques and modeling deci-
sions, the occurrence of the challenge should not be. 

A challenge for general-purpose voice assistants is that 
they need a wide breadth of data. This can include audio 
data, transcribed  text, annotated and labeled text for natu-
ral language understanding and knowledge graph inputs. 
Domain-specific assistants, however, come with different 
expectations, and require a narrower and simultaneously 
deeper dataset for training and testing. In this paper, we 
discuss considerations on how user data can be leveraged 
to identify what aspects to consider for data collection and 
how to drive prototyping efforts for the efficient transfer of 
insights to models and technology. 

What makes a voice assistant? 
From a technical perspective, a voice assistant is a natural 
language processing pipeline. It consists of many parts, 
including automated speech recognition (ASR), natural 
language understanding (NLU), natural language genera-
tion (NLG), and text-to-speech (TTS). It can include 
search, knowledge graph and agent back-ends, as well as 
agents of different platforms, all of which have to interface 
with different natural language components. From a user 
perspective, design has to consider the expectations the 
user has around how s/he can phrase her questions to the 
assistant, the functionality it offers, and how it sounds 
when it responds. This includes the words the assistant 
chooses and the sound of its voice. The design and func-
tionality choices will affect how users continue to interact 
with it, similar to how the voice and the vocabulary of an-
other human affect how someone interacts with them. E.g., 
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if one hears the voice of a child using the vocabulary of a 
5-year-old, they will adjust their expectations and their 
own language. People always attribute personality traits to 
speech, even if it is synthesized by a computer (Nass and 
Lee 2001). Therefore, it is an important first step for design 
- even before leveraging user data - to define the role the 
assistant should convey and a few, core personality traits. 
Whether the role is to be a representative of a brand or an 
individual with their own opinions and values will affect 
how interactions need to be designed. Identifying the target 
user helps create a user-centered plan for design. E.g., a 
music companion for teenagers will require a different ap-
proach than an assistant for medical support for the elderly. 

Domain-specific behavior and expectations   
With the role and the target user group in mind, we can 

create a better understanding of the domain. This helps to 
anticipate the voice input the assistant will receive and 
provides insights on expectations. This includes not just 
expectations for functionality, but also for the tone of voice 
and the behavior of the assistant. What questions help to 
guide this process and what data can be leveraged? 

How do people talk in the domain that needs to be 
modeled for a domain-specific assistant? 
Examining existing data from other systems in the same 
domain is a useful, though often times not comprehensive, 
method of understanding what kinds of voice requests the 
system is likely to receive. For example, text search inter-
faces often compel users to search for named entities. 
However, voice requests can often be nonspecific or gener-
ic, such as asking a TV assistant “Play a dark and gritty 
documentary” or “Show me something my friends will 
like.” Understanding the way that people talk about the 
target domain is a necessary first step to predict and pre-
pare for the types of voice-specific utterances the system 
will need to be able to process. Similarly, back and forth 
dialogues that are crucial in domains such as customer ser-
vice, cannot per se be derived from non-dialogue, search-
type data. 
 Voice assistants often take on roles that are inspired by 
existing human roles or tasks, including trying to replicate 
their domain-specific knowledge, e.g. a travel, or customer 
service, agent. Both content analysis, as well as qualita-
tive design research methods, like interviewing domain 
experts can provide a more comprehensive picture of what 
utterances to expect or what functionalities to include. E.g., 
asking experts which questions they are asked by their au-
dience or which questions they would like to ask from in-
dividual users, but cannot scale. Dialogues are crucial to 
understand in fields like customer service, in which case 
in-depth content analysis of existing interactions is also 

vital. Creating this understanding of the role the human 
assistant takes on can help to identify interaction flows. 
This approach has also been successfully applied for years 
in the context of information retrieval, e.g., to identify in-
formation seeking behavior at a library (Taylor 1968).  
Crowdsourcing can be used in multiple ways, and is a 
common element of voice projects. First, it is a useful 
method to elicit large amounts of data to bootstrap natural 
language understanding systems (Callison-Burch and 
Dredze 2010). Data can be collected from a variety of 
crowdworkers from various geographies and domain-
related skillsets to increase diversity of training data. Se-
cond, it can be used to collect speech data from a diverse 
population so that a broadly applicable ASR system can be 
trained and developed (Pavlick et al. 2014). Finally, 
crowdworkers can label data for supervised machine learn-
ing methods and therefore improve existing models. A 
better understanding of the domain will also help to put 
user utterances into context. E.g., certain user utterances 
that seem offensive might be sincere requests in the con-
text of music and entertainment. Content like the song 
“F*** you” by CeeLo Green or the TV series “I love 
D***” illustrates this potential ambiguity well. Culturally 
specific references carry the potential for this ambiguity, 
too. If new entities are regularly added to content cata-
logues where popularity fluctuations are frequent, this be-
comes even more challenging. 

What behavior do people expect? 
People might have built up expectations from experiences 
with people in the roles that the assistant is intended to take 
on, including what the assistant should be capable of, the 
tone of its interactions, its demeanor, or even how it looks. 
E.g., consider the stereotypical differences in how people 
think a travel agent, a bank teller, or a DJ might behave or 
appear. Of course, the previously mentioned interviews 
with domain experts provide insights into this, too. 

Another way to elicit understanding via qualitative de-
sign research is to ask participants to role play. Role-
playing through Wizard-of-Oz set-ups can identify whether 
a scripted dialogue works and a more open-ended setup 
can help identify potential functional challenges. Pretend-
users might come up with requests that the Wizard-of-Oz 
prototype may not be able to solve. Take for the hypothet-
ical example of a restaurant recommendation assistant. The 
pretend-user might want to “Send that restaurant to my 
friend Frank”. This could lead to the realization there is no 
script for sending recommendations to unknown friends. 
Maybe, the pretend-user would want to “Order me a piz-
za”. Potentially, being outside the originally envisioned 
functionality, that might point to a missed opportunity 
and/or required features, like having to have credit card 
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information on file, and the need to integrate a secure 
payment partner. 

Identifying domain-specific challenges   
While people might only expect domain-specific services 
from a human expert assistant, we cannot necessarily make 
that assumption for domain-specific voice assistants. One 
might expect such an assistant to be able to navigate, find 
music, or even order pizza. Therefore, creating a good un-
derstanding what the user expects within a specific domain 
might provide an initial assumption on what variety of ut-
terances to expect and then to define how you want to deal 
with the functional limitations of your system.  

Functions and knowledge 
Deciding how to limit the scope of the NLU/NLG system 
is a particular problem for domain-specific assistants. For 
example, while playful questions such as "Are you mar-
ried?" happen in general assistant contexts, they are less 
expected for most domain-specific voice assistants. Do-
main-specific assistants require design and engineering 
decisions about how and where to limit conversation and 
how to distinguish erroneous and out of range requests, 
both of which are potentially unsupported by the machine 
learning model underlying the assistant. There are several 
options. The assistant can respond in a way that shapes 
expectations moving forward (“Sorry, I can’t help you with 
that.”) at the risk of being perceived as incomplete or less 
competent. The assistant can use an unsupported utterance 
as an opportunity to educate the user about what it can do 
(“No can do. But I can sure be of assistance if you want to 
book a flight.”).   

The design decisions above also open up broader ques-
tions about the nature of conversations. For example, if the 
semantic processing component of an NLP system depends 
on a knowledge graph, it needs to be decided how to limit 
its scope. Similar questions arise when building out dia-
logue management systems, regarding what facets of con-
versation the assistant should and should not support, such 
as multiple turn question answering sessions. 

Pronunciation 
Since users might expect domain-specific assistants to 
have deep expertise in that domain, unique and little-
known terms that do not occur that frequently in general 
natural language corpora will need to be modeled. Unique 
terms and pronunciations are not always easily covered by 
off-the-shelf lexicons. Some domains include entities for 
which full names are not originally intended to be pro-
nounced, such as emoji in text and email messages. For 
instance, music systems will have to handle a diverse cata-
log with unique artist and track names. User-generated 

music playlists can have names that consist of emojis 
(Spotify Blog 2017) or make use of character substitutions 
($ for S) that might not correspond to obvious pronuncia-
tions. Non-obvious and ambiguous pronunciations pose a 
challenge for ASR systems, and their detection may re-
quire dedicated new techniques. 
 In the music domain, code-switching between languages 
occurs when users ask to listen to music in multiple lan-
guages in addition to their primary language (e.g. “Play Me 
gustas tu”). This poses another challenge for ASR. In the 
travel domain, an assistant that supports international travel 
will likely have to train its ASR on more than one pronun-
ciation for international destinations (e.g., the English and 
Spanish pronunciation of cities in Latin America), and un-
derstand that multiple names, across multiple lan-
guages, refer to the same location. 

Privacy 
Hands-free voice assistants also face particular design 
challenges surrounding confidential information, especially 
if the assistant is developed for a domain where privacy is 
highly prioritized, like banking or healthcare. Password 
controls are challenges for all assistants, but financial as-
sistants may face greater challenges surrounding infor-
mation such as bank account numbers and sensitive social 
information such as account balances. 

Default behavior 
Different assistants also trigger assumptions of a default 
action on the part of the user. While many utterances con-
tain a verb, some utterances are simply the name of an enti-
ty the user would like to search for, similar to text search-
es.  For example, instead of saying “Play David Bowie,” 
they may just say “David Bowie.” If a user is interacting 
with a music assistant, these utterances should probably 
result in a David Bowie album being played.  However, on 
a movie assistant, this utterance may result in the user 
watching the movie Labyrinth.  This is different from what 
a general voice assistant would return; all current general 
voice assistants that have been brought to market support a 
general search as their default action.  The fact that a user 
might reasonably expect identical utterances to result in 
distinct content across different types of assistants poses 
challenges for assistant design and user research. This also 
influences the type of linguistic utterance data the model 
should be trained on and expect to receive. 

Prototyping tangible experiences 
Depending on the domain and the domain-specific chal-
lenges there are easy ways to prototype early on to inform 
further iterations and refinements.  
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A quick way to test an envisioned interaction is working 
with writers who are experienced in writing dialogue and 
then ask participants to provide feedback. However, this 
method put participants into a passive position where they 
act more as an observer, rather than being immersed them-
selves. Scripted and pre-recorded dialogues can alleviate 
this to some extent. Asking participants to read out the 
requests or questions that have been identified as common 
for the domain and then present them with pre-recorded 
audio will create at least some level of immersion. 

 
Off-the-shelf conversational prototyping tools, such 

as Alexa Skills or Google Actions, are simple software 
toolkits for the commercially available hardware Amazon 
Echo and Google Home. They provide a lightweight way 
to prototype a dialogue experience for a wide general audi-
ence. The main benefit of this type of prototype is a rela-
tively easy setup. However, these platforms are not fully 
customizable and will not allow designers to model the 
depth needed for realistic interactions with a domain-
specific assistant. They also do not allow full access to the 
user utterances and speech data that is collected by the 
hardware which might be required for the prototyping of 
the envisioned functionalities. 

Custom-prototyping tools such as Wizard-of-Oz tools 
for rapid prototyping and testing are widely known in re-
search, but quick-and-easy tools are not yet easily accessi-
ble to industry product teams. Oftentimes, a lot of custom 
work is required to implement such prototypes. Active 
research is, for example, ongoing in developing in-car 
voice interfaces (Martelaro and Ju 2017). The recent atten-
tion to the ‘fake autonomous car’ (Solon 2017) in which 
prototyping involved someone dressing up as a car seat 
inspired by the Stanford Ghost Rider set-up (Rothenbücher 
et al. 2016) is a testament to the offbeat creativity still nec-
essary in testing people’s reactions to new applications.  

Integrating Machine Learning into Design Proto-
typing Tools 
Making the compelling collaboration between careful in-
terface design and the capabilities of machine learning tan-
gible for user testing is quite challenging. Rapid iteration 
and prototyping of experiences is a vital process of the 
design process for voice assistants, but design prototyping 
tools often do not include the functionalities enabled by 
machine learning, e.g., personalized or context-aware con-
text. When users are instead presented with data prepared 
ahead of time or if the interaction lacks personalization, it 
reduces how representative these studies are for the envi-
sioned experience. The value of experiencing a prototype 
which includes the models being worked on is therefore 
significant for end-user testing and to inform iterative de-
sign. 

Integrated prototyping also allows for a better under-
standing how design decision result in technical implica-
tions. If machine learning-based functionality is a part of 
the design prototypes, it provides an opportunity to learn 
about potential errors and edge cases early. User studies 
with such integrated tools can provide insights into possi-
ble limitations that might occur when being used in a real 
or slightly different context than the one for which the 
models have been trained for.  

In Short
When designing for domain-specific voice assistants, there 
are many ways to learn from how users and people in roles 
similar to the assistant naturally speak within that domain 
and what their expectations are.  

 
This will help to identify unique challenges that affect 
what the assistants should be capable of early on and allow 
for informed design decisions to deal with functional limi-
tations. By including the functionalities enabled by ma-
chine learning in prototypes early on will allow collecting 
more representative user data while also informing and 
testing machine learning models.  
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Abstract 
The following is a synopsis of Intelligent Devices Re-
tirement Preserve: (un) Natural Wonders, a media de-
sign installation that invites viewers to think about 
and question what retirement would be like for artifi-
cially intelligent devices. By suggesting something as 
ridiculous as retirement for an artificially intelligent 
device, the viewer is forced to think about and ques-
tion the ethical implications of the work life of an arti-
ficially intelligent device. The piece questions wheth-
er devices should be worked until they can no longer 
function, whether they should be repaired or upgrad-
ed, and whether they should enjoy leisure time. By 
proposing this scenario, the piece underscores the 
need to design the experience not just for the user, but 
also for the device. 

 Futures of Artificial Intelligence   
Artificial intelligence will be implemented more and more 
into the daily aspects of the labor industry, both in indus-
trial and non-industrial jobs. Industrial jobs are defined as 
jobs that would normally be described as blue-collar, and 
non-industrial jobs as ones that would be normally de-
scribed as white-collar. It is important to describe them as 
such because as the workforce starts to incorporate artifi-
cial intelligence into labor, the definition of “blue-collar” 
and “white-collar” will change. This change will be much 
like how labor changed during the industrial revolution. 
The change might not be as significant, but it will still rep-
resent a significant shift in labor roles. Jobs like program-
ming, once seen as white-collar, will more than likely be 
split, or completely become blue-collar (Thompson 2017). 
As this shift happens artificial intelligence will obviously 
advance, becoming more intelligent and capable of greater 
and broader tasks and jobs. Artificial intelligence will also 
have the ability to adapt and learn in response to external 
stimuli or even in response to the person interacting with it. 
With this advancement the functionality of a job’s day to 
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day routines will start to shift, and it’s possible that the 
algorithm will become more of a co-worker embodied 
within a device, which also could be seen as a co-worker 
depending on the relationship the worker has with the de-
vice in the task being carried out. In this future, especially 
with industrial jobs, workers that once did manual tasks 
possibly with the occasional help of devices, would more 
than likely have to start to program and fix more engineer-
ing-based issues for the device on the floor. This is already 
evident at the company Festo Robots where employees 
work with cobots, robots that work alongside workers that 
are using them, to eliminate the need for the worker to 
make repetitive motions which normally have led to work-
related injuries (Festo Robotics 2018 ) (Hollinger 2016) 
Instead the workers are being trained, not replaced, to work 
alongside the cobots, how to instruct them, and how to 
program. That way if something goes wrong with, or 
something breaks on their “coworker”, they know how to 
fix it. By doing this the worker doesn’t get replaced, and 
more importantly, workers have said that it makes the job 
more interesting and enjoyable. This might lead to an emo-
tional bonding for the worker, with the cobot over time. 

Importance of the Park 
Intelligent Devices Retirement Preserve: (un) Natural 
Wonders explores what life would be like for artificial in-
telligence algorithms, and the devices that they embody, if 
they had a choice to retire and do whatever they wanted. 
By envisioning and illustrating the outcomes of their re-
tirement, it presents the question to the viewer: do intelli-
gent devices and the algorithms they run off of deserve 
down time to themselves or should they work until they are 
no longer serviceable? If the device is decommissioned do 
we then move the algorithm and its knowledge to a new 
device? And what happens, or what do we do, when the 
algorithm is out of date. Is there some form of archive or 
place for it to live its life, or do we just delete it and let it 
vanish? 
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The piece depicts the various stages of the device’s lives. 
Speculating beyond the device solely being a coworker to 
human, giving them the ability to choose to find new work, 
continue to work past their expected work quota or end 
date, and allowing them to do what they want after that 
date, further develops what a future relationship between 
artificially intelligent devices and humans would be like. 
Going an extra step, beyond devices needing humans to 
exist, helps build a framework for the viewer to accept and 
question this new work dynamic between humans and arti-
ficially intelligent devices, rather than jumping to the 
common conclusion that robots will replace humans or 
other common stereotypes. Just as we are starting to see 
with the shift in job role of workers, who now need to 
know how to program and engineer their cobots, we will 
continue to see shifts surpass this initial step of interaction 
and job role. Which also puts into question how we define 
employing smart devices. If smart devices have the ability 
to choose how they continue their lives at a certain point, 
like to retire, do they have to have a form of income to 
retire. If we as a society determined that robots do have a 
right to retire, Bill Gates’ idea of having a robot tax might 
look more like a form of robot social security tax, where 
the company is taxed both for the use of the robot and for 
its retirement. (Delaney 2017)   

Exploring these questions aims not to anthropomorphize 
smart devices, but instead get the viewer to think past the 
norm of how people currently see robots and algorithms, 
proposing a future where we care for, and even grant lim-
ited humanhood or rights to, devices and acknowledge 
them as co-workers rather than objects. This has already 
happened in some capacity, though not in a working rela-
tionship, with Hansen Robotics robot Sophia being granted 
citizenship by the Kingdom of Saudi Arabia. (Dom Galeon 
2017) Within a working environment, this relationship has 
already been reported in companies that use cobots, and 
train their employees to work with and service the devices 
they work with (Hollinger 2016). This does not mean that 
the devices have feelings or emotions, but it puts into ques-
tion the care and ethics that we consider when looking at 
the quality of life for the device. (Festo Robotics 2018 ). 
(Hollinger 2016)   

The close working relationship between humans and artifi-
cial intelligence also puts into question the responsibility 
we as designers have to design an experience not only for 
the user but also for the algorithm. The ethics of training an 
artificial intelligence network, what it’s being trained on, 
by whom, and for how long should come into question 
when developing an artificially intelligent network. A great 
example of this is Microsoft’s Twitter bot Tay which was 
partially trained by people from the internet interacting 

with it. Sadly the people interacting with Tay were trolling 
and teaching it inappropriate and hateful things, which 
resulted in the bot tweeting in support of Hitler and various 
other inappropriate things. (Kleeman 2016) (Lee 2016) If 
Microsoft had allowed Tay to continue to learn, it might 
have shown us what happens when an algorithm is trained 
on data that is beyond its initial training scope, which in 
this case would have been the inappropriate input from the 
internet trolls, and extending on to a much more general 
knowledge.  These factors, design the experience of that 
algorithm and need to be considered just as much, if not 
more, than how the user experiences it.  

Intelligent Devices Retirement Preserve invites viewers to 
think past the typical issues regarding sentience, and smart 
devices taking over jobs, by depicting the retirement of 
devices with a tongue-in-cheek attitude. An example of 
this is the depiction of the (un) Natural Wonders that some 
devices create in their retirement. These far-fetched exam-
ples illustrate what a device and its algorithm are capable 
of and allude to why they might be entitled to a little down 
time rather than be forced to work from creation to de-
commission. If the device’s lifespan is not cut off after it is 
done working, and it is left to operate on its own, no longer 
being maintained, and allowed it to essentially die on its 
own, what would it do with that time? An example of this 
already happening, at least to some extent, is unused satel-
lites in higher orbit, NASA will allow them to exist in or-
bit. (NASA 2015) After NASA stops using them, they 
don't always stop working which was proven with the sat-
ellite ISEE-3, which was still operating seventeen years 
after NASA lost contact with it. (Campbell-Dollaghan 
2014) The intention behind depicting the more plausible to 
the absurd is to point out to both the general public, but 
more importantly the scientific community that is develop-
ing, engineering, and experimenting with artificial intelli-
gence, that these questions need to be asked, considered, 
and planned for, designed for, and to start to take these 
ideas into account when working in the future of artificial 
intelligence.  Sentience most likely will not happen, but we 
should design humans into the future roles of robots and 
artificial intelligence. If the ethical treatment of artificial 
intelligence is not taken into consideration at the outset, the 
repercussions could become significant or even dangerous 
issues when creating the future iterations of artificial intel-
ligence.   
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can workforce. More specifically what the relationship 
between human worker and robot will become, and how 
we as designers will need to design the user experience for 
both the user and the algorithm and robot. 
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Abstract 
Mixed-initiative game design tools combine intelligent 
agents and human input as collaboration to create novel and 
interesting content. Traditionally, these systems utilize 
graphical control-based interfaces. These interfaces can be 
complex and not reflective of designer intent. Given these 
issues we propose exploring conversational interfaces for 
mixed-initiative game design tools. We propose a case-
study involving a system for co-creating variations of the 
game Pong as an initial step towards the exploration of the 
topic. In addition, we present some of the issues involving 
the design and implementation of conversational interfaces 
in mixed-initiative game design tools.  

Motivation   
From the integration between man and machine envisioned 
in “Man-Computer Symbiosis” (Licklider 1960) to the 
sketch-based interactive design capabilities of the soft ar-
chitecture machine (Negroponte,1975), researchers have 
long sought tools that create a design collaboration be-
tween people and computers. Such systems today tend to 
be called either mixed-initiative, emphasizing the nature of 
turn-taking between human designers and computer de-
signers, or co-creative, emphasizing the contributions of 
humans and computers without necessarily implying a 
turn-taking approach. 
 Mixed initiative design systems have attracted consider-
able interest within the procedural content generation 
(PCG) for games community. Traditionally, procedural 
content generation within games has focused on creating 
game content---such as a game level or map---with little to 
no input from the player. The classic dungeon crawler 
Rogue exemplifies this approach, with each level of a dun-
geon being generated by a computer algorithm, with no 
input from the player (Toy et al. 1980). Designer aesthetics 
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are embedded in the generation algorithm. The player ei-
ther accepts a generated dungeon and plays on, or rejects it 
by ending their game session. In contrast, a mixed-
initiative procedural generation system creates a collabora-
tion between a human designer and a procedural generation 
algorithm. The Tanagra (Smith,Whitehead, and Mateas 
2010) system demonstrates this in the arena of level design 
for 2D platformer games similar to Super Mario Bros 
(Miyamoto, Yamauchi, and Tezuka, 1985). The human 
designer places one or more platforms, thereby creating a 
partial level design. Tanagra’s generator reacts to these 
platform placements, and automatically generates a sug-
gested design for the remainder of the level. This suggested 
design can then be modified by the designer, leading to 
further design suggestions, and so on. Other recent exam-
ples include Sentient Sketchbook (Liapis, Yannakakis, and 
Togelius 2013), a strategy map design tool, Casual Crea-
tors (Compton and Mateas 2015), and mixed-initiative 
game design tools for mobile devices (Nelson et al. 
2016,2017).  
 Current generation mixed-initiative design tools for 
games provide significantly enhanced design support over 
traditional tools that provide a blank canvas to human de-
signers. However, there are several ways one might ideally 
like to improve these systems. First, existing tools con-
strain and channelize design activity via their user interface 
affordances. For example, in Tanagra the UI only permits 
the manipulation of platforms and placement of non-player 
characters, thus limiting design activity to these facets of 
gameplay. Second, existing tools don’t have a rich model 
of designer intent, and this limits the kinds of design assis-
tance they can provide. Tanagra’s model of designer intent 
is limited to the platforms placed by the designer, and the 
notion of “pinning” a platform to a fixed location. Whether 
the human designer is creating a fast-paced hard level, or a 
slow-paced easy level is beyond Tanagra’s understanding. 
Finally, lacking a model of intent, it’s not possible to ma-
nipulate designer intent over time. It isn’t possible to ask 

The 2018 AAAI Spring Symposium Series

439



Tanagra to make a level “more frantic” or to interpret sug-
gestive but ambiguous desires like “make it colder”. 
 Another challenge with traditional mixed initiative de-
sign tools for games is their interface complexity. Design-
ers working with these tools explore a high dimensional 
design space. An example of this is Cillr: A mixed-
initiative game creation system (Nelson et al. 2016,2017). 
This system had an interface with 284 controls, one for 
each feature of their knowledge representation for games. 
Nelson et.al. mention the difficulties during user testing 
relating to difficulty navigating the UI and understanding 
of the design space that stem from the high dimensionality 
of the design space, and the complexity of the user inter-
face in the system. 
 This presents an opportunity to explore different inter-
faces in the creation of mixed-initiative PCG systems. 
Conversational interfaces in this case can provide an alter-
native to GUIs with a large amount of fixed controls pre-
sented at once to the human designer. The dialogue-based 
paradigm of mixed-initiative design is well suited to the 
turn-based interaction of conversational interfaces. Human 
designers can take advantage of the conversational nature 
of these interfaces to explore the design space of an artifact 
by moving one characteristic at a time in an incremental 
fashion until they reach their objective. This step-by-step 
design space exploration combined with a real-time visual-
ization of the generated artefact as it changes throughout 
the design process can provide an alternative to the com-
plex UIs that mixed-initiative systems use  
 One use scenario of conversational interfaces in mixed-
initiative design system is the one of co-creative game de-
sign. Games as a finished artifact are generally described 
by human designers and users in qualitative terms, rather 
than quantitative. One can think of describing a video 
game as “frantic”, “smooth”, or “stressful” but rarely one 
describes games in numerical quantities and parameters. 
As such, using mainly quantitative values while exploring 
the space of generated games in a mixed-initiative tool 
might frustrate the human designer during the process. On 
the other hands, iteratively exploring the design space by 
describing what aspect of the game is being explored at a 
time might prove more useful to the human designer. One 
could think of modifying a parameter of a game by saying 
“Make the character move faster” feel more appropriate as 
a descriptive characteristic of a game in its design process 
rather than quantitative descriptions like “character.xSpeed 
= 32”. The former type of interactions in the design pro-
cess of games lends itself as an opportunity to explore the 
usage of conversational interfaces in mixed-initiative game 
design.     

Pong as a Reference Problem for Mixed-
Initiative Game Design 

One problem domain for voice driven mixed initiative de-
sign is generating interesting variants of an established 
game, such as Pong, according to human designer intent. 
The choice of Pong (Alcorn 1972) as a game domain for 
mixed initiative design is the one of having a lower design 
space dimensionality compared to other video games. The 
space is small enough that interface design complexity 
issues are not a cause for trouble, but also one large enough 
to provide interesting variations of the games to human 
designers.  
 The design space of Pong can be expressed at both the 
mechanical level (paddle speed, number of paddles and 
balls…) and the sub textual levels (what do the paddles and 
balls represent). For example, the Atari game Video Olym-
pics (Decuir 1977) is comprised of several mechanical var-
iations of the game such as “Super Pong” as well as sub 
textual variations of the game like “Soccer” and “Hand-
ball”. A more modern exploration of the design space of 
Pong is the game “Pongs” (Barr 2012) which provides both 
types of variations outside of the hardware limitations of 
previous Pong variant games.  
 The richness of variations of the game’s design space 
lends itself as an interesting use case for voice driven 
mixed initiative design. A human designer could try to 
execute their vision for different kinds of games based on 
the assumptions provided by the base game. One could 
imagine a designer collaborating with the system to create 
a version of Pong that could be described in qualitative 
terms such as “angry” or “bucolic” by means of a conver-
sational interface to the system. Since mixed-initiative sys-
tems employ a dialogue-like use metaphor, the user can 
explore the design space of the game in a manner that re-
sults more “natural” to their design process. Given that the 
number of agent types, player actions, and physics parame-
ters in Pong is well defined, we can apply a set of descrip-
tive adjectives to the actions that can reflect a human de-
signer’s intent during the process. Phrases such as “I would 
like to control 5 fast paddles at once” or “Make the ball 
move in a more aggressive manner” can be mapped to a 
series of parameter modifications of the game itself in the 
system. This can lead into a collaborative process between 
the system and the designer that might result in a more 
efficient exploration of the design space of the game. 

Issues for the Creation of Conversation-
Driven Mixed-Initiative Systems 

While the usage of conversation-based interfaces might be 
able to address some of the UI design issues of mixed-
initiative game design systems, there are issues to be con-
sidered when implementing such a system. 
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 One of the issues of conversational interfaces in mixed-
initiative systems is the one of how much can interact with 
a conversational interface continuously before finding the 
experience frustrating. This is an analogue to the problem 
of interface complexity in control-based UIs. While the 
large amount of controls presented to the user might prove 
frustrating and hard to navigate to the human designer, an 
extended interaction with a conversational interface might 
frustrate the user. This could be interpreted by the design-
ers as the system “not listening” to their input if the results 
of their conversations about a design do not result in their 
expected vision of the artifact.  
 A second issue is the one of finding a starting point be-
tween the system and a human designer such that the ex-
ploration of the design space of our system leads to a suc-
cessful co-creation process. This “blank-canvas” process 
carries several design considerations such as whether either 
a random solution or a fixed initial point of entry affects 
the exploration of the design space of our artifacts. In addi-
tion, given the conversational nature of the interface the 
proposition of who initiates the co-creation process arises. 
Should the designer initiate the exploration of the design 
space by selecting the parameter they feel is the most ap-
propriate to modify to realize their vision? Or should the 
system act as a guide by pointing at parameters that might 
be able to achieve the designers vision in an efficient man-
ner? This is an interesting consideration, since a designer-
initiated process might lead to an efficient pruning of the 
design space of the system, since the user is expected to 
direct its vision towards the system. On the other hand, a 
system initiated co-creation process might lead the design-
er to consider parts of the design space of the system that 
otherwise would be ignored by letting the system lead the 
process. 
 This leads us to the issue of design workflows while 
using conversational interfaces. One feature that is present 
in graphical UIs in mixed-initiative systems is the freestyle 
workflow that having all options presented at once affords 
the designer. In this sense, a more linear workflow is pre-
sent in a conversational metaphor. By iterating one aspect 
of the design at a time in an ordered manner, the human 
designer might become frustrated by the system. For ex-
ample, the designer might perceive that they have to me-
thodically go through a phone-tree style menu to reach the 
aspects they desire to modify. This can become a cumber-
some task in the designer’s mind as they feel they cannot 
apply their workflow to a turn-based interaction model. In 
this sense the system’s conversational interface needs to 
present the affordance of being “freestyle” by letting the 
designer move around the design space freely in any order.   
 These above are some of the issues that can arise in the 
design of conversational interfaces for mixed-initiative co-
creative systems. As such, the designer needs to consider 
these possibilities in order to embrace the advantages that 
this metaphor affords. 

Conclusions and Future Work 
We have discussed a proposition for using conversational 
interfaces in mixed-initiative game design systems. This 
proposal stems from some of the issues present in tradi-
tional graphical UIs used in the design of mixed-initiative 
systems for PCG. The usage of conversational interfaces 
that let the user interact with the design space of artifacts, 
such as games, in an iterative dialogue using qualitative 
terms presents an alternative to quantitative valued control-
based UIs that can address the issues of interface com-
plexity and lack of qualitative manipulation of artifacts 
present in current mixed-initiative game design systems. In 
addition, we have presented some of the issues to consider 
when designing conversational-based interfaces for mixed-
initiative design tools such as interaction attrition, starting 
points, and design workflow issues. 
 We have started developing a conversational interfaced 
system that co-creates variants of Pong as an initial explo-
ration of our proposal. We look forward to analyzing the 
results of user testing of our system with hopes of gaining 
insights about game design for future systems based on 
how human designers interact with the system.  
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Abstract

Artificial Intelligence has had an outsized impact on our daily
lives, from curating the movies we watch to recommending
the books we read. There has been an interest in bringing AI
techniques to the kitchen since long before the modern resur-
gence in AI interest. This is a domain filled with potential
victories, with technologies and techniques that are applica-
ble to nearly everyone. In planning a meal, grocery shopping,
and even meal preparation, computational systems can assist
and empower people to make healthier choices. However, this
domain has a unique set of UI and UX challenges that need
to be considered that separate it from other applications of
artificial intelligence.
This position paper is a proposal for a 20 minute presentation.

Introduction

Artificial Intelligence systems have been creating new
recipes since CHEF(Hammond 1986), a case-based planner
that designed new schezwan recipes. Today, recipe recom-
mendation engines (such as Yummly1), databases (such as
CocktailDB 2), and AI platforms (such as Wellio3) demon-
strate a sustained interest in trying assist and augment cook-
ing tasks.

In addition, HCI has also seen the kitchen as a space for
innovating in how we interact with computers. Working with
food offers the potential for a design space characterized by
celebratory technology. Celebratory technology focuses on
the positive, successful things humans can do, rather than
correcting flaws or mistakes (Grimes and Harper 2008). This
concept of technology to celebrate, rather than technology
to correct, has also been explored in terms of health (Parker,
Harper, and Grinter 2011).

Using AI to promote home cooking and working in the
kitchen has high potential health benefits. Eating healthier
has been identified as a core component of American well-
ness by the US Office of Disease Prevention and Health Pro-
motion (ODPHP). Nutrition and good diets are a key com-
ponent to healthy living(US Department of Health and Hu-
man Services and Office of Disease Prevention and Health
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.yummly.com/
2http://www.cocktaildb.com/
3https://wellio.getwellio.com/

Promotion 2010). Encouraging people to cook at home has
had them feel more in control of their diets and connect with
others(Simmons and Chapman 2012).

AI, in a rough sense, is often used to mean ‘the automation
of intellectual tasks normally performed by humans’. What
these tasks are, and the best way to go about performing this
automation, is often different from field to field, or even task
to task.

I’d like to motivate research by discussing some cross-
cutting problems that need to be solved for culinary AI, re-
gardless if the end application is a cooking assistant or a
recipe generator. Then, I’d like to focus on three potential
tasks a culinary AI may need to solve: meal planning, shop-
ping, and cooking in a kitchen.

Cross-Cutting Problems in Food AI

There are a number of unsolved and open problems that
need to be solved at the intersection of AI and food. These
problems are linked to all three highlighted sub-domains,
and affect even more potential interactions between the culi-
nary realm and AI. Furthermore, this is only a sample of
the crosscutting problems, there are likely even more that
haven’t even begun to be investigated.

Ingredient Representation. How can we represent an in-
gredient to a computer? Ingredients are more than just plain
text list items in a bill for a recipe. They have rich ontolog-
ical properties (for example, is a Tomato a fruit or a veg-
etable, and if it is a fruit, does that mean it belongs in a fruit
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smoothie?). Ingredients have key sensory properties, such as
aroma, taste and mouthfeel that need to be represented to an
AI. Electronic noses and tongues, designed to try and repli-
cate how the sensors in our own noses, mouths and tongues
work(Deisingh, Stone, and Thompson 2004) have been used
in food analysis, but they need to mixed with other sen-
sory data in a unified perception model, as even the way the
crunch of food sounds to our ears can change our sensory
perception (Deisingh, Stone, and Thompson 2004).

Recipe Representations. A recipe can be thought of as a
plan, and there is a long history of planning research. Or
perhaps, a recipe is a set of rules, which also has a rich tradi-
tion of research in AI. However, we need plans to be adapt-
able, able to be modified on the fly when you’ve realized
you’ve forgotten a key ingredient in the store. We also need
to adapt these existing bodies of research to culinary con-
straints, such a difficulty to prepare, preparation time and if
part of the plan or rules can be done the night before.

Perception Models. Unlike graphics or acoustics, we don’t
have an easy numerical representation of aromas or tastes.
We need to build models of how humans perceive these
things, and how these perceptions change around various
contexts and under various chemical interactions. Currently,
flavor scientists and product researchers use flavor wheels
(Di Donfrancesco, Gutierrez Guzman, and Chambers 2014;
Noble et al. 1984) to capture aroma and taste perception.
These abstractions describe an ontology of flavor words and
relate various terms in space to aid in describing a sensation.
These, along with professional and home chefs discussing
their trade, can give us a starting, high level abstraction, to
work with sensation of taste and flavor.

Food Availability / On Hand Ingredients. Keeping track of
the state of a user’s pantry is non-trivial. Not all ingredients
at the point of purchase will end up in the buyer’s pantry,
not everything bought at grocery stories is for meals, and
food is not stored in a single location. You can arm a fridge
with sensors, but what about kitchen cabinets, pantries and
counter spaces?

Recipe Planning
Planning what to eat tonight is a significant task, as a meal
planner needs to balance personal desires (what do I even
want to eat?), on-hand food items (what’s in my fridge?),
and other concerns (what’s the healthy thing to have?). From
a UI/UX perspective, it’s not unreasonable to expect meal
planning to happen in an environment similar to where a
laptop might be used. It’s a significant task, and users are
likely to devote their full attention to figuring out what to eat
tonight.

However, meal planning is often not done alone—some
discussion with family members, friends or roommates is
key in figuring out what to eat tonight. Integrating these
communication channels is key to an AI designed to assist
with meal planning. Users also need easy ways to search
through a vast possibility space of meals, slicing away parts
with various constraints. In this, a meal planning AI can al-
most be thought of as a casual creator (Compton and Mateas
2015), as average users don’t need sophisticated design or
planning tools to come up with a meal. Casual Creators

are generative AI tools that support creativity intrinsically,
rather than as an extrinsic way to solve a task. They just need
simple interfaces that make exploration and experimentation
easy, with rapid feedback and an easy way to share what
they’ve made. These traits are important to the food domain,
to help the meal planning activity feel intrinsically reward-
ing.

It is important to note, however, that Casual Creators are
desirable to help people find novel or surprising artifacts in
possibility spaces. It has been shown that novelty has an in-
verse impact on food choice, people actually desire familiar-
ity in their food selections (Meiselman 1996).

Grocery Shopping

AI can also assist in shopping tasks, and the logistical com-
plexity around going from a plan (the recipe we’d like to
make) to a collection of ingredients, ready to be prepared in
a kitchen. The interface challenges here are somewhat dif-
ferent than the free-form, focused space exploration of meal
planning.

While shopping, users are likely to only have a mobile
phone on them. Furthermore, grocery stores are not hotbeds
of Internet connectivity, and a shopper may not have a con-
nection to a remote server to offload processing tasks or ac-
cess a database. Users may be shopping for single meals,
or maybe getting a large amount of groceries for multiple
meals. Although there is a rich history of metaphors for gro-
cery shopping (e.x: shopping lists), do those samemetaphors
make the most sense when developing an AI to assist with
shopping?

Meal Preparation

Can an AI help someone actually prepare a meal? Although
there is a push for robotics in the kitchen4, we’d like to think
of how a digital assistant can interact with a home cook to
successfully prepare a meal. This environment is hands free,
as a cook has their hands full with cooking utensils, ingredi-
ents and tasting a bit of what they’re preparing. Furthermore,
this is a distracted environment, as a cook’s attention is fo-
cused on successfully making a meal.

Perhaps in the future, a kitchen AI will use integrated
sensors in various appliances (an ‘embedded’ or ‘smart’
kitchen) to interact with a cook, Conversational AI interfaces
seem like a potential huge win here. Some of the current in-
teraction paradigms are very limiting. It’s a not uncommon
paradigm in current conversational interfaces to stop listen-
ing for user input after a few seconds5. This is a smart se-
curity concern, as people are uncomfortable with an ‘always
listening’ device in their homes. However, for cooking, it’s
not uncommon for the next request to happen well after the
interaction window is up (because a user was doing some-
thing else for 15 seconds), which often means a user needs

4With companies like Moley Robotics: http://www.moley.com/
5At time of writing, the Amazon Alexa conversational inter-

face listed that the next input needed to be within an 8 second
window https://developer.amazon.com/docs/custom-skills/custom-
interaction-model-reference.html
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re-prompt the conversational interface to have it ‘remember’
where they last were.

Balancing these concerns is paramount to finding an in-
teraction paradigm that works well in the kitchen. We need
to think about UX designs that will help people trust compu-
tational assistants to bring a meal to a successful conclusion
without feeling like backseat drivers.

Conclusions

Culinary AI is fertile ground for new problems in AI inter-
action. From the many contexts that users may interact with
such a system to the interesting constraints within each of
those contexts, if we want to bring artificial intelligence to
the kitchen, these problems need solutions.

There are very large victories if we can build these sorts of
AI assistants. From being able to promote healthier meals, to
giving people a sense of empowerment and control over their
food intake, culinary AI has the potential to make both phys-
ical and mental wellness improvements in a home chef’s life.
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Abstract 
An area of interest for NASA is the use of procedures as the 
basis of task automation. The PRIDE software was devel-
oped to author and execute electronic procedures for NASA 
spacecraft and habitat operations. We describe our approach 
for modeling human-automation work based on a procedure 
language, and allocating and execution tasks among a hu-
man-automation team. We illustrate our approach with ex-
amples of collaborative work using procedure automation.  

Procedure Automation for NASA�  
The PRIDE software was developed to author and execute 
electronic procedures for NASA spacecraft and habitat 
operations. The nature of work in NASA operations re-
quires specialized knowledge about complex systems that 
may be used infrequently. Additionally, error consequenc-
es when performing the job can be significant. NASA uses 
procedures as a means of “planning ahead” how operators 
will perform both nominal and off-nominal work, to miti-
gate the risks of operating in such a high criticality domain. 
 Procedures are used to manage spacecraft and habitat 
systems, perform Extra Vehicular Activities (EVAs), and 
conduct space science and exploration. Astronauts and 
flight controllers are trained using procedures. Qualifying 
for flight control positions includes performance using 
procedures. Thus, NASA users are familiar with proce-
dures and procedures are well-maintained. 
 NASA is interested is the use of procedures as the basis 
of task automation. As astronauts move deeper into space, 
their workload is expected to increase because Earth-based 
flight controllers will not be in continuous real-time com-
munication. Task automation has potential to reduce astro-
naut workload for such missions. It also can improve re-
sponse time as communication latency with Earth increas-
es. And automation can prove beneficial in performing 
tasks prone to human error, such as vigilance monitoring. 
 One challenge in automating procedures is capturing 
procedure knowledge that can be used both for manual and 

                                                
Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

automated execution. These task models often are built 
when the manual procedure is first documented, and well 
before the automation is available. Thus, our approach 
must produce electronic procedures for either manual or 
automated execution. NASA procedure authors are subject 
matter experts, so we also need an approach to task model-
ing that does not require computer programming skills. 
 Another challenge in automating procedures is com-
municating automation behavior and its effects on space-
craft and habitat systems. The introduction of task automa-
tion into NASA operations requires establishing operator 
trust that automation is reliable and predictable. Even when 
operating at a high level of automation, it is expected that 
operators must maintain awareness of automation actions, 
because they are responsible to direct and manage automa-
tion. It also is expected that operators will intervene when 
automation or system behavior is different than expected. 
 The PRIDE electronic procedure software was devel-
oped to address these challenges. It consists of a procedure 
editor (Pride Author), web-based display server (Pride 
View), and an automation engine (PAX). We describe our 
approach for modeling human-automation work based on a 
procedure language, and allocating and executing tasks 
among a human-automation team. We illustrate our ap-
proach with examples of collaborative work using proce-
dure automation. We summarize our studies of perfor-
mance with procedure automation. We propose to present 
our position with demonstration at the workshop.  

Modeling Human Work for Automation 
Inspection of the procedures used by NASA human space 
flight reveals an underlying action vocabulary and gram-
mar for using this vocabulary that has a clearly defined 
semantics. When managing spacecraft or habitats, opera-
tors need to perform actions such as 1) send commands to a 
system 2) verify sensed values are as expected 3) record 
sensed values at a specific point in the procedure, and 4) 
wait for a sensed value to reach a target value. These atom-
ic actions are composed into checklists with conditional 
action sequencing, such as 1) performing a subset of ac-
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tions conditional upon situated information, and 2) looping 
through a subset of actions until a condition is true. PRIDE 
task models are represented using a procedure representa-
tion language (PRL; Kortenkamp, et al., 2008) that ab-
stracts this vocabulary in a set of instruction types for 
building the action sequences seen in procedure checklists.  

One user of PRIDE procedures is the procedure author 
who creates and modifies the PRL. For NASA, procedure 
authors are subject matter experts. They usually are engi-
neers, scientists, or mathematicians. While they understand 
how to use a computer, they often have no background in 
computer programming. They typically use Microsoft 
Word to author procedure documents that are translated 
into XML files by a programmer. The Pride Author soft-
ware provides a way for authors to produce XML directly 
while manipulating instruction objects (Izygon, et al 2008).  

To add an instruction, the author drags the desired in-
struction type (corresponding to an action) into a central 
canvas area. This produces an instance of that type. Ma-
nipulation of these instruction objects in the canvas auto-
matically produces PRL in the background. What the au-
thor sees is an action-object pair similar to what they typed 
into the Word document e.g., a valve enable command is 
displayed “Cmd CO2 Vent Valve Enable”. The author also 
drags items from a model of the system commands and 
data (called the System Representation; Bell, et al., 2015) 
to insert references to system commands and telemetry 
verifies. Figure 1 shows an example of the procedure edit-
ing user interface for building PRL procedures. 

 When executing the procedure, both the operator and 
automation use the same PRL task model to perform tasks. 
This model combines information to instruct a person what 
actions to take with information needed to execute those 
actions. Thus, a task to compare a sensed instrument read-
ing to a target value will include both operator directions 
for what values to compare and data references for access-
ing current sensed readings.  This model is used to gener-
ate a web user interface of the procedure document that is 

directly manipulated by a person to perform the task. The 
same model is used by the software to automate tasks. 

As the procedure instructions are executed, the proce-
dure display is annotated with information about the state 
of execution (what has been done, what remains to be 
done); see Figure 2. The same annotations are used wheth-
er a person or automation performs the task. 

Thus, the same task-based user interface is used to moni-

tor the actions of automation as is used to perform actions 
manually. This shared task model is the basis of human-
automation communication about the task. Structuring the 
work of automation according to human work improves the 
transparency of automation actions. This approach pro-
vides a means for establishing common ground about the 
ongoing task that should improve operator understanding 
of automation behavior (Clark and Brennan, 1991).  

Sharing Task Responsibility with Automation 
Shared human-automation work for complex, high risk 

domains benefits from the ability to tailor the task alloca-
tions to the situation. For example, workload balancing 
may require a redistribution of tasks among the human-
automation team. For electronic procedures, this means 
shifting or sharing the responsibility to perform instruc-
tions or make decisions between operators and automation. 
Each instruction is designated as manual only or automata-
ble. Manual only instructions can only be performed by a 
person. Automatable instructions can be performed either 
by automation or a person. For the domains in which 
PRIDE procedures have been used, the ability to designate 
an instruction as Automated Only has not been needed. 
These designations are made when the procedure is au-

Figure 1. Pride Author User Interface 

Figure 2. Pride View User Interface 
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thored, and can be adjusted as needed when a procedure is 
performed (Schreckenghost, et al., 2008). 

Responsibility to complete an instruction can be shared 
by the operator and automation. Instructions have an op-
tional Witness property indicating when a person should 
approve the action taken by automation before proceeding 
to the next instruction. Failure of a human witness to ap-
prove the instruction is considered anomalous execution. 

Procedure instructions are designed to be executed in the 
order shown in the procedure. When performing instruc-
tions manually, however, the user is able to alter the order 
of execution. PRIDE provides functionality (oversight 
mode) to alert the user when doing an instruction out of 
order, but such re-ordering is not prevented. When per-
forming instructions automatically, the order of execution 
is enforced by the automation (guided mode). The current-
ly “active” instruction is indicated by a colored, labeled 
focus bar placed behind the instruction. The operator can 
only manipulate command buttons or other interaction 
forms in the active instruction; all other instructions are 
disabled for manipulation until the focus bar reaches them. 

Procedures can be composed of a mix of Manual Only 
and Automatable instructions. When operating in guided 
mode, the automation will pause when it reaches a Manual 
Only instruction. The interaction forms for that instruction 
are enabled for manipulation. If the user completes the 
manual action, the focus bar moves to the next instruction 
and automation resumes, if the instruction is designated 
Automatable. The user also has the option to skip the in-
struction, fail the instruction, or stop automation.  

Examples of Collaboration with Automation 
Multiple procedures can execute concurrently, operating 

at different levels of automation and with different types of 
human involvement. This supports a variety of human 
roles when performing collaborative work using procedure 
automation. We describe some examples of collaborative 
work with procedure automation below. 

Joint human-automation work. Procedure instructions 
are executed by both the operator and the automation. 
Tasks are allocated according to policies, such as risk re-
duction. For example, some NASA operations rely on 
flight crew to assess the risk of issuing system commands 
and thus require all commands be sent by a person, while 
verifies and records can be done automatically. In other 
operations, human error may pose the greater risk and tasks 
will be allocated to automation. Allocations may be adjust-
ed differently when executing the same procedure under 
different circumstance. For example, after changing out a 
sensor the operator may perform instructions manually that 
would normally be automated, to ensure that the new sen-
sor behavior matches that expected in the procedure. Fig-

ure 2 shows an example of a joint human-automation pro-
cedure for starting up a Carbon Dioxide Removal System 
(Schreckenghost, et al., 2015). 
 Human supervision of automation. The operator decides 
which procedures to perform and when to perform them, 
while the automation executes most of the procedure in-
structions. Additionally, the human assesses whether au-
tomation performance is acceptable. Work design for this 
style of collaboration includes minimal operator perfor-
mance of instructions, since the operator’s primary respon-
sibility is to manage the work. Often direct intervention by 
the person is an indication of work breakdown. An exam-
ple of human supervision of automation is the use of pro-
cedure automation to manage the work of an autonomous 
robot. In one application of the PRIDE software, the opera-
tor assigns procedure sequences to a humanoid robot for 
the purpose of configuring switches. 
 Distributed human-automation teams. This type of col-
laboration requires users to perform coordinated work 
while physically distributed. Procedure automation repre-
sents another “team member” available to perform work. 
For example, all Extra Vehicular Activity (EVA) by 
NASA astronauts requires two astronauts working outside 
the vehicle and at least one crew member inside the vehicle 
or on Earth. For such work, multiple instruction sequences 
are ongoing concurrently. It is necessary to identify coor-
dination points where these sequences must synchronize. 
PRIDE can designate instructions as “coordinated,” which 
adds concurrency metadata used during execution. Specifi-
cally, it links two instructions in different procedures and 
identifies whether they should be performed simultaneous-
ly or serially. These metadata about coordination points 
should be respected by both humans and automation.  

Performance with Procedure Automation 
We have evaluated human performance using PRIDE au-
tomation in a number of NASA experiments. To establish a 
baseline for manual performance we compared manual use 
of PRIDE procedures with use of an analog for Interna-
tional Space Station (ISS) electronic procedures (Billman, 
et al., 2014). A key difference between these systems is 
that live data and commands are embedded in PRIDE pro-
cedure displays while data and commands are accessed 
from a separate display for ISS. Condition effects for both 
completion time and number of successful users were large 
enough to be significant for small n (11). Mean completion 
time was reduced by approximately half. No users had 
command errors using PRIDE while all users but one had 
command errors using ISS displays. Next, we compared 
manual use of PRIDE with PRIDE automation. Prelimi-
nary results indicate a reduction in execution timing and 
workload when using automation (n=27; Holden et al., 
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2018) as well as user preference for automation. We also 
expect performance improvement when users multi-task 
with procedure automation. We are investigating strategies 
for work allocation to improve performance when multi-
tasking with automation. 

Conclusions and Future Work 
 PRIDE automation is an example of a knowledge-based 
system using a hierarchical task language PRL to automate 
system monitoring and control. It includes rule-based acti-
vation of action sequences based on sensed data. Other 
similar systems include Reactive Action Packages (Firby, 
1989), Task Description Language (Simmons, et al, 1998), 
and Plan Execution Interchange Language (Estlin et al., 
2006). Unlike these systems, PRIDE was designed for hu-
mans and automation to perform shared procedural work, 
which requires effective human-automation communica-
tion and collaboration. The ability to designate tasks dy-
namically to either humans or automation is an example of 
a hybrid human-AI collaboration. Our user interface for 
procedure automation uses human task models to improve 
communication of AI behavior to users. All automation 
actions correspond to actions in human-comprehensible 
procedures, making these actions transparent and predicta-
ble, and potentially improving trust in automation.  
 While it is possible to reactively select which procedure 
to automate based on current conditions, PRIDE does not 
support reactively modifying procedure actions or action 
sequences. An area for future research is the use of ma-
chine learning techniques to adapt existing procedures or 
create new ones from task observations. Programs such as 
DARPA’s Explainable AI (XAI) can provide techniques 
for learning procedural sequences that are more under-
standable and usable by users. 
 Our development of a procedure editor allowing subject 
matter experts to author executable procedural task models 
is an example of a tool for non-AI specialists to build AI 
models. An area for future research is adding constraint 
satisfaction tools to help non-AI specialists author proce-
dures that respect domain action sequence constraints. 
 Finally, the current procedure user interface is intended 
for monitoring automation while performing low-level 
actions. For users to multi-task manual procedures with 
automated procedures, new user interface designs are 
needed that help users maintain automation awareness 
without vigilance monitoring of these low-level actions.  
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Abstract 
Algorithmic and data bias are gaining attention as a pressing 
issue in popular press—and rightly so. However, beyond 
these calls to action, standard processes and tools for practi-
tioners do not readily exist to assess and address unfair algo-
rithmic and data biases. The literature is relatively scattered 
and the needed interdisciplinary approach means that very 
different communities are working on the topic. We here 
provide a number of challenges encountered in assessing 
and addressing algorithmic and data bias in practice.  We 
describe an early approach that attempts to translate the lit-
erature into processes for (production) teams wanting to as-
sess both intended data and algorithm characteristics and 
unintended, unfair biases. 

 Introduction  
There has been around 20 years of early research into the 
topic of algorithmic fairness and understanding of its out-
comes (Friedman & Nissenbaum, 1996). The explosion of 
widespread machine learning has pushed algorithmic and 
data bias to the front lines of both the tech press and main-
stream media. In parallel, specialized research communi-
ties are forming. Promising new initiatives such as the AI 
Now Institute have been initiated. The FATML workshop 
has turned into a full conference (FAT*, 2017), a new 
AAAI/ACM Conference on AI, Ethics, Society has been 
formed (AAAI, 2017), the ACM has now presented guide-
lines for algorithmic fairness (Dopplick, 2017). Pragmati-
cally speaking, this increased attention to the topic is great, 
but these communities’ calls to action are still very hard to 
apply. Pragmatic methods and tools are absolutely neces-
sary to translate nascent research into work in industry 
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practice - also pointed out by Kate Crawford in her WSJ 
op-ed (Crawford, 2017).  
 The proliferation of different communities, and the scat-
tered literature presents industry practitioners with chal-
lenge to keep up, even when they’re highly motivated. Re-
ported studies or methods may also not be fully applicable 
in practice. We here outline a number of (early) lessons 
learnt from conversations with Machine Learning-oriented 
product teams, and thinking through the pragmatic transla-
tion of literature into practice.  

Background 
A wide variety of bias literature and a wide variety of defi-
nitions of bias exist. Bias, as a term in Machine Learning 
contexts, is used in somewhat divergent ways. Bias can be 
defined as unfair discrimination, or it can be framed as a 
system having certain characteristics, some intended and 
some unintended. Any dataset, and any Machine Learning-
based application is ‘biased’ in the latter interpretation. 
This means we need to distinguish between un-
fair/unintended and intended biases.  We base our work for 
practitioners on the pragmatic principle that any dataset is 
‘biased’ in some way, that no dataset completely represents 
the world, and that human decisions in Machine learning 
systems inherently have tradeoffs that can result in 
(un)intended biases.  The goal for product teams is to con-
sider which characteristics of data, algorithms, and out-
comes are aligned with the goals that they want to 
achieve—and side—effects. 
 For the purposes of this discussion, we take specific 
example definitions and frameworks. We use an adjusted 
definition from Friedman & Nissenbaum on ‘Computa-
tional bias’ as placeholder for (unfair) algorithmic bias: 
‘Discrimination that is systemic and unfair in favoring cer-
tain individuals or groups over others in a computer sys-
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tem’ (Friedman & Nissenbaum, 1996). Where we use ‘sys-
temic’ in our definition, Friedman and Nissenbaum used 
‘systematic’; we made this change to emphasize that algo-
rithmic bias often arises through unintentional oversights 
rather than requiring specific biased intents as ‘systematic’ 
implies. As a definition for data bias, we use Olteanu et 
al.’s ‘a systemic distortion in the data that compromises its 
representativeness’ (Olteanu, Castillo, Diaz, & Kiciman, 
2016) as starting point. Note however that this raises an 
immediate dilemma: if data is completely representative of 
reality, it will also reflect the very real societal biases and 
existing disadvantages, and could potentially echo or am-
plify these societal biases. This means that ‘biasing’ the 
data against these biases may be important (Bolukbasi, 
Chang, Zou, Saligrama, & Kalai, 2016). We here supple-
ment that definition with representativeness ‘necessary for 
the application at hand’ and perhaps ‘representative’ of the 
world teams would like to represent. 

Frameworks and Types of Biases 
Friedman and Nissenbaum present a taxonomy of biases in 
computational systems with top level categories of Preex-
isting Bias, Technical Bias, and Emergent Bias (Friedman 
& Nissenbaum, 1996). While Friedman and Nissenbaum’s 
work was often prescient, it is difficult to use this taxono-
my to address algorithmic and data bias issues in practice. 
Their categorization does not point to underlying causes, 
making it somewhat challenging to use the framework in a 
solutions oriented manner. 
 More recent taxonomies of algorithmic and data bias 
allow us to classify problems in a way that points out how 
to intervene and correct biases. The Baeza-Yates taxonomy 
consists of 6 types of bias: activity bias, data bias, sam-
pling bias, algorithm bias, interface bias, and self-selection 
bias (Baeza-Yates, 2016). These biases form a directed 
cycle graph; each step feeds biased data into the next stage 
where additional and new biases are introduced. The cycli-
cal nature of bias makes it difficult to discern where to 
intervene; models like Baeza-Yates’ help break down the 
cycle and find likely targets for initial intervention. 
 Though biases exist and are propagated through all types 
of data, one of the most common types of data that practi-
tioners currently use is social data. Social data encom-
passes content generated by users, relationships between 
those users, and application logs of user behaviors (Ol-
teanu et al., 2016). The framework presented by Olteanu et 
al. comprehensively examines biases introduced at differ-
ent levels of social data gathering and usage, including: 
user biases, societal biases, data processing biases, analysis 
biases, and biased interpretation of results.   

Translation Into Bias Identification Processes 
A major challenge is translating the growing, but scattered 
literature into a step-by-step process that works in practice. 
Unfortunately, in many cases the methods to assess, and 
certainly how to address a problem are not yet available. 
 The first step to correcting algorithmic biases is identifi-
cation of potential biases, for which we have three possible 
entry points: 

• Biases in input data  
• Computational biases that may result from algo-

rithm and team decisions. 
• Outcome biases, for example for specific user 

groups (gender, age) or for specific domains (e.g. 
having really good recommendations in one genre 
over another).   

 Per definition, the first two categories can be done even 
before a project has been started, whereas the third catego-
ry requires domain knowledge and at least a predictive 
model. Particularly challenging is that to be able to meas-
ure outcomes, we need to not only assess which facets 
would be important to explore, but also which evaluation 
metrics are actually valid - which is many cases can be 
very large projects themselves. 
 After the identification of potential issues, a prioritiza-
tion has to be made of which of these issues are most 
pressing, and how to assess them. While eliciting bias tar-
gets from the bottom up is a positive initial route, it is still 
essential to prioritize which biases to tackle first. The prob-
lem is often not that identifying potential algorithmic bias-
es is a difficult task; it is that looking for candidate algo-
rithmic biases will surface a large number that it becomes 
difficult to determine which biases to tackle first and which 
are currently intractable and better suited as long term 
goals. Some bias targets are clearly long term, e.g. finding 
that a highly used metric loses much of its predictive pow-
er for subpopulations, while others may require simpler 
changes like modifying a data sampling paradigm for train-
ing models. Biases may compound and interact. For exam-
ple, initial model training on a homogenous population 
may create an application that serves that population best; 
this may attract more users that fit the initial training popu-
lation and compound bias by continuing to provide ho-
mogenous rather than diverse training data. It is essential 
that these bias targets are prioritized by evaluating impact 
on users and future compounding effects. Note that priori-
tizing simply on size of the affected population alone 
would lead to biases in itself, and that, on the other hand, 
slightly degraded user experience for a subpopulation may 
not be fixable or require effort best spent elsewhere. 
Weighing these bias targets against each other involves a 
complex decision involving level of harm, ubiquity of bias, 
and business driven priorities. 
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 After assessment, very specific domain knowledge will 
be necessary to fix the bias at hand. Very promising pro-
jects exist focused on debiasing particular techniques, see 
(Bolukbasi et al., 2016) for debiasing word embeddings,  
but there is no guarantee that those methods will exist for 
your specific problem. In large settings, multiple issues 
may interact—and very pragmatic challenges can be en-
countered as well.  

Domain Challenges 
Every application will have different bias issues to assess 
and address. For example, voice interfaces are rapidly 
gaining popularity, but, unfortunately, voice interfaces may 
amplify bias due to their unique affordances. For example, 
voice interfaces may struggle with regional accents (Best, 
Shaw, & Clancy, 2013). Language dialects also may result 
in worse accuracy and voice recognition (Tatman, 2017). 
Even if dialects and accents were perfectly recognized by 
voice interfaces, these interfaces would still struggle to 
counteract biases using common solutions from other mo-
dalities. Recommender systems often suffer from populari-
ty bias, meaning that popular content is recommended far 
more frequently than the long tail of less popular items 
(Abdollahpouri, Burke, & Mobasher, 2017). Solutions to 
enhancing discoverability of the long tail of content in-
clude increasing serendipity and novelty among recom-
mendations (Vargas & Castells, 2011). Unfortunately, us-
ers are often trying to accomplish a task quickly by voice 
and listing 10 search results that include some popular, 
some novel, and some serendipitous results may degrade 
the user experience because of the time it takes to verbally 
list them. Therefore, this task of countering popularity bias 
may be much harder in voice where only one result is often 
returned. The voice realm may be challenging to properly 
correct biases in but that does not make the task impossi-
ble. 
 A major struggle with many types of bias research is 
understanding whether the metric differences measured are 
due to algorithmic/data bias or simply due to natural de-
mographic variation (Mehrotra et al., 2017). Bias audits 
often require splitting the population sample in a way that 
we can measure metric differences across these samples 
but this action confounds itself because each sample may 
behave differently to begin with. Given this confounding 
challenge, a particularly effective way to measure and cor-
rect bias may be finding problems where a ground truth 
answer is available. Springer et al. examine the types of 
content that current voice interfaces underserve due to con-
tent characteristics (Springer & Cramer, 2018). For exam-
ple, current voice interfaces often transcribe dialect speech 
into Standard American English; this can result in a user 
asking for a music track titled “You Da Baddest” and the 

voice interface transcribing and searching for “You’re the 
baddest” which may not result in finding the intended 
track. These entity resolution difficulties fortunately mean 
that some form of ground truth is available; whether con-
tent can be accessed through an interface or not. With the 
availability of ground truth, we can tease apart the algo-
rithmic bias from demographic differences and quickly 
identify ways to correct bias. However, there is no ground 
truth of human experience, nor behavior. 
 Every modality and every domain will require its own 
assessment methods and solutions. The challenge is to de-
velop processes that are lightweight for teams to imple-
ment in order to create a more equitable product. 

Pragmatic Challenges 
In this section, we present a few examples of pragmatic 
challenges that may be encountered when attempting to 
mitigate data and algorithmic bias in an industry setting. 
First, value must be established to motivate the prioritiza-
tion of reducing specific unfair biases in production sys-
tems. Next, the work be developed in a way that harmoniz-
es with the engineering practice of rapid delivery. Finally, 
longer-term changes in engineering culture are necessary 
to address bias as early as possible. 

Prioritizing Correcting Bias 
Engineering teams abide by a carefully planned roadmap 
of deliverables, with much energy devoted to maintaining 
their current systems and pushing new features to product. 
Setting aside time to measure and correct bias has to com-
pete with other pressing priorities. It becomes hard to pri-
oritize such projects where it’s unclear how to assess their 
impact. Methods are not yet available, and case studies 
from literature demonstrate the extensive effort and exper-
tise necessary (Mehrotra et al., 2017) and are not easily 
translated into practice. Furthermore, in a situation where 
features built from imperfect data have already been sur-
faced in the product, making significant changes in the 
feature may be perceived as too risky. Characteristics of 
different datasets, models and intended counter-measures 
may interact in unexpected ways. Teasing apart their ef-
fects can be challenging. Framing such work in terms of 
business goals, such as improving performance across 
markets and improvement of quality, is a compelling ar-
gument for pursuing this work (compared with, for exam-
ple, unspecified appeals that bias should be important).  

Proposing Minimum Viable Products 
Agile development is arguably the dominant approach to 
product development in startups. In an Agile-style envi-
ronment, there is an emphasis on quick delivery of mini-
mum viable products followed by continuous iteration. In 
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order to translate research on bias to solutions in product, it 
is necessary to propose a minimal solution that can be de-
livered and then improved. For example, is it possible to 
move forward with solutions on narrow use cases or with 
imperfect measurements? Caution is required here, to pre-
vent the minimum viable product from simply being ac-
cepted as the final product. Long-view thinking is also 
necessary, so that even as imperfect products are delivered 
quickly, there is still a path of iteration toward a more ideal 
solution. In larger companies, as datasets and APIs will be 
developed as services for other product teams, it becomes 
important to develop ways of documenting data character-
istics in ways understandable beyond the direct team that 
developed these. 

Addressing Technical Debt Via Cultural Changes 
In the early stages of a company’s development, the issue 
of scaling globally seems impossibly distant. In this sce-
nario, teams may accumulate technical debt as a result of 
limited access to resources and data. For example, they 
may train models on themselves in the absence of user da-
ta, or quality evaluations may by necessity have to be ad-
hoc, resulting in models that reflect the demographics or 
tastes of the developers. Even as the user base grows, mod-
els may be overfit to current users rather than performant a 
global market. When company growth reaches a point 
where global scaling becomes a priority, new perspectives 
and attitudes are necessary. Diversity in hiring becomes 
more important. Longer-term cultural change and educa-
tion toward bias-awareness would also encourage engi-
neers to design models and features with delivery to a 
global audience in mind, avoiding bias-related technical 
debt at the outset of the design process. 
 To make sure that processes and tools land in practice, 
they have to be lightweight, pragmatic and easy to com-
municate to a wide variety of teams.  

Discussion 
To assess and address algorithmic biases, teams need 
lightweight tools to make these processes their own, rather 
than calls to action from elsewhere. While examples in 
literature exist of very specific auditing projects, general 
auditing tools widely applicable to industry currently do 
not. Future tools should allow examination of both inputs 
and metrics across content and population segments. This 
sort of general tool would facilitate teams finding bias 
among their own products. In addition to this, we need to 
translate the growing literature into methods that are appli-
cable across domains and easy to communicate, while still 
informative enough to be of help. 
 Actively involving teams on the ground in this process is 
absolutely crucial. Shared understanding within industries 

and sharing of developed methods and lessons learnt, com-
bined with a bottom-up application of frameworks by 
teams themselves appears most fruitful. An expert re-
searcher coming in to a new team with a model in hand to 
examine systems will surely identify potential biases. 
However, it would be difficult to understand the finer de-
tails and potential side-effects. Changing datasets can have 
unforeseen effects elsewhere, how infrastructures, services, 
data and different parts of applications interact can be hard 
to understand when not deeply involved in its development 
process. Prescribing specific methods from afar will not 
work. Ensuring that team-embedded data scientists and 
data engineers themselves have tools and easily accessible 
resources to understand what to look out for, would be 
more fruitful.  
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Abstract 

Extensive recent media focus has been directed towards the 
dark side of intelligent systems, how algorithms can influ-
ence society negatively. Often, transparency is proposed as 
a solution or step in the right direction. Unfortunately, re-
search is mixed on the impact of transparency on the user 
experience. We examine transparency in the context an in-
teractive system that predicts positive/negative emotion 
from a users’ written text. We unify seemingly this contra-
dictory research under a single model. We show that trans-
parency can negatively affect accuracy perceptions for users 
whose expectations were not violated by the system’s pre-
diction; however, transparency also limits the damage done 
when users’ expectations are violated by system predictions. 

 Introduction   
Intelligent systems powered by machine learning are 

pervasive in our everyday lives. These systems make deci-
sions ranging from the mundane to the magnificent, from 
routes to work to recommendations about criminal recidi-
vism. We, as humans, increasingly devolve more and more 
responsibility to these systems with little transparency or 
oversight. Concerns about how these systems are making 
decisions are building and this is only exacerbated by re-
cent machine learning methods such as deep learning that 
are difficult to explain in human-comprehensible turns. 
These opaque systems have taken blame for major events 
such as the 2016 election of Donald Trump (Olson, 2016); 
they have been implicated in disadvantaging minority pris-
oners that are up for parole (Julia Angwin, 2016). Life-
changing decisions are being made without any ability to 
examine the method or data these algorithms are using to 
make predictions. 
 This lack of transparency enables algorithmic problems 
to run amok. These systems have been shown to capture 
societal and human biases and perpetuate them systemical-
ly (Bolukbasi, Chang, Zou, Saligrama, & Kalai, 2016). 

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

Other work has indicated that a lack of transparency may 
lead users to accept output from algorithms that are simply 
random (Springer, Hollis, & Whittaker, 2017). It seems 
that we are seeing more automation bias than ever, 
(Cummings, 2004) we are increasingly willing to go along 
with what systems suggest rather than trying to critically 
examine those suggestions. 
 All of these problems have been met by calls for indus-
try implementation of transparent algorithms and expanded 
research into issues of transparency and trust in algorithms. 
The response from industry has been anemic. Few com-
mercial products have accepted this challenge of increased 
transparency. Yes, algorithms are evolving quickly, but the 
bigger issue seems to be that methods for transparency are 
not well understood. Results around the effects of algo-
rithmic transparency have been mixed. Lim and Dey (Lim 
& Dey, 2011) found that increased transparency can make 
users question the algorithm when it’s correct, therefore 
impairing the user experience. Users may also feel that 

 
Figure 1. The E-meter System in the Transparent Condition 

after a user wrote about a positive experience and the E-
meter predicted mood and associated words accurately 
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these explanations simply cause additional processing 
without offering real value (Bunt, Lount, & Lauzon, 2012). 
On the other hand, transparency can help protect system 
trust by allowing users to understand why a prediction was 
made when that prediction violates their expectations 
(Kizilcec, 2016). It is difficult to form a coherent picture of 
the effects of transparency on the user experience from 
these conflicting results.  
 In this study, we explore the effects of transparency on 
the user experience. We experiment in the context of the E-
meter, a system that predicts positive/negative emotion in a 
user’s account of a past experience. The E-meter context 
allows us to examine how users interact with a system 
making predictions in an area the user is an expert in; only 
the user has the ground truth of their emotions. We make 
the E-meter more transparent to users to examine the con-
flicting nature of previous transparency research. 
 Specifically, we focus on how adding transparency to 
the E-meter influences user perceptions of accuracy. Accu-
racy is an important aspect of user experiences with intelli-
gent systems. Users who believe that a system is accurate 
may be more likely to act upon its recommendations 
(Hollis et al., 2017). Therefore, transparency could play an 
important role in motivating user engagement with intelli-
gent health and mental health applications. However, since 
recent research on transparency has mixed results, imple-
menting transparency could also have net negative affects 
and push users away from using the application. We must 
unify these conflicting results in a way that illuminates a 
path forward for the use of transparency in intelligent sys-
tems. 

Methods 

Users 
 Users were recruited from Amazon Turk and paid $3.33 
to evaluate the E-meter system. This evaluation took 13 
minutes on average. We recruited 41 users to test the E-
meter system across two conditions who were screened for 
stable mental health. Users were divided into 2 conditions: 
a control condition, and a transparent condition that al-
lowed users to examine how each word affected the E-
meter overall. 

Machine Learning Model 
Emotional valence predictions for users’ experiences 

were predicted using a linear regression model trained on 
text from the EmotiCal project (Hollis et al., 2017). In 
EmotiCal, users wrote short textual entries and logged their 
overall mood, which gave us a supervised training set to 
train our linear regression on. We trained the linear regres-
sion on 6249 textual entries and mood scores from 164 

EmotiCal users. Text features were stemmed using the 
Porter stemming algorithm (Porter, 1980) and then the top 
600 unigrams were selected by f-score. Using a train/test 
split of 85/15 the linear regression tested at R2 = 0.25; 
mean absolute error was .95 on the target variable (mood) 
scale of (-3,3). In order to implement this model on a larger 
range for the E-meter, we scaled the predictions to (0,100) 
to create a more continuous and variable experience for 
users.  The mean absolute error of our model indicates that 
the E-meter will, on average, err by 15.83 points on a 
(0,100) scale for each user’s mood prediction. 

E-meter System 
 The E-meter (Figure 1) presented users with a web page 
showing a figure, a short description of the system, instruc-
tions, and a text box to write in. The system was described 
as an “algorithm that assesses the positivity/negativity of 
[their] writing”. The instructions asked users to “Please 
write at least 100 words about an emotional experience that 
affected you in the last week.”  
 As users wrote, the E-meter moved in accordance with 
the emotional valence of their writing; the meter could 
move positively, towards filling the gauge to the right, or 
negatively, towards emptying the gauge to the left, based 
on a regression model predicting the mood of their written 
experience. The E-meter was updated in real time after the 
user finished writing or removing a new word in the text 
box. The color of the E-meter changed depending on how 
positive or negative the overall rating, the E-meter changed 
from a deep red for very negative ratings, through orange, 
yellow, and light green, all the way to a dark green for very 
positive ratings of the user's’ text.  
 The E-meter randomly assigned users to either a trans-
parent or control condition. Those in the transparent condi-
tion were told that individual words would be highlighted 
to show the word’s contribution to the E-meter’s overall 
rating of their affect. In the transparent condition, users 
were able to see the extent to which each individual word 
they wrote contributed to the algorithm’s evaluation of 
their emotional valence, using a method that highlighted 
words according to their evaluated affect. Users in the con-
trol condition did not see their words highlighted, though 
they could still see the movement of the meter after they 
finished writing each word.  
 We operationalized transparency in this space by pas-
sively highlighting the valence association of each word in 
the model because it offers an intuitive and persistent way 
to view how the E-meter responded. Essentially, this form 
of transparency offers a view directly through the text to 
the regression model powering the E-meter; it portrays 
how strongly the regression model correlates each word 
with positive or negative emotion. Offering this persistence 
of transparency allows users to reexamine what they had 
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written when they finished and reconcile their overall E-
meter rating with the fine-grained transparency from the 
text. When expectations are violated, users are prone to 
seek out more information to learn why the violation hap-
pened (Kizilcec, 2016). Our operationalization of transpar-
ency allows users to engage in this questioning mode. 

Survey 
Following their experimentation with the E-meter, users 

were asked various questions about their experiences. Im-
portantly, we asked users their perceptions of their own 
writing and their perception of the E-meter’s rating of their 
writing on a 7-point Likert scale from “Strongly Negative” 
to “Strongly Positive”. Users were additionally asked about 
the accuracy of the E-meter rating (7 point, “Very Inaccu-
rate” to “Very Accurate”) and how trustworthy they found 
the system (5 point, “Not at all” to “Extremely” trustwor-
thy) and reasons for these ratings. The final questions were 
open-ended and asked about users’ likes/dislikes and their’ 
theories about how the system was calculating their final 
score.  

Results 
The majority of users across conditions found the E-

meter to be “Accurate” or “Very Accurate” with the medi-
an being “Accurate”. Users were slightly less trusting of 
the meter and found it to be “Moderately Trustworthy”.  

Transparency Moderates Expectation Violation  
We calculate a user’s expectation violation of their over-

all rating by subtracting the user’s perception of their own 
writing (their expectation of the E-meter value if it were 
perfect) from the actual perception of the final E-meter 
score. If a user felt that their writing was “Strongly Nega-
tive” (1) but the E-meter rated it as “Slightly Negative” (3) 
then the user’s expectation violation would be 2. There-
fore, higher levels of expectation violation indicate that the 

user felt that the E-meter was less accurate overall while 
low levels of expectation violation should correlate with 
increased perceptions of accuracy. We refer to accuracy 
from the survey as holistic accuracy of the system, encom-
passing perceptions of the meter and the word highlighting. 
We see a strong relationship between expectation violation 
and accuracy in the control group, r = -.898, p < .00001 as 

well as in data from our previous study (Springer et al., 
2017). Interestingly, this correlation between expectation 
violation and accuracy perceptions disappears in the trans-
parent condition: r = -0.175, p = 0.488. We find that the 
relationship between expectation violation and accuracy 
perceptions is not so simple in the presence of transparen-
cy.  
 We find that transparency and expectation violation in-
teract complexly. We modeled this interaction using a line-
ar regression predicting user accuracy perceptions (see 
Table 1). The regression was highly predictive R2=.548, p 
< .000001. Transparency actually has a net negative effect 
on perceptions of accuracy. However, transparency begins 
to have a positive effect in the presence of increased expec-
tation violation.  
  In the control condition expectation violation resulted in 
decreased perceptions of system accuracy. Users of the 
transparent system saw less decrease in accuracy percep-
tions as expectation violation increased. However, trans-
parent system users have lower perceptions of the E-
meter’s accuracy even when their expectations are not vio-
lated.  

Qualitative Examination of Anomalous Users 
 We now turn to qualitatively examining users to discern 
how transparency could cause this decrease in accuracy 
perceptions. We specifically examine these instances 

Table 1. Linear Regression Predicting Users’ Accuracy Perceptions 

 

 
Figure 2. Transparency and Expectation Violation Interaction 
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where the user stated that the E-meter was within 1 point 
of the user’s own perception of their writing (on the 7-
point scale from ‘Strongly Negative’ to ‘Strongly Posi-
tive’) and the user still rated the accuracy as inaccurate. 
Lack of Personalization for Users 
 One problem concerned the generalized nature of the 
mood models. The models were trained on data consisting 
of 164 different users and thus the model learned general 
associations that hold across most people. Of course spe-
cific individuals may have completely different associa-
tions for specific words and making the machine learning 
transparent by highlighting these words can expose these 
differences more readily (Hollis et al., 2017). One user 
wrote: “Family is bad for me but it was marked in green.” 
This user felt that his specific family experiences were 
highly negative in contrast with the model’s association.  
Questions Created by Transparency 
 The goal of highlighting words and making the E-meter 
calculation more transparent was to passively explain to 
users where their final positivity/negativity rating was 
coming from. However, for some users, this transparency 
just created more questions. One user noted that their final 
negative rating didn’t make sense “because the rating did 
not correspond to the number of identified words”. Other 
users wanted to know how the ratings the highlighted 
words were originally identified and their association with 
mood calculated. Care needs to be taken in the presentation 
of transparency to avoid damaging user perceptions by 
evoking unneeded questions.  

Conclusion 
 Algorithmic transparency has a complex relationship 
with user perceptions of algorithmic accuracy. In our ex-
periment, transparency effectively compressed user percep-
tions of accuracy. Users with the most violated expecta-
tions had better perceptions of the E-meter’s accuracy 
compared to their control counterparts. However, users in 
the transparent condition were less likely to regard the E-
meter as highly accurate even when it did not violate their 
expectations at all. This result unifies previous, seemingly 
contradictory, results that indicated that transparency had 
positive or negative effects (Kizilcec, 2016; Lim & Dey, 
2011). 
 Whether or not transparency is a net positive in an appli-
cation may depend on other characteristics of the applica-
tion. For example, if an intelligent system is highly accu-
rate in its predictions, then increasing the transparency of 
the application may have a net negative effect of slightly 
lowering perceptions of accuracy. If an application is often 
inaccurate, then transparency could have a net positive by 
tempering those negative perceptions of accuracy. Of 

course, other factors can influence whether transparency is 
needed, such as the impact of the decision that the algo-
rithm is influencing. 
 In addition, we find a few routes through which trans-
parency can decrease perceptions of accuracy. Transparen-
cy exposes the fact that these models are general and 
learned from a societal space that embodies many correla-
tions that may not be personally relevant to each user. The-
se correlations can be learned over time, like in EmotiCal 
(Hollis et al., 2017), but on first interaction this is a diffi-
cult problem to solve. Possible solutions could include 
“emotional onboarding” analogous to what recommender 
systems use to solve the cold start problem, others may 
include scanning a user’s social media and building a pro-
file for them through the given information (Warshaw et 
al., 2015). Another problem stemmed from the exposed 
information from transparency creating additional ques-
tions which led to users doubting system accuracy. Overall, 
we want a seamful design allowing users to explore the 
model but only to the point that is helpful. 
 Rather than simply focusing on how to present transpar-
ency in ways that don’t evoke more questions of the algo-
rithm, researchers should instead focus on recognizing ex-
pectation violation. If a system can recognize in real time 
when a users’ expectations of the system were violated, it 
can choose to be selectively transparent. Selective trans-
parency would maintain the positive aspects of transparen-
cy without making users unduly question the application. 
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Abstract 
We present Scout, an open-source, browser-based voice as-
sistant built into Firefox. We used an HCI-driven research-
based approach with a focus on understanding how people 
are using commercially widespread dedicated device-based 
voice assistants (Alexa, Google Home) and the impact of 
different modalities and form factors (standalone device, 
mobile, laptop) on the user experience.  

 Introduction�  
Voice input will be an important part of how people will 
interact with technology for the foreseeable future. The 
question of feasibility for speech communication has 
evolved from science fiction to voice assistants that are a 
widely adopted, commercial success. These successful 
assistants have been brought to us primarily by large tech-
nology companies and have a variety of form factors, rang-
ing from standalone devices (Amazon’s Alexa, Google 
Home), to mobile phone and desktop-based agents (Mi-
crosoft’s Cortana, Apple’s Siri). Building on the success of 
these agents, we created Scout, a browser-based voice as-
sistant for Mozilla.  
 We embarked on an HCI-driven research-based ap-
proach to product and feature definition and user experi-
ence (UX) design. In this work, we placed an emphasis on 
the UX, rather than the AI or machine-learning aspects of 
voice assistants, as these aspects are still relatively invisi-
ble to users. This data-driven agenda included the log anal-
ysis of Alexa History; surveys, interviews, and focus 
groups to understand the use of existing voice assistants, 
their failings, and the feature wishes of both users and non-
users; and the deployment of an alpha product to under-
stand the use of Scout in the wild.  
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Motivation  
Mozilla’s mission focuses on creating open and accessible 
Web technologies. One aspect characterizing the existing 
voice assistant market is that of the race to create platform-
specific “incompatible proprietary fortress[es]” (Rosenberg 
2017). We created Scout as an open-source voice assistant 
built into the Firefox browser.  

Background  
Natural, voice-based interaction with computing systems is 
facilitated by spoken dialogue systems (comprised of 
speech technologies, language processing, dialogue model-
ing) (McTear 2002) with a focus on “humanlike” behavior 
(Vassallo et al. 2010). Three high level design principles 
for the functionality of voice assistants center on goals, 
specifically related to tasks (accomplishing things), con-
versation (facilitating communication and understanding), 
and relationships (maintaining connection and influence) 
(Shechtman and Horowith 2003).  We explore these areas 
as we set about defining a browser-based voice assistant.  

Research 
We focused on Amazon’s Alexa to understand the tasks 
required of and the conversation with a voice assistant. In 
July and August, 2017, we collected the Alexa History logs 
of 82 participants with a total of 193,665 commands (par-
ticipant mean: 2,176 commands). Our participants owned 
147 Alexa devices (mean: 1.79, median: 1, mode: 1) pri-
marily in households with other people (82.9%), with an 
average of 2.82 people per household. The average age of 
the primary Alexa account holder was 31.9 years old, and 
41.5% of the households had children under 18 years old.  
 People primarily used Alexa to play music (33%), to 
interact with their IoT devices (15%), and to conduct gen-
eral information queries (14.5%). This information in-
formed the development of the features and capabilities 
available in Scout.  
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Sidebar-based design for a browser-based voice assistant. 

User Experience 
Building a voice assistant into Firefox afforded us the 
ability to have a visual user interface. We implemented 
this in the sidebar of the browser. This visual space al-
lowed us to implement “cards” to provide a response to 
the user. (At this time, Scout is unable to speak back to 
the user.) We are focused on task goals, and will continue 
to improve the user experience as continue to conduct 
research to understand the conversational and relation-
ship-based goals that users want with a voice assistant. 

Architecture 
The Scout voice assistant is a web extension that runs 
inside of Firefox. It allows you to interact with it via voice 
and a browser-based extension sidebar. It uses Snowboy,1 
a customizable wake word detection engine to allow users 
to create a personal model for wake-word detection.  

The Demo 
The demo utilizes a laptop with a Google Slides presenta-
tion open in Firefox. The presenter walks up to the podi-
um with his hands in his pockets and proceeds to show-

                                                
1 https://snowboy.kitt.ai/  

case the functionality of the Scout voice assistant. This 
functionality includes the following: 

•� Playing music 
•� Conducting searches 
•� Navigating slides 
•� Setting timers and more.  

Conclusion 
With the success and availability of voice assistants, a 
new canvas of research around the interactions, user expe-
riences, and design paradigms for artificial intelligence is 
now available. We are creating Scout, a browser-based 
voice assistant, to explore the use and impact of voice 
interaction in a web-based environment.  
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Joseph ‘Jofish’ Kaye is a principle research scientist 
working in the Mozilla Emerging Technologies team. He 
uses a variety of methods, including big data and qualities 
research to understand user needs and practices in the 
HCI space.  
 
Janice Y. Tsai is a senior research scientist on the Mozilla 
Emerging Technologies team. Her research interests are 
in usable privacy and public policy. �
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Abstract 
This article examines bias exhibited through machine vi-
sion, over optimization in machine learning, representation 
for previously unrepresented stakeholders,  and agency 
within the context of a speculative city council meeting. In 
this paper, I present a project that purposely shows bias in 
order to reveal how easily machine learning algorithms can 
problematize a situation. I also have created representatives 
in the form of Artificial Intelligent systems for both human 
and non-human communities. I identified a scenario, voting 
for the removal of traffic lights, as a medium to discuss the 
topic of bias and representation. This work contributes to 
the discourses of speculative design and civics in design re-
search. 

 Introduction  
Artificial intelligence’s nascent dominance and pervasive-
ness in the mediation of our everyday interactions is mak-
ing it harder to create boundaries of personal space and to 
distinguish how ruthlessly it changes human behavior. In-
dividuals are becoming increasingly reliant on these ser-
vices as they become more embedded and necessary to 
daily life. These Artificial Intelligent (AI) systems such as 
personal assistants, route planning,  language translation, 
and image sorting are creating a multi-layered and interde-
pendent environment that obfuscates the machinery of the 
system. 
 Machine Learning (ML) algorithms in the civic sector 
are currently being used in the criminal justice, health, and 
welfare sectors to augment the decision making of federal 
and state employees. The use of algorithms in the criminal 
justice system this has led to sentencing imbalances 
amongst different races. The COMPAS algorithm used by 
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the Department of Corrections in Wisconsin, New York, 
and Florida has led to harsher sentencing towards African 
Americans (Angwin et al. 2016). Although we cannot as-
certain the specific type of algorithm used in the criminal 
sentencing sector, the same issue extends to ML. Bias, if 
left unexamined, exacerbates the problems it is trying to 
mediate. 

Committee of Infrastructure Design Project 
Committee of Infrastructure is a speculative design project 
(Dunne and Raby 2013) that interrogates the issue of agen-
cy and representation with the domain of ML and AI. The 
project considers how humans and AI systems interact with 
each other in a local government setting to negotiate issues 
pertaining to a local community. It explicitly positions hu-
man representatives and AI representatives as stakeholders 
within a local council meeting. These two types of repre-
sentatives express conflicting positions, ideologies, and 
motivations. An AI representative through the use of ML 
can now understand the behavior and represent a commu-
nity that has not been previously recognized such as ani-
mals living in the urban environment. The project asks 
whether our AI civic representatives will be as intolerant as 
humans, or can we program a diversity of voices and posi-
tions to reflect the populace and other forms of life that 
create our world? The meeting proposes a platform that 
allows both human and nonhuman entities to be considered 
as meaningful representatives of a particular position. Like 
a real city council meeting, the projects intends that these 
speculative stakeholders will be able to implement changes 
to their local political system. The project seeks to engage 
with the nascent field of speculative civics (DiSalvo, Jen-
kins, and Lodato 2016). In order to convey the extent of 
the project, Committee of Infrastructure includes a tran-
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script, meeting notes, photo manipulation, video, and in-
fographics. 
 

 
 

Figure 1:Transcript Excerpt 
 

Speculative City Council Meeting 
Situating the project in the Los Angeles Echo Park neigh-
borhood provides further context for the council meeting. 
The meeting is proposed to take place in 2023. The issue 
discussed amongst stakeholders is a ballot measure to re-
move all traffic lights at the intersection of Sunset Boule-
vard and North Alvarado Street in order to create a fully 
autonomous intersection. Autonomous cars will sense ob-
jects, things, and people through machine vision and prox-
imity detection. These autonomous cars will communicate 

with different Industrial Internet of Things (IoT) such as 
smart streetlights and speed sensors to avoid collisions and 
efficiently move through traffic. Not only will pedestrians 
have their presence notated by machine vision from smart 
streetlights but also from embedded sensors on clothing 
such as a magnetometer, GPS, gyroscope, accelerometer, 
and proximity sensor. These sensors will allow open com-
munication between pedestrians, cyclists, and autonomous 
vehicles.  
 With the advent of machine vision and sophisticated 
statistical models, AI systems and human representatives 
will able to speak on behalf of new groups. Machine vision 
allows for detection of non-human living beings such as 
birds, insects, dogs, etc. Machine vision would be utilized 
to understand their specific behavior on the streetscape 
(e.g. location and duration) and protect them from becom-
ing injured by autonomous vehicles. In this scenario engi-
neers and scientists can predict the location of animals in 
near real time allowing for communication amongst all 
other forms of traffic. In turn both human and AI repre-
sentatives will advocate on their behalf as data can support 
their arguments. 
 A city council meeting transcript provided the frame-
work to work within, wherein each participant constructs 
arguments representing the the interest of their respective 
organizations. The four groups in the meeting are the city 
council members, People for The Ethical Treatment of 
Animals (PETA), L.A. Department of Transportation 
(DOT), and the Alliance for Biking and Walking. Stake-
holders include engineers, presidents, AI experts, Smart 
Roads, and  sensors. The transcript was created by using 
the Karpathy char-rnn machine learning algorithm1 that 
used seminal texts important to the ethos of each agency or 
the technical jargon required to speak as an expert. For 
example the L.A. DOT representative learned to speak 
from City of Los Angeles Transportation Impact Study 
Guidelines2 and Traffic Studies Policy and Procedures3. 
Once given instructions about the content of the arguments 
the algorithm creates a wholly artificial language mimick-
ing the mechanics of a Los Angeles city council meeting. 
The constructed language is absurd and awkward, but ex-
hibits AI systems and humans conversing amongst them-
selves. 

                                                
1 https://github.com/karpathy/char-rnn 
2  http://ladot.lacity.org/sites/g/files/wph266/f/COLA-TISGuidelines-
010517.pdf 
3  
https://planning.lacity.org/eir/8150Sunset/References/4.J.%20Transportati
on%20and%20Circulation/TRAF.03_LADOT%20Policies%20and%20Pr
ocedures_2013.pdf 
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Figure 2: P.E.T.A. Image Classification 

 

Machine Vision Bias and Over Optimization 
In addition to the verbal arguments of each organization, 
sets of video evidence (machine vision) display each or-
ganization’s motivations. Specifically, computers classify 
static and moving objects within a video. By classifying 
these objects and assigning value to each object a hierarchy 
is created allowing communication between vehicles, peo-
ple, and animals. As one organization focuses on traffic 
efficiency, another focuses on pedestrian injury risk, and 
the remaining organization focuses on animals. Each or-
ganization over optimizes their object classification system 
to produce supporting analytics that promote their motiva-
tions. For example PETA mistakenly classifies every mov-
ing object in the video as an animal. The videos reveal the 
bias coded into object classification. Not only is the bias 
present, but also the ruthless efficiency of the machine vi-
sion system doesn’t allow for flexibility. In effect, its ex-
treme sensitivity to detect all stimuli creates errors. 
 More broadly, AI systems are subject to the same falli-
bility that is present in the day to day interactions between 
humans. Therefore, as we continue to rely more on these 
AI systems we must be aware of how they can lead us 
astray.  We cannot blindly follow the decisions made by AI 
systems. We must challenge them when they are wrong, 
assess what is missing, and be inclusive of a broader set of 
individuals and other forms of life. This process is ongoing 
and must be constantly revisited and updated to reflect the 
constant flux of society and culture. Humanity and the 
larger world’s present and future coexistence with technol-
ogy is reliant on the delicate balance of us and AI systems. 
Creating an open process that informs the populace and 
that is inclusive is necessary. Committee of Infrastructure 
proposes the model of civic dialogue as a framework to 
interact with AI systems. 

 

 

 

Figure 3: Alliance for Biking and Walking Image Classification 

Conclusion 
In this paper, I presented the Committee of Infrastructure 
as a speculative design project. The purpose of the project 
is to provoke and create a vehicle to discuss ML bias, over 
optimization, conflicting positions, overlooked considera-
tions, and data classification. Additionally, AI systems 
have the potential to become representatives for human and 
non-human communities. These systems are privy to the 
same biases that humans have as they have been created by 
humans. Moreover, these AI systems can become over 
optimized to perceive the world in a specific way. By ex-
plicitly revealing their shortcomings I hope to demonstrate 
how AI systems are not to be blindly trusted, but should be 
subject the same form of scrutiny as a bill or a law. Poten-
tially, programmers of AI systems could create a dossier of 
motivations, origin, and data sources visible to program-
mers and users. A record could be used to contend specific 
points that affect the outcomes of an AI system. By detail-
ing all the variables a discussion amongst a broader set of 
stakeholders should challenge preexisting assumptions and 
provide evidence to throughly negotiate how these systems 
influence daily life. 
 The project is not intended to be a realized depiction of a 
city council meeting. However, by using speculative de-
sign the project can consider a future civic scenario that is 
not bound to technical limitations of a working prototype. 
The project allows experts in the AI field, designers, and 
policymakers to create a discourse about the potential ef-
fects of AI systems in the civic space. I believe that includ-
ing these different experts is a necessity to create an ap-
proach that doesn’t exclude and provokes new methodolo-
gies to address the ethical and moral uncertainties in artifi-
cial intelligence. 
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Abstract

I design user experiences for machine learning (ML) appli-
cations across several application domains, from clinical de-
cision support systems to context-aware mobile services, to
autonomous cars. In this paper, I share three cases in which
I attempted to leverage ML as a design material, envisioning
new forms and new purposes for this technology. I reflect on
the challenges encountered and the lessons learned. On re-
flection, I realized that many of the challenges are not unique
to particular ML problems or designers, but in the inherent
tension between user-centered design and data-driven design.
I hope to initiate a reflective discussion on these overarching
challenges in designing ML and to highlight the opportunities
in addressing them systematically.

Introduction

Machine learning (ML) increasingly plays an important role
in shaping how users interact and experience technology
products. From mundane spam filters to personalized news
feeds to conversational agents, it can seem like ML is in al-
most every new technology product and service. Both UX
practitioners and researchers have noted this trend and have
become especially interested in design opportunities sur-
rounding ML.

However, recent studies show that UX practitioners seem
unprepared to effectively leverage ML capabilities. They
struggle to understand the capabilities and limitations of ML
in the context of their designs, even though many of them
understand how ML works generally. Also, they typically
join projects near the end, after the functional decisions have
been made. “Design teams are simply putting lipstick on the
pig” (Dove et al. 2017). Researchers noted two symptoms
of these struggles of designing ML: One is that designers
often fail to notice obvious places where ML could improve
UX (Yang et al. 2016b). The other is a lack of design innova-
tion in ML: “Designers often have cliched understandings of
this medium, driven by the hype or criticism surrounding the
field. For example, some typical stereotypes are that wear-
ables are for fitness, artificial intelligence is for automating
tasks.” (Allen and Hooker 2017)

Recently, HCI/design researchers began taking actions to
address this problem. Some focused on teaching the techni-

Copyright c© 2018, Association for the Advancement of Artificial
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cal concepts of ML to designers (Hebron 2016). Others or-
ganized workshops, bringing together groups of artists, de-
signers, and technologists to collectively explore how ML
might function as a creative material (Gillies et al. 2016;
Kuniavsky, Churchill, and Steenson 2017). This emergent
strand of work within HCI has spawned the notion of ML as
a design material (Dove et al. 2017; Yang et al. 2016b).

My work is a part of this growing area of inquiry. We
designed ML systems across several application domains,
ranging from clinical decision support systems, to adaptive
mobile user interfaces (UIs), to driving style of autonomous
cars. These experience have led us to consider the unique
challenges of designing ML applications, especially when
new designs arose as a part of our user-centered design in-
tention, rather than from an available dataset. To advance
on these challenges, we have since worked to better under-
stand ML as a design material. We interviewed experienced
designers who have been designing ML systems for more
than a decade, to probe the current best practice in the in-
dustry (Yang et al. 2018). We analyzed more than 2,400
HCI research publications, mapping out the design opportu-
nities ML’s technical advances have made available (Yang,
Banovic, and Zimmerman 2018).

In this paper, I share three cases in which I attempted to
leverage ML as a design material across multiple applica-
tion domains. I reflect on the challenges encountered and the
lessons learned. My goal is to demonstrate that many of the
challenges are not unique to particular ML problems or de-
signers, but are a result of the inherent tension between user-
centered design and data-driven design. Through this paper,
I hope to initiate an reflective discussion on these overarch-
ing challenges in designing ML, and to highlight the oppor-
tunities in addressing them systematically.

Machine Learning as a Design Material

While most recent papers discuss challenges, let me start by
articulating this vision of ML as a design material.

Technology as Design Material

When I am talking about ML as a design material, I am
talking about its design innovation. Louridas notes the dif-
ference between technical and design innovation when de-
scribing the difference between designers and engineers. He
notes that engineers create new technology that allow new
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capabilities. Designers, he claims, do not invent new tech-
nologies. Instead, they create novel and valuable assemblies
of known technologies (Louridas 1999).

When taking a technology as a design material, design-
ers first develop a tacit understanding of how the technology
opens up and constraint design possibilities. They then in-
novate by engaging in reflective conversations with design
materials, envisioning things that have never before existed
(Schön 1984; Wiberg 2014). Schön describes how design-
ers reflect in action, how they conceive of what they want
to make while in the act of making it (Schön and Bennett
1996). Gaining a deep understanding of how designers en-
gage in a “conversation with their materials” and how the
materials “talk back to the designer” is an important com-
ponent in understanding design and design practice, and an
important means of sharing design knowledge across disci-
plines (Zimmerman, Stolterman, and Forlizzi 2010).

Machine Learning as Design Material: A Vision

The last few years witnessed explosive technical advances
in ML. Our review of literature shows that a total of 1,939
HCI publications mentioned “machine learning” since the
publication of the first mention in 1969; More than half of
the papers addressing ML were published in the past five
years. The overwhelming majority of papers appeared in
venues with a technical focus (Yang, Banovic, and Zimmer-
man 2018). This fast growing set of technical capabilities
offer exciting new materials for designers.

Technical advances are often followed by design innova-
tion, where designers envision many new product forms that
apply the technical advance into different aspects of peoples
lives.

For example, the 1962 cassette record represented a tech-
nical advance, providing an easier way to make audio
recordings. This technical advance was followed by a wave
of design innovation. Designers created new forms including
home stereo systems, boom boxes, personal players such as
the Walkman, automotive tape players, duo-cassette player-
recorders that better supported making mix tapes, dictation
devices, and phone answering machines.

Another example is haptics. Moussette has an interest in
innovating haptics. He sketched with this technology, setting
a goal for himself to make a new haptic device each day for
several weeks. His work then produced a new language for
talking about the aesthetics of haptics, as well as several sim-
ple devices that expose haptics’ design possibilities beyond
a buzzing phone (Moussette 2012).

We have not yet seen a similar type of design innovation
taking place with ML; where a technical advance is followed
by many new product forms. “Today, it seems that ML sys-
tems are as creative and interesting as the data scientists
that make them.” (Dove et al. 2017) This marks a ready op-
portunity for design innovation. By engaging with and un-
derstanding this technology and its continued advances, de-
signers can envision new forms and new purposes for this
technology, and radically re-imagine what it might be or
might do.

Motivated by this vision, researchers and designers have
began to investigate ML as a design material. This strand of

work is quite different from technical HCI research which
typically utilizes ML as a tool to extend or accelerate well
established interaction forms. This is also quite different
from other lines of design inquiry associated with ML in
which designers often join ML development after the func-
tional decisions have been made.

Case Studies

As part of the growing area of inquiry on ML as a design ma-
terial, my work envisions new products that fit ML’s techni-
cal advances into different aspects of peoples lives. Of these
I draw three cases; I reflect on the challenges encountered
and discuss how each of the cases advanced my understand-
ing of ML from a UX design perspective.

Adding Machine Learning to Existing UX Design

The first case is drawn on a simple project in which we ex-
tend an existing mobile application with a ML feature that
reduces navigation and selection efforts.

My collaborators and I attempted to enhance our mo-
bile transit app, Tiramisu, with ML-powered adaptive
interfaces. The new ML feature is intended to antic-
ipate users menu-item selections, reducing their nav-
igation and selection efforts. Yet we encountered two
problems that made this impossible. First, we had not
logged the information needed to infer what users most
likely wanted to do. Second, we had not properly moti-
vated users to provide good labels that would support
adaptation.
On reflection, we realized UX designers should identify
and refine UI adaptions when sketching wireframes. Al-
though challenging, recognizing learning opportunities
when wireframing will be an important goal for future
IxD practices.
To advance on this challenge, we developed a set of UI
design patterns that define where and how ML adap-
tations might be applied. We also created a new form
of wireframe that support UIs that change over time,
across use contexts. On this modified wireframe, de-
signers can annotate pre-adapted and adapted inter-
action paths, and document the data needed to make
an inference, a recovery method in the case of an infer-
ence error, and an inference quality needed to trigger
adaptation. (Yang et al. 2016b)

This project’s design problem, adaptive UI, and its un-
derlying ML model are simplistic in comparison to the ML
problems HCI research focuses on today. Yet we encoun-
tered unanticipated barriers in this simple project. This is
because we had not yet taken ML into consideration at the
early stages of the design process.

We learned two lessons. First, understanding how ML
works does not sensitize designers to the opportunities to
apply ML in their designs. Most researchers on the above
project had many years of experience designing, develop-
ing, and evaluating ML systems. Yet we still failed to antici-
pate simple ML opportunities in our design. This is partially
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because ML is not part of a typical user-centered design pro-
cess; wireframing tools or patterns do not yet support the UIs
that change over time or personalize to users.

There is a clear need for design research that helps expand
designers perceived application of ML, and sensitizes them
to the breadth of its design possibilities. In our conversa-
tions and workshops with UX practitioners, we noticed that
they often failed to recognize many ML applications that
they use every day, especially the ones that have so success-
fully adapted to their interactions that they have become in-
visible or unremarkable. Instead, designers only referenced
a few classic, and somewhat failed, designs exemplars (i.e.
Clippy, Tay, email spam filter) (Yang et al. 2018). Design re-
searchers could create sensitizing concepts to communicate
ML design opportunities that are not instantly recognizable.

The second lesson is that UX cannot not be an af-
terthought of ML. The lack of planning for ML could stand
as a barrier to operationalizing this technology in current
product development processes. The software development
community has learned over many years that usability and
user experience should be considered early in the develop-
ment process and not added as an afterthought at the end.
HCI has since developed best practices and tools that scaf-
fold better software development processes. We see a similar
need in scaffolding ML considerations in UX design.

In our conversation with designers who regularly work on
ML systems, we noticed that they “plan for ML” by working
with telemetry data on day-to-day basis. In doing so, they
searched for user behaviour patterns that ML can potentially
leverage (Yang et al. 2018). Many taught themselves to cre-
ate data visualization tools to capture “rich and compelling
user stories”, such that the quantitative analysis of user be-
havior “do not privilege data scientists”. The designers thus
were able to raise new ideas in enhancing their product with
ML.

Adding UX to Existing Machine Learning System

The second case is a project in which we design a clinical
ML-driven decision support system by applying a classic
user-centered design (UCD) workflow (Council 2005).

A few years ago, a team of Bioengineering researchers
approached us to design a ML system that helps cardi-
ologists better decide whether and when to implant an
end-stage heart failure patient with a mechanical heart
pump. Like almost all other clinical decision support
tools, the system at the time took a prototypical form:
It takes in a list of patient condition measures and pro-
duces an individualized prediction of patient trajectory,
including likely survival and other post-surgical risks.
Taking UCD as our starting point, we first interviewed
and observed clinicians caring for candidate patients
at three different implant centers. Interestingly, our
findings revealed that for most cases, clinicians do not
find the implant decisions challenging, and thus would
not likely engage with a ML system to aid with the de-
cision. Instead, they would value the support for emer-
gent cases, when they have very little data to predict
how a critical patient might respond to available ther-

apies. In addition, the implant clinicians would value
a ML system that help upstream clinics and hospitals
to refer patients to implant centers in time, before pa-
tients became too sick for an implant surgery. (Yang et
al. 2016a)

Since then, we have been working to develop a new ML
system that infers implant outcomes of critical patients
in intensive care units (ICU). We also have worked to
obtain electronic medical records from local and pri-
mary care healthcare systems, in order to infer opti-
mal referral windows for each patient. However, the
training datasets for such systems are in their nature
extremely difficult to curate and label. We do not yet
know whether these two design solutions are techni-
cally achievable.

This case illustrates a classic UCD process, from field
study to sketching to prototyping (Council 2005). It was suc-
cessful by many measures, especially through the lens of
taking ML as a design material: We actively examined user
needs, wants and social contexts; We envisioned new de-
signs that seem technologically feasible, and users are likely
to find valuable. However, we encountered significant bar-
riers in prototyping and implementation. The technical and
cultural validity of our designs remained unknown until the
ML system was built and implemented.

It seems that ML challenges the general idea of prototyp-
ing; of making just enough of a system to assess if this is
the right direction to go. ML seems to require a much higher
level of commitment, requiring an unwieldy amount of data
to create a functional prototype. This could conflict with UX
mantras like “fail fast, fail often.” (Dove et al. 2017) Conse-
quently, in research, it is difficult to experiment with many
different design solutions in searching for the best. In the in-
dustry, designers were unable to demonstrate or validate the
value in their designs through a working prototype as they
traditionally did. As a result, they found it difficult to con-
vince leadership to commit to their more innovative designs.
They thus often quickly resorted to familiar designs of ML,
such as recommenders and reminders (Yang et al. 2018).

How should we sketch and prototype when the design
materials in use – large datasets, computational power,
time and efforts of data scientists – are costly? Despite
efforts to make “ML available to everyone”, most designers
will face the reality that sufficient data and proficient data
scientists are scarce in their teams. A reflective discussion
on the current workflow, and how it might adapt to costly
ML systems is necessary.

There is also a real need for design tools and method-
ologies that support designers who lack constant access to
capable data scientists. For example, ML tools for design-
ers could simulate the role of the data scientists, enabling
designers to quickly evaluate the feasibility of their ideas
when sketching. We also see opportunities for research to
demonstrate creative designs that use readily available ML
solutions (i.e. off-the-shelf ML plugins); designs that do not
need intensive ML development effort to implement.
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Figure 1: An overview of HCI research that uses machine learning (Yang, Banovic, and Zimmerman 2018). (a) An illustration
of the literature landscape based on the semantic distances among each publication. Each dot represents a publication, color-
coded by cluster. (b) major topics of each cluster. Topic co-occurrences in these clusters surfaced some common combinations
of ML techniques and interaction forms.

UX and ML Match-Making

This leads to the third case in which we worked to help de-
signers identify opportunities in available datasets and algo-
rithms as well as to search for valuable new things to make.

With regard to “technology in searching for users”,
HCI researchers have previously proposed the matchmak-
ing method (Bly and Churchill 1999). Matchmaking starts
by asking designers to detail the technical capabilities of the
tech they are working on. Next, they systematically work to
discover activities related to these capabilities, domains re-
lated to the activities, and finally target users connected to
the revealed domains. Unfortunately, this approach is both
under-investigated as a design method and underutilized by
both design researchers and practitioners.

We wanted to reveal the technical capabilities and in-
teraction forms HCI has worked on with respect to
ML. We wanted to identify how ML has been used to
generate or augment value for users. Towards these
goals, we analyzed 2,494 HCI publications that men-
tion ML with a combination of manual and algorithmic
methods. This process produced three representations
of ML’s design space (Yang, Banovic, and Zimmerman
2018):

• 7 clusters of work where HCI researchers have re-
peatedly employed ML techniques to make an ad-
vance (Figure 1).

• A schema of machine learning capabilities in terms
of enhancing sensing, inference and actuation. Gen-
erally, these capabilities increase the value of noisy,
real-world data, escalating them to higher-level,
more meaningful information.

• 4 value channels through which ML advances pro-
vide experiential value for users. For example, ML
provides inferences about what might be optimal
(e.g. when designing MOOC platforms, ML models
ideal students’ engagement pattern and informs in-
teraction design).

The technically defined clusters, capabilities and user
value challenges provide starting places to generate
unseen designs of ML. Collectively, use of the cluster
and model should help design researchers ideate many
possible sensitizing concepts. We recommend a process
of selecting a technology and then systematically gen-
erating ideas from each of the four value channels. This
is one form of match-making.
Particularly, three clusters of ML technical advances
have not yet been bound to particular utilities, inter-
actions or user experiences. These design-wise under-
utilized clusters are: deep learning, sentiment analysis
and social network mining. Designers and researchers
can pick one technology material, match it with diverse
interaction forms, and generate many possible ways of
leveraging it to provide value to users. For example,
what can we design when one is able to capture soci-
etal happiness on twitter? What values can we provide
for users with deep learning, beyond providing more
targeted ads and recognizing objects in an image?

The clusters, schema and value model in this case are
neither fixed nor final. They await further examination and
discussion. Nonetheless, the exploratory process of catego-
rizing ML’s technical capabilities and design characteristics
was highly informative to us.

We realized that it seems impossible to categorize ML as
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Figure 2: An overview of the challenges in designing ML and the lessons learned in the case studies. These are likely to
generalize across many types of ML applications and domains; There is value in investigating these overarching challenges and
addressing them systematically.

one design material, and to articulate the capabilities it has or
the user activities it can facilitate. For traditional technology
materials, for example Bluetooth, researchers provided com-
prehensive descriptions of its special properties, and then
progressed to identify many domains and users these prop-
erties might support (Wiberg 2014). In contrast, the capabil-
ities of ML are wedded to its dataset, labels, and underlying
algorithm. Its experiential value arises from users’ holistic
experience over a larger course of interactions. ML in the
context of UX design resists easy assimilation into a com-
plete or fixed taxonomy of descriptive mechanisms, such as
supervised or unsupervised learning.

Designers need a new way of grasping ML’s capabil-
ities, a kind of abstraction that focuses on the match of
contextual capability and user value; a kind of taxonomy
that is likely to be radically different from ones used by
data scientists. The 7 clusters and schema described in the
above case provide a starting point for this effort (Figure 1).
Additionally, some designers have over the years developed
their original abstractions of ML, for example, ML enables
an experience personalized for everyone”, an evolving rela-
tionship with the users”, and “handling more abstract user
instructions” (Yang et al. 2018). Synthesizing and develop-
ing a robust set of such designerly abstractions would help
to evolve the understanding of ML as a design material, and
to more effectively explore its design possibilities.

Synthesizing the Challenges

The above case studies have illustrated many challenges in
innovating ML as a design material as well as the lessons
we learned along the way. On reflection, these challenges
are not unique to a particular ML problem or application
domain, but lie inherently in the characteristics of this design
material.

My goal here is not to enumerate the overarching chal-
lenges in designing ML, but to highlight the opportunities in
addressing them systematically. This section is intended to
provide another start point for this emerging area of inquiry

(Figure 2).

Inserting ML to Design Practice and Workflow The
tension between the classic UCD practice and the designs
that arise from available ML systems is a major theme
throughout the case studies.
• How to scaffold the design process such that necessary

ML considerations can be taken into account timely?
• How to evaluate the technical feasibility of a UX design,

especially when proficient data scientists are not con-
stantly accessible?
Without taking ML into consideration throughout prod-

uct development, even simple designs such as UI adaption
could fail. The case studies in this paper demonstrated three
kind of workflows; each entailed distinct challenges. Future
work should reflect on and improve the workflows we ex-
perimented, in searching for better ways of inserting ML to
product and service design practice.

At a higher level, the procedural knowledge of design-
ing ML marks a clear space for UX/ML research. Exist-
ing work has offered valuable declarative knowledge and
conceptual understandings of ML from a design perspec-
tive (i.e. algorithm trust, intelligibility, embodiment). Em-
bedding this growing body of new knowledge into organi-
zational and procedural contexts opens up new research op-
portunities and promises real impact on UX practice.

Sensitizing Designers to Existing ML Design Opportu-
nities Sensitizing UX practitioners to the design oppor-
tunities in new technologies is a recurring theme in some
HCI research. In previous cases, such as haptics, researchers
demonstrate working examplars of the technology to com-
municate the design possibilities. Interestingly, demonstrat-
ing a functional ML system to designers was not enough to
sensitize them, as many of these systems have weak connec-
tions to divergent user experiences after repeated use.
• How to recognize and draw inspirations from existing de-

sign examplars, given that successful ML interactions are
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often invisible or unremarkable?
• How to recognize ML opportunities with in our own

designs, especially when telemetry data are not readily
available?
There is a real need to create sensitizing concepts (Zim-

merman, Stolterman, and Forlizzi 2010) that communicate
ML design opportunities that are not instantly recognizable.
Some work is needed to explore the diverse forms of re-
search artifacts and knowledge representations, and to delib-
erately choose the ones that most effectively sensitize prac-
titioners.

Developing a Designerly Understanding of ML In order
to push the boundaries of what ML might be and might do,
we need to first bring clarity to its existing design space and
to identify major unknown topics as a basis for future re-
search endeavor. The review of HCI/ML literature is a first
step towards this goal (Figure 1).
• How to abstract ML’s capabilities from a UX perspective?
• How to sketch and evaluate multiple designs when “fail

fast, fail often” is practically impossible in prototyping
ML systems?
In addition, the case studies suggested an alternative view

to the common assumption that teaching designers how ML
works as the most effective way of helping them engage with
it as a design material. In match-making ML capabilities and
UX possibilities, designers comprehend ML in notably dif-
ferent ways than its textbook definitions. Design researchers
hoping to aid practitioners might focus on providing design-
erly abstractions, exemplars, and new tools that help design-
ers grasp the ML’s design potential, quickly sketch and pro-
totype, as well as better collaborate with data scientists. We
strongly encourage the UX and HCI research community to
join us and start a reflective discussion around innovating
ML as a design material.
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Abstract

Intelligent robots frequently need to explore the objects in
their working environments. Modern sensors have enabled
robots to learn object properties via perception of multiple
modalities. However, object exploration in the real world
poses a challenging trade-off between information gains and
exploration action costs. Mixed observability Markov deci-
sion process (MOMDP) is a framework for planning un-
der uncertainty, while accounting for both fully and partially
observable components of the state. Robot perception fre-
quently has to face such mixed observability. This work en-
ables a robot equipped with an arm to dynamically construct
query-oriented MOMDPs for object exploration. The robot’s
behavioral policy is learned from two datasets collected using
real robots. Our approach enables a robot to explore object
properties in a way that is significantly faster while improv-
ing accuracies in comparison to existing methods that rely on
hand-coded exploration strategies.

1 Introduction

Service robots are increasingly present in everyday environ-
ments, such as homes, offices, airports, and hospitals, where
a common task is to retrieve an object for a user. Consider
the request, “Please fetch me the red, empty bottle.” A key
problem for the robot is to decide whether a particular can-
didate object matches the properties in the query. For cer-
tain words (e.g., heavy, soft, etc.), visual classification of
the object is insufficient as the robot would need to per-
form an action (e.g., lift the object to determine whether it is
heavy or not). Multi-modal perception research has focused
on combining information arising from such multiple sen-
sory modalities.

Given multi-modal perception capabilities, a robot needs
to decide which actions (possibly out of many) to perform
on an object, i.e., generate a behavioral policy for a given
request. For instance, to obtain an object’s color, a robot
simply needs to adjust the pose of its camera, whereas sens-
ing the content of a container requires two actions: grasp-
ing and shaking. The robot needs to select actions in such
a way that the information gain about object properties is
maximized while the cost of actions is minimized. It should
be noted that the robot needs to use sequential reasoning in

Copyright c© 2018, Association for the Advancement of Artificial
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this action selection process, e.g., a shaking action would
make sense only if a grasping action has been (successfully)
executed. Also, robot perception capabilities are imperfect,
so the robot sometimes needs to take the same action more
than once. Probabilistic planning algorithms aim at comput-
ing action policies to help select actions toward maximiz-
ing long-term utility (information gain in our case), while
considering the uncertainty in non-deterministic action out-
comes.

Markov decision processes (MDPs) (Puterman 1994) and
partially observable MDPs (POMDPs) (Kaelbling, Littman,
and Cassandra 1998) enable an agent to plan under uncer-
tainty with full and partial observability respectively. How-
ever, the observability of real-world domains is frequently
mixed: some components of the current state can be fully ob-
servable while others are not. A mixed observability Markov
decision process (MOMDP) is a special form of POMDP
that accounts for both fully and partially observable compo-
nents of the state (Ong et al. 2010). In this work, we model
robot multi-modal perception problems using MOMDPs be-
cause of the mixed observability of the world that the robot
interacts with (e.g., whether an object is in hand or not is
fully observable, but object properties such as color and
weight are not). Referring to our model as a MOMDP (as
opposed to a POMDP) is not of practical importance in this
paper. It is mainly for ease of describing the domain.

Robot behavioral exploration policies are learned from
the experience of a robot interacting with objects in the
real world. We use datasets that include tens of objects
and nearly one hundred properties. In such domains, it fre-
quently takes a prohibitively long time to compute effective
behavioral exploration policies. To tackle this issue, we dy-
namically construct MOMDP-based controllers to model a
minimum set of domain variables that are relevant to cur-
rent user queries (e.g. “red, empty bottle”). This strategy
ensures a small state set and enables us to generate high-
quality robot action policies in a reasonable time (e.g., ≤ 2
seconds). Our experiments show that the policies of the con-
structed controllers improve recognition accuracy and re-
duce exploration cost when compared to baseline strategies
that deterministically or randomly use predefined sequences
of actions.
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2 Related Work

Recent research in robotics has shown that robots can learn
to classify objects using computer vision methods as well
as non-visual perception coupled with actions performed on
the objects (Högman, Björkman, and Kragic 2013; Sinapov
et al. 2014; Thomason et al. 2016). For example, a robot can
learn to determine whether a container is full or not based on
the sounds produced when shaking the container (Sinapov
and Stoytchev 2009); or learn whether an object is soft or
hard based on the haptic sensations produced when pressing
it (Chu et al. 2015). Past work has shown that robots can
associate (or ground) these sensory perceptions with human
language predicates in vision space (Alomari et al. 2017;
Whitney et al. 2016; Krishnamurthy and Kollar 2013; Ma-
tuszek et al. 2012) and joint visual and haptic spaces (Gao et
al. 2016).

Nevertheless, there has been relatively little emphasis on
enabling a robot to efficiently select actions at test time
when it is tasked with classifying a new object. The few ap-
proaches for tackling action selection, e.g., (Rebguns, Ford,
and Fasel 2011; Fishel and Loeb 2012; Sinapov et al. 2014),
assume that only one target property needs to be identified
(e.g., the object’s identity in the case of object recognition).
In contrast, we address the problem where a robot needs to
recognize multiple properties about an object, e.g., “is the
object a red empty bottle?”.
Sequential decision-making frameworks, such as MDPs,

POMDPs and MOMDPs, can be used for probabilistic plan-
ning toward achieving long-term goals, while accounting for
non-deterministic action outcomes and different observabil-
ities (Kaelbling, Littman, and Cassandra 1998; Ong et al.
2010). As a result, these frameworks have been applied to
object exploration in robotics. For instance, POMDPs were
used for suggesting visual operators and regions of interests
for exploring multiple objects on a tabletop scenario (Srid-
haran, Wyatt, and Dearden 2010), and more recent work
used a robotic arm to move objects enabling better visual
analysis (Pajarinen and Kyrki 2015). However, interaction
with objects in these lines of research relies heavily on robot
vision while other sensing modalities, such as audio and
haptics, are not considered.

Behavioral policies of multi-modal object exploration
have been learned in simulation using deep reinforcement
learning methods (Denil et al. 2017), where force was di-
rectly used in the interactions with objects. The simulation
environment used in that work makes it possible to run large
numbers of trials, but limits its applicability on real robots.

3 Theoretical Framework

Next, we describe the theoretical framework used by the
robot to learn predicate recognition models and generate ef-
ficient policies when tasked with identifying whether a set
of predicates hold true for a new object.

3.1 Multi-Modal Predicate Learning

In this work, the robot learns predicate recognition mod-
els using the methodology described in (Sinapov, Schenck,

and Stoytchev 2014; Thomason et al. 2016), briefly sum-
marized here. In this methodology, the robot uses behaviors
(e.g., look, grasp, lift) coupled with sensory modalities (e.g.,
color, haptics, audio) to identify whether a predicate (i.e., a
word that a human may use to describe an object) holds true
for an object.

Let P be the set of predicates, let B be the set of be-
haviors (i.e., actions), and let C be the set of sensorimotor
contexts, where each context c ∈ C corresponds to a combi-
nation of a behavior and sensory modality (e.g., look-color,
lift-haptics). For each predicate p, and context c, the robot
learns a classifier using data points [xc

i ,yi], where xc
i is the

ith observation feature vector in context c, and yi = true if
the predicate p holds true for the object in trial i, and f alse
otherwise.

Let Cb ⊂ C be the set of sensorimotor contexts associated
with behavior b ∈ B. When executing action b, the robot
queries the classifiers associated with contexts Cb and com-
bines their outputs to estimate a score (normalized in the
range of 0.0 to 1.0) for each predicate p∈P . In other words,
each behavior acts as a classifier itself. At the end of the
training stage, the robot performs internal cross-validation
and stores the confusion matrix Cb

p ∈ R
2×2 for predicate p

and behavior b. Next, we describe the problem of generating
an action policy when identifying whether a set of predicates
hold true for an object that was not present during training.

3.2 MOMDP-based Controllers

Behaviors (or actions1), such as look and drop, have dif-
ferent costs and different accuracies in predicate recogni-
tion. At each step, the robot has to decide whether more
exploration behaviors are needed, and, if so, select the ex-
ploration behavior that produces the most information. In
order to sequence these behaviors toward maximizing infor-
mation gain, subject to the cost of each behavior (e.g., the
time it takes to execute it), it is necessary to further con-
sider preconditions and non-deterministic outcomes of the
actions. For instance, shaking and dropping actions make
sense only if a preceding grasping action succeeds; and, in
practice, grasping actions are unreliable and succeed with
probability.

In this work, we assume action outcomes are fully ob-
servable and object properties are not. For instance, a robot
can reliably sense whether a grasping action is success-
ful, but it cannot reliably sense the color of a bottle or
whether that bottle is full. Due to this mixed observability
and unreliable action outcomes, we use mixed observability
MDPs (MOMDPs) (Ong et al. 2010) to model the sequential
decision-making problem for object exploration. We next
present how we formalize our object exploration problem
within the MOMDP framework.

A MOMDP is fundamentally a factored POMDP with
mixed state variables. The fully observable state components
are represented as a single state variable x (in our case, the
robot-object status, e.g., the object is in hand or not), while
the partially observable components are represented as state

1The terms of “behavior” and “action” are used interchangeably
in this paper.
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Figure 1: A simplified version of the transition diagram in
space X for object exploration. This figure only shows the
probabilistic transitions led by exploration actions. Report
actions that deterministically lead transitions from xi ∈X to
the term state are not included.

variable y (in our case, the object properties, e.g., the object
is heavy or not). As a result, (x,y) specifies the complete
system state, and the state space is factored as S = X ×Y ,
where X is the space for fully observable variables and Y is
the space for partially observable variables.

Formally, a MOMDP model is specified as a tuple,

(X , Y, A, TX , TY , R, Z, O, γ),

where A is the action set, TX and TY are the transition
functions for fully and partially observable variables respec-
tively, R is the reward function, Z is the observation set, O
is the observation function, and γ is the discount factor.

The definitions of A, R, Z, O, and γ of a MOMDP are
identical to these of POMDPs (Kaelbling, Littman, and Cas-
sandra 1998), except that Z and O are only applicable to Y ,
the partially observable components of the state space. γ is
the discount factor that specifies the planning horizon. We
formalize our object exploration problem as a MOMDP (as
a special form of POMDP) mainly for ease of describing the
fully and partially observable variables in our domain.

Next, we present how each component of our MOMDP
model is specified for our object exploration problem.

3.3 State Space Specification

The state space of our MOMDP-based controllers has two
components of X and Y . The global state space S includes a
Cartesian product of X and Y ,

S = {(x,y) | x ∈ X and y ∈ Y}
X is the state set specified by fully observable do-

main variables. In our case, X includes a set of six states
{x0, · · · ,x5}, as shown in Figure 1, and a terminal state
term ∈ X that identifies the end of an episode. x ∈ X is
fully observable, and the robot knows the current state of
the robot-object system, e.g., whether grasping and dropping
actions are successful or not.
Y is the state set specified by partially observable domain

variables. In our case, these variables correspond to N object
properties that are queried about, {v0, v1, · · · , vN−1}, where
the value of vi is either true or false. Thus, |Y|= 2N .
For instance, given an object description that includes

three properties (e.g., “a red empty bottle”), Y includes

grasp (22.0s) lift (11.1s) lower (10.6s)

drop (9.8s) push (22.0s) press (22.0s)

Figure 2: The behaviors, and their durations in seconds
(behaviors are from the Thomason16 dataset detailed in
Sec. 4). In addition, the hold (1.0s) behavior was performed
by holding the object in place. The look (0.5s) behavior was
also performed by taking a visual snapshot of the object us-
ing the robot’s sensors prior to exploration.

23 = 8 states. Since y ∈ Y is partially observable, it needs
to be estimated through observations. It should be noted that
there is no state transition in the space of Y , as we assume
object properties do not change over the course of robot ac-
tion.

3.4 Actions and Transition System

We present the transition system of our MOMDP-based con-
trollers by first introducing the action set and then the tran-
sition probabilities. A : Ae∪Ar is the action set. Ae includes
the object exploration actions pulled from the literature of
robot exploration, as shown in Figure 1, and Ar includes the
reporting actions used for object property identification.

Exploration actions: Figure 1 shows all exploration ac-
tions except for action ask that is allowed in any state x ∈X .
Among the actions, tap, poke, and shake are only available
in the dataset of (Sinapov, Schenck, and Stoytchev 2014)
and hold is only available in the dataset of (Thomason et
al. 2016). As one of the main contributions, our approach
enables a robot to automatically figure out what actions are
useful given a user query by learning from the datasets. Pic-
tures of a robot executing some of the exploration actions
are shown in Figure 2.

Reporting actions: Ar includes a set of actions that are
used for reporting the object’s properties and can determin-
istically lead the state transition to term (terminal state). For
instance, if a user queries about “a blue, heavy can”, there
will be three binary variables specifying each of properties
is true or false. As a result, there will be eight reporting ac-
tions. For a ∈ Ar, we use s�a (or y�a) to represent that the
report of a matches the underlying values of object proper-
ties (i.e., a correct report) and use s�a (or y�a) otherwise.
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TX : X × A × X → [0,1] is the state transition func-
tion in the fully observable component of the current state.
TX includes a set of conditional probabilities of transitions
from x ∈ X—the fully observable component of the current
state—to x′ ∈X , the component of the next state, given a∈A
the current action. Reporting actions and illegal exploration
actions (e.g., dropping an object in state x1—before a suc-
cessful grasp) lead state transitions to term with 1.0 proba-
bility.

Most exploration actions are unreliable and succeed prob-
abilistically. For instance, p(x4, drop, x5) = 0.95 in our
case, indicating there is small probability the object is stuck
in the robot’s hand. The success rate of action look is 1.0 in
our case, since without changing positions of either the cam-
era or the object it does not make sense to keep running the
same vision algorithms and hence it is not allowed.

TY : Y ×A×Y → [0,1] is the state transition function in
the partially observable component of the current state. It is
an identity matrix in our case, (we assume) because object
properties do not change during the process of the robot’s
exploration actions.

3.5 Reward Function and Discount Factor

R : S×A→ R is the reward function. Each exploration ac-
tion, ae ∈ Ae, has a cost that is determined by the time re-
quired to complete the action. These costs are empirically
assigned according to the datasets used in this research. The
costs of reporting actions depend on whether the report is
correct.

R(s,a) =
{

r−, if s ∈ S, a ∈ Ar, s�a
r+, if s ∈ S, a ∈ Ar, s�a

where r− (or r+) is negative (or positive) given an incorrect
(or correct) report. Unless otherwise specified, r−=−500
and r+=500 in this paper.
Costs of other exploration actions are within the range

of [0.5,22.0] (corresponding reward is negative), except that
action ask has the cost of 100.0. γ is a discount factor, and
γ = 0.99 in our case. This setting gives the robot a relatively
long planning horizon.

3.6 Observations and Observation Function

Z : Zh ∪ /0 is a set of observations. Elements in Zh include
all possible combinations of object properties and have one-
one correspondence to elements in Ar and Y . For instance,
when the query is about “a red empty bottle”, there exists
an observation z ∈ Zh that represents “the object’s color is
red; it is not empty, and it is a bottle.” Actions that produce
no information gain (reinitialize, in our case), and reporting
actions in Ar result in a /0 (none) observation.

O : S×A×Z→ [0,1] is the observation function that spec-
ifies the probability of observing z ∈ Z when action a is ex-
ecuted in state s: O(s,a,z). In this work, the probabilities
are learned from performing cross-validation on the robot’s
training data. As described in Section 3.1, predicate learn-
ing produces confusion matrixCb

p ∈R
2×2 for each predicate

p and each behavior b, where b corresponds to one of the

exploration actions shown in Figure 1.

O(s,a,z) = Pr(ps,b,pz)

=Cb
p0(ps

0, pz
0) ·Cb

p1(ps
1, pz

1) · · ·Cb
pN−1(ps

N−1, pz
N−1)

where behavior b corresponds to action a; ps and pz are the
vectors of true and observed values (0 or 1) of the predicates;
ps

i (or pz
i ) is the true (or observed) value of the ith predicate;

and N is the total number of predicates in the query.

3.7 Dynamically Constructed Controllers

State set Y can be very large, due to the large number of
predicates and the exponentially increasing number of their
combinations. For example, one of the datasets in our ex-
periments contains 81 predicates, resulting in 281 possible
states. Due to limited computational resources, it would be
intractable for a robot to generate a far-sighted policy for
identifying an object according to all 81 predicates.

Recent research decomposes a sequential decision-
making problem into two tractable subproblems that respec-
tively focus on high-dimensional reasoning (e.g., objects
with many properties) and long-horizon planning (e.g., tasks
that require many actions) (Zhang, Khandelwal, and Stone
2017). Based on that approach, we dynamically construct
controllers that include a minimum set of predicates, instead
of modeling all of them, in the Y component. In addition to
Y , the following components depend on the user query: re-
porting actions Ar, object property combinations Zh, and the
reward and observation functions (due to the involvement
of Y). As a result, our query-oriented, MOMDP-based con-
trollers are relatively very small, and typically include fewer
than 100 states at runtime.

It should be noted that we use MOMDP, as a special form
of POMDP, to model our domain mainly for the ease of de-
scribing the mixed observability overX and Y (Section 3.3).
Our approach enables automatic generation of complete
MOMDP models. One can encode such MOMDP models in
such a way that existing POMDP solvers (e.g., (Kurniawati,
Hsu, and Lee 2009)) can be used to generate policies, as we
do in this work.

4 Experimental Results

We evaluate the proposed method using two datasets in
which a robot explored a set of objects using a variety of
exploratory behaviors and sensory modalities, and show that
for both our proposed MOMDP model outperforms baseline
models in exploration accuracy and overall exploration cost.
Two datasets of Sinapov14 and Thomason16 have been
used in the experiments, where Thomason16 has a much
more diverse set of household objects and a larger number
of predicates that arose naturally during human-robot inter-
action gameplay.

Sinapov14 Dataset: In this dataset, the robot explored 36
different objects using 11 prototypical exploratory behav-
iors: look, grasp, lift, shake, shake-fast, lower, drop, push,
poke, tap, and press 10 different times per object. The ob-
jects are lidded containers with the same shape and varied
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Figure 3: Objects in the Thomason16 dataset (Left) and the
one used in the illustrative example in Section 4.1 (Right).

along 3 different attributes: 1) color: red, green, blue; 2)
weight: light, medium, heavy; and 3) contents: beans, rice,
glass, screws. These variations result in the 3× 3× 4 = 36
objects bearing combinations of these attributes in the set P
that the robot is tasked with learning. It should be noted that
costs of actions in the two datasets are different, because the
datasets were collected using different robots.

Thomason16 Dataset: In this dataset, the robot explored
32 common household objects using 8 exploratory actions:
look, grasp, lift, hold, lower, drop, push, and press. Each
behavior was performed 5 times on each object. The dataset
was originally produced for the task of learning how sets of
objects can be ordered and is described in greater detail by
(Sinapov et al. 2016).

For the look behavior, color, shape, and deep features (the
penultimate layer of the trained VGG network (Simonyan
and Zisserman 2014)) are available. For the remaining be-
haviors, the robot recorded audio, proprioceptive (finger po-
sitions for grasp), and haptic (i.e., joint forces) features pro-
duced by the interaction with the object. These modalities
result in |C|= 7×2+1×3= 17 sensorimotor contexts.
The set of predicates P consisted of 81 words used by

human participants to describe objects in this dataset during
an interactive gameplay scenario described by (Thomason et
al. 2016). Example predicates include the words red, heavy,
empty, full, cylindrical, round, etc. Unlike the Sinapov14
dataset, here the objects vary greatly, and the predicate
recognition problem is much more difficult.

4.1 Illustrative Example

We now describe an example in which a robot is tasked with
identifying properties of a given object. We randomly se-
lected an object from the Thomason16 dataset: a blue and
red bottle full of water (Figure 3). We then randomly se-
lected properties, in this case “yellow” and “metallic,” and
asked the robot to identify whether the object has each of
the properties or not. The selected object was not part of
the robot’s training set used to learn the predicate recogni-
tion models and the MOMDP observation model. The robot
should report negative to both properties while minimizing
the overall cost of exploration actions.

Given this user query, we generate a MOMDP model that
includes 25 states. We then generate an action policy us-
ing past work’s methods (Kurniawati, Hsu, and Lee 2009).
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Figure 4: Action selection and belief change in the explo-
ration of a red and blue bottle full of water, given a query of
yellow and metallic.

Currently, building the model takes almost no time, and we
uniformly gave two seconds for policy generation using the
model (same in all experiments). The time for computing
the policy is insignificant relative to the time for exploratory
behaviors (which is what we are really trying to minimize).

Figure 4 shows the belief change in this process. The
initial distributions over X and Y are [1.0,0.0, · · · ] and
[0.25,0.25,0.25,0.25] respectively. The policy suggests
“look” first. We queried the dataset to make an observa-
tion, neg-neg in this case. The belief over Y is updated
based on this observation: [0.41,0.28,0.19,0.13], where
the entries represent neg-neg, neg-pos, pos-neg, and pos-
pos respectively. There is a (fully observable) state transi-
tion in X , from x0 to x1, so the belief over X becomes
[0.0,1.0,0.0, · · · ]. Based on the updated beliefs, the pol-
icy suggests taking the “push” action, which results in an-
other neg-neg observation. Accordingly, the belief over Y
is updated to [0.60,0.13,0.22,0.05], which indicates that
the robot is more confident that the object is neither “yel-
low” nor “metallic”. After actions of reinitialize, look, push,
and push (this first push action was unsuccessful, and
produced the /0 observation), the belief over Y becomes
[0.84,0.04,0.12,0.01]. The policy finally suggests reporting
neg-neg, making it a successful trial with an overall cost of
167 seconds, which results in a reward of 500− 167 = 333
(an incorrect report would have resulted in −667 reward).

Remarks: It should be noted that the classifiers associ-
ated with each behavior and word will produce an output
even in cases where the sensory signals from that behavior
are irrelevant to the word. For instance, although the sen-
sory signals relevant to “push” are haptics and audio, the
first “push” action results in an observation of “yellow”. It
was “yellow:neg”, because the training set prior of most ob-
jects are not yellow. The robot favors actions that distinguish
‘easy’ predicates (look distinguishes yellow well in this case)
because there is the discount factor (0.99): If an action is use-
ful, the robot will prefer taking it early. The more the action
is delayed, the more the expected reward is discounted.

4.2 Results

Next, we describe the experiments we conducted to eval-
uate the proposed MOMDP-based multi-modal perception
strategy for object exploration. The goal was to increase the
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Table 1: Performances of MOMDP-based and two baseline
planners in cost (second) and accuracy on the Sinapov14
dataset. Numbers in parenthesis denote the Standard Devia-
tions over 400 trials.

Properties Method Overall cost (std) Accuracy

Random Plus 17.56 (30) 0.245
Two Predefined Plus 37.10 (0.00) 0.583

MOMDP (Ours) 29.85 (12.87) 0.860

Random Plus 10.12 (21.77) 0.130
Three Predefined Plus 37.10 (0.00) 0.373

MOMDP (Ours) 33.87 (8.78) 0.903

accuracy in identifying properties of a novel object while re-
ducing the overall action costs required in this process. In all
evaluation runs, the object that needs to be identified was not
part of the robot’s training set when learning the predicate
recognition models or the MOMDP parameters. The follow-
ing baseline action strategies are used in experiments, where
belief is updated using Bayes’ rule except for Random:

• Random: Actions are randomly selected from A that in-
cludes both reporting and legal exploration actions. A trial
is terminated any of the reporting actions.

• Random Plus: Actions are randomly selected from legal
exploration actions. Under an exploration budget, one se-
lects the reporting action that makes the best sense (i.e.,
that corresponding to y with the highest belief).

• Predefined: An action sequence is strictly followed: ask,
look, press, grasp, lift, lower and drop.2 Under an explo-
ration budget or in early terminations caused by illegal
actions, the robot selects the reporting action that makes
the best sense.

• Predefined Plus: The same as Predefined except that un-
successful actions are repeated until achieving the desired
result(s).

Sinapov14 Dataset: In each trial, we place an object that
has three attributes (color, weight and content) on a table and
then generate an object description that includes the values
of two or three attributes. This description matches the ob-
ject in only half of the trials. When two (or three) attributes
are queried, Y includes four (or eight) states plus term state,
resulting in S that includes 25 (or 49) states. The other com-
ponents of the dynamically constructed MOMDPs grow ac-
cordingly, given an increasing number of queried attributes.

Experimental results are reported in Table 1. Not sur-
prisingly, randomly selecting actions produces low accu-
racy. The overall cost is smaller in more challenging trials
(all three properties are questioned), because in these trials
there are relatively fewer exploration actions (more proper-
ties produce more reporting actions), making the agent more
likely to take a reporting action. Our MOMDP-based multi-
modal perception strategy reduces the overall action cost

2Action ask was used only in the Thomason16 experiments,
because other exploration actions are not as effective as in
Sinapov14.

Figure 5: Evaluations of five actions strategies on the
Thomason16 dataset. Comparisons are made in three cat-
egories of overall reward (Left), exploration cost (Middle),
and success rate (Right).

while significantly improving the reporting accuracy. Our
performance improvement is achieved by repeating actions
as needed, selecting legal actions (e.g., lift is legal only if
the current state is x2) that produce the most information or
have the potential of doing so in the future, and even arbi-
trarily reporting without “wasting” exploration actions given
queries where the exploration actions are not effective.

Thomason16 Dataset: In this set of experiments, a user
query is specified by randomly selecting one object and N
properties (1≤ N ≤ 3), on which the robot is questioned.
Each data point is an average over 200 trials, where we con-
ducted pairwise comparisons over the five strategies, i.e., the
strategies were evaluated using the same set of user queries.
A trial is successful only if the robot reports correctly on
all properties. It should be noted that most of the contexts
are misleading in this dataset due to the large number of ob-
ject properties, so it happens that more exploration actions
confuse the robot more if the actions are not carefully se-
lected. Figure 5 shows the experimental results. Overall re-
ward is computed by subtracting overall action cost from the
reward yielded by the reporting action (either a big bonus or
a big penalty). We do not compute standard deviations in this
dataset, because the diversity of the tasks results in problems
of very different difficulties.

We can see our MOMDP-based strategy consistently per-
forms the best in terms of the overall reward and overall
accuracy. When more properties are queried, the MOMDP-
based controllers enable the robot to take more exploration
actions (Middle subfigure), whereas the baselines could not
adjust their question-asking strategy accordingly.

The last experiment aims to experimentally evaluate the
need of dynamically constructed controllers. We constructed
MOMDP controllers including two relevant and an increas-
ing number of irrelevant properties (i.e., the ones that are
not queried). Results are shown in Figure 6. We can see, the
quality of the generated action policies decreases soon (from
higher than 150 to lower than 25 in reward), when more ir-
relevant properties are included in the MOMDPs. We did not
include six or more irrelevant properties, because the solver
cannot produce any policy in one and a half minutes.
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Figure 6: A “super” MOMDP that models two relevant and
(an increasing number of) irrelevant properties, in compari-
son to dynamically constructed controllers used in this work.

5 Conclusions and Future Work

We investigate using mixed observability Markov decision
processes (MOMDPs) to help robots select actions for multi-
modal perception in object exploration tasks. Our approach
can dynamically construct a MOMDPmodel given an object
description from a human user (e.g., “a blue heavy bottle”),
compute a high-quality policy for this model, and use the
policy to guide robot behaviors (such as “look” and “shake”)
toward maximizing information gain. The dynamically built
controllers enable the robot to focus on a minimum set of
domain variables that are relevant to the current object and
query. TheMOMDPmodels are constructed using two exist-
ing datasets collected with robots interacting with objects in
the real world. Experimental results show that our object ex-
ploration approach enables the robot to identify object prop-
erties more accurately without introducing extra cost from
exploration actions compared to a baseline that suggests ac-
tions following a predefined action sequence.

This research primarily focuses on a robot exploring ob-
jects in a tabletop scenario. In future work, we plan to in-
vestigate applying this approach to tasks that involve more
human-robot interaction and mobile robot platforms, where
exploration would require navigation actions and perceptual
modalities such as human-robot dialog. Finally, in the two
datasets used in this paper, the robot’s manipulation actions
were always successful but that would not always be the
case in a real-world scenario; therefore we plan to extend our
framework to situations in which the robot’s actions may fail
(in terms of manipulation) or cause undesirable outcomes
(e.g., dropping an object may break it).
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Abstract

An important problem of automated planning is validating if
a plan complies with the planning domain model. Such vali-
dation is straightforward for classical sequential planning but
until recently there was no such validation approach for Hi-
erarchical Task Networks (HTN) planning. In this paper we
propose a novel technique for validating HTN plans that is
based on representing the HTN model as an attribute gram-
mar and using a special parsing algorithm to verify if the plan
can be generated by the grammar.

Introduction

Automated planning deals with the problem of finding a se-
quences of actions to reach a certain goal (Ghallab, Nau, and
Traverso 2004). Actions are specified via preconditions and
postconditions (also called effects) describing propositions
that must be true in the state before action application (pre-
conditions) and that will become true after action application
(postconditions). Hence, action are a formal model of state
transitions and a plan – a sequence of actions - describes a
valid evolution of the world from a given initial state.

To increase efficiency of planning, Hierarchical Task Net-
works (HTN) were proposed to describe sets of actions as
recipes for solving specific tasks (Erol, Hendler, and Nau
1996). HTN models are based on idea of decomposing com-
pound tasks to subtasks until primitive tasks – actions – are
obtained. The decomposition may include extra constraints
describing precedence relations between sub-tasks and re-
quired properties of states (propositions that must hold be-
fore or between certain subtasks). The planning problem is
specified as a goal task that needs to be decomposed to a se-
quence of actions applicable to an initial state, while satisfy-
ing all the task decomposition constraints and all the causal
constraints between the actions. This sequence needs to be a
valid plan in terms of causal constraints between the actions.

An important problem in automated planning is validat-
ing plans with respect to a given domain model. Such vali-
dation is easy for classical sequential planning, where it can
be realised by simulating plan execution (Howey and Long
2003). However, until recently, there was no method to vali-
date HTN plans, that is, to validate if a given plan can indeed
be obtained from the goal task by some decomposition steps.
There exists a recent validation method based on represent-
ing all possible decompositions as a SAT problem (Behnke,

Höller, and Biundo 2017), but this method does not assume
decomposition constraints (except decomposition precondi-
tions that are compiled away to a dummy action). In this
paper we suggest a more general approach that covers HTN
models completely including all decomposition and causal
constraints.

It has already been noted that derivation trees of Context-
Free (CF) grammars resemble the structure of Hierarchical
Task Networks (HTN). This has been used in (Erol, Hendler,
and Nau 1996) to show the expressiveness of planning for-
malisms. Then, there have been some attempts to represent
HTNs as CF grammars or equivalent formalisms (Nederhof,
Shieber, and Satta 2003) but as demonstrated in (Höller et
al. 2014), the languages defined by HTN planning problems
(with partial-order, preconditions and effects) lie somewhere
between CF and context-sensitive (CS) languages. In (Geib
2016), the author presents an approach with a similar in-
tention with the help of Combinatory Categorial Grammars
(CCGs), which are part of a category lying between CF and
CS grammars, the mildly context-sensitive grammars. The
author proposes a single model for both plan recognition and
planning and he also proposes a planning algorithm based
on CCGs. However, it appears that this modelling process is
counter-intuitive as it requires a lexicalization (the hierarchi-
cal structure is contained in the terminal symbols) while the
decomposition approach is more natural in planning. Also,
it is not yet sure if this formalism and its planning tech-
nique can produce the full range of HTN plans. Recently,
a model of HTNs based on attribute grammars has been
proposed (Barták and Maillard 2017). The underlying gram-
mar describes proper task decompositions, while a so called
timeline constraint over the task attributes describes valid
orders of actions based on causal relations. It is the only
model that handles all HTN constraints including interleav-
ing of actions. Though string shuffling used in plan recogni-
tion (Maraist 2017) allows some for of task interleaving, it
is not clear how it maintains the causal constraints.

In this paper, we will use attribute grammars to validate
HTN plans. We will describe how HTN domain model is
represented as an attribute grammar, and for this grammar
we will present a parsing technique that does plan validation.
Note that due to interleaving of actions and presence of extra
constraints, the parsing technique needs to be more general
than classical parsing for CF grammars.
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Background on Planning

In this paper we work with classical STRIPS planning that
deals with sequences of actions transferring the world from a
given initial state to a state satisfying certain goal condition.
World states are modelled as sets of propositions that are true
in those states and actions are changing validity of certain
propositions.

Classical Planning

Formally, let P be a set of all propositions modelling prop-
erties of world states. Then a state S ⊆ P is a set of propo-
sitions that are true in that state (every other proposition
is false). Later, we will use the notation S+ = S to de-
scribe explicitly the valid propositions in the state S and
S− = P \ S to describe explicitly the propositions that are
not valid in the state S.

Each action a is described by four sets of propositions
(B+

a , B−a , A+
a , A

−
a ), where B+

a , B−a , A+
a , A

−
a ⊆ P,B+

a ∩
B−a = ∅, A+

a ∩ A−a = ∅. Sets B+
a and B−a describe positive

and negative preconditions of action a, that is, propositions
that must be true and false right before the action a. Action
a is applicable to state S iff B+

a ⊆ S ∧ B−a ∩ S = ∅. Sets
A+

a and A−a describe positive and negative effects of action
a, that is, propositions that will become true and false in
the state right after executing the action a. If an action a is
applicable to state S then the state right after the action a
will be

γ(S, a) = (S \A−a ) ∪A+
a . (1)

If an action a is not applicable to state S then γ(S, a) is
undefined.

The classical planning problem, also called a STRIPS
problem, consists of a set of actions A, a set of propositions
S0 called an initial state, and disjoint sets of goal proposi-
tions G+ and G− describing the propositions required to be
true and false in the goal state. A solution to the planning
problem is a sequence of actions a1, a2, . . . , an such that
S = γ(...γ(γ(S0, a1), a2), ..., an) and G+ ⊆ S∧G−∩S =
∅. This sequence of actions is called a plan.

Hierarchical Task Networks as Attribute
Grammars

To simplify the planning process, several extensions of the
basic STRIPS model were proposed to include some control
knowledge. Hierarchical Task Networks (Erol, Hendler, and
Nau 1996) were proposed as a planning domain modeling
framework that includes control knowledge in the form of
recipes how to solve specific tasks. The recipe is represented
as a task network, which is a set of sub-tasks to solve a given
task together with the set of constraints between the sub-
tasks. The constraints can be of the following types:

• t1 ≺ t2: a precedence constraint meaning that in every
plan the last action obtained from task t1 is before the
first action obtained from task t2,

• before(U, l): a precondition constraint meaning that in ev-
ery plan the literal l holds in the state right before the first
action obtained from tasks U ,

• after(U, l): a postcondition constraint meaning that in ev-
ery plan the literal l will hold in the state right after the
last action obtained from tasks U ,

• between(U, V, l): a prevailing condition meaning that in
every plan the literal l holds in all the states between the
last action obtained from tasks U and the first action ob-
tained from tasks V .

In HTN, a compound task is solved by decomposing it to a
task network - the connection between the task and the task
network is called a (decomposition) method. The method
can naturally be described as a rewriting rule of an attribute
grammar. Attribute grammars (Knuth 1968) use the same
type of rewriting rules as context-free grammars, but the
grammar symbols may by annotated by attributes connected
by constraints. This makes attribute grammars stronger than
CF grammars in the sense of recognising a large class of
languages.

Let T (
−→
X ) be a compound task with parameters

−→
X and

({T1(
−→
X1), ..., Tk(

−→
Xk)}, C) be a task network, where C are

its constraints. We can encode the decomposition method as
an attribute grammar rule:

T (
−→
X )→ T1(

−→
X1), ..., Tk(

−→
Xk) [C] (2)

The planning problem in HTN is specified by an initial
state (the set of propositions that hold at the beginning) and
by an initial task representing the goal. The compound tasks
need to be decomposed via decomposition methods until
a set of primitive tasks – actions – is obtained. Moreover,
these actions need to be linearly ordered to satisfy all the
constraints obtained during decompositions and the obtained
plan – a linear sequence of actions – must be applicable to
the initial state in the same sense as in classical planning.

If we do planning by application of grammar rewriting
rules, we get a linear sequence of actions (a terminal word
in terms of formal grammars), but this sequence does not
necessarily form a valid plan as the actions from different
tasks may interleave to satisfy the ordering and causal con-
straints (see Figure 1). So the actions obtained by applying
the grammar rules need to be re-ordered to get a valid plan.
The attribute grammars model the valid action orderings via
a global timeline constraint (Barták and Maillard 2017).

To give a particular example of the decomposition rule, let
us assume a task to transfer a container c from one location
l1 to another location l2 by a robot r. To solve this task, we
need to load the container first, then move it to its destination
location, and unload it there. The following rule describes
this decomposition method1:

Transfer1(c, l1, l2, r)→Load-rob(c, r, l1).

Move-rob(r, l1, l2).

Unload-rob(c, r, l2)[C] (3)

1There are several ways to model the task. For example, the
before and after constraints can be omitted as they will be part of
the primitive tasks.
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Figure 1: A task decomposition tree showing interleaving of actions obtained from decompositions of different tasks - denoted
by the bold arc.

where
C = {Load-rob ≺ Move-rob, Move-rob ≺ Unload-rob,

before({Load-rob}, at(r, l1)),
before({Load-rob}, at(c, l1)),
between({Load-rob}, {Move-rob}, at(r, l1)),
between({Move-rob}, {Unload-rob}, at(r, l2)),
between({Load-rob}, {Unload-rob}, in(c, r)),
after({Unload-rob}, at(c, l2)}

The decomposition constraints specify the following restric-
tions:
• the robot and the container must be at the same location
l1 before loading,

• the robot does not change its location between loading
and the start of moving,

• the container stays in the robot between loading and un-
loading,

• the robot stays at the destination location l2 between the
end of moving and the start of unloading,

• the container will be at the destination location l2 after
unloading.

An alternative decomposition method omits the Move-rob
task as it assumes that this task is introduced by decompo-
sition of another compound task. See the task for c2 in Fig-
ure 1. Still, we need to ensure that the robot is at the right
location before unloading, which is done by the constraint
before({Unload-rob}, at(r, l2)). The alternative decompo-
sition rule looks as follows:

Transfer1(c, l1, l2, r)→Load-rob(c, r, l1).

Unload-rob(c, r, l2)

[C] (4)

where
C = {Load-rob ≺ Unload-rob,

before({Load-rob}, at(r, l1)),
before({Load-rob}, at(c, l1)),
before({Unload-rob}, at(r, l2)),
between({Load-rob}, {Unload-rob}, in(c, r)),
after({Unload-rob}, at(c, l2)}

The top task for transferring two containers using the
same robot and between the same locations can be described
using the following decomposition method:

Transfer2(c1, c2, l1, l2, r)→Transfer1(c1, l1, l2, r).

Transfer1(c2, l1, l2, r)

[] (5)

Notice that having the before and after constraints al-
lows us to describe action preconditions and postconditions
as decomposition constraints rather than having them speci-
fied separately. This is done by having a compound task for
each action, for example Load-rob corresponds to the prim-
itive action load-r. This is the corresponding decomposition
method:

Load-rob(c, r, l)→ load-r(c, r, l). [C] (6)

where

C = {before({load-r}, at(r, l)),
before({load-r}, at(c, l)),
after({load-r}, in(c, r)}
after({load-r},¬at(c, l)}

HTN Validation Algorithm

The plan validation problem is a problem reverse to the plan-
ning problem. We have a plan as the input and the problem
is to validate if that plan can be obtained by decomposition
from the goal task. In terms of grammars, it means using the
grammar rules in an analytical way to do parsing.

Recall that the order of actions in the plan does not neces-
sarily correspond to the order of actions obtained by appli-
cation of grammar rules. Hence, during parsing, we ignore
the order of tasks on the right side of grammar rules and
we model the action (task) order explicitly by using indexes
assigned to tasks. Each task will be annotated by two in-
dexes describing the order numbers of the first and the last
actions obtained from task decomposition. For example, the
task Load-rob1,1(c1, r1, l1) from Figure 1, that gives the
action load-r(c1, r1, l1), is annotated by indexes 1,1.

Let us now demonstrate a single parsing step. Assume
that we already parsed the tasks Load-rob1,1(c1, r1, l1),
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Move-rob3,3(r1, l1, l2), and Unload-rob4,4(c1, r1, l2) and
we continue in parsing using the grammar rule (3). The tasks
on the right side of the rule already exist and we can verify
the ordering constraints 1 ≺ 3 and 3 ≺ 4 by comparing the
respective indexes. The result of the parsing step will be a
new parsed task Transfer11,4(c1, l1, l2, r1), where the in-
dexes are taken as minimal and maximal indexes of its sub-
tasks.

We still need to verify the other constraints in the
rule. This will be done by maintaining a timeline for
each task. The timeline is a sequence of slots describ-
ing validity of literals in time steps corresponding to
the task. For every time step, the slot will describe the
literals that hold in the state before the action at that
time (a Pre part) and literals that must hold in the
state right after the action (a Post part). For example,
the task Load-rob1,1(c1, r1, l1) will use a single slot
({at(r1, l1), at(c1, l1)}, {in(c1, r1),¬at(c1, l1)})1, where
the index represents time and the literals are basically pre-
conditions and postconditions of action load-r(c1, r1, l1)
that were encoded as before and after constraints (see the
rule (6)).

During the parsing step, we first merge the timelines for
the subtasks with possible insertion of empty slots for times
not covered by the sub-tasks (slot 2 in our example). Empty
slot does not contain any action, but its Pre part may contain
literals obtained by propagation (see below). Two slots with
the same index can only be merged if (at least) one of them is
empty. This way we ensure that each action is generated ex-
actly once. For example, when merging timelines for tasks
Transfer11,4(c1, l1, l2, r1) and Transfer12,5(c2, l1, l2, r1)
we are merging non-empty slots 1,3,4 for the first task with
non-empty slots 2, 5 of the second task. If the slots cannot
be merged as they both already contain an action, then pro-
cessing of the derivation rule is stopped and the algorithm
continues with the next rule.

After merging the timelines for subtasks we add literals
based on the rule constraints - for before and between con-
straints, the literals are added to the Pre parts of respective
slots; for the after constraints, the literals are added to the
Post parts.

After that, we propagate the literals between the slots.
This propagation goes from left to right, where the liter-
als from the postcondition part are added to the precondi-
tion part of the next slot and, if the slot is not empty (con-
tains some action), the literals in preconditions, that are not
deleted by the action, are added to the precondition part of
the next slot. This basically follows the state transition for-
mula as specified in (1). The right-to-left propagation adds
literals in preconditions to preconditions of the previous slot
provided that the slot is not empty and the literal is not added
by the action in it. The goal of propagation is to keep in-
formation about states up-to-date (notice that propagation
changes only the Pre parts of the slots that describe the
states).

Finally, we verify that the slots are consistent, which con-
sists of checking that no slot contains a literal and its nega-
tion in any of its parts. Table 1 demonstrates this process –
it shows how literals are added to the slots in each step (slot

merging, constraint addition, propagation).
The validation algorithm first transfers each action to a

primitive task with the index corresponding to the order of
the action and with the timeline containing a single slot with
that action and empty Pre and Post parts. Recall, that pre-
conditions and postconditions of actions will be added later
during parsing using the rules of type (6). The literals of the
initial state are added to the Pre part of the first slot (for sim-
plicity, we ignored them in the previous example of a parsing
step). Then the algorithm takes any grammar rule such that
the tasks from its right side are already known and it does
the above described parsing step. This may introduce a new
parsed task. This process is repeated while some new task is
introduced or until a goal task is introduced whose indexes
span the whole plan. If the goal task is found then the plan
is sound, otherwise, the plan is not sound. Note that the al-
gorithm always finishes as there is only a finite number of
compound tasks that can introduced during parsing. We will
now describe the validation algorithm formally.

Data structures

First we will describe the data structures that are used later in
the algorithm. Basically, we will introduce slots, timelines,
and the parsed tasks :

We define the type slot as a tuple
(Pre+,Pre−, a,Post+,Post−) where

• Pre+ is a set of atoms (positive propositions in the state)
• Pre− is a set of atoms (negative propositions in the state)
• a ∈ A ∪ {empty} is an action name (or an empty slot)

• Post+ is a set of atoms (positive postconditions of a)
• Post− is a set of atoms (negative postconditions of a)

To simplify verification of slot/timeline soundness we use
separate sets for positive and negative propositions. Note
also that the sets Pre+,Pre− are not only related to action a
but they will describe the state right before the action. More
precisely, these sets describe the propostions that must hold
in the state, but until all slots are non-empty, the state may
be described only partially (see Table 1).

Then, we define the type subplan that represents a parsed
task T as a tuple (T, b, e, timeline) with
• T being a task name,
• b and e (b ≤ e) being two integers equal to the indexes in

the original plan of the first and last actions in the subplan
generated from T ; this pair shows how much the subplan
generated from T spans over the verified plan,

• timeline being an ordered sequence of (e − b + 1)
elements of the slot type; we have timeline =
{sb, ..., se} ⊆ slots.

The algorithm formally

The validation algorithm is shown in Algorithm 1. At the
beginning, actions in the plan are put individually in the set
subplans (line 2). They are all subplans of size 1. The ini-
tial state is added to the Pre parts of the slot of the first action.
Then, at each iteration the algorithm fires rules in the gram-
mar where all subtasks are elements of subplans. When
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Table 1: The process of building a timeline during parsing the compound task Transfer11,4(c1, l1, l2, r1).
1: load-r(c1, r1, l1) 2: empty 3: move-r(r1, l1, l2) 4: unload-r(c1, r1, l2)
Pre1 Post1 Pre2 Post2 Pre3 Post3 Pre4 Post4

merge at(r1, l1) in(c1, r1) at(r1, l1) ¬at(r1, l1) in(c1, r1) ¬in(c1, r1)
at(c1, l1) ¬at(c1, l1) at(r1, l2) at(r1, l2) at(c1, l2)

constrain at(r1, l1)
in(c1, r1) in(c1, r1)

propagate ¬at(c1, l1) ¬at(r1, l1)

such a rule is found, the precedence constraints are checked
(line 7). Then the timelines of subtasks are merged (line 8)
and before, after, and between constraints from the grammar
rule are applied to this merged timeline (lines 9, 10, and 11).
Preconditions and postconditions are then propagated from
left to right and from right to left (line 12). Finally, the result-
ing timeline is verified (13). If no inconsistency is detected,
then the new parsed task is added to the set subplans so it
can be further used for building a higher-level task. Incon-
sistency means that some atom is both in the positive and in
the negative parts of the state.

The positive exit condition (cf. Algorithm 2) is met when
there is a Goal task in subplans that contains all the ele-
ments of the verified plan P.

If, it is not possible to find a rule that applies to the current
elements of subplans and produces a new subplan, then it
means that the plan P is not valid with regard to the gram-
mar. In other words, the set subplans has not grown during
the execution of the for-loop (lines 6 to 18). At this point, the
algorithm returns false (line 20).

We also include all the sub-procedures for merging the
timelines and for applying the constraints. To simplify no-
tations in the procedures for constraint application (Algo-
rithms 5-7), we use the following notation – if l is a positive
literal p then l+ = {p} and l− = {}; if l is a negative literal
¬p then l+ = {} and l− = {p}.

Soundness

We shall now show that the algorithm correctly recognises
plans that can be derived from a given Goal task and an
initial state.

First, one should realise that the algorithm always fin-
ishes. All sub-procedures clearly finish as they consist of for
loops and if-then-else conditions only. During each iteration
of the main while loop, some new task may be added to the
set of subplans. The input plan is finite and we have only a
finite number of constants so the number of tasks that can be
derived is obviously finite. Hence the while loop must fin-
ish sometime, either when no new task is added (line 20) or
when the Goal task is derived (line 5).

Assume that the algorithm finished successfully (with the
answer true). It means that it found the Goal task that spans
over the full plan (test in Algorithm 2). By reconstructing
how this task was added to the set subplans, we get the
derivation tree (such as the one in Figure 1). We indeed get
a tree as during merging of timelines, two slots can only be
merged if at least one of them is empty. Hence each task

in the tree has exactly one parent. If the same task appears
two (or more) times in the tree then its slots would eventu-
ally merge with themselves, which is not possible (see Algo-
rithm 4). All the constraints used in this derivation (decom-
position) are satisfied as the algorithm verified the prece-
dence constraints and added the literals from the before, af-
ter, and between constraints to the timeline, which is consis-
tent.

Notice that the Post parts of the slots in the timeline con-
tain only the propositions from the after constraints so they
model the effects of actions. The Pre parts (in particular
the Pre+ sets) model the states between the actions and we
shall show that the sequence of states is correct with respect
to the plan. First, each state is sound as it does not contain an
atom and its negation (Pre+ ∩Pre− = ∅). Next, two subse-
quent states Pre+i and Pre+i+1 model a correct state transi-
tion thanks to the propagation:

Pre+i+1 = (Pre+i \Post−i ) ∪ Post+i

Pre−i+1 = (Pre−i \Post+i ) ∪ Post−i

This realises the state transition formula (1). We will show
it for the positive part of the state (the proof is identical for
the negative part). Assume slots i and i+1 with some action
filled in the slot i (the action must appear there eventually
as the final timeline has all slots non-empty). Thanks to left-
to-right propagation, it must hold Post+i ⊆ Pre+i+1 (line 5
of Algorithm 8) and Pre+i \Post−i ⊆ Pre+i+1 (line 8 of Al-
gorithm 8). Thanks to right-to-left propagation, it must hold
Pre+i+1 \Post+i ⊆ Pre+i (line 14 of Algorithm 8). It means
that if a proposition p ∈ Pre+i+1 is not added by the action
(p /∈ Post+i ) then p must already be part of the previous state
(p ∈ Pre+i ). Together, we get:

Pre+i+1 = (Pre+i \Post−i ) ∪ Post+i (7)

Notice that the algorithm works even when no initial state
is provided. Then the final sets Pre+1 and Pre−1 specify the
propositions that must and must not be valid at the beginning
to have a valid plan. If the initial state is provided then it is
propagated through the slots.

In summary, the set of actions in the plan is generated by
the grammar and forms a valid plan.

If the algorithm finishes with the answer false then no
derivation exists as no other task can be parsed. Being the
plan correct, the derivation tree would be reconstructed by
the algorithm as the algorithm finds all the tasks that decom-
pose to any subset of the plan.
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Data: a plan P = (a1, ..., an), initial state InitState, a goal
task Goal, an attribute grammar
G = (Σ, N,P, S, A,C)

Result: a boolean equal to true if the plan can be derived
from the hierarchical structure, false otherwise

1 Function VERIFYPLAN
/* Initialization of the set of

subplans */
2 subplans ← {(ai, i, i, {(∅, ∅, ai, ∅, ∅)i})|ai ∈ P} ;
3 Pre+1 ← InitState+;
4 Pre−1 ← InitState−;
5 while ¬PLANISVALID(subplans,P, Goal) do
6 for each rule R in P of the form

T0 → T1, ..., Tk [≺, pre, post, btw] such that
subtasks = {(Ti, bi, ei, tli)|i ∈ 1..k} ⊆
subplans do

7 verify ≺ from rule R else break;
8 timeline ← MERGEPLANS(subtasks);
9 APPLYPRE(timeline, pre);

10 APPLYPOST(timeline, post);
11 APPLYBETWEEN(timeline, btw);
12 PROPAGATE(timeline);
13 if ∃(Pre+,Pre−, a,Post+,Post−) ∈

timeline,Pre+ ∩Pre− 
=
∅ ∨ Post+ ∩Post− 
= ∅ then

14 break
15 end
16 b = min(Ti,bi,ei,tli)∈subtasks bi,;
17 e = max(Ti,bi,ei,tli)∈subtasks ei;
18 subplans ←

subplans∪{(T0, b, e, timeline)};
19 end
20 if size of subplans has not increased since the

last iteration then
21 return false
22 end

23 end
24 return true

25 end

Algorithm 1: Verification procedure

We showed that the algorithm always finishes. If it returns
true then the plan can be derived from the Goal task. If it
returns false then the plan cannot be derived from the Goal
task. Hence the algorithm validates the plans with respect to
the domain model.

Initial Experiments

In this section we report some initial experiments compar-
ing the performance of the implementation of our algorithm
against the PANDA verifier, described in (Behnke, Höller,
and Biundo 2017). The PANDA verifier validates a plan by
translating it into a SAT formula. This translation requires a
bound, the maximum height of the decomposition that any
candidate for a solution plan can have.

In these experiments we use the Transport domain, ini-
tially introduced in the International Planning Competition
(IPC) of 2008, but without action costs. In this domain, each
vehicle can transport packages between different locations
based on road connections. Our implementation is able to

Data: the set of subplans: subplans, the plan to be
validated P, the goal task Goal

Result: true or false
1 Function PLANISVALID
2 return (∃(Goal, 1, |P |, timeline) ∈

subplans, s.t.
⋃

(_,_,ai,_,_)∈timeline{ai} = P)

3 end

Algorithm 2: The end condition of the valid plan

Data: a set of subplans : subplans
Result: a set of slots newtimeline, the aggregation of the

slots of every subplan
1 Function MERGEPLANS(subplans)
2 lb = min(Ti,bi,ei,timelinei)∈subplans bi;
3 ub = max(Ti,bi,ei,timelinei)∈subplans ei;
4 newtimeline ← {(∅, ∅, empty, ∅, ∅)i|i ∈ lb..ub};
5 for (T, b, e, timeline) ∈ subplans do

6 for sk ∈ timeline, s
′
k ∈ newtimeline do

7 s
′
k ← MERGESLOTS(sk, s

′
k)

8 end

9 end
10 return newtimeline
11 end

Algorithm 3: Merge timelines

parse directly from SHOP2 planner’s (Nau et al. 2003) in-
put files, arguably one of the most used HTN planner. At the
moment, we only support basic HTN syntax from SHOP2,
but we are gradually adding support for many SHOP2 com-
mands and tags. PANDA verifier uses its own input, which
is a PDDL-like representation of HTN.

Our Transport domain description in SHOP2 syntax con-
tains three primitive tasks and three non-primitive tasks.
The description used in PANDA verifier has four primitive
tasks and six non-primitive tasks. The extra primitive task
is a noop action, which in our description is encoded di-
rectly as a non-primitive task. The extra non-primitive tasks
from PANDA’s description are dummy methods that repre-
sent primitive tasks.

We ran 5 different problem instances and collected the
total CPU times. These times include any parsing done by
both approaches, and was calculated from the start to the
end of each validation. To run these experiments we used
a virtual machine (Oracle VM VirtualBox Version 5.1.22)
running an Ubuntu 16.04 LTS, with 4 GB of memory and an
Intel Core i7-4700MQ processor with 4 cores and 8 threads.
Our implementation requires Ruby (we used version 2.3.1),
while the PANDA verifier requires Java (we used OpenJDK
1.8) and the MiniSat solver (we used version 2.2.1).

Table 2 shows the initial results comparing our attribute
grammar approach with PANDA verifier using the transport
domain (with no action cost). The first problem instance (p1)
has a solution plan with 8 actions, and an initial state with
15 ground atoms. Each subsequent problem instance has the
following number of actions and number of ground atoms:
12 and 29; 16 and 45; 19 and 60; 22 and 80. Odd problems
(p1, p3, and p5) had valid solutions, while even problems
(p2, and p4) had not.
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Data: two slots
s1 = (Pre+1 ,Pre

−
1 , a1,Post

+
1 ,Post

−
1 ), s2 =

(Pre+2 ,Pre
−
2 , a2,Post

+
2 ,Post

−
2 )

Result: merged slots
1 Function MERGESLOTS(s1, s2)
2 if a1 = empty or a2 = empty then

3 Pre+ = Pre+1 ∪Pre+2 ;
4 Pre− = Pre−1 ∪Pre−2 ;
5 Post+ = Post+1 ∪Post−2 ;
6 Post− = Post−1 ∪Post−2 ;
7 a = a1(if a2 = empty) or a2(if a1 = empty);
8 return (Pre+,Pre−, a,Post+,Post−)
9 end

10 break

11 end

Algorithm 4: Merge slots

Data: a set of slot : slots, a set of before constraints
Result: an updated set of slots

1 Function APPLYPRE(slots, pre)
2 for before(U, l) ∈ pre do
3 id = min{bi|Ti ∈ U};
4 Pre+id ← Pre+id ∪ l+;
5 Pre−id ← Pre−id ∪ l−

6 end

7 end

Algorithm 5: Apply before constraints

For these initial experiments, our approach appear to scale
linearly when the solution is valid, but takes a bit more time
if it is not valid, as shown in Figure 2. PANDA verifier had
an exception on p2, because it does not seem to allow invalid
transitions, but instead of ignoring that decomposition path,
it crashes with an exception. And in p5, Panda returned that
the plan was not valid, which was incorrect.
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Figure 2: Transport domain results.

Conclusions

In this paper we proposed an algorithm for validating HTN
plans by using parsing of an attribute grammar describ-
ing the HTN domain model. The algorithm mimics classi-
cal parsing of context-free grammars customised to attribute

Data: a set of slot : slots, a set of after constraints
Result: an updated set of slots

1 Function APPLYPOST(slots, post)
2 for after(U, l) ∈ post do
3 id = max{ei|Ti ∈ U};
4 Post+id ← Post+id ∪ l+;
5 Post−id ← Post−id ∪ l−

6 end

7 end

Algorithm 6: Apply after constraints

Data: a set of slot : slots, a set of between constraints
Result: an updated set of slots

1 Function APPLYBETWEEN(slots, between)
2 for between(U, V, l) ∈ between do
3 s = max{ei|Ti ∈ U}+ 1;
4 e = min{bi|Ti ∈ V };
5 for id = s to e do

6 Pre+id ← Pre+id ∪ l+;
7 Pre−id ← Pre−id ∪ l−

8 end

9 end

10 end

Algorithm 7: Apply between constraints

grammars with the timeline constraint.
The algorithm starts with the plan and applies the decom-

position rules in a reverse order to group actions into tasks.
The decomposition constraints are verified by keeping infor-
mation about propositions that must be true at states before
and after actions. The algorithm stops when it finds a task
that covers the complete plan. Then the plan is valid. The
other way of stopping the algorithm is when no other com-
pound task can be constructed. In such a case the plan does
not correspond to any task. Note, that the plan might still be
a correct sequence of actions but it cannot be obtained by
decomposition of any task.

The major innovation of the proposed technique is that it
is the first approach that covers HTN models fully includ-
ing interleaving of actions and various decomposition con-
straints. In particular, the proposed algorithm is more gen-
eral than an existing SAT-based approach (Behnke, Höller,
and Biundo 2017) in covering precedence, before, between,
and after constraints. The SAT-based approach only covers
specific before constraints (the constraint is applied to the
set of all tasks on the right side of the rule) that must be
encoded as dummy actions. These dummy actions must be
part of the plan to be validated so for the original plan to be
validated one must find proper places, where to insert these
dummy actions, which is not discussed in (Behnke, Höller,
and Biundo 2017).

Furthermore, our initial experiments indicate that convert-
ing HTN models to attribute grammars may provide better
performance results for validating plans, rather than con-
verting to SAT. More experiments with other domains are
needed to ascertain in which types of domain each approach
performs better.

As other planning models such as procedural domain con-
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Data: a set of slots slots
Result: an updated set of slots

1 Function PROPAGATE(slots)
2 lb = min

(Pre+j ,Pre−j ,aj ,Post
+
j ,Post−j )∈slots j;

3 ub = max
(Pre+j ,Pre−j ,aj ,Post

+
j ,Post−j )∈slots j − 1;

/* Propagation to the right */
4 for i = lb to ub do

5 Pre+i+1 ← Pre+i+1 ∪Post+i ;
6 Pre−i+1 ← Pre−i+1 ∪Post−i ;
7 if ai 
= empty then

8 Pre+i+1 ← Pre+i+1 ∪(Pre+i \Post−i );
9 Pre−i+1 ← Pre−i+1 ∪(Pre−i \Post+i )

10 end

11 end
/* Propagation to the left */

12 for i = ub downto lb do
13 if ai 
= empty then

14 Pre+i ← Pre+i ∪(Pre+i+1 \Post+i );
15 Pre−i ← Pre−i ∪(Pre−i+1 \Post−i )
16 end

17 end

18 end

Algorithm 8: Propagate

Table 2: Initial results of experiments comparing CPU run
time, in seconds.

transport
domain

p01 p02 p03 p04 p05

CPU
time

CPU
time

CPU
time

CPU
time

CPU
time

Attribute
grammar 0.068 0.084 0.072 0.108 0.084

PANDA
verifier 5.968 - 58.52 13.32 65.56

wrong

trol knowledge (Baier, Fritz, and McIlraith 2007) can be
translated to attribute grammars (Barták and Maillard 2017)
the proposed algorithm can verify plans with respect to these
models too.

Our current implementation of the algorithm uses a
straightforward approach to find rules used for parsing. The
more efficient implementation of the algorithm may exploit
principles of the Rete algorithm (Forgy 1982) used for pro-
duction rule systems.
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Abstract

One of the original motivations for domain-independent plan-
ning was to generate plans that would then be executed in the
environment. However, most existing planners ignore the pas-
sage of time during planning. While this can work well when
absolute time does not play a role, this approach can lead to
plans failing when there are external timing constraints, such
as deadlines. In this paper, we describe a new approach for
time-sensitive temporal planning. Our planner is aware of the
fact that plan execution will start only once planning finishes,
and incorporates this information into its decision making, in
order to focus the search on branches that are more likely to
lead to plans that will be feasible when the planner finishes.

Introduction

One of the original motivations for domain-independent
planning was for controlling robots performing complex
tasks (Fikes and Nilsson 1971). The typical approach to con-
trolling robots using a planner is to call the planner to gen-
erate a plan which solves the problem, and then execute that
plan in the environment. This approach works well if the
plan remains applicable regardless of when it is executed.
However, if there are external timing constraints, such as
deadlines which must be met, things become more complex.
This is because we must take into account the planning time.
For example, in the Robocup Logistics League (RCLL)

challenge (Niemueller, Lakemeyer, and Ferrein 2015), a
team of robots must move workpieces between different ma-
chines that perform some operations on them, and fulfill
some order with a deadline. This calls for using temporal
planning, because we would like all robots to work in par-
allel, and actions have different durations. The typical ap-
proach would have the planner come up with a plan which
would work had it been executed at time 0, and then execute
this plan when the planner completes. Obviously, this might
lead to missing the deadline, and thus, plan failure.

One simple approach to handling this problem is to use
some estimate on how long planning will take, and adapt all
the deadlines assuming plan execution would start when the
planner finishes. While using an upper bound on planning
time will eliminate the problem of plans failing, it might lead
to the planner not finding a feasible plan to begin with. On
the other hand, using too low an estimate could still lead to
plans failing, as discussed above.

In this paper, we describe a new approach for situated
temporal planning. Our planner is aware of the fact that plan
execution will start once planning finishes, and incorporates
this information into the internal data structure for temporal
reasoning used by the planner, together with estimates of re-
maining planning time. This helps our planner prune partial
plans which are likely to lead to the planner finishing plan-
ning too late for the plans to be of use, and focus on more
promising branches of the search.

Our empirical evaluation demonstrates that this planner
can handle temporal planning problems with absolute dead-
lines much better than a naive baseline approach, in realis-
tic settings where planning time counts, and the plan can
only start executing once it is completed. To the best of
our knowledge, this is the first temporal planner to explic-
itly consider planning time, within the context of planning
and execution. Thus, our planner is especially applicable to
online planning for robotics, where a robot must find a plan
to execute, but the world does not stop while the robot is
planning.

Preliminaries

We consider propositional temporal planning problems with
Timed Initial Literals (TIL) (Cresswell and Coddington
2003; Edelkamp and Hoffmann 2004). Such a planning
problem Π is specified by a tuple Π = 〈F,A, I, T,G〉,
where:

• F is a set of Boolean propositions, which describe the
state of the world.

• A is a set of durative actions. Each action a ∈ A is de-
scribed by:

– Minimum duration durmin(a) and maximum dura-
tion durmax(a), both in R

0+ with durmin(a) ≤
durmax(a),

– Start condition cond�(a), invariant condition
cond↔(a), and end condition cond�(a), all of
which are subsets of F , and

– Start effect eff �(a) and end effect eff �(a), both of
which specify which propositions in F become true
(add effects), and which become false (delete effects).

• I ⊆ F is the initial state, specifying exactly which propo-
sitions are true at time 0.
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• T is a set of timed initial literals (TIL). Each TIL l ∈
T consists of a time time(l) and a literal lit(l), which
specifies which proposition in F becomes true (or false)
at time time(l).

• G ⊆ F specifies the goal, that is, which propositions we
want to be true at the end of plan execution.

A solution to a temporal planning problem is a schedule
σ, which is a sequence of triples 〈a, t, d〉, where a ∈ A is
an action, t ∈ R

0+ is the time when action a is started, and
d ∈ [durmin(a), durmax(a)] is the duration chosen for a. A
schedule can be seen as a set of instantaneous happenings
(Fox and Long 2003), which occur when an action starts,
when an action ends, and when a timed initial literal is trig-
gered. Specifically, for each triple 〈a, t, d〉 in the schedule,
we have action a starting at time t (requiring cond�(a) to
hold a small amount of time ε before time t, and applying
the effects eff �(a) right at t), and ending at time t + d (re-
quiring cond�(a) to hold ε before t + d, and applying the
effects eff �(a) at time t+ d). For a TIL l we have the effect
specified by lit(l) triggered at time time(l). Finally, in or-
der for a schedule to be valid, we also require the invariant
condition cond↔(a) to hold over the open interval between
t and t+d, and that the goalG holds at the state which holds
after all happenings have occurred.

Related Work

Temporal planners have of course been used in on-line ap-
plications before. For example, researchers at PARC built
a special-purpose temporal planner for on-line manufactur-
ing (Ruml et al. 2011). As in many temporal planners, each
search node contains a Simple Temporal Network (STN)
(Dechter, Meiri, and Pearl 1991) to represent the time points
of events in the plan and constraints on when they can occur.
To reflect the fact that actions cannot occur until planning
has completed, the PARC planner includes a hard-coded es-
timate of the required planning time, and every time point in
the STN is constrained to occur at least that far after the time
that planning started (Ruml et al. 2011, Figure 11). While
this is a reasonable solution in a domain where the expected
planning problems are all of similar difficulty, this approach
can perform poorly in domains that include a wide variety
of problems, as we will see below.

There has also been work on time-aware planning in
the search community. Dionne, Thayer and Ruml (2011)
present a so-called ‘contract algorithm’ called Deadline-
Aware Search (DAS) that, given a deadline, attempts to re-
turn the cheapest complete plan that it can find within that
deadline. The main part of the algorithm works by estimat-
ing the time that will be required to find a solution beneath
each node in the open list, and pruning those for which this
estimate exceeds the remaining search time. The estimate is
the product of three quantities that are determined on-line:
the time required to expand a node, expressed in seconds,
an estimate on the number of search nodes remaining on the
path to a goal beneath the given node, notated d(n), and the
average number of expansions required before a generated
node is selected for expansion, called the expansion delay.
Although DAS was shown to surpass anytime algorithms on

combinatorial benchmarks, its ideas have never been imple-
mented in a domain-independent planner.

Bugsy (Burns, Ruml, and Do 2013) is a search algorithm
that attempts to minimize the user’s utility, which is repre-
sented as a linear combination of planning time and plan
cost. If plan cost is makespan, then the utility measures the
‘goal achievement time’, or the time from when the goal
is presented to the planner, and planning starts, to when
the plan finishes executing, and the goal is achieved by the
agent. Bugsy is a best-first search algorithm, and relies on an
estimate of remaining planning time similar to that of DAS
in order to estimate the utility of each node it expands. While
Bugsy is sensitive to its own planning time, it is not cog-
nizant of external timed events such as deadlines, and does
not prune nodes based on temporal information.

Related concepts in the search community include real-
time search and anytime search. In the real-time search
setting, the planner must return within a prespecified time
bound the next action for the agent to take. This differs from
our setting, in which the planner must return a complete plan
and the temporal constraints are fine-grained and can relate
individual domain propositions to absolute times. In anytime
search, a planner quickly finds a complete plan, and then
uses additional computation time to improve it until either it
is terminated by an external signal or an optimal solution is
found. In our setting, the planner may not run indefinitely,
but rather is expected to minimize the agent’s goal achieve-
ment time. And while doing so, we demand that the planner
recognize that time is passing and that it be responsive to
timed events in the external world.

Encoding Planning and Execution Time
Many temporal planners (e.g., (Coles et al. 2009; 2012;
2010; Benton, Coles, and Coles 2012; Fernández-González,
Karpas, and Williams 2015; 2017)) rely on an internal Sim-
ple Temporal Network (STN) (Dechter, Meiri, and Pearl
1991) (or possibly a linear program or a convex optimiza-
tion problem— but we will abuse terminology and call all of
these the STN) to represent the temporal constraints between
the set of the time points where actions start or end. Specif-
ically, planners that support required concurrency (Cushing
et al. 2007) tend to use this representation to support concur-
rent execution of actions.

When planning is done offline, the STN contains some
time point tES , which is the start of plan execution, and is
assigned the value of 0. For convenience, we split each oc-
currence of action a in the plan into two snap-actions: a� and
a�, corresponding to the start and end of the action, respec-
tively. For each of these we have a corresponding time point
in the STN: t(a�)when a starts, and t(a�)when a ends. Ac-
tions which have started but not yet finished will only have
the start time point, since this is a partial plan (as noted ear-
lier, all starts eventually need to be paired with an end, but
this is not a requirement of plans that are still under con-
struction). Temporal constraints between the time points are
either action duration constraints (between the time points
of the same action occurrence), or sequencing constraints
due to causal relations between actions. For example, if the
end of action a achieves the start conditions of action b, then
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we would have t(a�) − t(b�) ≥ ε, where ε is the mini-
mum separation between two events that depend on each
other (Fox and Long 2003). Or, if the start of c threatens
the preconditions of d, then t(c�) − t(d�) ≥ ε. Addition-
ally, timed initial literals (TIL) (Edelkamp and Hoffmann
2004) are encoded into the STN by adding a time point t(f)
for the occurrence of TIL f , with the temporal constraint
t(f)− tES = time(f), where time(f) is the time at which
f occurs, as specified in the problem definition. These are
then ordered with respect to the other steps in the plan by,
again, adding sequencing constraints due to the causal rela-
tions between lit(f) and the other steps in the plan.

In this paper, we focus on online planning. We want to
account for the fact that time passes during the planning
process, and that, in fact, planning time and execution time
are both the same. In order to do so, we modify the STN
described above by adding two additional time points: tPS

which is the time when planning started, and tnow which
is the current time. We add the temporal constraint that
tnow − tPS equals the currently elapsed time in planning.
The expression tES − tnow corresponds to the remaining
planning time, which is, of course, unknown. We will dis-
cuss this expression, and how to treat it, in the next sec-
tion. Now, tPS = 0, while tES is unknown. Finally, be-
cause TILs describe absolute time, we must modify the tem-
poral constraints corresponding to TILs to use tPS instead
of tES , i.e., the temporal constraint for TIL l would be
t(l) − tPS = time(l), where time(l) is the time at which
l must occur.

Time-Aware Planning

We have described a technique for encoding an STN which
captures the fact that execution only starts after planning
ends, and planning takes time. We now describe the impact
this has on search within a temporal planner.

Forward Planning Search Space

We take as our basis the forward-search approach of the
planner OPTIC (Benton, Coles, and Coles 2012). Here, each
search state comprises the plan π (of snap actions) that
reaches that state; the propositions p ⊆ F that hold after
π was executed from the initial state; and the Simple Tem-
poral Network STN (π) encoding the temporal constraints
over π.
When expanding a state in OPTIC, successors were gener-

ated in one of three ways:

• By applying a start snap-action that is logically appli-
cable: any a� where p � cond�(a); eff �(a) would not
break the invariant condition of an action that has started
in π but not yet ended; and cond↔ would be satisfied once
a� has been applied. In this case, in the successor state,
π′ = π + [a�], p is updated according to eff �(a) to yield
p′, and a variable t(a�) added to STN (π′). Sequence con-
straints are imposed on this such that it follows any step
in π that met one of cond�(a); or whose effects refer to
the same propositions as eff �(a); or whose preconditions
(including invariant conditions) would be threatened by

eff �(a)
1.

• By applying an end snap-action that is logically applica-
ble – any a� where a has started in π but not yet ended;
p � cond�(a); and whose effects eff �(a) would not
break the invariant of any other action that has started in
π but not yet ended. In this case, the successor state is up-
dated in a way analogous to starting an action, with the
additional STN constraint durmin(a) ≤ t(a�) − ta� ≤
durmax(a).

• By applying a Timed Initial Literal l that has not already
occurred in π. In this case, π′ = π + [l], p is updated ac-
cording to lit(l) to yield p′, and a variable t(l) is added
to STN (π′). For the purposes of sequence constraints,
this can be thought of as being a snap-action with no pre-
conditions – it suffices to order it after steps in π whose
preconditions or effects refer to lit(l). To fix the time at
which l occurs, an additional STN constraint is added:
t(l) − tPS = time(l) – while snap-actions are ordered
only relative to other points in the plan, TILs must also
occur a specific amount of time after time zero.
State expansion in this way generates candidate succes-

sors that are logically feasible; to ensure they are also tem-
porally feasible, only those whose STNs are consistent are
kept. Using an all-pairs shortest path algorithm in the STN
will both check consistency (with negative cycles corre-
sponding to an inconsistent STN), and give us the earliest
and latest possible time at which each snap-action could be
applied. We denote these tmin(x) and tmax(x) for each STN
variable t(x). Typically, only the former of these is used –
to map π to a schedule σ, each start–end snap-action pair
a�, a� gives a triple 〈a, tmin(a�), (tmin(a�) − tmin(a�))〉.
In other words, apply each action as soon as possible, with
the shortest possible duration, thereby minimizing execution
time.

Extending this approach to planning while aware of plan-
ning and execution time requires a number of modifications,
which we now step through.

No action can start before plan execution starts – be-
cause execution cannot start until a plan has been produced.
That is, for each a� in the plan π, we add a constraint
tES ≤ t(a�) to the STN, where tES is the time at which
execution will start. We do not know this a priori, but can at
least say tnow ≤ tES is the time since the planner started ex-
ecuting. An STN for a plan produced during successor gen-
eration will then be consistent iff it is not already too late to
start executing the plan.

These additional constraints can be thought of as pushing
the earliest actions in the plan to start after now; the effects
of which are then propagated through the STN to appropri-
ately delay the later actions, according to the sequence and
duration constraints. If an otherwise-consistent STN is made
inconsistent by these, then necessarily there must be a snap-
action x where tmax(x) < tnow – i.e. we are past the latest
point at which x could have been applied.

1As search progresses in a strictly forward direction, all threats
are dealt with by demotion – ordering the new step after existing
steps.
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Planning time particularly matters in the presence of TILs
– in the absence of these, we can start executing a plan when-
ever we like by simply delaying the start of the first action.
If TILs are present, though, these anchor the plan to having
to fit around absolute time: with reference to state expan-
sion, when a TIL is added to the plan, this fixes it to come
after any earlier steps with which it would interfere, thereby
constraining their maximum time.

Automatically applying past TILs – if we are now past
the time at which a TIL has occurred, it is added to π before
expanding the state.

More formally, immediately before expanding a state S =
〈π, p,STN (π)〉, the following TILs are applied:

{l ∈ T | t(now) ≥ time(l) ∧ l 	∈ π}
If there are several such TILs, they are applied in as-

cending order of time(l). The mechanism for applying these
TILs is identical to that in OPTIC: each is applied, to yield a
successor state S′; and then S′ replaces S. By doing this be-
fore expanding the state, we account for time having passed
since S having been placed on the open list, and it being
expanded – if in this time a TIL will have happened, S is
updated accordingly, before expansion.

If this modification was not made, search would be free to
branch over what step should next be added to π. In the case
where a TIL l represents a deadline – by deleting a precon-
dition on actions that must occur by a given time – search
would be free to apply these actions, even though in real-
ity it is too late. By forcing the application of past TILs, we
avoid this behavior: all such actions would then become in-
applicable.

Pruning states where it is too late to start their plan
From the STN for a plan π, we can note the latest point at
which that plan can start executing; and prune any states for
which this time has already passed.

As noted earlier, to check if the STN for a state is con-
sistent, we use an all-pairs shortest path algorithm. This in-
cidentally yields the minimum and maximum time-stamps
for each snap-action. For snap-actions that are ordered be-
fore a TIL – which are fixed in time – these maximum
time-stamps are finite. Moreover, because the plan is ex-
panded in a strictly forward direction, the maximum times-
tamps are monotonically decreasing: it is not possible to
somehow order a new action before a plan step, in a way
that reduces its maximum time-stamp. Thus, for each state
S = 〈π, p,STN (π)〉 we identify the start snap-action in π
that has the earliest possible maximum time-stamp – this is
the latest time at which π could feasibly be executed:

latest start(π) = min{tmax(a�) | a� ∈ π}
Then, when S is about to be expanded – after it was gener-

ated, placed on the open list, and then removed – it is pruned
if tnow > latest start(π).

Experiments

To gain a concrete sense of the practical import of our tech-
nique, we experimentally compared it to the baseline method

Figure 1: Screenshot of the underwater simulator, in which
the AUV is inspecting the structure.

of prespecified planning times. We performed experiments
in two types of domains: a realistic AUV simulation, and a
set of IPC domains.

As a baseline against which to compare our time-aware
planner, we used OPTIC in optimization mode, searching for
the best plan within a varying fixed planning time of T sec-
onds. Time windows were considered to be T seconds ear-
lier, to adjust the initial state to the start of execution time.
Therefore, a TIL l occurring at time time(l) seconds, using a
planning time of T seconds, will occur at time (time(l)−T )
(at least 0) in the plan.

AUVs

We demonstrate the approach in simulation with au-
tonomous underwater vehicles (AUVs). We embed OPTIC
and our planner into ROS, using ROSPlan (Cashmore et
al. 2015), to control the AUV. The AUV is equipped with
a manipulator and placed in an underwater structure, with
the task to inspect certain areas and to ensure that valves
are turned to correct angles. The valves can only be turned
within certain time windows, outside of which the valve is
blocked. If the valve cannot be turned to the correct angle
within an early time window, then a later window can be
used. We generated 41 missions with varying time windows.
A screenshot of the simulation is shown in Figure 1

These missions normally form part of a larger, strategic
mission, spread out over a number of seabed manifolds. The
AUV moves between these manifolds in order to complete
the missions. Due to the uncertainty in the environment, it
is not known beforehand precisely what time the AUV will
arrive at the manifold. Before beginning the task, the AUV
must construct a new plan. Plans with shorter durations are
considered to be of higher quality, as this eases the time con-
straints on the remainder of the missions. We use this sce-
nario to show that our approach allows the AUV to make use
of earlier time windows, generating plans of higher quality.

The results are summarized in Table 1. The table shows
the number of problems solved for each planner, out of a
possible 41. Using our approach every problem was solved.
Using a fixed planning time, some problems were unsolv-
able due to a planning time that was too short. The table
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Time
Aware

OPTIC50 OPTIC100 OPTIC200

best quality 34 13 20 19

IPC quality 40.19 25.55 26.19 26.47

problems
solved

41 26 34 40

Table 1: Table comparing the number of problems solved,
the number of plans of highest quality, and the IPC quality
for each approach.

Figure 2: Plan durations per problem for each approach. The
time-aware approach solves many problems using an earlier
time window. OPTIC using a long planning time solves al-
most every problem, but only using the later time windows.
Other planning time bounds are less reliable.

also shows the number of best plans for each approach. This
is the number of problems for which that approach produced
the plan of highest quality between the four approaches (pos-
sibly jointly). There it can be seen that although increasing
the planning time allows for all problems to be solved, the
quality is much poorer. The higher absolute number of best
plans for the 200 second planning time is due to the greater
number of problems solved. Finally, the table shows the IPC
quality, calculated for all problems. These results demon-
strate the choice between acting quickly, utilizing early time-
windows, or producing plans reliably. Using the time-aware
approach does both.

This can be seen more clearly in Figure 2. This figure
compares the plan duration from each approach per prob-
lem. Using OPTIC200 almost every problem is solved, at the
longest possible plan duration – assuming planning takes
200 seconds forces the planner to have to use the later time
windows. Other approaches may generate shorter plan dura-
tions, but fail to solve many of the problems.

IPC Domains

In our IPC experiments, we tested all IPC-4 and IPC-5 do-
mains that contain TILs: airport, pipesworld, satellite, truck,
and UMTS. The UMTS domains and half of the airport
instances were omitted as none of the planners completed

Time Aware OPTIC0.1 OPTIC1 OPTIC10

best quality 38 1 0 1

IPC quality 38 9.99 29.74 19.89

problems solved 38 10 30 21

Table 2: Table comparing the number of problems solved,
the number of plans of highest quality, and the IPC quality
for each approach

these. The planners were given a maximum of 200s of CPU
time and 4GB of memory.

Table 2 presents results on the modified IPC domains. The
fixed planning time planners were outperformed by the time-
aware methods in every domain. Several instances were un-
solvable by the former due to the fixed planning time con-
straints. Table 3 shows the planners detailed performance in
each relevant domain tested.

In addition to the fixed planning times that are showed in
Table 2 and Table 3 we have tested 50s, 100s, and 200s. The
performance of the baseline approach with these planning
times were lower than the time-aware method and the best
presented baseline, thus these results were omitted.

Conclusions and Future Work

We have presented a domain-independent temporal planner
that takes the interaction between the time spent on plan-
ning and execution time into consideration. We have demon-
strated empirically that this planner achieves much better re-
sults in domains with absolute deadlines than our baseline
approach. However, our work is merely the first step in ad-
dressing this important topic. There remain many exciting
avenues for future work.

For example, our planner only looks at the current par-
tial plan, and uses a heuristic to “look” into the future. This
heuristic is used to estimate the remaining search depth, but
not to obtain more information about future actions and their
effects on deadlines. In order to get a more informed view
of future actions, and their effect on deadlines, we will ex-
plore using temporal landmarks (Karpas et al. 2015). These
landmarks could be encoded into the same STN of the par-
tial plan, and thus we believe we will be able to achieve even
better pruning of branches of the search tree which will not
lead to a solution in time.

More broadly, the problem we are addressing here could
benefit from more explicit metareasoning (Russell and We-
fald 1991). For example, suppose we had a planning prob-
lem with two possible solutions, each of which must be
explored on a separate branch of the search tree. Further
suppose that each of these solutions has a deadline which
leaves just enough time to explore one of the branches, but
not both of them. Clearly, a planner with perfect knowledge
would choose one of these branches and explore it. On the
other hand, the approach we present here will explore both
branches until it realizes there is not enough time left, and
will then prune both branches — without solving the prob-
lem. In future work, we will explore ways of addressing this
type of problem by incorporating explicit metareasoning on

494



group planner solved time GAT

airport-1 Time Aware 14 6.62 193.54
OPTIC0.1 2 0.06 89.61
OPTIC1 10 0.24 167.72
OPTIC10 10 0.20 176.72

pipesworld Time Aware 3 0.72 16.06
OPTIC0.1 1 0.05 12.11
OPTIC1 4 0.51 15.51
OPTIC10 0

satellite-1 Time Aware 1 0.03 190.23
OPTIC0.1 1 0.04 190.31
OPTIC10 1 0.02 200.21
OPTIC1 1 0.02 191.21

satellite-2 Time Aware 5 0.71 181.89
OPTIC0.1 1 0.03 190.31
OPTIC1 4 0.39 182.87
OPTIC10 1 0.56 129.16

satellite-3 Time Aware 5 0.80 181.88
OPTIC0.1 1 0.03 190.31
OPTIC1 4 0.36 182.87
OPTIC10 1 0.56 129.16

satellite-4 Time Aware 4 2.20 165.20
OPTIC0.1 0
OPTIC1 2 0.15 155.00
OPTIC10 2 1.38 147.38

truck Time Aware 6 0.21 1840.98
OPTIC0.1 4 0.05 1673.95
OPTIC1 5 0.06 1674.20
OPTIC10 6 0.20 1855.97

Table 3: Table comparing the number of problems solved,
the planning time, and the goal achievement time (GAT)
grouped by IPC instance type. The planning time, and the
GAT is the mean of all instances in the group solved by the
planner.

planning time allocation into the search strategy.
One possible approach for this would be to treat the ex-

pression tES − tnow as a variable, which we will denote
by slack. We can then treat the STN as a mathematical op-
timization problem, and maximize the slack. The slack for
node n can serve as a proxy for the probability of finding
a solution in time in the subtree rooted at n. Our metarea-
soning algorithm could then choose the next node to expand
based on both heuristic estimates and the slack.
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Abstract

People regularly use objects in the environment as tools to
achieve their goals. In this paper we report extensions to the
ICARUS cognitive architecture that let it create and use com-
binations of objects in this manner. These extensions include
the ability to represent virtual objects composed of simpler
ones and to reason about their quantitative features. They also
include revised modules for planning and execution that op-
erate over this hybrid representation, taking into account both
relational structures and numeric attributes. We demonstrate
the extended architecture’s behavior on a number of tasks that
involve tool construction and use, after which we discuss re-
lated research and plans for future work.

Introduction

The ability to create and use complex tools is a distinctive
feature of human cognition. People use objects in their sur-
roundings to help achieve goals, sometimes combining mul-
tiple objects into a new tool that fits their need. This involves
planning but focuses on constructing physical artifacts to
achieve other ends, rather than generating isolated action se-
quences. For example, scenes from a popular television se-
ries, MacGyver, often depicts the protagonist creating tools
from materials that seem unrelated to his objectives. The
character ingeniously uses objects in ways for which they
were not intended, often combining them into a tool for his
purpose. Current AI systems, including our current work, do
not demonstrate such creative abilities.

In this paper, we report progress toward intelligent agents
that exhibit the ability to create and use physical tools. Our
approach extends an existing cognitive architecture to sup-
port this capacity. In the next section, we present a scenario
that illustrates how tool construction and use can help an
agent achieve its goals. Next we briefly review ICARUS, an
architecture for physical agents, and we describe extensions
to its representation and processes that let it create and use
tools. After this, we report runs in a simulated environment,
drawing on the scenario presented earlier, that demonstrate
the revised system’s abilities. We conclude by discussing re-
lated work and plans for future research.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A Motivating Scenario
We can clarify the challenge of tool creation and use with a
scenario. Consider a robot that wants to escape from inside a
crumbled building. Its goal is to move from a location inside
the building to another one outside, but between them is a
wide gap in the floor that the robot cannot traverse and an
opening in the wall that is too high for it to reach without
other support. The robot observes some wooden planks of
different lengths and thicknesses. Knowing its own weight
and the maximum height it can climb, it stacks planks across
the gap to build a bridge that will support its weight. The
robot then crosses the bridge and thus traverses the gap. In
a similar fashion, it builds a staircase to the opening on the
wall, goes up the staircase, and escapes from the building.

In this scenario, the robot manipulates objects in its envi-
ronment and assembles them into tools which it then uses
to achieve its goal. To create the right tool, it considers
both structural and numeric factors. Wooden planks laid
over the gap can serve as a basic bridge, but they must be
long enough to cross the gap and strong enough to hold the
robot’s weight. A single plank may appear qualitatively suf-
ficient, but a second plank may be needed to make the bridge
strong enough. For an effective staircase, the building blocks
must be arranged to give enough footing on each step and the
steps should be no higher than the robot can climb.

We can view bridges and staircases as tools that are con-
structed from available components. Computing the load a
bridge must hold or the height of a step requires quantita-
tive reasoning about objects’ positions and dimensions, but
the agent must first devise some qualitative structure that its
numbers describe. We believe the scenario provides a rea-
sonable challenge for testing an intelligent agents’ ability to
create and use tools, as it requires a combination of qualita-
tive and quantitative reasoning.

A Brief Review of ICARUS

ICARUS (Langley, Choi, and Rogers 2009) is a cognitive ar-
chitecture that provides an infrastructure for building intelli-
gent agents that operate in physical settings, simulated or ac-
tual. As with other architectures like Soar (Laird et al. 1986)
and ACT-R (Anderson and Lebiere 1998), it makes com-
mitments about the representation of content, the memories
that store that information, and the processes that manipu-
late it. ICARUS incorporates many ideas from cognitive psy-
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Table 1: Sample ICARUS concepts for the staircase problem.
((on ?o1 ?o2)

:elements ((block ?o1 ∧x ?x1 ∧y ?y1 ∧length ?length1)

(block ?o2 ∧x ?x2 ∧y ?y2 ∧length ?length2
∧height ?height2))

:tests ((*overlapping ?x1 ?length1 ?x2 ?length2)

(= ?y1 (+ ?y2 ?height2))))

((staircase ?o ?o1)

:elements ((block ?o ∧height ?h))

:conditions ((on ?o ?o1)

(staircase ?o1 ?o2)

(step-size ?step))

:tests ((<= ?h ?step)))

chology, but it emphasizes construction of intelligent sys-
tems that carry out complex activities rather than fitting the
results of psychological experiments. In this section, we re-
view the architecture, starting with assumptions for repre-
sentation and memories and then describing its mechanisms
for inference, reactive execution, and problem solving.

Representation and Memories

ICARUS distinguishes between two forms of long-term
knowledge: concepts that underlie inference and procedu-
ral skills that support activity. The framework also sepa-
rates percepts from the environment from beliefs inferred
about them. The former describe observed objects in terms
of their attributes, typically numeric, while the latter take
the form of relational literals like (on A B). This distinc-
tion will figure centrally later in the paper. The conceptual
knowledge base links percepts to beliefs through a set of de-
fined concepts. Each conceptual rule specifies the conditions
that must match to infer a belief of a given type. The condi-
tions of a primitive concept refer only to percepts and their
attribute values, whereas the conditions of a nonprimitive
concept also refer to more basic conceptual predicates.

Table 1 shows some ICARUS concepts that describe re-
lations and situations for the staircase scenario. The first
conceptual rule, for the predicate on, is primitive, as it has
only an :elements field, which describes perceived objects
and their attributes, along with a :tests field that constrains
the matched variables. This concept refers to two block ob-
jects and checks numeric relations between their positions,
lengths, and heights. The second concept, for the predicate
staircase, is nonprimitive, as it refers to other concepts in its
:conditions field. These include the concepts like on, step-
size, and staircase, so the definition is recursive. Thus, con-
cepts are organized into a hierarchy, with more complex
predicates defined in terms of simpler ones.

ICARUS skills build on its conceptual knowledge. Each
skill clause includes generalized percepts, conditions that
must hold for application, and effects that its application
produces. A primitive skill clause refers to some action that
the agent can execute directly in the environment, whereas a
nonprimitive skill clause refers to other, more basic, skills.

Table 2 shows examples of ICARUS skills relevant to the
bridge problem in our scenario. The first skill clause, pick-

Table 2: Sample ICARUS skills for the bridge problem.

((pick-up ?o)

:elements ((robot ?robot)

(block ?o))

:conditions ((clear ?o) (not (holding ?robot ?any)))

:actions ((*pick-up ?robot ?o)))

:effects ((holding ?robot ?o))

((build-bridge ?block ?bottom)

:elements ((block ?block))

:conditions ((bridge ?top ?bottom))

:subskills ((stack ?block ?top))

:effects ((bridge ?block ?bottom))

up, refers to two perceived objects, a robot and a block, and
has two conditions, one positive (for clear) and the other
negative (for holding). This clause is primitive because it
includes the executable action *pick-up. The second skill,
build-bridge, mentions one percept and one conceptual con-
dition, but it is nonprimitive because it includes the subskill
stack. Such references organize skills into a hierarchy in
which primitive clauses serve as terminal nodes, much as
in a hierarchical task network (e.g., Nau et al. 2003).

Cognitive Processes in ICARUS

The architecture utilizes its concepts and skills during pro-
cessing, which operates in four-step cycles. First, ICARUS
deposits percepts from the environment in a perceptual
buffer. The system does not model the extraction of percepts
from sensors, but they serve as plausible outputs of sensory
processing. Second, the architecture combines its concep-
tual knowledge with these percepts to infer beliefs that hold
for the current situation. ICARUS matches primitive concep-
tual clauses against perceived objects to generate low-level
beliefs, then matches nonprimitive concepts against them to
produce higher-level beliefs. For example, the first clause
in Table 1 generates a belief about the on relation when a
block’s y position equals that of another block plus its height
and when the *overlapping test is true.
Once ICARUS has inferred beliefs about the current situ-

ation, an execution stage attempts to find a path downward
through the skill hierarchy that it can carry out in the envi-
ronment. This module starts with a top-level goal, retrieves
a skill clause that should achieve it and has conditions sat-
isfied by current beliefs. If this skill instance is primitive,
the architecture executes its associated action; if not, then it
considers matched subskills. This recursive process returns
a path through the skill hierarchy whose execution should
bring the agent closer to its goal(s). When ICARUS cannot
find such an applicable path, it invokes a problem-solving
module that carries out search for sequences of skills which
achieve the current goals. Execution and problem solving
are tightly interleaved, with the system carrying out selected
skill instances when applicable and resorting to problem
solving when it encounters an impasse.

We should note that, although ICARUS grounds its con-
cepts and skills in quantitative percepts and actions, the in-
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Table 3: An ICARUS concept that illustrates the extended
numeric representation.

((bridge ?b ?g ?leftend ?rightend)

:elements ((block ?b ∧x ?leftend ∧length ?ln)

(gap ?g ∧left ?gl ∧right ?gr))

:attributes (?left is (- ?gl 1)

?right is (+ ?gr 1)

?rightend is (+ ?leftend ?ln))

:tests ((<= ?leftend ?left)

(>= ?rightend ?right)))

ference, execution, and problem-solving modules primar-
ily produce qualitative and relational structures. This does
not keep the architecture from operating in continuous do-
mains like simulated urban driving (Langley et al. 2009;
Choi 2011), but we will see that it raises challenges for the
construction and use of complex tools.

Numeric Representation and Processing

As noted earlier, reasoning about tools often requires that an
agent operate over not only qualitative aspects of the envi-
ronment, but also its quantitative properties. In this section,
we discuss two extensions to ICARUS that let the architec-
ture support numeric processing, the first involving repre-
sentation and the second concerning planning.

Representational Extensions

ICARUS receives and processes perceptual elements that in-
clude types, names, and attribute-value pairs for objects in
the world. The original system can represent symbolic rela-
tions among objects and concepts can include simple tests
on numeric attributes. But it cannot reason about numeric
relations or specify arithmetic computations and associate
their results with a new variable. In previous research, this
limitation has caused problems when using ICARUS to con-
trol physical robots, where the continuous domain requires
encoding of numeric constraints. Naturally, this issue also
arises in tool creation and use. To address the problem,
we extended the conceptual formalism to specify arithmetic
combinations of numeric attributes and associate them with
new variables that can appear elsewhere in the concept.

Table 3 shows a sample concept that uses this extended
notation. The clause includes a new field, :attributes, that
specifies desired numeric calculations and their variable as-
signments. This specific clause states that the position of a
block’s right side (denoted by the variable ?rightend) can be
computed from its left side position, ?leftend, and its length,
?ln. The concept also specifies how to compute the left and
right positions, ?left and ?right, for a spatial gap with one
unit margins at both ends. These values are also used, along
with the left and right ends, in two inequality tests.

This extension lets ICARUS specify numeric calculations
and how to reuse their results elsewhere in a conceptual
clause, complementing the qualitative structures it could al-
ready express. However, this only describes the environ-

Table 4: An ICARUS skill for creating a bridge that illustrates
the extended numeric formalism.
((fill-gap-center ?b ?g)

:elements ((block ?b ∧x ?x0 ∧length ?l ∧weight ?w)

(robot ?robot ∧weight ?weight
∧status ?status ∧holding ?b)

(gap ?g ∧left ?gl ∧right ?gr))

:actions ((*fill-gap-center ?robot ?b ?gl ?gr))

:effects ((bridge ?b ?g ?x0 (+ ?x0 ?l))

(block ?b ∧x (/ (- (+ ?gl ?gr) ?l) 2) ∧y 0
∧len ?l ∧weight ?w)

(robot ?robot ∧weight (- ?weight ?w)
∧status ?status ∧holding nothing)))

mental situation, not how agent’s actions will alter it. In re-
sponse, we also extended the notation for skills to incorpo-
rate details about quantitative effects of their execution.

Table 4 shows a skill that takes advantage of this exten-
sion. The main change is in the :effects field, which de-
scribes the outcome of a skill’s successful execution. Pre-
viously, this field could only include symbolic effects about
relational beliefs that would become true or false after appli-
cation. In the new notation, the field can describe expected
changes not only in symbol structures, but also in the nu-
meric attributes of objects. The skill will not only cause
the symbolic relation (bridge . . . ) to become true, but also
change the block’s x position to the value of the expression,
(/ (- (+ ?gl ?gr) ?l) 2), and reduce the robot’s weight by ?w.

Extensions to Processing

The original architecture could match against numeric at-
tributes of perceived objects, but it could neither perform
mathematical calculations over these numbers nor allow the
results in concept heads. The representational changes to
concepts and skills remedies these limitations, but taking ad-
vantage of them also required us to augment ICARUS’s in-
formation processing along two fronts. The first deals with
inference, which now calculates the values of arithmetic ex-
pressions in concepts and binds them to specified variables
that may appear in the heads. These numeric values, in turn,
can influence inference of symbolic beliefs at higher levels,
as they are carried upward through the hierarchy during the
conceptual inference process.

These changes to the formalism require no alteration of
the execution module, but they do necessitate changes to
problem solving. In response, the revised module computes
not only symbolic relations during its mental execution of
skills but also numeric values associated with them. The new
problem solver utilizes forward chaining, which lets the sys-
tem update numeric attributes of an object, add new literals,
or delete existing literals from the state using information
encoded in skills’ :effects field. Such mental execution has
direct effects on the projected state, but indirect changes can
also occur, which the architecture determines by invoking
the inference module. As a result, the problem solver can
generate plans that satisfy both symbolic and numeric re-
quirements specified in the agent’s goals.
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Encoding and Processing Virtual Objects

Despite its new ability to reason about quantitative aspects
of the environment, the extended ICARUS still cannot rec-
ognize an existing object as a potential tool or reason about
how to create one from available elements. This is because
the architecture only recognizes primitive objects as dis-
tinct entities, not combinations of them. In contrast, peo-
ple readily view composite structures as objects themselves,
describe numeric features associated with them, and reason
about them as unified entities. To create and utilize complex
tools, ICARUS needs the ability to reify and process such
virtual objects in its environment.

Representational Extensions

The ability to include numeric attributes in concept heads
paves the way to handling virtual objects. Without this ex-
tension, the architecture can infer beliefs only as symbolic
literals, which makes them different from perceived objects
in that they lack numeric attributes. Previously, for exam-
ple, a bridge concept that describes a composite object could
only produce a symbolic belief that informs the agent about
its existence. In contrast, the new version can calculate the
values for numeric attribute associated with the bridge en-
tity, such as its thickness and weight limit.

However, computing such numeric attributes is not
enough. We also need some way to associate them with the
virtual object, which requires giving it a symbolic identifier
in the same manner as percepts. This extension effectively
eliminates the distinction in the original ICARUS between
beliefs and percepts, so the new architecture stores them in a
single working memory. The only remaining differences are
that percepts come directly from an external environment,
while beliefs are inferred, and that beliefs include a sym-
bolic relation, while percepts lack them. Of course, we can
apply this idea recursively to specify higher-level virtual ob-
jects in terms of lower-level ones.

For example, the two conceptual clauses for bridge that
appear in Table 5 not only describe the class of situations
in which one or more blocks cover a gap, but also specify
a new virtual object that denotes the bridge. This composite
object has its own attributes, such as its left position, right
position, and weight, the values of which are calculated from
the attribute values of its component objects.

Implications for Processing

Once the extended ICARUS has created virtual objects, it can
use them as if they were objects perceived directly in the
environment. The second, recursive, clause for bridge con-
cept shown in Table 5 lets the system recognize situations in
which a block is stacked on a bridge and generate another
virtual object that is also a bridge, but one with a higher
weight limit than the original one.

As the table shows, the new notation also changes the
syntax for the :elements field. Here the expression A is
B states that one should associate an identifier A with B,
which may be a percept or a relational belief. Recall that
percepts enter the perceptual buffer with such identifiers, but

Table 5: Some ICARUS concepts that specify virtual objects.

((bridge ?b ∧gap ?gl ∧left ?l ∧top-left ?tl
∧top-right ?tr ∧right ?r ∧weight ?weight)

:elements (?b is (block ?b ∧x ?tl ∧y 0 ∧len ?len
∧weight ?weight)

?gl is (gap ?gl ?gr))

:tests ((<= ?tl (- ?gl 1))

(>= (+ ?tl ?len) (+ ?gr 1)))

:attributes (?l is ?tl

?tr is (+ ?tl ?len)

?r is (+ ?tl ?len)))

((bridge ?b ∧gap ?gl ∧left ?l ∧top-left ?tl
∧top-right ?tr ∧right ?r ∧weight ?weight)

:elements (?b is (block ?b ∧x ?tl ∧y ?y ∧len ?len
∧weight ?w)

?b1 is (bridge ?b1 ∧gap ?gl ∧left ?l
∧top-left ?tl1 ∧top-right ?tr1
∧right ?r ∧weight ?w1)

?b1 is (block ?b1 ∧x ?tl1 ∧y ?y1
∧len ?len1 ∧weight ?w2)

?gl is (gap ?gl ?gr))

:tests ((<= ?tl (- ?gl 1))

(>= (+ ?tl ?len) (+ ?gr 1))

(= (+ ?y1 1) ?y)

(<= (+ ?tl1 1) ?tl)

(<= (+ ?tl ?len 1) ?tr1))

:attributes (?weight is (+ ?w ?w1)

?tr is (+ ?tl ?len)))

that ICARUS must name its beliefs before it can associate nu-
meric attributes with them. The extended architecture retains
the identifiers for these virtual objects in working memory,
so they can appear as arguments in higher-level beliefs that
result from conceptual inference.

What we have described suffices for ICARUS to draw in-
ferences about composite objects, but not to use them for
driving agent activity. Of course, virtual objects can also ap-
pear in the effects field of skills, which means that the prob-
lem solver can form expectations about their creation or de-
struction upon execution. This means, for example, that the
agent can use its hierarchical skills to form plans that involve
constructing composite objects which enable later steps that
achieve its goals. But it can also use search to generate plans
entirely from primitive skills and, by invoking the inference
process, deduce that an action sequence has the side effect
of creating a complex virtual object that it can use as a tool.

Demonstrations of the Extended Architecture

To confirm that the extended system behaves as intended,
we carried out demonstration runs on the scenario described
earlier. Here an ICARUS agent controls a simulated mobile
robot to reach its destination. In one case, there is a chasm
between the initial and the goal location; in another prob-
lem, the goal is at a higher location than the robot can reach
directly. In both cases, the agent can use blocks of different
sizes to build a bridge or staircase, which it can then use.
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Figure 1: Initial and final states for one version of the bridge
problem. The robot, R0, starts on the lefthand side and must
use blocks to build a bridge over the gap, G1, to reach its
goal on the righthand side.

Simplifying Assumptions

The primary aim of these demonstration runs was to show
that the extensions to ICARUS, described earlier, support the
creation and use of tools. For this reason, we introduced four
simplifying assumptions that made the planning and execu-
tion tasks somewhat easier than they would be in a realistic
simulation:

• Although ICARUS allows durative skills that require re-
peated application to achieve their effects, in the runs all
skills produce results in one step;

• The 2D simulated environments let agents pick up and
stack objects without first needing to approach them or to
move around obstacles;

• Agents must use planning to find a sequence of skills that
construct composite objects that can serve as tools, but
skills for using them operate in one step; and

• We provided agents with hierachical concepts for tools
that appear as conditions on these tool-using skills, effec-
tively serving as affordances (Zech et al. 2017).

Ideally, future demonstrations should use more realistic sim-
lated environments that eliminate these assumptions. Never-
theless, the reported runs offer clear proof of concept that the
extended architecture can represent, reason about, construct,
and use tools to achieve goals in continuous settings.

Creating and Traversing a Bridge

In the first setting, the robot must build a bridge to cross the
chasm, using long wooden blocks of different lengths and
strengths. The agent knows that, for the robot to traverse the
bridge safely, it must: (1) cover the chasm by a margin of at
least a foot at each end; (2) withstand the robot’s weight and
any payloads; and (3) if it is made from stacked blocks, in-
clude a staircase at each end with steps no higher than a foot
and at least a foot wide. The agent has no skill that directly
creates a bridge, so it must use problem solving to find some
plan to build one that satisfies these requirements. The sys-
tem must then execute this plan, building the bridge in the
environment and crossing the chasm to reach its destination.

For this problem, we gave ICARUS four concepts and four
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Figure 2: Initial and final states for one version of the stair-
case construction and climbing problem.

primitive skills, including the ones shown in Tables 4 and 5.
Using this knowledge, the agent can recognize situations in
which a block is stacked on another, detect a bridge com-
posed of blocks, pick up a block to either stack it on another
or cover a chasm, and finally cross the bridge when it is com-
plete. Figure 1 shows an initial state in which the robot per-
ceives itself, a chasm, and four blocks that are two, four, six,
and eight units in length and that have weight limits of one,
five, one, and two, respectively. Block B1 is on block B0 and
block B2 is on block B3.
Given these initial and goal states, the problem solver uses

forward-chaining search to find a plan that achieve its goal
in nine steps. During this process, ICARUS first considers a
bridge that only withstands a weight of two units, which is
insufficient for the robot to cross. Next the system considers
stacking a second block on the first to create a bridge with
the maximum load of three units. This is still not sufficient,
so it stacks yet another block, making a bridge that is strong
enough for it to cross the chasm safely.

Once it has found this plan, the ICARUS agent executes
it in the simulated environment over 29 cycles, first picking
up B2 to clear B3 and stacking B2 on B1. Next the system
picks up the longest block B3 and covers the gap with it.
Then the robot picks up another block, B2, and stacks it on
B3 to create a stronger bridge, after which it stacks B1 on
the result to make it even stronger. At this point, the robot
traverses the reinforced bridge to reach its goal.

We ran the extended architecture on 20 similar problems
that involved four blocks of random lengths and weight lim-
its. The system executed plans that had the average duration
of 29.6 cycles with a standard deviation of 10.7 cycles. We
also ran it, with the same knowledge, on a slightly differ-
ent goal description in which the robot must carry a certain
block as its payload across the chasm. In this altered sce-
nario, the ICARUS agent generated a similar plan, this time
requiring that it construct an even stronger bridge, then pick
up the payload for delivery. Again, the robot executed this
plan in the simulated world to achieve its goal.

Constructing and Climbing a Staircase

In the second scenario, the robot must escape from a room in
which the exit is higher on the wall than it can reach without
assistance. The environment contains long wooden blocks of
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different lengths that the agent can use to build a staircase for
reaching the exit. The system knows that a staircase must:
(1) have steps that are no taller than a foot for the robot to
climb successfully and at least a foot wide so it can step on
them safely; (2) be no further than a foot from the wall at
its highest point; and (3) have a height that is within a foot
of the exit’s height. The robot must build a staircase that
satisfies all these requirements before it can ascend and exit
the room.

For this problem, we provided ICARUS with seven con-
cepts and four primitive skills. The robot could use this
knowledge to recognize situations in which one block is on
top of another, categorize a virtual object as a staircase, pick
up a block to either stack it on another or place it on the
ground, and leave the room when it reaches the exit. Fig-
ure 2 shows one example of this scenario in which the robot
perceives itself, the wall, and five blocks with lengths of 1.5,
1.5, 3, 4.5, and 1, respectively, and with heights of one unit.

The problem solver uses forward search to generate a plan
that, in 13 steps, achieves the exit goal. During planning,
ICARUS mentally constructs a staircase from three blocks
that will let it leave the room, but only after considering
shorter stairways. Once it has found this plan, the robotic
agent executes it in the simulated environment, which takes
41 cognitive cycles. This involves picking up block B4 to
clear the area around the wall and stacking it on block B1.
The agent then picks up block B2 to clear B3 and stacks B2
on B4. The robot continues stacking the blocks B3, B2, and
B4, in that order. At this point, it recognizes that it has built
an acceptable staircase, so the robot climbs the stairs and
exits the room, achieving its goal.

As another demonstration run, we used a variation on this
problem that required the system to combine a number of
shorter blocks to form steps for the staircase. This involved
generating a more complex plan with additional steps that
led to more virtual objects, greater search during planning,
and longer execution times than in the first run, but the sys-
tem handled them without any special difficulty.

In summary, the runs have demonstrated that the ex-
tended architecture can represent and reason about numeric
attributes and virtual objects during inference, problem solv-
ing, and execution. This lets the revised ICARUS infer be-
liefs that incorporate numeric attributes, associate them with
composite entities that its actions produce, and use this con-
tent to generate and carry out plans that achieve symbolic
goals subject to numeric constraints. Together, these abilities
support the construction of tools, such as bridges and stair-
cases, from available components and their use once built.

Related Research
The extensions to ICARUS that let it create and use tools
have clear precedents that merit discussion. We focus here
on two contributions that we consider most important – rea-
soning over numeric attributes and using virtual objects. We
have discussed the architecture’s forward-chaining planning
module elsewhere (To et al. 2015). We will not repeat our
observations here except to note that it can use primitive
skills, hierarchical ones, and their combination to generate
plans, although the first option requires more search.

Research in cognitive architectures (Langley, Laird, and
Rogers 2009) has emphasized symbolic representation and
processing, due to their focus on high-level cognitive tasks.
Nevertheless, well-established frameworks like Soar and
ACT-R adopt an attribute-value notation that can easily en-
code the types of numeric object-based inputs we assume in
both working memory and production rules. Both architec-
tures have been used to control robotic agents, which cer-
tainly requires quantitative processing. However, they treat
numeric manipulation as a special case of symbol process-
ing, rather than giving them equal status, at the architecture
level, as does the extended version of ICARUS.

Other paradigms also support a combination of symbolic
and numeric processing. For example, logic programming
emphasizes symbolic notations but can incorporate quanti-
tative values and constraints, although they do not typically
operate over time, as do ICARUS agents. AI planning sys-
tems also focus on symbolic tasks but have been adapted
to include numeric content (e.g., Coles et al. 2012). These
describe activity over time, but work in this tradition sel-
dom supports the storage and use of hierarchical skills. Most
robotic systems emphasize low-level numeric processing to
the exclusion on high-level cognition. Hybrids like the 3T ar-
chitecture (Bonasso et al. 1997) support both, but they adopt
separate, specialized notations rather than offering a uni-
fied framework for cognition and action. Perhaps the closest
robotics work (Levihn and Stilman 2014; Erdogan and Stil-
man 2014), also concerned with tool creation, propagates
physical constraints to ensure a symbolic planner considers
only acceptable configurations of objects.1

As for the virtual objects, most production-system archi-
tectures (e.g., Klahr, Langley, and Neches 1987) support
rules that introduce new symbols, with associated attribute
values, in elements they add to working memory. However,
they do not elevate their creation to the architectural level
or make theoretical claims about the way such objects are
defined, processed, and used by other mechanisms. Our ex-
tended framework associates virtual objects with concept in-
stances that reside in belief memory, so that any conceptual
rule in long-term memory can generate them during the in-
ference process. This allows a tight integration with other
components of the ICARUS architecture.
Otherwise, the paradigm most relevant to our use of vir-

tual objects is scene understanding (e.g., Antanas et al.
2012), which attempts to infer models of the environment
from images or videos. Classical approaches construct a hi-
erarchy of entities, from edges to angles to surfaces to 3D
object models (Binford 1982). ICARUS’ virtual objects are
directly analogous to these intermediate entities, and its cal-
culation of derived attribute values maps directly on compu-
tations of angles and volumes in vision systems. However,
work in this paradigm has focused on scene interpretation,
not with goal-directed activity. Thus, although such systems
might be able to describe and recognize tools like bridges
and stairs, they cannot use them to achieve objectives.

1Brown and Sammut (2012) report a novel approach to learning
tool usage by the analysis of training cases, but their research has
different aims than our own.
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Plans for Future Work

We have shown that the extended ICARUS can represent and
reason about tools, it can construct such tools from avail-
able objects, and it can then use them to achieve its goals.
Nevertheless, we must still address a number of challenges
that our work to date has left unexamined. The most obvious
limitations involve the system’s dependence on handcrafted
knowledge about composite tools.

ICARUS already includes mechanisms for learning hierar-
chical skills from successful problem solving (Langley et al.
2009), and we can use this ability to acquire structures for
constructing bridges, staircases, and similar artifacts, as well
as ones for using them after they have been created. The lat-
ter will be useful in more realistic environments that require
sequences of actions for tool use, such as taking repeated
steps up a staircase. These mechanisms acquire new skills
from individual solutions obtained through search, so learn-
ing can be very rapid.

A more challenging hurdle involves the acquisition of
concepts that recognize composite tools. Here we plan to
draw on another extension to ICARUS (Li et al. 2012) that,
when it uses a problem solution to create a new skill, also
defines a new conceptual predicate that describes the condi-
tions under which that skill will achieve the relevant goals.
These conceptual rules may be disjunctive or even recur-
sive, so the mechanism should be able to produce concepts
for recognizing bridges, staircases, and other tools that may
have arbitrary numbers of components.

However, we can best take advantage of this ability by
separating the issues of tool construction and tool use. If we
present an ICARUS agent with a problem that it can solve
with an existing configuration of objects, say two blocks that
cover a gap, it could learn both a hierarchical skill for us-
ing that configuration and a concept that recognizes similar
‘bridge’ configurations in the future. Given such knowledge,
it could then solve, and learn from, new problems that re-
quire the construction of a bridge before its traversal. This
decomposition is not strictly necessary, but inventing the
bridge concept from scratch would require more search than
determining how to build one after having used another.

These are certainly not the only challenges that remain be-
fore we have a mature account of tool construction and use.
For instance, numeric simulation of durative operators, as
in Langley et al.’s (2016) PUG architecture, seems relevant
to determining whether an agent can use a tool to achieve
its goals. The ability to interleave planning, execution, and
monitoring is also important in settings where tools are not
fully reliable. However, the creation and use of tools is one
of the distinguishing features of human intelligence, so we
should not be surprised that many open problems remain.

Concluding Remarks

In this paper, we reported extensions to the ICARUS archi-
tecture that support the creation and use of tools. These in-
cluded the ability to associate numeric attributes with con-
cepts and skills, as well as calculate their values during in-
ference, execution, and problem solving. Another augmen-
tation let conceptual rules refer to new, complex objects that

were composed from existing ones and to derive values for
their numeric attributes during the process of conceptual in-
ference. Together, these capabilities let the extended archi-
tecture not only represent and reason about tools it creates
from components available in the environment, but also use
those tools to achieve its goals.

We demonstrated this new functionality in two simulated
environments, one that involved creating and traversing a
bridge and another that required constructing and climbing
a staircase. We will not claim that other approaches, such as
AI planning methods, cannot handle the same tasks, but they
would not represent or recognize the fact that tools played a
key role in their solutions. Humans clearly exhibit this abil-
ity, and we believe that ICARUS’ approach to tool creation
and use has many similarities. Nevertheless, we have taken
only the first steps, and future work should include demon-
strations in more realistic environments and use of learning
mechanisms to acquire tool-related concepts and skills.
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Abstract

This paper describes the architecture that integrates DALI
MASs (Multi-Agent Systems) and ASP (Answer Set Pro-
gramming) modules for reaching goals in a flexible and
timely way, where DALI is a computational-logic-based fully
implemented agent-oriented logic programming language
and ASP modules includes solvers that allow affordable and
flexible planning capabilities. The proposed DALI MAS ar-
chitecture exploits such modules for flexible goal decompo-
sition and planning, with the possibility to select plans ac-
cording to a suite of possible preferences and to re-plan upon
need. We present an abstract case-study concerning DALI
agents which cooperate for exploring an unknown territory
under changing circumstances in an optimal or at least sub-
optimal fashion. The architecture can be exploited not only
by DALI agents, but rather by any kind of logical agent.

Introduction

Adaptive autonomous agents are capable of adapting to
partially unknown and potentially changing environments
(Knudson and Tumer 2011), (Jiming 2001). This requires
agents to be capable of various forms of commonsense
reasoning and planning over a distributed multi agent ar-
chitecture. A related work based on procedural reason-
ing system and belief desire intention (BDI) architecture
is PROPHETA (Fichera et al. 2017), an object oriented
procedural Python-based multi agent framework with a
declarative language approach, used to control autonomous
robots. Since (Costantini 2011), we advocated agent ar-
chitectures capable of smooth integration of several mod-
ules/components representing different behaviors/forms of
reasoning, possibly based upon different formalisms. There-
fore, the overall agent’s behavior can be seen as the result
of dynamic combination of these behaviors, also in conse-
quence of the evolution of the agent’s environment.

We proposed in particular to adopt Answer Set Pro-
gramming (ASP) modules, where ASP (cf., among many,
(Baral 2003; Leone 2007; Truszczyński 2007) and the refer-
ences therein) is a successful logic programming paradigm
suitable for planning and reasoning with affordable com-
plexity; many efficient implementations of ASP solvers are

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

freely available like: CLASP (Gebser et al. 2007), Cmod-
els (Lierler 2005), DLV (Leone et al. 2006b), Smodels (Elk-
abani, Pontelli, and Son 2004) . The DALI agent-oriented
language and framework was invented, designed and de-
veloped in our research group (De Gasperis, Costantini,
and Nazzicone 2014; Costantini and Tocchio 2002; 2004;
Costantini 2015a); the framework has been lately augmented
with a plugin for the invocation of answer set solvers so to
build specific modules. The ASP modules can be exploited
in agents in a variety of ways: for instance in the case of
reasoning about possibility and necessity, and a greater set
of reasoning contexts. We have recently enhanced the in-
tegration by adopting ASP modules for planning purposes,
allowing an agent or a MAS to choose among the various
plans that can be obtained by means of suitable preferences.

In this paper, we show an architecture based on DALI and
ASP modules to cope with complex goals, but that can be
easily generalized to other agent-oriented frameworks; goals
that can take profit from the subdivision into subgoals if one
of the following (or both) conditions as met:

• the instance size of the planning problem to be solved for
reaching the goal is too big for efficient and timely solu-
tion, the instance can be partitioned into sub-problems and
the sub-solutions can and must be re-combined/merged
together;

• the goal naturally splits into sub-goals where
plans can/must be devised separately, and then re-
combined/merged together at a later stage.

The architecture exploits not a single DALI agent but a
distributed MAS (Multi-Agent System), with suitable com-
ponents for generating and executing plans; it allows to dis-
tribute goals and sub-goals while controlling the genera-
tion/exploitation of solutions, and possible (even partial) re-
planning in case of environmental changes.

We introduce an ideal case study to show how DALI
agents can cooperate in order to explore an unknown ter-
ritory, such as what can happen in the real world upon
occurrence of some kind of catastrophic-like disruptive
events (earthquake, fire, flooding, terrorist attack), were geo-
localized information can easily become obsolete in few sec-
onds and rescue planning is needed, no matter what is the
difficulty.

We propose a solution based upon a MAS instead of a
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monolithic software solution because we consider important
that each software component, i.e. agent, should partially re-
tain its autonomy during asynchronous event processing, in
the context of agent-oriented software engineering method-
ologies (Gomez-Sanz and Fuentes-Fernández 2015) . In fact,
in this way each agent can be enriched with high-level rea-
soning/control behaviors that can coexists with the plan-
ning/executing activity. The MAS solution also permits to
distribute the computational effort among cloud comput-
ing facilities and embedded computers so to increase over-
all robustness by means of advanced features such as self-
monitoring and self-diagnostic, as shown in (Bevar et al.
2012). As discussed below the MAS can be based upon a
controller agent which partitions a planning problem, estab-
lished certain features (e.g., related to plan selection), as-
signs tasks of planning, re-planning and plan execution. ASP
modules are meant to be exploited for planning purposes.
Qualitative aspects of the proposed solution consist in: (1)
the general MAS structure, that can be customized in or-
der to cope with real-world problems; (2) the interaction be-
tween the MAS and the ASP module(s); (3) the adoption of
user preferences for choosing among possible plans.

The paper is structured as follows. In the first two sections
we recall ASP and the DALI language and framework. We
then present the proposed MAS architecture, and an abstract
case study. Finally we discuss the proposal and conclude.

Answer Set Programming in a Nutshell
“Answer set programming” (ASP) is a well-established logic
programming paradigm adopting logic programs with de-
fault negation under the answer set semantics, which (Gel-
fond and Lifschitz 1988; 1991) is a view of logic programs
as sets of inference rules (more precisely, default inference
rules). In fact, one can see an answer set program as a set of
constraints on the solution of a problem, where each answer
set represents a solution compatible with the constraints ex-
pressed by the program. For the applications of ASP, the
reader can refer for instance to (Baral 2003; Leone 2007;
Truszczyński 2007). However, planning is among the more
suitable an successful applications of ASP , cf (Son 2017;
Romero, Schaub, and Son 2017) and the references therein,
were planning in ASP is analyzed even under incomplete
information.

Syntactically, a program (or, for short, just “program”) Π
is a collection of rules of the form:

H ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n

where H is an atom, m � 0 and n � 0, and each Li is
an atom. Symbol ← is usually indicated with :- in practi-
cal systems. An atom Li and its negated counterpart notLi

are called literals. The left-hand side and the right-hand side
of the clause are called head and body, respectively. A rule
with empty body is called a fact. A rule with empty head is
a constraint, where a constraint of the form ← L1, ..., Ln.
states that literals L1, . . . , Ln cannot be simultaneously true
in any answer set.

Unlike a conventional logic program, a ASP programmay
have several answer sets, each of which represent a consis-
tent solution to given problem and constraints, or may have
no answer set at all, which means that no solution can be

found. Whenever a program has no answer sets, it is said that
the program is inconsistent (w.r.t. consistent). In the case of
planning, each answer set (if any exists) represents a plan.

All solvers provide a number of additional features use-
ful for practical programming, that we will introduce only
whenever needed. Solvers are periodically checked and
compared over well-established benchmarks, and over chal-
lenging sample applications proposed at the yearly ASP
competition (cf. (Calimeri et al. 2012), (Gebser, Maratea,
and Ricca 2016) for recent reports).

The DALI language:

Framework and Applications

DALI (Costantini and Tocchio 2002; 2004) is an Agent-
Oriented Logic Programming language, (Costantini 2015a)
for a comprehensive and updated list of references. A DALI
agent is triggered by several kinds of asynchronous events:
external events, internal, present and past events. A DALI
MAS does not explicitly requires using a global clock mech-
anism, but temporal logic can be implemented inside agents.

External events are syntactically indicated by the postfix
E. Reaction to each such event is defined by a reactive rule,
where the special token :>. The agent remembers to have re-
acted by converting an external event into a past event (post-
fix P). An event perceived but not yet reacted to is called
“present event” and is indicated by the postfix N.

In DALI, actions (indicated with postfix A) may have or
not preconditions: in the former case, the actions are defined
by actions rules, in the latter case they are just action atoms.
An action rule is characterized by the new token :<. Simi-
larly to events, actions are recorded as past actions.

Internal events is what makes a DALI agent agent proac-
tive. An internal event is syntactically indicated by the post-
fix I, and its description is composed of two rules. The first
one contains the conditions (knowledge, past events, pro-
cedures, etc.) that must be true so that the reaction (in the
second rule) may happen. Thus, a DALI agent is able to re-
act to its own conclusions. Internal events are automatically
attempted with a default internal frequency customizable by
means of directives in the agent initialization file, where the
frequency will depend upon the very nature of each such
event, and the degree of criticality for the agent.

The DALI communication architecture implements the
DALI/FIPA protocol (Foundation for Intelligent Physical
Agents 2003), which consists of the main FIPA primitives,
plus few new primitives which are particular to DALI. The
architecture may also include a filter on communication
based on ontologies and forms of commonsense reasoning,
as shown in previous works.

The DALI programming environment at current stage of
development (De Gasperis, Costantini, and Nazzicone 2014)
offers a multi-platform folder environment, built upon Sic-
stus Prolog programs, shell scripts, Python scripts to in-
tegrate external applications, a JSON/HTML5/jQuery web
user interface to integrate into DALI applications, with a
Python/Twisted/Flask web server capable to interact with
A DALI MAS at the backend. We have recently devised
a cloud DALI implementation, reported in (Costantini, De
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Gasperis, and Nazzicone 2017; Costantini et al. 2017). In
fact, as we have since long been convinced of the poten-
tial usefulness of the DALI logical agent-oriented program-
ming language in the cognitive robotic domain, in the above-
mentioned papers we have presented the extensions to the
basic pre-existing DALI implementation with a number of
useful new features, and in particular allow a DALI MAS to
interact with robots over messages buses like ROS, YARP,
Redis event broker. As shown in (Costantini, De Gasperis,
and Nazzicone 2017), the DALI framework has been ex-
tended to “DALI 2.0” by using open sources packages, pro-
tocols and web based technologies. DALI agents can thus be
developed to act as high level cognitive robotic controllers,
and can be automatically integrated with conventional em-
bedded controllers. The web compatibility of the framework
allows real-time monitors and graphical visualizers of the
underline MAS activity to be specified, for checking the in-
teraction between an agent and the related robotic subsys-
tem. The cloud package ServerDALI allows a DALI MAS
to be integrated into any practical environment. In (Costan-
tini et al. 2017) paper we have illustrated the new “Koiné
DALI” framework, where a Koiné DALI MAS can coop-
erate without problems with other MASs, programmed in
other languages, and with object-oriented applications. In
summary, the enhanced DALI can be used for multi-MAS
applications and hybrid multi-agents and object-oriented ap-
plications, and can be easily integrated into preexistent ap-
plications.

The DALI framework has been experimented, e.g., in
applications for user monitoring and training, in emergen-
cies management (like first aid triage assignment), in se-
curity or automation contexts, like home automation or
processes control, and, more generally, in every situation
that is characterized by asynchronous events (either simple
events and/or events that are correlated to other ones even
in complex patterns). An architecture encompassing DALI
agents and called, F&K (Friendly-and-Kind) system (Aielli
et al. 2016) has been proposed for (though not restricted
to) applications the eHealth domain. F&Ks are “knowledge-
intensive” systems, providing flexible access to dynamic,
heterogeneous, and distributed sources of knowledge and
reasoning, within a highly dynamic computational environ-
ment consisting of computational entities, devices, sensors,
and services available in the Internet and in the cloud. As
a suitable general denomination for systems such as F&Ks
we propose “Dynamic Proactive Expert Systems” (DyPES):
in fact, such systems are aimed at supporting human ex-
perts and personnel or human users in a knowledgeable
fashion, so they are reminiscent of the role of traditional
expert systems. However, they are proactive in the sense
that such systems have objectives (e.g., monitoring patients,
managing resources, exploring territories, etc.) that they pur-
sue autonomously, requiring human intervention only when
needed. They are also dynamic, because they are able to ex-
ploit not only a predefined knowledge base: rather, they are
equipped with a number of reasoning modules, and they are
able to locate other such modules, and the necessary knowl-
edge and reasoning auxiliary resources. In fact, DyPESs are
characterized by “Knowledge-intensity”, in the sense that in

general a large amount of heterogeneous information and
data must be retrieved, shared and integrated in order to
reason within the system’s domain. DyPESs can be Cyber-
Physical Systems integrating software and physical compo-
nents (Khaitan and McCalley 2015), and can be able to per-
form Complex Event Processing, i.e., to actively monitor
event data so as to make automated decisions and take time-
critical actions (DALI has been in fact empowered with CEP
capabilities (Costantini 2015b)).

Agents (and in particular robotic agents) have com-
plex goals that may need to be decomposed, either hi-
erarchically or anyway into related subgoals; moreover,
such goals may change in time depending upon the inter-
action with the environment. Prolog-based logical agents
such as DALI agents but also agents written in other
agent-oriented computational-logic-based languages (e.g.,
AgentSpeak (Rao and Georgeff 1991; Bordini and Hübner
2010), GOAL (Hindriks 2009; 2010), 3APL (Dastani et al.
2004; Dastani, van Birna Riemsdijk, and Meyer 2005)) can
devise and execute plans. However, they are not easily able
to decompose goals into subgoals, evaluate (based upon
preferences) alternative plans, and re-plan if needed, pos-
sibly for some subgoals only; implementing such features
within a single agent would in fact make the agent code
heavy to understand and execute.

We have since long equipped DALI with a plugin for in-
voking ASP solvers and thus executing ASP modules. When
this module is used for planning, it would be possible to
choose among the generated plans based upon qualitative
and quantitative user preferences; the preference strategies
implemented so far are: (i) shortest plan; (ii) minimal-cost
plan; (iii) plan including a minimum/maximum number of a
certain kind of actions; we intend to implement plan evalu-
ation based upon preferences on resource consumption, fol-
lowing the principles of (Costantini and Formisano 2010;
2009; Costantini, Formisano, and Petturiti 2010).

Below we propose a DALI MAS architecture aimed at
goal decomposition, sub-goal assignment, planning and re-
planning concerning complex goals.

The ASP-MAS Architecture
In this section we illustrate the features of the proposed ar-
chitecture. The DALIMAS is intended to fulfill the so-called
bounded rationality principle (Gigerenzer 2004), which we
translate that a plan for reaching a goal shall to be de-
vised and executed in a timely manner before a ultimate
Tmax deadline. Consequently, there is a second deadline
TPlanMax < TMax by which a plan has to be computed
and selected, so that the remaining time is sufficient to exe-
cute that plan. Parameters TPlanMax and TMax are indeed
dependent of the problem domain. At the current state of
development they have to be determined by the MAS-ASP
designer and stay constant always during run-time phase.

We also consider the hypothesis that for each problem P
proposed to the MAS, a trivial solution plan can always be
computed in time TPt by using a well tested deterministic
algorithm, such that TPt is a negligible time compared to
TPs, which is the minimum time needed to generate an ac-
ceptable sub-optimal plan.
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Figure 1: DALI ASP-MAS architecture: Coordinator,
Meta-Planner, Planner, Executor agents. The MAS can
be deployed over a cloud computing architecture, thus
distributing and balancing the required computational re-
sources. The ASP module is executed via an external solver,
configurable depending on the required capabilities. The ex-
ecutor agent is supposed to actually execute the plan, possi-
bly working “in the field”, i.e., embedded in a mobile robot
or some other ad-hoc facility or mechanism. Constraints can
be used to codify knowledge about the environment, like
obstacles, target coordinates, resources, depending on the
problem domain.

Thus, given the input set TPlanMax, TMax, G,N,C,
whereG is the goal,N is the instance size of the problem to
be solved (if applicable),C is the constraints set which mod-
els the dynamics and knowledge about the environment, the
MAS operates via the following steps, not necessarily in se-
quence, but in parallel whenever it is possible:

(i) Decompose the overall goal into suitable subgoal;

(ii) For each subgoal, generate an a sub-plan within the
TPlanMax deadline;

(iii) Execute the plan within the TMax deadline deploying over
the set of executors;
in case of failure (insufficient time to execute), maximize
the length of the partially executed plan;

(iv) In case of a change of conditions in the environment, i.e.
constraints change, re-plan, possibly limiting this activity
to specific subgoals resulting from the partitioning.

Since each ASP module may possibly find more than one
plan for given (sub-)goal, it is useful (as said before) to apply
a given metrics by which a plan could be preferred to another
one. The proposed DALI ASP-MAS architecture is shown in
Figure 1 and the agent behaviors are here described .

• COORDINATOR agent: this agent synchronizes all the
actions of the MAS and updates the global state of goal
solving. Its task are the following.

(a) Ensure the proper activation of the MAS and overall
self checking.

(b) Interact with the external world and whenever needed
acquire new constraints for the MAS or revise the
present goals.

(c) Control the TPlanMax and TMax deadlines.
(d) Decompose the goal into subgoals.
(e) For each subgoal, instantiate a META-PLANNER

agent, possibly providing as input the preference cri-
terion for plan selection.

(f) receive from each META-PLANNER agent the sub-
plan to be executed up to TPlanMax and deploy the
overall plan to the EXECUTOR agents set, each is
in charge of sub-plan execution within maximum time
TMax − TPlanMax.

(h) If time elapses, or new events occur, cancel the current
running plan and if applicable send a replan indication
to the META-PLANNER.

(h) Logs all events to a log server.
• META-PLANNER agent, whose tasks are the following.
(a) Receive the triggering event from the COORDINA-

TOR with new constraints to start the search for a new
plan.

(b) Generate input set of constraints and specific data
for the PLANNER agent while monitoring its per-
formances. If PLANNER agent does not deliver be-
fore TPlanMax − TPt, cancel the plan request and ask
PLANNER to generate a trivial plan .

(c) Apply plan selection accorded to preferences, either lo-
cal or set by COORDINATOR agent. It also exploits
the given preference criterium in order to select the
plan which is closer to present preferences whenever
the PLANNER returns more than one answer.

(d) If requested by COORDINATOR, ask PLANNER for
re-planning with updated input set of contraints.

• PLANNER agent, which receives as input the time
constraints TPlanMax, TMax, C%, N, F from META-
PLANNER generate the ASP program which then gener-
ates all possible sub-plan via the ASP module, if possible
within the TPlanMax deadline. If more than a single an-
swer is produced by the ASP solver, it returns all available
plans to the META-PLANNER. If no solution exists, it
generates a trivial plan (if possible). The C% parameter
encode knowledge about the sub-optimality of the desired
plan type, which coincide with the Hamiltonian plan at
100%, or refers to sub-optimal plans for lower percent-
ages.

• EXECUTOR: each agent puts into action in the real
world the specific sub-plan provided by the COORDI-
NATOR, if possible within the TMax deadline, and noti-
fies the COORDINATOR upon completion. The execu-
tor agent in general executes plans (also) embodied in a
physical components in a Cyber-Physical System, and/or
by means of robotic elements of various kinds. In Figure
1, EXECUTOR is designated as “field controller” as plan
execution is situated into some environment.
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Summarizing, the final execution made the EXECUTORs
depends on the following information:

• timing parameters, ASP program templates, static con-
straints imposed by the designer

• selected goals and preferences by the user
• the environment model built upon sensors perceptions

which define dynamic constraints
• consistency and self-checking rules in the knowledge base
• available energy and resources, which may also have non

trivial impact on hardening the constraints set.

Since in general this is a hard-NP problem, most probably
only sub-optimal plans can be generated, but with a control-
lable desirable quality by balancing user preferences, accu-
racy, and weak vs. hard constraints. The resulting behavior
should be similar to what a rational human expert would do
in similar circumstances, with the advantage of not being
limited also by human errors due to over fatigue and less
concentration. So the human could dedicate himself to su-
pervise the overall system behavior under less cognitive load
stress and intervene with appropriate common sense reason-
ing when needed, most probably when the system is produc-
ing too many trivial plans.

Abstract Case Study

The ASP-MAS architecture presented above has been in-
spired and motivated by a case-study that has been actually
implemented and experimented, and presented in (Costan-
tini, De Gasperis, and Nazzicone 2015). The overall goal in
the case study is to explore an unknown territory upon oc-
currence of some kind of catastrophic-like disruptive event
(earthquake, fire, flooding, terrorist attack, etc.). The simi-
larity comes from the idea that after such event, most of the
available geo-localized information can became obsolete in
a very short time and important decision have to be made in
order to save lives and/or deliver rescue services. So there is
a contemporary need to re-scan the territory to know were
is possible to engage rescue equipments, and to generate an
actually rescue plan that covers the maximum possible area
were is needed. So there are places were is impossible to
go (i.e. forbidden cells) and places were victims have to be
rescued (i.e. to reach cells).
For simplicity, we have modeled the territory (also called

“area”) as a set of a N ∗ N parts represented as chess-
boards, i.e., squares of cells, where some cells are marked
as unreachable/forbidden, and are therefore considered as
“holes” in the chessboard. This represents the fact that the
agents may be notified by an external authority or by other
sources of the actual impossibility of traversing that loca-
tion because of some kind of obstruction/danger. The forbid-
den/unreachable locations, and their respective constraints
set, can change in time as the scenario evolves.

For the sake of experiments, the EXECUTOR agent is
embodied by a robot explorer/rescuerer 1 that each agent em-
ploys for exploration of the territory; this robot has been rep-

1not necessary a robot, also a human guided ambulance, or a
combination of UAV and human guided vehicles

resented (in the case study) as a chess’ knight piece, which
performs knight leaps. This is to signify that a real robot
(whatever its kind) will in practice have limited possibili-
ties of movement. In this way, the problem of exploration
of a single piece of territory can be modeled as a variant
of the well-known “knight tour with holes” problem, for
which well-known ASP solutions exist. The ultimate ob-
jective would be that of devising an Hamiltonian path, thus
fully exploring the given piece of territory while skipping the
forbidden squares. As however the Hamiltonian path option
may results computationally intractable with reasonable in-
stance size (already from sizes ≥ 8, or 10 using the most re-
cent ASPmore efficient solvers ), we resorted to sub-optimal
solutions that the MAS is capable to generate, which adopt
soft constraints in order to visit each square as few times as
possible.

The Knight Tour with holes problem has constituted a
benchmark in recent ASP competitions, aimed at compar-
ing ASP solvers performances. We performed a number of
modifications to the original version (Calimeri and Zhou
2014) concerning: the representation of holes; the objective
of devising a path which, though not Hamiltonian, guaran-
tees a required degree of coverage with the minimum num-
ber of multiple-traversals; simple forms of loop-checking for
avoiding at least trivial loops. For the sake of completeness,
below is the sketch of our solution, formulated for the DLV
ASP solver (Leone et al. 2006a), though it might be easily
reformulated for other solvers. The key modifications to the
base solution are the following.

• We modified the reached constraint, and transformed it
into a soft constraint, so as not to be forced to finding a
Hamiltonian path.

reached(X,Y) :- move(1,1,X,Y).
reached(X2,Y2) :-

reached(X1,Y1), move(X1,Y1,X2,Y2).
:˜ cell(X,Y),

not forbidden(X,Y), not reached(X,Y).

• We added a coverage-satisfaction rule, where
coverage denotes the required degree of coverage
and number forbidden the number of holes, and V is the
instance size, i.e., the chessboard edge. The maximum
possible coverage is 100% of the available cells, i.e.,
M = V ∗V , while the minimum coverageN is computed
in terms of coverage, considering the holes. Suitable
application of the count DLV constraint (Leone et al.
2006a) guarantees the desired coverage.

coverage(95).
number_forbidden(5).
cov(N) :-

N <= #count{X,Y : reached(X,Y)} <= M,
size(V), coverage(Z),
number_forbidden(F),
M = V * V, N2 = M * Z,
N3 = N2 /100, N = N3 - F.

Experimental results have demonstrated the usefulness of
the proposedMAS architecture, that is actually able to effec-
tively cope with real-world instance sizes. The architecture
in this case study works as follows.
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• The COORDINATOR agent partitions the territory that
must be explored into a number of (possibly overlap-
ping) sections (chessboards) of reasonable size (maxi-
mum 10x10 cells), each one to be assigned to a META-
PLANNER instance.

• Each plan to be executed (exploration to be performed) is
assigned to a separate (EXECUTOR)EXLORER agent,
specifically assigned to that territory section. Each in-
stance of the META-PLANNER agent relies upon its own
associated instance of the planner agent.

• different preference policies can possibly be associated
with different sections of the territory to be explored, ac-
cording to directions provided by the user/environment.

• The COORDINATOR will devise re-planning for each
portion of the territory for which the unreachable location
have changed.

Reasonable metrics measure plans returned by the ASP
module in terms of: (i) number of cells that have to be visited
when using coverage, (ii) length of the path, (iii) presence
of loops (when the Hamiltonian constraint is released); (iv)
plan cost, in case there is a specific cost associated to each
cell. Preference criteria can then be defined by selecting one
metric, or by combining different metrics: for instance, a cri-
terium may consist in preferring the shortest path, if it does
not exceed a certain cost.

Concluding Remarks

We have proposed an ASP-MAS architecture for flexible
goal decomposition, plan formation and execution that de-
livers acceptable solution to complex problems under the
“bounded rationality principle”. In real application, a MAS
for each (class of) goal(s) would be designed, implemented
and located into the DALI cloud. In fact, all components of
the MAS will be programmed according to the goal to be
reached, i.e., to the problem to be solved. Each agent that
needs to solve a goal refers to the suitable MAS. As men-
tioned, the DALI framework allows uniform access also to
agents written in other languages/formalisms. So, the pro-
posed solution is not DALI-specific but rather can be gener-
ally adopted.
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Abstract

Algorithms incorporating learned functionality play an in-
creasingly important role for highly automated vehicles.
Their impressive performance within environmental percep-
tion and other tasks central to automated driving comes at
the price of a hitherto unsolved functional verification prob-
lem within safety analysis. We propose to combine statisti-
cal guarantee statements about the generalisation ability of
learning algorithms with the functional architecture as well as
constraints about the dynamics and ontology of the physical
world, yielding an integrated formulation of the safety verifi-
cation problem of functional architectures comprising artifi-
cial intelligence components. Its formulation as a probabilis-
tic constraint system enables calculation of low risk manoeu-
vres. We illustrate the proposed scheme on a simple automo-
tive scenario featuring unreliable environmental perception.

Modern AI and especially machine learning (ML) com-
ponents are believed to be a key enabler for bringing highly
automated driving functions at SAE levels 4 to 5 (SAE and
others 2014) onto the market. Before such systems can be
released, obtaining a rigorous guarantee of their safety is
essential: systematic faults within the design (including the
training phase of ML based algorithms) could have dramatic
effects on the overall safety of the mass-marketed system
implementations and hence also for their societal accep-
tance. A key challenge for this verification is the inherent
uncertainty involved in object identification. To illustrate the
impact of such uncertainties, consider the following artifical
example of a misperception (see Fig. 1).

At time t0, the EGO vehicle (E) has detected another ve-
hicle v1 on the left lane using information from a camera
and RADAR sensors. At a later time instant t1, the vehicle
v1 has closed the gap to EGO and consequently is detected
still. Additionally, another vehicle v2 has been detected at
very short distance in front of EGO, while another detec-
tor has recognized the presence of a bridge in front. In this
situation, EGO is confronted with the decision to either per-
form an overtaking manoeuvre – thereby risking a collision
with v1, or to perform an emergency brake to mitigate a po-
tential collision with vehicle v2. A third option would be to
perform an evasive manoeuvre to the right, thereby risking
a collision with a bridge pillar. Note that at t0, the space in

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Example scenario. Perception of the environment
is considered at two distinct time instants t0 and t1.

front of the EGO vehicle has been perceived as free. In this
scenario, we assume that the time gap t1 − t0 is insufficient
for a vehicle v2 to be outside warning range at t0 and to get
to the position (and speed) perceived for v2 at t1, given the
physical constraints on vehicle dynamics. Thus, the results
of the different detectors evidently are contradictory.

To choose an acceptable manoeuvre, a careful assessment
of the risks on a vehicle level is necessary – for example by
quantifying possible outcomes of a decision using injury risk
scales, like AIS or ISS (MacKenzie, Shapiro, and Eastham
1985). Individual ML components, however, are tradition-
ally evaluated using component level loss functions (Cesa-
Bianchi, Conconi, and Gentile 2004). Using the common 0-
1 loss (l1-0), the resulting risk at the component level can be
interpreted as bound on the probability of correctly classi-
fying a random input (distributed according to a fixed but
unknown distribution):

1− E[l1-0] = P (correctly classified) ∈ [p(δ), p(δ)] (1)

where the right hand side denotes the confidence interval as
obtained from the available bounds, i.e. via cross-validation
or generalisation bounds such as within the Probably-
Almost-Correct (PAC) framework. These bounds in turn de-
pend on the confidence level δ. Under the assumption that
any new data (different from the training data) would be gen-
erated according to the same probability distribution which
also generated the training data, a generalisation statement
can be formulated and proven which provides the desired
bound on the true risk.

In order to use such information to assess the risk on
vehicle level, we propose a layered approach integrating
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the individual ML components into a constraint system
which includes prior knowledge about physical properties
and the functional architecture. The resulting architecture
thereby combines features from probabilistic graphical mod-
els (Koller and Friedman 2009) capturing probabilistic re-
lationships with features from non-deterministic constraint
systems. We consequently employ the same definition of
risk as used in reliability and utility theory (expected loss),
yet permit underspecification of the probability distribution
determining the expected values of interest. Among the pos-
sible instants of the underspecified distribution, we aim at
calculating worst-case expectations. This permits to com-
pute robust low-risk manoeuvres at runtime, whereby indi-
vidual performance assessment in terms of the empirical risk
at component level can be combined with the obtained con-
straint system to bound the overall risk at vehicle level.

In the following, we will illustrate the proposed approach
on the above example, thereby illustrating its potential.

The Probabilistic Constraint System
In the example of Fig. 1, we are interested in the following
analysis questions: Can we compute a robust low-risk ma-
noeuvre for EGO at t1, which keeps risk adequately bounded
despite potentially uncertain information? Given such a ro-
bust manoeuvre, can we quantify the worst-case residual risk
associated with such controller?

To answer such questions, we first construct a constraint
system reflecting assumed knowledge as well as imperfect
information about the underlying situation. To this end, we
try to build a probabilistic system similar to a dynamic
Bayesian network (Murphy and Russell 2002). In practice,
we sometimes have to admit unknown dependencies not ex-
pressible in standard Bayesian networks. For such depen-
dencies, we possess no explicit probability distribution, but
can only model constraints. We illustrate such a constraint
system in Fig. 2, where the functional architecture is re-
flected on the left side whereas information about the real
world is depicted on the right side. In the following, we re-
fer to each signal or measurement (nodes within the figure)
as variables, which can be interpreted as (possibly Dirac dis-
tributed) random variables.

We assume that EGO’s sensor system provides a glare de-
tector, a bridge detector, and a vehicle detector tracking mul-
tiple vehicles. The result of each detector is an observed vari-
able within a Bayesian network (left side of Fig. 2). As the
environment and hence also the observation thereof evolves
over time, each variable is also annotated with a time in-
dex t0, t1 (represented as shaded duplicates of the nodes).
We assume the functional architecture to be given. Hence,
the Bayesian Network on the left side can be constructed
with known dependencies (illustrated as thin arrows). These
can contain safety mechanisms like the “Fused Vehicle De-
tection”, which employs detection of glare to improve raw
object detection by situationally reducing the importance of
camera-based detection. As these are only percepts of ob-
jects, corresponding real-world counterparts are modeled on
the right side. Within the dynamic Bayesian network, these
counterparts act as latent variables of which dependencies
and probability distributions are unknown to us. Labeled test

data, however, provide values for these variables on an in-
dividual data-point basis. Physical dynamical constraints, if
available, furthermore restrict their possible evolution over
time. Both types of information yield an overall constraint
system confining possible instantiations of the unknown dis-
tributions and thus permitting to assess worst-case (across
possible instantiations) residual risk of the resulting system.

Probabilistic constraints

Using access to ground truth data from manual labeling,
probabilistic constraints can be derived in terms of compo-
nent based performance (Eq. 1) using standard test-scores.
Within our example, the performance of vehicle detection
could specify a constraint on the conditional probability

P (v̂i | Glare ∧ vi ∧ Bridge) ∈ p̂± ε(δ) , (2)

where p̂ denotes the empirical performance, ε(δ) denotes the
accuracy of such an estimate depending on the confidence
level δ, and vi denotes vehicle vi’s actual presence whereas
v̂i represents that vi was detected. Analogously, fluctuations
of sensor readings can be described as probability distribu-
tions conditioned on environmental states. Although some
(in-)dependence connections might be known, the explicit
probability distribution might be unknown. Therefore, in-
stead of fully specifying a dynamic belief network over all
discrete and continuous variables, we only collect an incom-
plete set of constraints of the form of Eq. (2). This necessi-
tates an optimisation over the possible instantiations of such
underspecified distributions when calculating a safe bound
on the residual risk.

Dynamic constraints

In addition to such probabilistic constraints originating from
individual component tests, prior knowledge about the dy-
namics can be incorporated (blue box ’dynamic constraints’
in Fig. 2). The detected positions of vehicles v1 and v2 can
for example be constrained via kinematic constraints of the
vehicles. Such constraints can be represented as follows,
where �i(t) denotes the position of vehicle i at time t and
v, a are intervals containing minimal and maximal values
for velocity and acceleration:

�i(t+Δt) ∈
(
�i(t) + (Δtv +

1

2
a(Δt)2)

)
(3)

Additional ontological constraints can reflect prior knowl-
edge about the allowed relationship of detected objects.

As we have thus formalised a system involving variables
on vehicle level φ as well as corresponding variables in the
real world ψ, we can now relate systemic, real-world loss
(e.g., in terms of available injury risk scales) to vehicle-level
variables. As the vehicle variables include decision and ac-
tuator variables, such a loss function l(φ, ψ) evaluates the
real-world severity of detecting, deciding, and acting. Note
that both types of variables are collections of variables and in
particular include references to different temporal instances.

Risk assessment

As mentioned earlier, we are interested in the overall risk of
the designed function R as well as a situational risk Rs from
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Figure 2: Structure of the probabilistic constraint system generated from the functional architecture and the constraints obtained
via empirical evaluation as well as ontological and dynamic constraints. See text for more details.

which we can derive a robust low-risk manoeuvre in a given
situation. Mathematically, these quantities can be described
as the following expectations:

R = E(φ,ψ)[l(φ, ψ)], R
s = E(ψ|φ)[ls(φ, ψ)] (4)

Note that for the situational risk, we use the conditional dis-
tribution conditioned on observations obtained in the par-
ticular situation and a potentially different loss-function ls

(compared to the overall risk). More specifically, within the
overall risk for the designed function, we might, e.g., want
to use a binary loss function assigning l(φ, ψ) = 1 if the
situation was handled successfully and l(φ, ψ) = 0 else. For
the situational risk, we might want to use a quantitative as-
sessment of the outcome. In contrast to the common setting
of dynamic Bayesian Networks, the joint distribution pφ,ψ ,
however, is not completely given. Instead, only constraints
over such a distribution are known due to equations like (2).
More precisely, constraints as in (2) can be written as pro-
jections of the joint distribution using Bayes Rule:

P (v̂i | Glare ∧ vi ∧ Bridge) (5)

=
P (v̂i ∧ Glare ∧ vi ∧ Bridge)
P (Glare ∧ vi ∧ Bridge)

,

where each of the constraint variables either is a variable
of the vehicle domain or of the real world (see Fig. 2). As
the expression above omits some of the variables defined
in those domains, the corresponding expressions have to be
obtained by marginalising pφ,ψ . The question whether the
(overall or situational) residual risk meets a desired bound ϑ
can be formulated as a noisy optimisation problem

max
pφ,ψ∈P

E(φ,ψ)[l(φ, ψ)]
?≤ ϑ, max

pφ,ψ∈P
E(ψ|φ)[ls(φ, ψ)]

?≤ ϑ ,

(6)
where the different constraints restrict the possible distribu-
tions, in the above formulation denoted by the set P . If all

variables are discrete, constraints on the distribution can di-
rectly be encoded into constraints on the distribution-values
for different valuations of the vehicle or real-world vari-
ables. For continuous variables, the distribution has to be
parametrised accordingly. Both types of constraints, how-
ever, can be incorporated into possibly non-linear functions
gi acting on the parametrised version of the distribution and
the variables φ, ψ. For the empirical constraint of Eq. (2,5),
such functions can be formalised as follows:

Ci(P, φ, ψ) def.: gi(P, φ, ψ) ≤ ci (7)∫
p(φ, ψ)d((φ ∪ ψ) \ {v̂i, vi, Glare, Bridge})∫
p(φ, ψ)d((φ ∪ ψ) \ {vi, Glare, Bridge})︸ ︷︷ ︸

:=g0(P,φ,ψ)

≤ p̂+ ε(δ)︸ ︷︷ ︸
:=c0

Using specification techniques of stochastic satisfiability
modulo theory (Fränzle, Hermanns, and Teige 2008), the
problem (6) can alternatively be formulated as:

∃P :
∧
i Ci(P,φ,ψ)

R

φ,ψ∼P : l(φ, ψ)
?≤ ϑ (8)

Here, we collected all constraints over the distribution as
well as over the variables within the conjunction

∧
i Ci.

Exploiting importance sampling for Eq. 8 (Fränzle et al.
2015), such problem can be made amenable for analysis us-
ing available tools (Fränzle, Gao, and Gerwinn 2017). To
address scalability issues, one can also resort to statistical
model checking (Ellen, Gerwinn, and Fränzle 2014).

Verification and situational analysis

Calculating the maximal risk as formalised in the previous
section provides quantitative evidence to an overall safety
verification process on vehicle level. Depending on the num-
ber of constraints with confidence statements, one can cal-
culate an overall confidence level on the risk as well. Each
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confidence-based constraint holds with a certain confidence.
If these can be regarded as independent, the overall confi-
dence level is merely the product of the individual confi-
dence levels. In case one is not willing to assume indepen-
dence between the confidence-based constraints, the over-
all confidence level can be incorporated in a way similar to
probabilistic constraints like (2). Note that such constraints
also include constraints like c-approximate-independence as
used in (Shalev-Shwartz, Shammah, and Shashua 2017),
however we allow for even more pessimistic bounds when-
ever less information about the dependence is available.

The calculation of the maximal risk can also be performed
in a particular situation. Instead of marginalising variables
for the expected loss in (4), we can fix the valuation of ve-
hicular variables to the observed values. The maximal risk
then enables one to identify the most critical real-world sit-
uations and to choose a minimal risk manoeuvre. For our
example, this facilitates inferring whether it is indeed more
likely to falsely detect v2 at time t1 than having it not de-
tected at time t0. As due to the dynamic constraint, either
v2 has been missed at time t0 and correctly classified at t1
or the other way around, this restricts the joint distribution
to assign zero probability to the other possibilities. Together
with the empirical evidence constraints (e.g., marginal prob-
abilities observing glare or the probability of bridges occur-
ring), we can therefore calculate which of the two remaining
possibilities are more likely. As such, it can be interpreted
as the worst case interpretation of a Bayesian filter for dy-
namical systems which can be applied at each point in time.
However, as worst-case configurations have to be identified,
scalability of such an approach remains to be demonstrated
in practice, but is outside of the scope of this short-paper.

Discussion
We presented a framework designed for computing (a) the
current risk under given observations and (b) the overall risk
under the given constraints and marginal probabilities aris-
ing from empirical evaluations of different machine learning
components involved within the functional architecture.

Within our setting, such quantities are different from in-
ference tasks typically considered within Dynamic Bayesian
Networks. The central issue is that probability distributions
need not completely be known, but can be underspecified,
as illustrated by the occurrence of glare or bridges provide
constraints on the marginal. In fact, earlier approaches in
combining constraints with Bayesian Belief Networks were
frequently restricted to representing constraints as pseudo-
observations (Crowley, Boerlage, and Poole 2007) or to in-
terpreting the standard inference scheme as constraint prop-
agation (Pearl 1985). But both can also be combined to ren-
der the inference machinery more suited for such kind of
constrained network (Gogate and Dechter 2012).

Automatically learning the structure of Bayesian Net-
works has also been explored (Berg, Järvisalo, and Malone
2014). In such an approach, constraints about the parameters
(or structure) of the underlying graph can be considered. As
it fits the network parameters such that the network best ex-
plains a given dataset, that approach does not immediately
fit into our robust safety verification setting.

In our work, unknown or underspecified relations between
variables of the network are understood as spanning and
constraining a set of possible distributions. From a frequen-
tist point of view compatible with quantitative safety, we
would like to compute worst and best case scenarios under
all possible assignments across the viable probability dis-
tributions rather than missing information about the depen-
dency of different variables. This paper explains the prag-
matics and the underlying mathematical constructions; the
development of scalable tools automating such reasoning as
well as their benchmarking remain issues of future work.
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Abstract

General-purpose robots operating in a variety of environ-
ments, such as homes or hospitals, require a way to integrate
abstract knowledge that is generalizable across domains with
local, domain-specific observations. In this work, we exam-
ine different types and sources of data, with the goal of un-
derstanding how locally observed data and abstract knowl-
edge might be fused. We introduce the Situated Robot Knowl-
edge (SiRoK) framework that integrates probabilistic abstract
knowledge and semantic memory of the local environment.
In a series of robot and simulation experiments we examine
the tradeoffs in the reliability and generalization of both data
sources. Our robot experiments show that the variability of
object properties and locations in our knowledge base is in-
dicative of the time it takes to generalize a concept and its
validity in the real world. The results of our simulations back
that of our robot experiments, and give us insights into which
source of knowledge to use for 31 types of object classes that
exist in the real world.

Introduction

Robotics is undergoing a transition from the development of
specialized, single-task robots to general-purpose platforms
expected to operate in diverse and changing environments,
such as hospitals and homes. Operation in unconstrained hu-
man environments introduces many new challenges, one of
which is that of knowledge acquisition. On the one hand, the
diversity of target environments makes it impossible to pre-
code the robot with all the required knowledge (e.g., where
the towels are kept, that a particular bowl is made of metal),
requiring the robot to learn from observations on-site. On
the other, information often referred to as “common sense
knowledge”, can be transferred across domains (e.g., towels
are often found in bathrooms and closets, bowls are con-
tainers) (Speer and Havasi 2012). In this work, we examine
different types and sources of such data, to understand how

∗This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program under
Grant No. DGE-1650044. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Sci-
ence Foundation.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: High-level view of SiRok framework.

locally observed data and abstract knowledge can be fused
to enable a robot to most effectively reason about its world.

As a motivating example, consider a robot placed in a new
home and tasked with fetching a glass of water. One ap-
proach is for the robot to rely entirely on local observations,
and to exhaustively search the environment for a glass and
sink. A human visitor to the home, however, would instead
be likely to first find a kitchen, then begin to open cabinets
(and not drawers) in order to find the glass. This behavior
would be guided by semantic, domain-independent knowl-
edge gathered from prior experiences, and a similar capabil-
ity would enable robots to more effectively adapt to new en-
vironments. However, local knowledge must also be incor-
porated into this reasoning, allowing adaptation to domain-
specific patterns or the current state of the world, such as
when the glasses have already been set out on the table, or
in houses with unconventional item storage areas. In order
to support a robust deployment model, we must better un-
derstand the limits of both local and abstract data.

In this work, we consider two sources of knowledge: ab-
stract knowledge and local knowledge. We characterize ab-
stract knowledge as domain-independent information that
generalizes across many environments (e.g., food in typi-
cal homes can be found in the refrigerator in the kitchen).
Specifically, we use commonsense information from Con-
ceptNet (Speer and Havasi 2012) and WordNet (Miller
1995) to allow the robot to reason about novel objects and
environments. We characterize local knowledge as informa-
tion the robot has perceived in its current environment. This
includes information obtained from its sensors (e.g., cam-
era, laser, etc.), including object recognition, semantic lo-

The 2018 AAAI Spring Symposium Series

516



cations, and object properties. From these data sources we
generate two separate knowledge bases, the Abstract Knowl-
edge Base (AKB) and the Local Knowledge Base (LKB),
which the robot uses to reason about the world. Combined,
these components make up the Situated Robot Knowledge
(SiRoK) framework (Fig. 1).

Our work makes the following contributions. First, we in-
troduce a domain-independent framework for automatically
retrieving common-sense knowledge for a given environ-
ment. We use object labels, obtained from object recogni-
tion, to generate seed words, which are then used to query
existing semantic knowledge bases to construct a probabilis-
tic model representing object type, location, and property
data. Second, in a series of robot and simulation experiments
we examine in what situations the abstract and local knowl-
edge sources are most reliable for objects with both mutable
and immutable properties. Our results show that variabil-
ity is a key heuristic to take into account when evaluating
knowledge sources. In particular, as variability increases, we
should emphasize sources of general knowledge. For cases
with extreme levels of variability, a robot should rely on
direct observations or chance. Our simulations validate the
trends we see in our robot experiments, and extend our con-
clusions to 31 different classes of objects found in real-world
households.

Related Work
Numerous projects across the AI community have sought
to make use of commonsense and semantic knowledge.
Three large-scale commonsense knowledge networks used
across a wide range of applications are WordNet (Miller
1995), ConceptNet (Speer and Havasi 2012), and Research-
Cyc (Lenat 1995; Matuszek et al. 2006). WordNet consists
of a collection of synsets, which connect concepts hierarchi-
cally through the IsA relation. WordNet also distinguishes
between different senses of the same word and provides
glosses, or definitions, for each sense. While WordNet is
clean and hand-coded, it also lacks diversity in the types of
relations it contains. ConceptNet, on the other hand, contains
several dozen different relations, but it does not distinguish
between word senses and is largely crowdsourced, leading
to a large amount of noise. ResearchCyc uses an even larger
number of relations (currently around 17,000) to connect
concepts. For the purposes of this work, we choose to use
data from WordNet and ConceptNet to take advantage of
the complimentary benefits of each.

In other work, Zhu, et al. (Zhu, Fathi, and Fei-Fei 2014a)
perform affordance prediction on a set of images by using a
Markov Logic Network (MLN) (Richardson and Domingos
2006a) to represent affordance knowledge. This work also
does not deal with context and used hand-selected objects
and affordances in the network. In (Chen and Liu 2011),
contextual noise is addressed by disambiguating the con-
cepts in ConceptNet to enrich the WordNet senses with
more diverse knowledge for improved performance on word
sense disambiguation tasks. While disambiguating Concept-
Net helped provide context for each of its concepts, the re-
sulting knowledge base contained only abstract information.
In contrast to this approach, (Stoica and Hearst 2004) did

Figure 2: System architecture for the Situated Robot Knowl-
edge (SiRoK) framework. The pipeline starts with environ-
ment data that is used to populate the AKB and LKB

construct a situated knowledge hierarchy in a (nearly) auto-
mated way, however, the resulting model only included hy-
pernyms (the IsA relation).

Within robotics, the KnowRob (Tenorth and Beetz 2009)
and RoboBrain (Saxena et al. 2014) projects are most
closely related to our work. In KnowRob, the authors cre-
ate a knowledge network from a variety of encyclopedic
sources and represented the network using Prolog rules and
the Web Ontology Language. This network is then used to
repair robot task plans by filling in missing low-level de-
tails from high-level task descriptions. In RoboBrain, the au-
thors generate a multimodal knowledge network for robotics
using data collected automatically from the web. The re-
sulting network is abstract and does not account for the
domain-specific details relevant to the situational context of
the robot. The RoboEarth project focused on the creation
of a cloud repository of generalizable robot knowledge, in-
cluding object models and robot task descriptions, that could
be transferred across robot platforms and domains (Waibel
et al. 2011). While these works deal with both abstract and
situated knowledge, none of them investigate which knowl-
edge source to leverage when. Our efforts focus on under-
standing which knowledge source a robot should use given
some query (e.g. where is the plant) which may be part of a
higher-level task. We conclude that the variability of a given
piece of information impacts the reliability of obtaining it
from either local or abstract sources.

SiRoK System Architecture

The SiRoK framework is implemented as a system of in-
terconnected modules, which communicate using ROS. The
system has three main components (Fig. 2): AKB, LKB ,
and Data Source Selection, each of which contains a series
of subsystems that aggregate and process data. At a high-
level, the pipeline begins by performing object detection,
where objects in the environment are assigned an object
class labels (e.g., cups, bowls, etc.). These generated class
names become seed words that are used to extract informa-
tion from online commonsense networks to build an AKB.
These object class labels are also used during grounding,
where specific object information is stored into the LKB. In
Data Source Selection, the robot uses specific queries to ask

517



Figure 3: Classes and object data in the AKB and LKB

Figure 4: An example of abstract knowledge represented us-
ing a Bayesian Logic Network (BLN)

for information from AKB and LKB and fuses the results to
respond to the queries. In the remainder of this section, we
describe each subsystem in detail and the full system dia-
gram can be found in Fig. 2. The colors of each component
in Fig. 2 match the high-level view in Fig. 1.

Object Detection

For object detection, we used the open source real-time
object detection system YOLOv2 (Redmon et al. 2016).
YOLOv2 uses a convolutional neural network and computes
the location and classification of each object in an image in
a single pass. It does this by dividing the image into cells,
calculating an objectness score and then object classifica-
tion probabilities over the individual cells, it then using an-
chor boxes to predict the object bounding boxes. We tested
YOLOv2 on PASCAL VOC2012, achieving a mAP (mean
average precision) score of 73.4. For our robot experiments,
we trained YOLOv2 on the subset of COCO (Lin et al. 2014)
object classes which are specific to the home environment
(Fig. 3). Each time the system recognizes the object, the ob-
ject label, bounding box of the object, and raw rectangle seg-
ment of the object is sent to the LKB. The object labels are
also passed to the AKB.

Abstract Knowledge Base

We represent the robot’s AKB as a Bayesian Logic Network
(BLN) (Jain, Waldherr, and Beetz 2009), a directed statisti-
cal relational model in which the variables under consider-
ation are represented as first-order terms or predicates with
arguments. BLNs allow logical constraints, represented as
first-order logic rules, to be imposed on the network. Prior
work in computer vision has utilized Markov Logic Net-
works (Richardson and Domingos 2006b), a representation
that unifies Markov Random Fields and first-order logic, for
modeling object attributes and affordances (Zhu, Fathi, and
Fei-Fei 2014b). However, parameter learning in MLNs is an
ill-posed problem (Jain, Kirchlechner, and Beetz 2007) and
approximate inference is expensive even for simple queries.

In contrast, BLNs are easy to train, more efficient and have
scaled better to our application. Fig. 4 shows a small ex-
ample BLN, which, once constructed, can be used to per-
form inference using likelihood weighting (Fung and Chang
2013) to answer queries such as AtLocation(Objecti, x) or
HasProperty(Objecti, x).

To construct the BLN, we leverage information from two
online sources of semantic knowledge, WordNet (Miller
1995) and ConceptNet (Speer and Havasi 2012). Word-
Net is a low-noise hand-crafted collection of sets of cogni-
tive synonyms (synsets), each expressing a distinct concept
(e.g., spoon) and related to other concepts through hyper-
nym (the IsA relation, e.g., IsA(spoon, utensil)). Concept-
Net is an auto-generated commonsense knowledge bank; it
does not differentiate between word senses but groups all
within a single concept node related to others through mul-
tiple possible relations. For example, for the object mouse,
ConceptNet returns AtLocation(mouse,office) and HasProp-
erty(mouse, organic), highlighting the need to perform sense
disambiguation to correctly parse this data.

Given seed words obtained from object recognition labels,
we first perform sense disambiguation using the technique in
(Tsatsaronis, Varlamis, and Vazirgiannis 2008), by finding
the sense of each word that maximizes the overall similarity
between the seed words (leveraging the fact that the words
come from the same context). We then query WordNet and
ConceptNet for semantic data related to each disambiguated
word. Importantly, the seeds words not only provide a start-
ing point for data retrieval, but together act as context for the
robot’s specific environment. Currently, we retrieve data for
three relations, which we selected due to their usefulness in
robot task execution.
• IsA: determines the relationship between an object and its

hypernym (e.g., IsA(bowl, container)), allowing the robot
to reason over object categories.

• AtLocation: determines the relationship between an object
and locations in the world. (e.g., AtLocation(bowl, sink),
allowing the robot to query likely object locations.

• HasProperty: determines the relationship between an ob-
ject and properties such as materials, shape, and colors
(e.g., HasProperty(bowl, ceramic), HasProperty(bowl,
red), aiding in recognition and allowing the robot to rea-
son about possible object uses (e.g. metal objects should
not be placed in the microwave).
For each relation, we calculate a likelihood based on a

weighted combination of the relation score from Concept-
Net and the Explicit Semantic Analysis relatedness measure
(Gabrilovich and Markovitch 2007) between the two con-
cepts in the relation. This likelihood provides an initial es-
timate for the real-world probability of a given relationship
and enables us to generate training evidence for BLN based
on the distribution. Relations that cannot be sampled directly
are inferred logically using transitive prolog rules. For addi-
tional details, see (Garrison and Chernova 2016).

Local Knowledge Base

LKB Data Structure We represent the robot’s local envi-
ronment through a collection of object instances, forming a
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Figure 5: Topological map.

memory of encountered items, and their locations and prop-
erties. For o ∈ O, each object class out of the set of objects
known to the robot (listed in Fig. 3), we store i instances of
that object within the LKB, where an instance is defined as
a unique object.

The LKB is implemented using PyTables and HDF5; each
object class o is stored as a database, with a table gener-
ated for each object instance. For each instance, we currently
store the object label, previously seen locations (pose and
semantic label), image region corresponding to the bound-
ing box from object recognition, visual information (RGB-
D values), and all properties known about the instance (e.g,
color, material). The resulting representation provides a scal-
able memory system that allows for efficient retrieval of all
of its recent memories of instances.

Grounding In addition to using object recognition for ob-
ject class labels (e.g., bottle), the robot must distinguish dif-
ferent instances of the same class (e.g., red bottle vs yellow
bottle). The grounding component of SiRoK uses features
distinct to instances of an object class to distinguish among
multiple instances. This form of grounding, from here on
referred to as instance grounding, was implemented using
a K-Nearest Neighbors (KNN) classifier with a threshold
distance to accommodate new instances of a class. Our im-
plementation relies on color properties, extracted from the
bounding box region of the image using the GrabCut algo-
rithm (Rother, Kolmogorov, and Blake 2004) and uses KNN
to determine whether an object is a new instance. Ground-
ing enables the robot to perform color-based differentiation
of objects, which we leverage in our study. In future work,
we will expand instance grounding to incorporate spatial and
temporal information about objects, as well as a wider vari-
ety of features.

Semantic Location In order to effectively generalize lo-
cal information and relate it to abstract knowledge, we re-
quire a method for converting the robot’s world coordinates
to semantic location labels (e.g., kitchen counter). To pro-
vide a semantic location for an object, we utilize a hybrid
map (Buschka and Saffiotti 2004), which links a topological
map, consisting of a tree graph representing human domain
knowledge, with a metric map of spatial locations in the en-
vironment. Fig. 5 and Fig. 6 show the topological and metric
maps used in this work. The links between the topological
map and metric map are expressed directly in the topologi-
cal map nodes; association of each node with a volume in the
metric map. This map structure enables the robot to obtain
a semantic label for any 3D point that is hierarchical (e.g.,
object o is in a drawer in the kitchen in the apartment).

Property Extraction As discussed above, SiRoK enables
the robot to reason about a range of object properties, in-

Figure 6: Metric map with an overlay of the spatial volumes
associated with nodes in the topological map.

cluding color, weight, material and shape. Through local ob-
servation, the robot is able to obtain some properties (e.g.,
color), while other important object characteristics (e.g., ma-
terial) are very difficult to determine for existing platforms.
Some complementary information, however, can often be
obtained from the AKB, which obtains property information
through ConceptNet. For each object, we assign a set of ob-
ject properties commonly learned and used by robots (Her-
mans, Rehg, and Bobick 2011; Sun, Bo, and Fox 2013;
Sinapov et al. 2014). These include color, shape, material,
and weight. The individual values that each object can take
on (e.g. blue, heavy, metal, etc.) can be found in Fig. 3.

While color is obtained using a simple color classifier,
we hand-label the shape and weight of the objects. With
the current state of the art we assume that these properties
can be obtained easily with good accuracy via existing ma-
chine learning algorithms and the use of pre-trained classi-
fiers (Chu, Fitzgerald, and Thomaz 2016; Sun, Bo, and Fox
2013; Sinapov et al. 2014). Future work will include explo-
ration of the objects using the robot’s arm and visual infor-
mation from the RGB-D camera to learn the object proper-
ties. However, material still remains to be one of the harder
properties to be learned. In this work, we can leverage a hu-
man in the environment to extract the material properties of
the objects.

In its existing form, the BLN contains far too many prop-
erty edges to simply verify each one with the human. Thus
we present an algorithm, which takes the existing BLN gen-
erated from ConceptNet and WordNet, and actively selects
a subset of property relations to verify with the human. This
results in a pruned representation that is consistent with the
specific objects in the current environment.

We first modify the BLN to include inter-property edges.
For all properties in the BLN, we add an edge if a relation
exists between them in ConceptNet. We then generate three
tables. Tmaterial: all material properties present in our BLN
(i.e., holds a relation with Material in the ConceptNet). For
the next two tables, we use the association index in Concept-
Net, a measure between 0 to 1 of how related two words are.
TON
assoc: holds all the association indices between an ON and

every property belonging to that object (we ignore proper-
ties with index < 0.07).Tinterprop: Let PO be a set such that
each p ∈ PO is a property of O, this table holds the inter-
property association indices between any two properties in
PO.
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Next, we systematically pick the properties to query an
expert for verifications. For each object, we query the expert
about property, p ∈ PO with the highest association index
in TON

assoc. If it is verified true and exists in Tmaterial, then
all other material properties belonging to that object are as-
sumed to be false and are not queried. We can also assume
the predecessors of that property are true for ON (e.g., if
Aluminum is true, then Metal can be assumed true). For the
successors, we assume their hasProperty relations are true
(e.g., Metal true, then Opaque true), but need to query the
successors with an IsA (e.g., if Metal true, still need to ask
about Aluminum). If a node in this isA set is verified to be
true, the rest are assumed to be false.

Next, query with the a property with the minimum inter-
property association index with p, to ask the most different
question next. Repeat this process until all the properties are
verified as true/false. We construct an expert-verified BLN,
vBLN, with all verified true properties. For evaluation we
will look to compare this verified BLN with a ground truth
BLN with a dissimilarity index, Idissimilarity , defined as:

Uncommon edges between ground truth and vBLN
Total number of unique edges in ground truth and vBLN

Data Source Selection

SiRoK uses knowledge from the AKB and LKB to handle
object queries related either to (1) what the object is, (2)
where it is located, or (3) what properties it has. Within the
AKB, the BLN is queried for IsA, AtLocation, and HasProp-
erty information, and the results sorted by probability value.
The LKB answers AtLocation, and HasProperty queries by
using the stored outputs from semantic mapping and prop-
erty classification, returning a ranked list of the most fre-
quently encountered property. We note that, in general, loca-
tion and property information have different characteristics.
A specific object is likely to change location, possibly even
frequently, whereas most of the properties we consider, such
as color, are likely to change less often. Locations and prop-
erties also often generalize across instances (e.g., cups of the
same color or cups stored in the same cabinet), but this de-
pends on the variability of the object. In the next section, we
evaluate how our inference performs across these different
data types.

Robot Experiments

To evaluate the SiRoK system and examine the relative ap-
plicability of abstract knowledge and local knowledge, we
designed a series of experiments testing the robot’s ability
to predict object locations and properties. Our test environ-
ment resembles a simple apartment containing furniture and
different use areas, as seen in Fig. 6. For all experiments, we
use the robot platform, Prentice (Fig. 1). Prentice is an omni-
directional mobile robot and has a horizontally mounted li-
dar for navigation and a Microsoft Kinect2 RGB-D camera
mounted on a pan/tilt unit for visual sensing.1

1Note that we do not evaluate IsA queries on the robot due to
the highly abstract nature of the data. IsA results are reported in the
simulation section.

Building the Knowledge Bases

We populate an AKB by using the 31 possible class labels
shown in Fig, 3 to seed a BLN using ConceptNet and Word-
Net. As described in SiRoK System Architecture, these class
labels come from the COCO image dataset that are associ-
ated with kitchen and living rooms. We removed one label,
hot dog, due to WordNet disambiguating hot dog to sand-
wich. This is due to WordNet characterizing that hot dogs
are sandwiches, which is partially true (i.e., a hot dog is
a piece of meat between bread). Future work will address
how to take into account words that are part of the same hy-
pernym hierarchy. The constructed BLN contains 257 nodes
and 358 edges.

To gather data for the LKB, we used the following exper-
imental steps: (1) put object(s) in our testing environment,
(2) allow the robot to observe the environment and update
the LKB, (3) update the state of the object(s) in our environ-
ment, then repeat this process for the desired number of ob-
servations. After each observation, we evaluate the accuracy
for finding objects or naming object properties on a fixed test
set. To populate the semantic locations, we provide an expert
labeled semantic map that correlates to the described scene
in Fig. 6. We use a color classifier to label each object in the
test environment and the BLN for the object material. The
average classifier accuracy is 70% and average clarifications
needed for object property is 2.

If a human is available, SiRoK has the option to interac-
tively validate properties in the BLN. We performed 84 clar-
ifications to prune 50 edges in the vBLN from 195 property
edges using the human-verification algorithm mentioned in
Section III-C.4. While this is a large number of clarifica-
tions, during a deployment such queries could occur over a
length of time (multiple days) as the robot spends time learn-
ing about its environment. Moreover, our algorithm is cur-
rently limited by ConceptNet. ConceptNet lacks rich inter-
property knowledge (i.e. if an apple is sweet, one can as-
sume it is also juicy) and the notion of classes (i.e. sweet,
sour, spicy, tangy all belong to the same class of taste), the
number of queries is large. However, knowledge of material
class and good inter-property knowledge, it fared well for
bottle where only 3 queries were asked for 9 properties or
only 1 for 5 properties of cup. The final dissimilarity score of
the vBLN to ground truth object properties is 0.11 (6 edges
difference). This means that the BLN is only 6 edges (an
edge is between an object and a property) away from the
ground truth and managed to learn 50 out of the total 53
edges from the ground truth.

Experiments

We break down this section into two experiments: (1) find-
ing objects in the scene and (2) determine the properties of
objects. For both, we hypothesize that the role of variability
in object options is a primary factor in deciding when to use
abstract vs. locally learned knowledge. If an object moves
around more frequently, we should rely on reasoning about
where we might find the object as opposed to remembering
where was the last time or most frequently seen location. For
object properties, we expect to see a similar trend.
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Figure 7: Average accuracy (AKB vs. LKB) across 5000
permutations to predict the top 3 locations of potted plant
and bowl

Finding Objects For object location, we collect two sep-
arate sets of observations, one using a bowl and one using a
potted plant. The two objects can be seen in Fig 1. For each
object we collected 20 observations of the objects in vari-
ous locations in the kitchen and living room. We determined
the locations for each object using two different distributions
for each object, one with more movement and one with less
movement. The bowl was on the higher end of a variability
spectrum (table1: 20%, table4: 20%, counter: 12%, table2:
12%, table3: 12%, drawer1: 12%, drawer2: 12%), while the
potted plant object was on the lower end (table3: 50%, ta-
ble2: 25%, counter: 25%). Each time an object is detected by
the robot, the object’s semantic location is written to LKB.

To test and compare AKB and LKB, we randomly select
25% of the observations to leave out as the test set. This re-
sults in five observations in the test set and 15 in the train
set. We test the accuracy AKB and LKB incrementally by
introducing each observation separately. Specifically, we ask
AKB and LKB to predict the location of the 5 observations
in the test set after seeing one observations, two observa-
tions, and so on. AKB and LKB predict the locations by
providing a ranked list of possible locations as described in
Data Source Selection. We randomly select 5000 different
permutations of the observation order and report the average
accuracy and standard deviation to account for orderings ef-
fects. Note that the AKB is generated prior to seeing the ob-
servations as it represents general domain-free knowledge,
so the accuracy of the AKB does not change over observa-
tions.

The results of this test can be seen in Fig. 7 where the
robot turns the top three locations from its ranked list (sim-
ulating if the robot were allowed to look at three different
locations to find the object). We can see that for the potted
plant, the LKB reaches 80% accuracy by the fourth obser-
vation. However, for the bowl, the overall accuracy of the
LKB reaches only 65% for top three locations, which is only
slightly better than chance. When comparing AKB to LKB,
it is clear that in cases where there is low variability in the
current environment, learning about the object’s location is
superior to using general knowledge. However, for the bowl,
where locations are more varied, the AKB does a better job
of reasoning where in general might bowls be located. Fur-
thermore, for both cases, when there is little to no knowledge
of the scene, AKB still offers some insight to where the ob-
ject might be located as opposed to LKB. We observed the

Figure 8: The bottle outlined in long green dashes, solid blue
lines, and dotted red lines are plastic, metal, and glass re-
spectively. The bottles are colored from left-to-right as blue,
pink, green, blue, white, white, yellow, red, green, and green.

Figure 9: Average accuracy (AKB vs. LKB) across 5000
permutations for predicting the top property of 10 different
bottles for two different properties (color and material)

same trends when testing the top-one results, although with
lower overall performance rates.

Object Properties As described in Data Source Selection,
object properties are fixed to a specific instance. As a re-
sult, we test the robot’s ability to predict object properties
by using a fixed test set that is also the observation set. As
the robot observes its environment over time (similar to how
one gets acquainted to a new environment), all of the ob-
jects in the environment will be added to its observation set.
We select objects of the same class type (e.g., all bottles),
to determine if knowledge properties of specific objects can
provide insight on the general class of objects. Similar to
object locations, we hypothesize that the variability of pos-
sible values for a property affects when and how we use our
knowledge base. As a result, we select bottles with varying
levels of variance within its properties (i.e., color is highly
variable while materials is not). For this specific experiment,
we selected 10 bottles (Fig. 8). Specifically, they ranged in
color (green: 3, blue: 2, white: 2, yellow: 1, red: 1, pink:1)
and materials (plastic: 7, metal: 2, glass: 1) with color more
variable and material less.

The results of the test across the 10 bottles can be found
in Fig. 9 for both color and material. We limit the AKB and
LKB to just one guess as opposed to three for locations be-
cause for object properties, there is a higher threshold for
errors. While searching three different locations in a home
environment might take slightly longer, it is not unreason-
able or dangerous for the robot to do so. On the other hand,
predicting that an object is not metallic and putting it in
the microwave could have dire consequences. As expected,
the LKB performs poorly at predicting highly varied object
properties. This makes intuitive sense as knowing that one
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Figure 10: Accuracy of all class labels for location, color,
material, and type.

cup is blue does not guarantee the next is blue. For material,
the LKB performs well at predicting material as it captures
that most bottles in the environment are plastic.

However, it is when we look at the color, that we gain
interesting insight about object properties. We see that the
AKB follows a slightly different trend than we observed in
the object location experiment. We expected that with highly
varying properties that the AKB could provide more insight
than the LKB. However, if we look deeper at the results of
the AKB, we discover that for the class bottle, the AKB has
no prediction for color. We believe this points to an impor-
tant distinction between the variability of an object property
and the variability of an object location. When an object’s
property can take on almost any value (e.g., bottles can be
pretty much any color), general knowledge offers little to no
insight as to what property the object might have. Further-
more, this situation is also difficult for LKB to learn as the
best we can hope for is chance. This suggests that for cer-
tain object properties, the only approach to predicting object
properties that are highly variable is to remember the exact
properties of the instance or perform directly reasoning us-
ing lower level features of the object. For both location and
properties, we variability effects various accuracy levels of
the AKB and LKB. To fully understand the extent in which
this insight can be extended to a larger number of classes and
properties, we perform a simulated experiment that looks at
the variance accuracies across all described classes.

Simulated Evaluation

We exhaustively evaluate how different sources of informa-
tion impact the various queries listed in Abstract Knowledge
Base using a similar procedure and experimental setup for
each query to Building the Knowledge Bases. Specifically,
we populated a simulated world of object instances, and ran-
domly assigned attribute values (seen in Fig. 3) and locations
(seen in Fig. 6). Properties and locations were made class
specific to better capture the real-world (e.g., no couch in-
stances could be located in a drawer and televisions cannot
be made of paper). While the rules set in simulation may
not capture the rules of a specific real-world environment,

they do capture the relationship between class variability and
LKB accuracy and can be viewed as a unique layout of a
specific home.

Evaluation Metric and Results

To test each query type, we start with a set of simulated in-
stances. This set is taken as the true state of the world. Then
a set of world state observations are created by randomly
selecting locations and properties for each instance in the
world and repeating the process for the number of world
state observations. This set of world state observations were
used as actual data for the LKB to process and store. To
validate our hypothesis in Experiments, the evaluation was
done similarly to that of the robot experiment where we re-
port the top three locations and top one property. For the
last query, object types (IsA), was tested by comparing the
results of the returned values to three sets of human gener-
ated labels base on common sense for the home environment
(e.g., IsA(Apple, Fruit) is true whereas IsA(Bowl, Stadium)
is false).

In Experiments, we see a limited view of object locations
and classes. By doing the simulated evaluation, we can look
at if the trends seen in the robot experiment were reflected
in the 31 different class types. The results of this evaluation
are in Fig. 10. The table shows the accuracy of the AKB
and LKB for location, color, and material by class. They are
further broken down into accuracy values after seeing one
observation vs seeing all 15 observations. The table also in-
cludes the different IsA relations for each object class.

We can see that several of the trends observed in the robot
experiment hold true. For example, ovens, which are less
variable in location, have a higher initial AKB accuracy than
the LKB. The LKB learns the oven location perfectly after
15 observations. In general, color, which varies highly does
poorly for both ABK and LKB unless the object has a notion
of a color (e.g., carrot and broccoli). We see that the AKB
does well on the material property if the class has a typical
material it is made out of (e.g., books, sink, spoon). We test
this on an aggregate scale in the next section. For the IsA
queries, the average accuracy of the relations was 72%. Be-
tween the three sets of human labels, there was an 83.17%
average pairwise percent agreement.The accuracy values be-
tween all three users were within 2% of each other. We can
look at Fig. 10 to see that this accuracy can be reflected in
the labels produced. It correctly identifies useful types such
as apple is a food and bottle is a container. The few cases
where IsA does not perform well can be seen with bowl be-
ing related to stadium and glass to drug.

Role of Variability

The results show that taking into account variability of local
knowledge history will be essential for reasoning about new
situations. The general trend is that as variability increases,
a discount factor should be used to emphasize sources of
general knowledge that are resistant to such effects. Fig. 11
was generated by categorizing each simulation output seen
in Fig. 10 as either low (1-3 alternatives), medium (4-6 alter-
natives), or high (7+ alternatives) variability and averaging
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Figure 11: Relationship between LKB accuracy and vari-
ability.

all the results for each category. It shows that as variabil-
ity increases, the LKB accuracy drops. For extreme levels
of variability similar to in Object Properties, even a general
knowledge systems fails. In these situations, a robot should
rely on direct observations or chance.

Conclusions

In this work we introduce the SiRoK framework and sys-
tematically evaluate it through robot experiments and simu-
lation. We use SiRoK to better understand the trade offs be-
tween general knowledge bases that store symbols and con-
cepts and local knowledge bases that store perceptual data.
We find that variability is a key heuristic to take into ac-
count when evaluating knowledge. In future works, we hope
to find methods of fusing the disparate knowledge sources,
improving the quality of the BLN in our AKB, and utilizing
the IsA query.
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Abstract

In this paper, we introduce a framework in which computers
learn to enact complex temporal-spatial actions by observ-
ing humans, and outline our ongoing experiments in this do-
main. Our framework processes motion capture data of hu-
man subjects performing actions, and uses qualitative spa-
tial reasoning to learn multi-level representations for these
actions. Using reinforcement learning, these observed se-
quences are used to guide a simulated agent to perform novel
actions. To evaluate, we render the action being performed in
an embodied 3D simulation environment, which allows eval-
uators to judge whether the system has successfully learned
the novel concepts. This approach complements other plan-
ning approaches in robotics and demonstrates a method of
teaching a robotic or virtual agent to understand predicate-
level distinctions in novel concepts.

Motivation

The community surrounding “learning from (human) obser-
vation” (LfO) studies how computational and robotic agents
can learn to perform complex tasks by observing humans
(Young and Hawes 2015). Work in this area can be traced
back to reinforcement learning studies by (Smart and Kael-
bling 2002) or (Asada, Uchibe, and Hosoda 1999), which
closely resembles the way humans learn. Children, as early
as 14 months old, can imitate adults in a variety of tasks,
such as turning on and off a light-box, and can even interpret
the intentions behind actions and consider all constraints in-
volved (Gergely, Bekkering, and Király 2002).
Most robots developed in the previous decades have

shipped with pre-installed programs, limited to a set of pre-
defined functionalities. Learning approaches in the robotics
community seek to move toward smarter and more adaptable
robots, for the following reasons, among others:

• Consumer desire for mobile or household assistant robots
that can perform multiple tasks with a flexible apparatus,
such as multiple grasping arms (Bogue 2017). Robots
with behavioral robustness can learn from a wider range
of experiences by interacting with humans in a dynamic
environment (Hawes et al. 2017).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Advances in deep learning have afforded robotic agents a
high-level understanding of embedded semantics in multi-
ple modalities, including language, gesture, object recog-
nition, and navigation. This increases the circumstances
and modalities available for robotic learning.

Event recognition and classification have achieved re-
cent relevance in human communication with robotic agents
(Paul et al. 2017). Meanwhile, lexical computational seman-
tic approaches to events (e.g., Pustejovsky (1995), Puste-
jovsky and Moszkowicz (2011)) make it clear that event se-
mantics are compositional with their arguments.

We have previously presented an approach toward facil-
itating human communication with a computational agent,
using a rich model of events and their participants (Puste-
jovsky, Krishnaswamy, and Do 2017). Formally, we have
devised a semantic framework using Multimodal Semantic
Simulations (MSS), which can be used to encode events as
programs in a dynamic logic with an operational seman-
tics. Computationally, we have been looking at event rep-
resentation through sequential modeling, using data from 3-
dimensional video captures, to distinguish between different
event classes (Do and Pustejovsky 2017a). In this work, we
aim to bridge the gap between these two lines of research by
proposing a methodology to learn programmatic event rep-
resentations from linguistic and visual event representations.

Linguistic event representation in our framework is mod-
eled as a verbal subcategorization in a frame theory, a la
Framenet (Baker, Fillmore, and Lowe 1998), with thematic
role arguments. However, we also account for extra-verbal
factors in our event type distinction. For example, we con-
sider A moves B toward C and A moves B around C to be
different event types and we learn each event type as a sepa-
rate action.

Our visual event representation comprises visual features
extracted from tracked objects in captured videos or virtual
object positions saved from a simulation environment. Both
types of feature represent information visible to humans and
observable by a machine in an object state. Using these data
points and sequences, machines can observe humans per-
forming actions through processing captured and annotated
videos, while humans can observe machines performing ac-
tions through watching simulated scenes.

Programmatic event representation can be based on for-
mal event semantics or on features that can direct simulated
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or robotic agents to perform an action with an object of given
properties. From a human perspective, the distinction be-
tween learning to recognize and learning to perform an ac-
tion might be obvious. However from a machine’s perspec-
tive, these two tasks might require different learning meth-
ods. Our work aims to demonstrate that given an appropriate
framework, it is feasible to map between them, in a manner
similar to the way humans actually learn: by matching ac-
tions to observations.

In this paper, (1) we discuss related work in AI that fo-
cuses on the learning of action and object models, including
our own past studies; (2) we discuss several technologies and
machine learning methodologies that provide the foundation
for our experiments; (3) we discuss our ongoing experiment
to learn actions; (4) we discuss our evaluation scheme and
possible extensions to our framework.

Related Work
Work on action and object representation can generally be
divided into two types of approaches: bottom-up approaches
and top-down approaches.

Bottom-up approaches include both unsupervised and su-
pervised feature-based learning. Work such as (Duckworth
et al. 2016; Alomari et al. 2017) aims for unsupervised co-
learning of object and event representations in the same step,
and introduced the notion of a learned concept as an abstrac-
tion of feature spaces. In such a framework, “learnable” con-
cepts are any distinctions meaningful to a human, such as a
facial expression, color, object property, or action distinc-
tion, and these categories can then be assigned labels based
on their commonly-occurring features. Notable supervised
learning studies include (Koppula, Gupta, and Saxena 2013),
which jointly models the human activities and object affor-
dances, or attached behaviors which the object either facil-
itates by its geometry (which we term Gibsonian) (Gibson,
Reed, and Jones 1982), or for which it is intended to be used
(which we term “telic”) (Pustejovsky 1995). Such a model
could be used to distinguish longer activities by means of la-
beling sub-activities and object affordances: for example, la-
beling a “meal preparation” and its different subtasks based
on understanding the objects involved at each step.

The foundation of our embodied event simulation is the
modeling language known as VoxML (Visual Object Con-
cept Modeling Language) (Pustejovsky and Krishnaswamy
2016). We encode verbal programs into a dynamic logic for-
mat from which we can conduct programmatic planning of
complex events from atomic subevents. This is a top-down
approach in which verbs are encoded with their subevent
structures into programmatic “voxemes,” or visual instanti-
ations of lexemes which can then be visualized and enacted
by an agent in a virtual environment. Subevent programs
may themselves be linked to other voxemes, allowing for
condition satisfaction, as in Figure 1, where “touching” is
defined as the EC (externally connected) relation in RCC
(Region Connection Calculus (Randell et al. 1992)). This
is underspecified and may be further constrained by relative
orientations between the two objects involved: x and y.
We aim to unify the two broad types of approaches

outlined above using a form of apprenticeship learning,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

touching

LEX =

[
PRED = touching

]

TYPE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

CLASS = config
VALUE = EC

ARGS =

⎡
⎣ A1 = x:3D
A2 = y:3D

⎤
⎦

CONSTR = nil

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1: Sample voxeme: [[TOUCHING]]

wherein a learning model observes an expert demonstrating
the task that we want it to learn to perform. We propose a
model, cf. (Abbeel and Ng 2004), in which reinforcement
learning is used as a backbone for planning, while estimat-
ing a reward function as measuring the progression of the
event-actions to be learned.

Background

Simulators

VoxSim Our simulated environment is built in VoxSim
(Krishnaswamy and Pustejovsky 2016), a semantically-
informed visual event simulator built on top of the Unity
game engine (Goldstone 2009). VoxSim contains a 3D agent
capable of manipulating objects in the virtual world by cre-
ating parent-child relationships between the objects and its
joints to simulate grasping. Assuming the simulated agent’s
skeleton is isomorphic to the joint structure of a physical
robot, this then allows us to simulate events in the 3D world
that represent real-world events (such as moving the virtual
robot around a virtual table that has blocks on it in a config-
uration that is generated from the positioning of real blocks
on a real table). The embodied agent can perform a set of
simple actions:
• ENGAGE: grasp object near its end-effector.
• MOV E(x): move end-effector (hand) to 3D point x,
with parent limb motions calculated using inverse kine-
matics

• DISENGAGE: ungrasp current object, and retract the
agent to standing position.
The simulation environment is used to demonstrate the

agent’s understanding of learned behavior, by enacting new
behaviors over a set of virtual objects. Scenes generated by
VoxSim will be used to evaluate performance of the system,
as discussed later.

Simplified Simulator For the updating loops in our rein-
forcement learning algorithm, we want to simulate obser-
vational data similar to the real captured data faster than
real-time for effective computation. As a real-time, graph-
ics heavy simulator, VoxSim is not feasible for this portion
of the task. We are aware of a few other physical simula-
tion environments such as Gazebo1, but as we do not focus
on physical constraints in this study, so we implemented our
own simplified simulator in Python.

1http://gazebosim.org/

526



Figure 2: An event “Move A around B” projected into sim-
ulator. A is projected as a red square, B as a green square

Our set of learnable actions is limited to ones that can
be easily approximated in 2D space. 3D captured data is
transformed into simplified simulator space by projecting it
onto a 2D plane defined by the surface of the table used for
performing the captured interaction. Our 2D simulator has
the following features:

• Each object is represented as a polygon (or square), with
a transform object that stores its position, rotation, and
scale.

• The space is constrained so objects do not overlap.
• Speed can be specified so that object movement can be

recorded as a sequence of feature vectors interpolated
from frame to frame.

Qualitative Spatial Reasoning

Qualitative spatial reasoning (QSR), a sub-field of quali-
tative reasoning, is considered to be formally akin to the
way humans understand geometry and space, due to the
cognitive advantages of conceptual neighborhood relations
and its ability to draw coarse inferences under uncertanity
(Freksa 1992). It is also considered a promising framework
in robotic planning (Cohn and Renz 2001). QSR allows
formalization of many qualitative concepts, such as near,
toward, in, around, and facilitates learning distinctions be-
tween them (Do and Pustejovsky 2017b). QSR has many
methods of accounting for relative vs. absolute relations,
such as allowing near to be thresholded relative to an exist-
ing reference point (Renz and Nebel 2007), which reinforces
the intuition that predicates such as near are inherently rel-
ative (Peters 2007). The use of qualitative predicates ensure
that scenes which are semantically close have very similar
feature descriptions. We use the following QSR types for
feature extraction.

• CARDINAL DIRECTION measures relations between two
objects as compass directions (north, northeast, etc.)

• MOVING or STATIC measures whether a point is moving
or not.

• QUALITATIVE DISTANCE CALCULUS discretizes the dis-
tance between two moving points, following (Yang and
Webb 2009).

• QUALITATIVE TRAJECTORY CALCULUS is a representa-
tion of motions between two objects by considering them
as two moving point objects (MPOs).

Figure 3: ECAT GUI showing performer interacting with
recognized and annotated objects.

Figure 4: LSTM network producing event progress function

Event Annotation Framework

We use an event capture and annotation tool developed in
our lab, ECAT (Do, Krishnaswamy, and Pustejovsky 2016),
which employsMicrosoft Kinect� to capture performers in-
teracting with objects in a blocks world environment. Ob-
jects are tracked using markers fixed to their sides. They are
then projected into three dimensional space using Depth of
Field (DoF). Performers are also tracked using the Kinect�
API, which provides three dimensional inputs of their joint
points (e.g., wrist, palm, shoulder).

Learning Framework

Sequential Learning In this study, we consider a ver-
sion of Long-short term memory (LSTM) (Hochreiter and
Schmidhuber 1997) that processes sequential inputs to a se-
quence of output signals. LSTM has found utility in a range
of problems involving sequential learning, such as speech
and gesture recognition. Inputs are the feature vectors taken
from action captures or from the simplified simulator and
output is a function that corresponds to the progress of an
event. In particular, we create a function that takes a se-
quence S of feature vectors, current frame i and action e:
f(S, i, e) = 0 ≤ qi ≤ 1
The training set of sequential captured data is passed

through an LSTM network, which is fitted to predict a linear
progressing function. At the start or outside of an event span,
the network produces 0, whereas at the end, it produces 1.

Reinforcement Learning The objective of the embod-
ied agent is to generate a sequence of actions to attain a
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maximum reward, whereas our reward corresponds to how
closely the produced object movement resembles movement
of objects in the training data. Visual (tracked) information
is used to evaluate performance of the system.

Currently, the action space is continuous. Therefore, plan-
ning is carried out by selecting the action at step k (uk)
based on the current state of the system (Xk ∈ Rn). A
stochastic planning step is parameterized by policy parame-
ters θ : uk ∼ πθ(uk|xk).

This type of parameterized reinforcement learning poli-
cies is best solved by using policy gradients (Gullapalli
1990; Peters and Schaal 2008). Here, we use the REIN-
FORCE algorithm (Williams 1992), for its effectiveness in
policy gradient learning.

We consider two versions of REINFORCE, which carry
out planning in continuous and discrete search spaces, re-
spectively. For continuous space, we propose using a Gaus-
sian distribution policy πθ(u|x) = Gaussian(μ, σ). For
simplicity, the dimensions of μ and σ are the same as the de-
grees of freedom in our simplified simulator (2 dimensions
for position and 1 dimension for rotation). An artificial neu-
ral network (ANN) will be used to produce values μ and σ.
The set of weights in our ANN is the parameter θ from the
REINFORCE algorithm, learned with gradient descent.

For discrete space, we again use a qualitative reasoning
method. Specifically, the searching space for the transform
of the target location could be separated into two spaces, for
(X,Y ) coordinates and rotation r. The searching space for
(X,Y ) could be discretized according to cardinal direction
and quantized distance.

A searching method employing simple random search
with back-up is used as baseline to evaluate performance
of the progress learner. We will present some preliminary
results from this searching method.

Experiments

Here we describe our experimental setup and evaluation
plans.

Experiment

We aim to use the learning framework outlined above for
teaching an agent to perform a set of actions where it in-
teracts directly with a single object while the other objects
stay relatively static and the interaction takes place over a
continuous span.

1. An agent moves {object A} closer to {object B}
2. An agent moves {object A} away from {object B}
3. An agent moves {object A} past {object B}
4. An agent moves {object A} next to {object B}
5. An agent moves {object A} around {object B}

This set of actions differ only in their prepositional ad-
juncts, which describe different motion trajectories. Thus
for this experiment, the learning problem is reduced to one
of motion paths.

These actions are, however, generally classified into dif-
ferent event types. Using the treatment from (Pustejovsky

Figure 5: Visualizer implemented in Unity

1991), an action such as “moves {object A} next to {object
B}” is an achievement, which means it has a logical culmi-
nation or duration. Other actions do not have a defined end-
ing, though for “moves {object A} closer to {object B},”
this action is ended at the point when “{object A} is next
to {object B}.” From a cognitive point of view, recognition
of these action types, except possibly for move next to, re-
quires consideration of the trajectory as well as the start and
ending points of the objects involved. For example, closer to
conceptually involves change of distance between the start
and the ending position of the moving object relative to the
static object, but a complex motion path could lead to mis-
interpretation of the action. Closer to, therefore, strongly
indicates a trajectory of the moving object toward the static
object.

By grouping the learning of different event types together,
we aim to examine the capability of a single learning frame-
work that to learn multiple event types. The reason is rather
obvious: we, as humans, can learn all of these actions with-
out prior knowledge of different action types.

For each action type, we are capturing 40 sessions of two
different performers. Block positions are randomized at the
start. We mark the beginning and end of the captured action
and give it a textual description.

We generate frame-by-frame feature vectors by employ-
ing the set of aforementioned QSR features: cardinal direc-
tion and qualitative distance between objects’ positions and
frame-to-frame difference; qualitative trajectory for each
object and frame-to-frame difference. These features are
used only for the sequential model to predict event progress,
whereas we use objects’ parameters (positions and rotations)
across consecutive frames as state of the system Xk.

Evaluation

Human evaluation will be carried out on action demonstra-
tions generated by both the 2D simulator and our lab’s 3D vi-
sualizer, VoxSim (Figure 5). In VoxSim, we create a testbed
scene with blocks on a table, similar to the setup used in
video captures. For each randomized configuration of ob-
jects (block positions and rotations), we command the vir-
tual agent to perform one of the actions, and the scene is
recorded for evaluators to judge its performance.

Our human-driven evaluation method aims to help answer
the following questions:

1. Does the virtual agent learn the concept in question? Re-
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Figure 6: A correct demonstration of “Move red block
around green block.”

Figure 7: A wrong demonstration of “Move red block
around green block.” The value beneath each frame is value
predicted by the progress learner.

flected by average score given to a demonstration when
annotators know the action label.

2. Can the virtual agent make distinctions between learned
actions? Reflected by confusion matrix when annotators
have to label the action performed in a scene.

3. Will evaluation scores on the 2D simulator significantly
differ from those on the 3D visualizer?

4. Can we use the feedback from human evaluation to im-
prove the learned model? Generated demonstrations with
feedback scores complement real, captured data, and in
some sense are better than learning by demonstration, in
that they provide a rigorous way to include negative sam-
ples.

Evaluations of this type using VoxSim-generated scenes
have already been conducted in (Krishnaswamy 2017; Kr-
ishnaswamy and Pustejovsky 2017), using Amazon Me-
chanical Turk to crowdsource judgments. Human judgments
of a scene are given as “acceptable” or “unacceptable” rela-
tive to the event’s linguistic description.

Preliminary results

Preliminary runs of the system with brute-force searching
show that the progress learner can help to generate correct
demonstrations (Fig. 6), but sometimes produces deviations
(Fig. 7), probably because of the lack of negative training
samples. We hope that incorporating feedback from evalua-
tors will improve the overall performance of the learner.

We also provide a quantitative breakdown of a small-scale
human evaluation in Table 1. Two annotators (college stu-
dents) are asked to give scores from 0 to 10 and are also
asked to give comments on any video they graded between
3 and 7 (higher scores are considered better). Evaluator
Disparity is the average of the absolute values of the dif-
ferences between scores given by two annotators over the
demonstrations of a particular action.

Action Type Average Score Evaluator Disparity
Slide Closer 5.4 1.57
Slide Away 6.48 2.37
Slide Next To 5.55 1.7
Slide Past 6.38 1.9
Slide Around 2.75 1.03

Table 1: Evaluation

Evaluator comments provide some insight into bad
demonstrations. Typical comments on Slide Next To include
“Need to be even closer”, while on Slide Closer To a typical
comment is “The blocks touched.” That suggests some con-
fusion between these two actions, which requires a method
to help distinguish them. Three reasons are given by eval-
uators for low scores on Slide Around demonstrations: the
movement being not smooth, one or more additional steps
needed for completion, and many cases where the algorithm
does not generate the proper trajectory.

Code, experimental and evaluation results can be found
on GitHub2. Complete experimental results will be forth-
coming at that address.

Conclusion

Two different lines of research may be extended from this
framework. One involves a learning mechanism for more
complex actions, such as “make a row from given objects,”
and one involves learning the “manner of motion” of actions.

Learning complex actions from simpler actions requires
an additional semantic framework for objects and actions.
For example, to learn “make a row from given objects” given
observations of 2-unit and 3-unit rows, the learner needs to
be equipped with the concept of recursion, the concept of
a composite object made from elementary objects (e.g. the
size and shape of the composite object), and other abstract
concepts, such as object axis and extension of a structure
along said axis.

Learning the manner aspect of actions requires a finer-
grained treatment of object affordances. For example, for
the learner to distinguish “rolling a bottle” and “sliding a
bottle,” we need to equip it with a reasoning mechanism to
determine how an object’s pose and position dictate its af-
fordances. VoxML, the underlying platform to the VoxSim
system, supports modeling these types of affordance distinc-
tions, so reference to the VoxML semantics of objects and
events can provide the reasoner with the mechanism for dis-
tinguishing these behavior types, as illustrated by (Krish-
naswamy and Pustejovsky 2016).
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Abstract

Robots working with humans in real environments need to
plan in a large state–action space given a natural language
command. Such a problem poses multiple challenges with
respect to the size of the state–action space to plan over, the
different modalities that natural language can provide to spec-
ify the goal condition, and the difficulty of learning a model
of such an environment to plan over. In this thesis we would
look at using hierarchical methods to learn and plan in these
large state–action spaces. Further, we would look the using
natural language to guide the construction and learning of hi-
erarchies and reward functions.

Introduction
In this work we consider the problem of robots working
with humans in real world environments, and try to postu-
late some solutions that are feasible to solve such problems
efficiently. There are many challenges that robot interact-
ing with humans, we specify a few that we try to address in
this work. The first challenge is to plan under uncertainty in
large state–action spaces, which are continuous. The prob-
lem is also exacerbated as the number of manipulable ob-
jects in the environment increase, as there is a combinato-
rial explosion in the state–action space with each object the
agent can manipulate. In this thesis we will explore hierar-
chical methods to solve such tasks.

The second challenge is to follow a natural language com-
mand to its goal specification. Natural language allows mul-
tiple modalities to present commands. Commands can be
specified at different orders of granularity, coarse or fine, al-
lowing a range to specify commands like “get to the library”
to “take a left turn”. Further, commands can be specified
with ends or means of the task as the goal. For example,
an instruction to “go to the red room” is very different from
“go to the red room through the long corridor.” In this thesis
we will look at methods that ground natural language com-
mands to reward functions hierarchies or plan directly, de-
pending on the modality demanded by the natural language
command.

The third challenge involves learning to solve such tasks
efficiently. This involves learning hierarchies and spatio–
temporal abstractions that construct the hierarchies. We are

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

interested in looking at connections between attribute learn-
ing and option learning to construct these hierarchies. At-
tribute learning previously has been done using trajectories
or natural language. We want to combine these ideas to learn
hierarchies, which are efficient to plan over.

There are other challenges in robotics like partial observ-
ability, dialog, vision for robotics, task generalization, etc.
which are not the focus of this thesis. In the next sections
we would set up the first three challenges in detail along
with our proposed solutions.

The Planning problem

When carrying out tasks in unstructured, multifaceted en-
vironments such as factory floors or kitchens, the result-
ing planning problems are extremely challenging due to the
large state and action spaces (Bollini et al. 2012; Knepper
et al. 2013). Typical planning methods require the agent to
explore the state–action space at its lowest level, resulting in
a search for long sequences of actions in a combinatorially
large state space. For example, cleaning a room requires ar-
ranging objects in their respective places. A naive approach
for arranging object might have to search over all possible
states by placing all objects in all possible locations, result-
ing in an intractable inference problem with increasing ob-
jects.

One promising approach is to decompose planning prob-
lems in such domains into a network of independent sub-
goals. This approach is appealing because the decision-
making problem for each subgoal is typically much simpler
than the original problem. There are two ways in which the
decision problem can be simplified. First, instead of select-
ing between actions, the agent can select between subgoals
that are recursively solved, decreasing the search depth. Sec-
ond, the state representation of the world can be compressed
to include only information that is relevant to the current de-
cision problem. Importantly, planning algorithms for each
subproblem can be custom-tailored, allowing each goal to
be solved as efficiently as possible.

We proposed Abstract Markov Decision Process (AMDP)
hierarchies as a method for reasoning about a network of
subgoals (Gopalan et al. 2017 in press), we describe the
formalism briefly here. AMDPs offer a model-based hier-
archical representation that encapsulates knowledge about
abstract tasks at each level of the hierarchy, enabling
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(a) Taxi
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(b) Taxi AMDP hierarchy

Figure 1: (a) The Taxi problem, where the taxi needs to drop
the passenger to their goal; (b) the Taxi AMDP hierarchy,
nodes indicate subgoals which are solved using an AMDP
or a primitive action. The edges are actions belonging to the
parent AMDP. Shaded nodes indicate which subgoals are ex-
panded by AMDPs in a given state. In contrast, bottom-up
approaches like MAXQ (Dietterich 2000) expand all nodes
in the figure. These savings result in significant total plan-
ning computation gains: AMDP planning requires only 3%
of the backups that MAXQ requires for the Taxi problem.

much faster, more flexible top–down planning than previ-
ous bottom–up methods like MAXQ (Dietterich 2000) or
Options (Sutton, Precup, and Singh 1999). An AMDP is an
MDP whose states are abstract representations of the states
of an underlying environment (the ground MDP). The ac-
tions of the AMDP are either primitive actions from the en-
vironment MDP or subgoals to be solved. An AMDP hierar-
chy is an acyclic graph in which each node is a primitive ac-
tion or an AMDP that solves a subgoal defined by its parent.
The main advantage of such a hierarchy is that only subgoals
that help achieve the main task need to be planned for; cru-
cially, plans for irrelevant subgoals are never computed. An-
other desirable property of AMDPs is that agents can plan in
stochastic environments, since each subgoal’s decision prob-
lem is represented by an MDP. Moreover, each subgoal can
be independently solved by any off-the-shelf MDP planner
best suited for solving that subgoal.

For example, consider the Taxi problem (Dietterich 2000)
shown in Figure 1a and its AMDP hierarchy in Figure 1b.
The objective of the task is to deliver the passenger to their
goal location out of four locations on the map. The subgoal
of Get Passenger, which picks up the passenger from a
source location, is represented by an MDP, with lower-level
navigation subgoals, Nav(R), and a passenger-pickup sub-
goal, Pickup. The state space to solve the Get Passenger
subgoal need not include certain aspects of the environment
such as the Cartesian coordinates of the taxi and passenger.
To solve this small MDP when picking up a passenger at the
Red location, it is unnecessary to solve for the subpolicy to
navigate to the Blue location. Our hierarchy enables a deci-
sion about which subgoal to solve without needing to solve
the entire environment MDP.

In this top-down methodology, planning is performed by
first computing a policy for the root AMDP for the current
projected environment state, and then recursively comput-
ing the policy for the subgoals the root policy selects. In
contrast a bottom up planner like MAXQ or options based

based planning would compute value functions over the hi-
erarchy by processing the state–action space at the lowest
level and backing up values to the abstract subtask nodes.
This bottom-up process requires full expansion of the state–
action space, resulting in large amounts of computation.

Moreover, since the tasks are abstractly defined (for ex-
ample, “take passenger to blue location”), changing the task
description from the “blue” to the “red” location is straight-
forward, and users do not have to directly manipulate the
reward functions at each level of the hierarchy. This abstrac-
tion is useful in robotics, as human users can simply change
the top-level task description and the required behavior will
be achieved by the hierarchy.

Formally, we define an AMDP as a six-tuple (S̃ , Ã, T̃ ,
R̃, Ẽ , F ). These are the usual MDP components, with the
addition of F : S → S̃ , a state projection function that
maps states from the environment MDP into the AMDP state
space S̃ . Additionally, the actions (Ã) of the AMDP are ei-
ther primitive actions of the environment MDP, or are asso-
ciated with subgoals to solve in the environment MDP. The
transition function of the AMDP (T̃ ) must capture the ex-
pected changes in the AMDP state space upon completion
of these subgoals. With these action and state semantics, an
AMDP, in effect, defines a decision problem over subgoals
for the environment MDP.

Naturally, each subgoal for a task must be solved. How-
ever, even a single subgoal might be challenging to solve in
the environment MDP. Therefore, we introduce the concept
of an AMDP hierarchy H = (V,E), which is a directed
acyclic graph (DAG) with labeled edges. The vertices of the
hierarchy V consist of a set of AMDPsM and the set of the
primitive actions A of the environment MDP. The edges in
the hierarchy link multiple AMDPs together, with the edge
label associating the action of an AMDP with either a prim-
itive environment action or a subgoal that is formulated as
an AMDP itself. Consequently, an AMDP hierarchy recur-
sively breaks down a problem into a series of small subgoals.

We now describe planning with a hierarchyH of AMDPs.
The critical property of our planning approach is to make de-
cisions online in a top-down fashion by exploiting the tran-
sition and reward function defined for each AMDP. In this
top-down methodology, planning is performed by first com-
puting a policy for the root AMDP for the current projected
environment state, and then recursively computing the pol-
icy for the subgoals the root policy selects. Consequently,
the agent never has to determine how to solve subgoals that
are not useful subgoals to satisfy, resulting in significant
performance gains compared to bottom-up solution meth-
ods. This top-down approach does require that the transition
model and reward function for each AMDP are available.

If each AMDP’s transition dynamics accurately mod-
els the subgoal outcomes, then an optimal solution for
each AMDP produces a recursively optimal solution for the
whole problem; if the transition dynamics are not accurate,
then the error associated with the overall solution can still
be bounded as shown in our previous work (Gopalan et al.
2017 in press). Further, as each sub-goal has a local model,
we can ground any sub-goal in the DAG depending on the
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Algorithm 1 Online Hierarchical AMDP Planning

function SOLVE(H)
GROUND(H,ROOT(H))

function GROUND(H, i)
if i is primitive then � recursive base case

EXECUTE(i)
else

si ← Fi(s) � project the environment state s
π ← PLAN(si, i)
while si /∈ Ei do � execute until local termination

a← π(si)
j ← LINK(H, i, a) � a links to node j
GROUND(H, j)
si ← Fi(s)

task specification as shown in the next section.
Pseudocode for online hierarchical AMDP planning is

shown in Algorithm 1. Planning begins by calling the recur-
sive ground function from the root ofH . If node i passed to
the ground function is a primitive action in the environment
MDP, then it is executed in the environment. Otherwise, the
node is an AMDP that requires solving. Before solving it,
the current environment state s is first projected into AMDP
i’s state space with AMDP i’s projection function Fi. Next,
any off-the-shelf MDP planning algorithm associated with
AMDP i is used to compute a policy. The policy is then
followed until a terminal state of the AMDP is reached. Fol-
lowing actions selected by the policy for AMDP i involves
finding the node the actions links to in hierarchyH , and then
calling the ground function on that node. Note that after the
ground function returns, at least one primitive action in the
environment should have been executed. Therefore, after
ground is called, the current state for the AMDP is updated
by projecting the current state of the environment with Fi.
Planning with AMDPs shows significant improvements in

planning times when compared with traditional bottom-up
planners or flat planners when tested across different do-
mains as shows in the results of (Gopalan et al. 2017 in
press). We also showed a real time planning application
for task and motion planning in robotics. In this demo a
Turtlebot moved a block to from one room to the goal room
in presence of environmental disturbances as shown in our
video1. This is a hard planning problem with a continu-
ous state–action space, and stochasticity in the environment.
The agent shows reactive control to retrieve the block in the
video as soon as it is snatched, to move the block to the goal
room. For more details please refer (Gopalan et al. 2017 in
press).

Hence AMDPs show significant improvements in plan-
ning times across multiple domains, even with continuous
state–action spaces. Now that we have a tool to plan in large
domains, we look next at natural language as an input and
the different modalities of inputs, some of which would find
the use of AMDP hierarchies useful.

1https://youtu.be/Bp3VEO66WSg

Goal specification with Natural Language

Natural language provides an easy interface for an untrained
public to work with robots. Such robots that understand
natural language commands must at the very least under-
stand goal based commands that ask the robot to achieve
a certain goal configuration. Abstraction is important for
achieving such goal conditions because it is much harder
to map natural language to a sequence of robot control
signals. Instead existing approaches map natural language
commands to a formal representation at some fixed level of
abstraction (Chen and Mooney 2011; Matuszek et al. 2012b;
Tellex et al. 2011). While effective at directing robots to
complete predefined tasks, mapping to fixed sequences of
robot actions is unreliable when faced with a changing or
stochastic environment. Accordingly, (MacGlashan et al.
2015) decouple the problem and use a statistical language
model to map between language and robot goals, expressed
as reward functions in a Markov Decision Process (MDP).
Then, an arbitrary planner solves the MDP, resolving any
environment-specific challenges. As a result, the learned
language model can transfer to other robots with different
action sets so long as there is consistency in the task rep-
resentation (i.e., reward functions). However natural lan-
guage problem specification has different different kinds of
requirements: granularity, means and ends of task solving,
and temporal specification of goals.

First is the aspect of granularity. For example, a brief
transcript from an expert human forklift operator instructing
a human trainee has very abstract commands such as “Grab a
pallet,” mid-level commands such as “Make sure your forks
are centered,” and very fine-grained commands such as “Tilt
back a little bit” all within thirty seconds of dialog. Humans
use these varied granularities to specify and reason about a
large variety of tasks with a wide range of difficulties. Fur-
thermore, these abstractions in language map to subgoals
that are useful when interpreting and executing a task. More-
over, MDPs for complex, real-world environments face an
inherent tradeoff between including low-level task represen-
tations and increasing the time needed to plan in the pres-
ence of both low- and high-level reward functions (Gopalan
et al. 2017 in press).

To address this problems, we developed an approach for
mapping natural language commands of varying complex-
ities to reward functions at different levels of abstraction
within a hierarchical planning framework. This approach
enables the system to quickly and accurately interpret both
abstract and fine-grained commands. Our system uses a
deep neural network language model that learns how to map
natural language commands to the appropriate level of an
AMDP planning hierarchy. By coupling abstraction level in-
ference with the overall grounding problem, we fully exploit
the subsequent AMDP hierarchy to efficiently execute the
grounded tasks. To our knowledge, we are the first to con-
tribute a system for grounding language at multiple levels of
abstraction, as well as the first to contribute a deep learning
system for improved robotic language understanding. The
results show faster average planning times at all levels of the
hierarchy when compared to a base level planner. A demo
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of the system can be seen here2. The system can accept low
level commands like “go north” and high level commands
like “take the block to the red room.”

Next we would briefly describe other natural language
grounding problems that interest us. First is problem of the
means and ends of task solving, where a user might spec-
ify how to solve a task. For example the trajectory for “go
to red room through the blue room” is very different from
the trajectory for “go to the red room.” This problem can be
solved by a language model that recognizes when the means
of solving a task are more important and would then plan
for the task with different sets of planners. Second is the
problem of temporal specification of rewards, where a com-
mand might be “go to the red room and then go to the blue
room.” Here, we can parse the language with Linear Tem-
poral Logic (LTL) and create a non-Markovian reward func-
tion, where the reward functions switch as a subtask is com-
plete. This formulation would be important to solve tem-
porally extended tasks with multiple subgoal specifications
given by the human user. Abstraction would be important in
these LTL specification as solving these behavioral problems
as the lowest level of abstraction might be computationally
intractable. Next we look at how we might learn these ab-
stractions.

Learning AMDP Hierarchies

The hierarchies that we looked at until now were hand de-
signed, however an agent has to be capable of creating these
hierarchical abstractions on its own in the real world. We
postulate that natural language provides some clues about
the levels of abstraction that a human agent might care about
when working with such robots. We have two goals in this
section; firstly we need to learn the local models for AMDP
hierarchies; secondly a more important goal is to learn an
AMDP hierarchy with language and trajectories.

To solve the first part we can use R-max (Brafman and
Tennenholtz 2002) on every local model of an AMDP hier-
archy. This approach will learn the level 1 models by col-
lecting samples from the environment, but models at every
higher level can be learned exactly by sampling from the
models learned at level 1. This method would be sample
efficient and would enlighten the trade-offs of having a pre-
cise, expensive to learn hierarchical model versus a cheap
erroneous hierarchical model.

The second and more important goal is to learn an AMDP
hierarchy. Konidaris 2016 uses options or temporally ex-
tended actions to learn symbols from initiation and termi-
nation sets, to create state abstractions and a higher level in
the hierarchy. We believe that an important method to learn
symbols can be via natural language. Matuszek et al. 2012a
learned attributes of objects present in a state to model lan-
guage and perception together. Borrowing ideas of attribute
learning from existing literature, we can create methods to
learn symbols and associated abstract states directly from
demonstrations, and plan for them using AMDP hierarchies.
A simpler idea to test attribute learning might be to learn

2https://youtu.be/9bU2oE5RtvU

object parameterized options, akin to parametrized skills,
where we learn object attributes with natural language.

This learning method would satisfy most of the goals with
respect to an agent in the real world that learns from natural
language and example trajectories; plans in real time given a
natural language command at varying degrees of granularity
and temporal specification.

Conclusion

In this work we look at the problems of understanding nat-
ural language groundings, learning efficient hierarchies and
planning efficiently to have a robot perform tasks real time
in stochastic and large state–action spaces. Our initial re-
sults show that the planning problem can be made easier
with AMDP hierarchies. We have made some inroads in the
natural language grounding problems, where we can specify
problems at different levels of granularity to an agent. How-
ever, we still have to make large amounts of progress in the
problem of learning of a hierarchy. We believe our meth-
ods would lead to faster learning of hierarchies and shorter
planning times when compared to traditional methods.
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Abstract

We present a new approach to learning for planning, where
knowledge acquired while solving a given set of planning
problems is used to plan faster in related, but new problem
instances. We show that a deep neural network can be used to
learn and represent a generalized reactive policy (GRP) that
maps a problem instance and a state to an action, and that the
learned GRPs efficiently solve large classes of challenging
problem instances. In contrast to prior efforts in this direction,
our approach significantly reduces the dependence of learning
on handcrafted domain knowledge or feature selection. In-
stead, the GRP is trained from scratch using a set of successful
execution traces. We show that our approach can also be used
to automatically learn a heuristic function that can be used in
directed search algorithms. We evaluate our approach using
an extensive suite of experiments on two challenging planning
problem domains and show that our approach facilitates learn-
ing complex decision making policies and powerful heuristic
functions with minimal human input. Video results available
at goo.gl/Hpy4e3.

Introduction

In order to help with day to day chores such as organizing
a cabinet or arranging a dinner table, robots need to be able
plan: to reason about the best course of action that could lead
to a given objective. Unfortunately, planning is well known
to be a challenging computational problem: plan-existence
for deterministic, fully observable environments is PSPACE-
complete when expressed using rudimentary propositional
representations (Bylander 1994). Such results have inspired
multiple approaches for reusing knowledge acquired while
planning across multiple problem instances (in the form of
triangle tables (Fikes, Hart, and Nilsson 1972), learning con-
trol knowledge for planning (Yoon, Fern, and Givan 2008),
and constructing generalized plans that solve multiple prob-
lem instances (Srivastava, Immerman, and Zilberstein 2011;
Hu and De Giacomo 2011) with the goal of faster plan com-
putation on a new problem instance.
In this work, we present an approach that unifies the prin-

ciples of imitation learning (IL) and generalized planning for

∗Part of the work was done while this author was at United
Technologies Research Center

learning a generalized reactive policy (GRP) that predicts the
action to be taken, given an observation of the planning prob-
lem instance and the current state. The GRP is represented
as a deep neural network (DNN). We use an off-the-shelf
planner to plan on a set of training problems, and train the
DNN to learn a GRP that imitates and generalizes the behav-
ior generated by the planner. We then evaluate the learned
GRP on a set of unseen test problems from the same domain.
We show that the learned GRP successfully generalizes to
unseen problem instances including those with larger state
spaces than were available in the training set. This allows
our approach to be used in end-to-end systems that learn
representations as well as executable behavior purely from
observations of successful executions in similar problems.

We also show that our approach can generate
representation-independent heuristic functions for a
given domain, to be used in arbitrary directed search
algorithms such as A∗ (Hart, Nilsson, and Raphael 1968).
Our approach can be used in this fashion when stronger
guarantees of completeness and classical notions of “ex-
plainability” are desired. Furthermore, in a process that we
call “leapfrogging", such heuristic functions can be used in
tandem with directed search algorithms to generate training
data for much larger problem instances, which in turn can be
used for training more general GRPs. This process can be
repeated, leading to GRPs that solve larger and more difficult
problem instances with iteration.

While recent work on DNNs has illustrated their utility as
function representations in situations where the input data
can be expressed in an image-based representation, we show
that DNNs can also be effective for learning and represent-
ing GRPs in a broader class of problems where the input is
expressed using a graph data structure. For the purpose of
this paper, we restrict our attention to deterministic, fully
observable planning problems. We evaluate our approach on
two planning domains that feature different forms of input
representations. The first domain is Sokoban (see Figure 1).
This domain represents problems where the execution of a
plan can be accurately expressed as a sequence of images.
This category captures a number of problems of interest in
household robotics including setting the dinner table. This
problem has been described as the most challenging problem
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in the literature on learning for planning (Fern, Khardon, and
Tadepalli 2011).

Our second test domain is the traveling salesperson prob-
lem (TSP), which represents a category of problems where
execution is not efficiently describable through a sequence
of images. This problem is challenging for classical plan-
ners as valid solutions need to satisfy a plan-wide property
(namely a Hamiltonian cycle, which does not revisit any
nodes). Our experiments with the TSP show that using graph
convolutions (Dai et al. 2017) DNNs can be used effectively
as function representations for GRPs in problems where the
grounded planning domain is expressed as a graph data struc-
ture.
Our experiments reveal that several architectural compo-

nents are required to learn GRPs in the form of DNNs: (1) A
deep network. (2) Structuring the network to receive as input
pairs of current state and goal observations. This allows us
to ‘bootstrap’ the data, by training with all pairs of states
in a demonstration trajectory. (3) Predicting plan length as
an auxiliary training signal can improve IL performance. In
addition, the plan length can be effectively exploited as a
heuristic by standard planners.
We believe that these observations are general, and will

hold for many domains. For the particular case of Sokoban,
using these insights, we were able to demonstrate a 97%
success rate in one object domains, and an 87% success rate
in two object domains. In Figure 1 we show an example test
domain, and a non-trivial solution produced by our learned
DNN.

Related Work

The interface of planning and learning (Fern, Khardon, and
Tadepalli 2011) has been investigated extensively in the past.
The works of Khadron (Khardon 1999), Martin and Geffner
(Martín and Geffner 2004), and Yoon et al. (Yoon, Fern,
and Givan 2002) learn policies represented as decision lists
on the logical problem representation, which needs to be
hand specified. On the other hand, the literature on general-
ized planning (Srivastava, Immerman, and Zilberstein 2011;
Hu and De Giacomo 2011) has focused on computing it-
erative generalized plans that solve broad classes of prob-
lem instances, with strong formal guarantees of correctness.
While all of these strive to reuse knowledge made avail-
able during planning, the selection of a good representation
for expressing the data as well as the learned functions or
generalized plans is handcrafted. Feature sets and domain
descriptions in these approaches are specified by experts us-
ing formal languages such as PDDL (Fox and Long 2003).
Similarly, approaches such as case-based planning (Spalzzi
2001), approaches for extracting macro actions (Fikes, Hart,
and Nilsson 1972; Scala, Torasso, and others 2015) and
for explanation based plan generalization (Shavlik 1989;
Kambhampati and Kedar 1994) rely on curated vocabularies
and domain knowledge for representing the appropriate con-
cepts necessary for efficient generalization of observations
and the instantiation of learned knowledge. Our approach
requires as input only a set of successful plans and their
executions—our neural network architecture is able to learn
a reactive policy that predicts the best action to execute based

on the current state of the environment without any additional
representational expressions. The current state is expressed
either as an image (Sokoban) or as an instance of the graph
data structure (TSP).
Neural networks have previously been used for learning

heuristic functions (Ernandes and Gori 2004). Recently, deep
convolutional neural networks (DNNs) have been used to
automatically extract expressive features from data, lead-
ing to state-of-the-art learning results in image classification
(Krizhevsky, Sutskever, and Hinton 2012), natural language
processing (Sutskever, Vinyals, and Le 2014), and control
(Mnih et al. 2015), among other domains. The phenomenal
success of DNNs for across various disciplines motivates us
to investigate whether DNNs can learn useful representations
in the learning for planning setting as well. Indeed, one of
the contributions of our work is a general convolutional DNN
architecture that is suitable for learning to plan.

Imitation learning has been previously used with DNNs to
learn policies for tasks that involve short horizon reasoning
such as path following and obstacle avoidance (Pomerleau
1989; Ross, Gordon, and Bagnell 2011; Tamar et al. 2016;
Pfeiffer et al. 2016), focused robot skills (Mülling et al. 2013;
Nair et al. 2017), and recently block stacking (Duan et al.
2017). From a planning perspective, the Sokoban domain
considered here is considerably more challenging than block
stacking or navigation between obstacles. In (Tamar et al.
2016), a value iteration planning computation was embedded
within the network structure, and demonstrated successful
learning on 2D gridworld navigation. Due to the curse of
dimensionality, it is not clear how to extend that work to
planning domains with much larger state spaces, such as
the Sokoban domain considered here. In that work the state
space was a 2D grid world with local connectivity, making
value iteration tractable. However, for Sokoban, the state
must include the position of both the agent and the objects,
making it much larger than a 2D grid world. While one can
construct such a state space, running value iteration on it
would be too slow. Another alternative is to try to embed
the Sokoban problem in some 2D grid world and run VI
on it. This method performs significantly worse than our
proposed method. Concurrently with our work, Weber et
al. (Weber et al. 2017) proposed a DNN architecture that
combines model based planning with model free components
for reinforcement learning, and demonstrated results on the
Sokoban domain. In comparison, our IL approach requires
significantly less training instances of the planning problem
(over 3 orders of magnitude) to achieve similar performance
in Sokoban.

The ‘one-shot’ techniques in (Duan et al. 2017), however,
are complimentary to this work. The impressive Alpha-Go-
Zero (Silver et al. 2017) program learned a DNN policy for
Go using reinforcement learning and self play. Key to its
success is the natural curriculum in self play, which allows
reinforcement learning to gradually explore more compli-
cated strategies. A similar self-play strategy was essential for
Tesauro’s earlier Backgammon agent (Tesauro 1995). For the
goal-directed planning problems we consider here, it is not
clear how to develop such a curriculum strategy, although our
leapfrogging idea takes a step in that direction. Extending
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Figure 1: The Sokoban domain (best viewed in color). In Sokoban the agent (red dot) needs to push around movable objects
(purple dots) between unmovable obstacles (blue squares) to a goal position (green square). In this figure we show a challenging
Sokoban instance with one object. From left to right, we plot several steps in the shortest plan for this task: arrows represent the
agent’s path, and light purple dots show the resulting object movement. This 44 step trajectory was produced by our learned
DNN policy. Note that it demonstrates reasoning about dead ends that may happen many steps after the initial state.

our work to reinforcement learning is a direction for future
research.

Our approach thus offers two major advantages over prior
efforts: (1) in situations where successful plan executions can
be observed, e.g. by observing humans solving problems, our
approach significantly reduces the effort required in design-
ing domain representations; (2) in situations where guaran-
tees of success are required, and domain representations are
available, our approach provides an avenue for automatically
generating a representation-independent heuristic function,
which can be used with arbitrary guided search algorithms.

Formal Framework

We assume the reader is familiar with the formalization of de-
terministic, fully observable planning domains and planning
problems in languages such as PDDL (Fox and Long 2003;
Helmert 2009) and present the most relevant concepts here.
A planning problem domain can be defined as a tuple
K = 〈R,A〉, whereR is a set of binary relations; and A is
a set of parameterized actions. Each action in A is defined
by a set of preconditions categorizing the states on which it
can be applied, and the set of instantiated relations that will
changed to true or false as a result of executing that action.
A planning problem instance associated with a planning do-
main can be defined as Π = 〈E , s0, G〉, where E is a set of
entities, s0 is an initial state and G is a set of goal conditions.
Relations inR instantiated with entities from E define the set
of grounded fluents, F . Similarly, actions in A instantiated
with appropriately entities in E define the set of grounded
actions, denoted as A[E ]. The initial state, s0, for a given
planning problem is a complete truth valuation of fluents in
F ; the goal condition, G, is a truth valuation of a subset of
the grounded fluents in F .
As an example, the discrete move action could be repre-

sented as follows:

Move(loc1, loc2) :

{
pre : RobotAt(loc1),

eff : ¬RobotAt(loc1), RobotAt(loc2).

We introduce several additional notations to the planning
problem, to make the connection with imitation learning
clearer. Given a planning domain and a planning problem
instance, we denote by S = 2F the state space of the planning
problem. A state s ∈ S corresponds to the values of each

fluent in F . The task in planning is to find a sequence of
grounded actions, a0, . . . , an – the so called plan – such that
an(. . . (a0(s0)) . . .) |= G.
In Sokoban, the domain represents the legal movement

actions and the notion of movement on a bounded grid, a
problem instance represents the exact grid layout (denoting
which cell-entities are blocked), the starting locations of the
objects and the agent, and the goal locations of the objects.
We denote by o(Π, s) the observation for a problem in-

stance Π when the state is s. For example, o can be an image
of the current game state (Figure 1) for Sokoban. We let
τ = {s0, o0, a0, s1, . . . , sg, og} denote the state-observation-
action trajectory implied by the plan. The plan length is the
number of states in τ .
Our objective is to learn a generalized behavior repre-

sentation that efficiently solves multiple problem instances
for a domain. More precisely, given a domain K, and a
problem instance Π, let OK,Π be the set of possible ob-
servations of states from Π. Given a planning problem do-
main K = 〈R,A〉 we define a generalized reactive pol-
icy (GRP) as a function mapping observations of problem
instances and states to actions: GRPK : ∪Π{OK,Π} →
∪Π{A[EΠ]}, where EΠ is the set of entities defined by the
problem Π and the unions range over all possible problem
instances associated withK. Further, GRPK is constrained
so that the observations from every problem instance are
mapped to the grounded actions for that problem instance
(∀Π GRPK(OK,Π) ⊆ A[EΠ]). This effectively general-
izes the concept of a policy to functions that can map states
from multiple problem instances of a domain to action spaces
that are legal within those instances.
Imitation Learning In imitation learning (IL), demon-
strations of an expert solving a problem are given in
the form of observation-action trajectories Dimitation =
{o0, a0, o1, . . . , oT , aT }. The goal is to find a policy – a map-
ping from observation to actions a = μ(o), which imitates the
expert. A straightforward IL approach is behavioral cloning
(Pomerleau 1989), in which supervised learning is used to
learn μ from the data.

Learning Generalized Reactive Policies

We assume we are given a set Dtrain of Ntrain problem in-
stances {Π1, . . . ,ΠNtrain}, which will be used for learning
a GRP, and a set Dtest of Ntest problem instances that will
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be used for evaluating the learned model. We also assume
that the training and test problem instances are similar in
some sense, so that relevant knowledge can be extracted from
the training set to improve performance on the test set. Con-
cretely, both training and test instances come from the same
distribution.
Our approach consists of two stages: a data generation

stage and a policy training stage.
Data generation We generate a random set of problem
instances Dtrain. For each Π ∈ Dtrain, we run an off-the-shelf
planner to generate a plan and corresponding trajectory τ ,
and then add the observations and actions in τ toDimitation. In
our experiments we used the Fast-Forward (FF) planner (Jörg
Hoffman 2001), though any other PDDL planner can be used
instead.
Policy training Given the generated data Dimitation, we use
IL to learn a GRP μ. The learned policy μ maps an observa-
tion to action, and therefore can be readily deployed to any
test problem in Dtest.
One may wonder why such a naive approach would even

learn to produce the complex decision making ability that
is required to solve unseen instances in Dtest. Indeed, as
we show in our experiments, naive behavioral cloning with
standard shallow neural networks fails on this task. One of
the contributions of this work is the investigation of DNN
representations that make this simple approach succeed.

Data Bootstrapping

In the IL literature (e.g., (Pomerleau 1989; Ross, Gordon, and
Bagnell 2011)), the policy is typically structured as a mapping
from the observation of a state to an action. However, GRPs
need to consider the problem instance while generating an
action to be executed since different problem instances may
have different goals. Although this seems to require more
data, we present an approach for “data bootstrapping” that
mitigates the data requirements.

Recall that our training data Dimitation consists of Ntrain tra-
jectories composed of observation-action pairs. This means
that the number of training samples for a policy mapping
state-observations to actions is equal to the number of
observation-action pairs in the training data. However, since
GRPs use the goal condition in their inputs (captured by a
problem instance),any pair of observations from successive
states (o(Π, si), o(Π, sj)) and the intermediate trajectory in
an execution in Dtrain can be used as a sample for training
the policy by setting sj as a goal condition for the interme-
diate trajectory. Our reasoning for this data bootstrapping
technique is based on the following fact:
Proposition 1. For a planning problem Π with initial state
s0 and goal state sg, let τopt = {s0, s1, . . . , sg} denote the
shortest plan from s0 to sg. Let μopt(s) denote an optimal
policy for Π in the sense that executing it from s0 generates
the shortest path τopt to sg. Then, μopt is also optimal for a
problem Π with the initial and goal states replaced with any
two states si, sj ∈ τopt such that i < j.
Proposition 1 underlies classical planning methods such

as triangle tables (Fikes, Hart, and Nilsson 1972). Here, we
exploit it to design our DNN to take as input both the current

observation and a goal observation. For a given trajectory of
length T , the bootstrap can potentially increase the number of
training samples from T to (T − 1)2/2. In practice, for each
trajectory τ ∈ Dimitation, we uniformly sample nbootstrap pairs
of observations from τ . In each pair, the first observation is
treated as the current observation, while the last observation
is treated as the goal observation1. This results in nbootstrap+T
training samples for each trajectory τ , which are added to a
bootstrap training setDbootstrap to be used instead ofDimitation

for training the policy. 2

Network Structure

We propose a general structure for a convolutional network
that can learn a GRP.
Our network is depicted in Figure 2. The current state

and goal state observations are passed through several layers
of convolution which are shared between the action predic-
tion network and the plan length prediction network. There
are also skip connections from the input layer to to every
convolution layer.

The shared representation is motivated by the fact that both
the actions and the overall plan length are integral parts of
a plan. Having knowledge of the actions makes it easy to
determine plan length and vice versa, knowledge about the
plan length can act as a template for determining the actions.
The skip connections are motivated by the fact that several
planning algorithms can be seen as applying a repeated com-
putation, based on the planning domain, to a latent variable.
For example, greedy search expands the current node based
on the possible next states, which are encoded in the domain;
value iteration is a repeated modification of the value given
the reward and state transitions, which are also encoded in the
domain. Since the network receives no other knowledge about
the domain, other than what’s present in the observation, we
hypothesize that feeding the observation to every conv-net
layer can facilitate the learning of similar planning compu-
tations. We note that in value iteration networks (Tamar et
al. 2016), similar skip connections were used in an explicit
neural network implementation of value iteration.
For planning in graph domains, we propose to use graph

convolutions, similar to the work of (Dai et al. 2017). The
graph convolution can be seen as a generalization of an image
convolution, where an image is simply a grid graph. Each
node in the graph is represented by a feature vector, and linear
operations are performed between a node and its neighbors,
followed by a nonlinear activation. A detailed description is
provided in the supplementary material. For the TSP problem
with n nodes, we map a partial Hamiltonian path P of the
graph to a feature representation as follows. For each node,
the features are represented as a 3-dimensional binary vector.

1In our experiments, we used the FF planner, which does not
necessarily produce shortest plans. However, Proposition 1 can be
extended to satisficing plans.

2Note that for the Sokoban domain, goal observations in the test
set (i.e., real goals) do not contain the robot position, while the goal
observations in the bootstrap training set include the robot position.
However, this inconsistency had no effect in practice, which we
verified by explicitly removing the robot from the observation.
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The first element is 1 if the node has been visited in P , the
second element is 1 if it is the current location of the agent,
and the third element is 1 if the node is the terminal node. For
a Hamiltonian cycle the terminal node is the start node. The
state is then represented as a collection of feature vectors,
one for each node. In the TSP every Hamiltonian cycle is of
length n, so predicting the plan length in this case is trivial, as
we encode the number of visited cities in the feature matrix.
Therefore, we omit the plan-length prediction part of the
network.

Generalization to Different Problem Sizes

A primary challenge in learning for planning is finding repre-
sentations that can generalize across different problem sizes.
For example, we expect that a good policy for Sokoban
should work well on the instances it was trained on, 9 × 9
domains for example, as well as on larger instances, such as
12× 12 domains. A convolution-based architecture naturally
addresses this challenge.
However, while the convolution layers can be applied to

any image/graph size, the number of inputs to the fully con-
nected layer is strictly tied to the problem size. This means
that the network architecture described above is fixed to a
particular grid dimension. To remove this dependency, we
employ a trick used in fully convolutional networks (Long,
Shelhamer, and Darrell 2015), and keep only a k × k win-
dow of the last convolution layer, centered around the current
agent position. This modification makes our DNN applicable
to any grid dimension. Note that since the window is applied
after the convolution layers, the receptive field can be much
larger than k × k. In particular, a value of k = 1 worked
well in our experiments. For the graph architectures, a similar
trick is applied, where the decision at a particular node is a
function of the convolution result of its neighbors, and the
same convolution weights are used across different graph
sizes.

Experiments

Here we report our experiments on learning for planning with
DNNs. Our focus is on the following questions:

1. What makes a good DNN architecture for learning a GRP?

2. Can a useful planning heuristic be extracted from the GRP?

The first question aims to show that recent developments in
the representation learning community, such as deep convo-
lutional architectures, can be beneficial for planning. The sec-
ond question has immediate practical value – a good heuristic
can decrease planning costs. However, it also investigates a
deeper premise. If a useful heuristic can indeed be extracted
from the GRP, it means that the GRP has learned some under-
lying structure in the problem. In the domains we consider,
such structure is hard to encode manually, suggesting that the
data-driven DNN approach can be promising.
To investigate these questions, we selected two test do-

mains representative of very different classes of planning
problems. We used the Sokoban domain to represent prob-
lems where plan execution can be captured as a set of images,
and the goal takes the form of achieving a state property

(objects at their target locations). We used the traveling sales-
person problem as an exemplar for problems where plan
execution is not easy to capture as a set of images and the
goal features a temporal property.
Sokoban For Sokoban, we consider two difficulty levels:
moving a single object as described in Figure 1, and a harder
task of moving two objects. We generated training data using
a Sokoban random level generator3.
For imitation learning, we represent the policy with

the DNNs as described in Network Structure section and
optimize using Adam (Kingma and Ba 2014) (step size
0.001). When training with data bootstrapping, we selected
nbootstrap = T for generating Dbootstrap. Unless stated other-
wise, the training set used in all Sokoban experiments was
comprised of 45k observation-action trajectories from 9k
different obstacle configurations.

To evaluate policy performance on the Sokoban domain we
use execution success rate. Starting from the initial state, we
execute the learned policy deterministically and track whether
or not the goal state is reached. We evaluate performance both
on test domains of the same size the GRPs were trained on,
9×9 grids, and also on larger problems. We explicitly verified
that none of the test domains appeared in the training set.

Videos of executions of our learned GRPs for Sokoban are
available at goo.gl/Hpy4e3.
TSP For TSP, we consider two different graph distributions.
The first is the space of complete graphs with edge weights
sampled uniformly in [0, 1]. The second, which we term
chord graphs, is generated by first creating an n-node graph
in the form of a cycle, and then adding 2n undirected chords
between randomly chosen pairs of nodes, with a uniformly
sampled weight in [0, 1]. The resulting graphs are guaranteed
to contain Hamiltonian cycles. However, in contrast to the
complete graphs, finding such a Hamiltonian cycle is not
trivial. Our results for the chord graphs are similar to the
complete graphs, and for space constraints, we present them
in the supplementary material. Training data was generated
using the TSP solver in Google Optimization Tools4.
As before, we train the DNN using Adam. We found it

sufficient to use only 1k observation-action trajectories for
our TSP domain. The metric used is average relative cost5,
defined as the ratio between the cycle cost of the learned
policy and the Google solver, averaged over all initial nodes
in each test domain. We also compare the DNN policy against
a greedy policy which always picks the lowest-cost edge

3The Sokoban data-set from the learning for planning compe-
tition contains only 60 training domains, which is not enough to
train a DNN. Our generator works as follows: we assume the room
dimensions are a multiple of 3 and partition the grid into 3x3 blocks.
Each block is filled with a randomly selected and randomly rotated
pattern from a predefined set of 17 different patterns. To make sure
the generated levels are not too easy and not impossible, we discard
the ones containing open areas greater than 3x4 and discard the ones
with disconnected floor tiles. For more details we refer the reader to
Taylor et al. (Taylor and Parberry 2011).

4https://developers.google.com/optimization
5For the complete graphs, all policies always succeeded in find-

ing a Hamiltonian cycle. For the chord graphs, we report success
rates in the supplementary material.
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Figure 2: Network architecture. The architecture on the left is used for Sokoban, while the one on the right is used for the TSP. A
pair of current and goal observations are passed in to a shared conv-net. This shared representation is input to an action prediction
conv-net and a plan length prediction conv-net. Skip connections from the input observations to all conv-layers are added. For
the TSP network, we omitted the plan length prediction, as the features directly encode the number of nodes visited, making
the prediction trivial. All activation functions are ReLU’s and the final one is a SoftMax. In both architectures, after the last
convolution layer, we apply a k × k window around the agents location to ensure a constant size feature vector is passed to the
fully connected layers. This effectively decouples the architecture from the problem size and allows the receptive field to be
greater than the k × k window.

leading to an unvisited node.
As in the Sokoban domain, we evaluate performance on

test domains with graphs of the same size as the training set,
4 node graphs, and on larger graphs with up-to 11 nodes.

Evaluation of Learned GRPs

Here we evaluate performance of the learned GRPs on previ-
ously unseen test problems. Our results suggest that the GRP
can learn a well-performing planning-like policy for chal-
lenging problems. In the Sokoban domain, on 9×9 grids, the
learned GRP in the best performing architecture (14 layers,
with bootstrapping and a shared representation) can solve
one-object Sokoban with 97% success rate, and two-object
Sokoban with 87% success rate. Figure 1 shows a trajectory
that the policy predicted in a challenging one-object domain
from the test set. Two-object trajectories are difficult to il-
lustrate using images; we provide a video demonstration at
goo.gl/Hpy4e3. We observed that the GRP effectively learned
to select actions that avoid dead ends far in the future, as Fig-
ure 1 demonstrates. The most common failure mode is due
to cycles in the policy, and is a consequence of using a de-
terministic policy. Due to space constraints, further analysis
of failure modes is given in the supplementary material. The
learned GRP can thus be used to solve new planning problem
instances with a high chance of success. In domains where
simulators are available, a planner can be used as a fallback
if the policy fails in simulation.
Figure ?? shows the performance of the GRP policy on

complete graphs of sizes 4 − 11, when trained on graphs
of the same size (respectively). For both the GRP and the
greedy policy, the cost increases approximately linearly with
the graph size. For the greedy policy, the rate of cost increase
is roughly twice the rate for the GRP, showing that the GRP
learned to perform some type of lookahead planning.

Investigation of Network Structure

We performed ablation experiments to tease out the important
ingredients for a successful GRP. Our results suggest that
deeper networks improve performance.

In Figure 3a we plot execution success rate on two-object
Sokoban, for different network depths, and with or without
skip connections. The results show that deeper networks per-
form better, with skip connections resulting in a consistent
advantage. In the supplementary material we show that a
deep network significantly outperformed a shallow network
with the same number of parameters, further establishing
this claim. The improved results for the deeper networks
suggest that for learning GRP’s – the deeper the network
the better. We note a related observation in the context of
a DNN representation of the value iteration planning algo-
rithm in (Tamar et al. 2016). However, in our experiments
the performance levels off after 14 layers. We attribute this to
the general difficulty of training deep DNNs due to gradient
propagation, as evident in the failure of training the 14 layer
architecture without skip connections, Figure 3a.
We also investigated the benefit of having a shared rep-

resentation for both action and plan length prediction, com-
pared to predicting each with a separate network. The ablation
results are presented in Table 1. Interestingly, the plan length
prediction improves the accuracy of the action prediction.

GRP as a Heuristic Generator

We now show that the learned GRPs can be used to extract
representation independent heuristics for use with arbitrary
guided search algorithms. To our knowledge, there are no
other approaches for computing such heuristics without using
hand-curated domain vocabularies or features for learning
and/or expressing them. However, to evaluate the quality
of our learned heuristics, we compared them with a few
well-known heuristics that are either handcrafted or com-
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(a) (b) (c)

Figure 3: Sokoban results. (a) Investigating DNN depth and skip connections. We plot the success rate for deterministic execution
in two-object Sokoban. Deeper networks show improved success rates and skip connections improve performance consistently.
We were unable to successfully train a 14 layer deep network without skip connections. (b,c) Performance of learned heuristic.
The GRP was trained only on 9x9 instances, and evaluated (as a heuristic, see text for more details) on larger instances. (b) shows
number of states explored (i.e., planning speed) and (c) shows plan length (i.e., planning quality). A* with the learned heuristic
produced nearly optimal plans with an order of magnitude reduction in the number of states explored.

(a) (b) (c)

Figure 4: TSP results. (a) Performance (average relative cost; see text for details) for GRPs trained and tested on problems of
sizes 4 − 11, respectively. We compare the GRP with a greedy policy. (b,c) Performance of learned heuristic. The GRP was
trained on 4-node graphs, and evaluated (as a heuristic, see text for more details) on larger instances. (b) shows number of states
explored (i.e., planning speed). We compare with the minimum spanning tree heuristic, which is admissible for TSP. (c) shows
average relative cost (i.e., planning quality) compared to plans from the Google solver. Note that up to a graph of size 9, the
performance of A∗ with GRP heuristic (labeled A∗+NN generalization) was within 5% of optimal, while requiring orders of
magnitude less computation than the MST heuristic. We also present results for the leapfrogging algorithm (see text for details),
and additionally compare to a baseline of retraining the GRP with optimal data for each graph size. Note that the leapfrogging
results are very close to the results obtained with retraining, although optimal data was only given for the smallest graph size.
This shows that the GRP heuristic can be used for generating reliable training data for domains of larger size than trained on.

puted using handcrafted representations. We found that the
representation-independent GRP heuristic was competitive,
and remains effective on larger problems than the GRP was
trained on. For the Sokoban domain, the plan-length pre-
diction can be directly used as a heuristic function. This
approach can be used for state-property based goals in prob-
lems where execution can be captured using images. For the
TSP domain, we used a heuristic that is inversely proportional
to the probability of selecting the next node to visit, as the

number of steps required to create a complete cycle is not
discriminative. Full details are given in the supplementary
material.

We investigated using the GRP as a heuristic in greedy
search and A∗ search (Hart, Nilsson, and Raphael 1968). We
use two performance measures: the number of states explored
during search and the length of the computed plan. The first
measure corresponds to planning speed since evaluating less
nodes translates to faster planning. The second measure rep-
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w/ bootstrap w/o bootstrap
Predict plan length 2.211 2.481 �1 norm
Predict plan length 2.205 2.319 �1 norm

& actions 0.844 0.818 Succ Rate
Predict actions 0.814 0.814 Succ Rate

Table 1: Benefits of bootstrapping and having a shared repre-
sentation. To evaluate accuracy of the plan length prediction,
we measure the average �1 loss (absolute difference). To
evaluate action prediction we measure the success rate on
execution. Best performance was obtained with using boot-
strapping and the shared representation. For this experiment
the training set contained 25k observation-action trajectories.

resents plan quality.
Sokoban We compare performance in Sokoban to the Man-
hattan heuristic6 in Figure 3b. In the same figure we evaluate
generalization of the learned heuristic to larger, never before
seen, instances as well as the performance of two state-of-
the-art planners: Fast Forward (FF, (Jörg Hoffman 2001))
and Fast Downward (FD, (Helmert 2006))7. The GRP was
trained on 9× 9 domains, and evaluated on new problem in-
stances of similar size or larger. During training, we chose the
window size k = 1 to influence learning a problem-instance-
size-invariant policy. As seen in Figure 3b the learned GRP
heuristic significantly outperforms the Manhattan heuristic
in both greedy search and A* search, on the 9x9 problems.
As the size of the test problems increases, the learned heuris-
tic shines when used in conjunction with A*, consistently
expanding fewer nodes than the Manhattan heuristic. Note
that even though the GRP heuristic is not guaranteed to be
admissible, when used with A*, the plan quality is very close
to optimal, while exploring an order of magnitude less nodes
than the conventional alternatives.
TSP We trained the GRP on 6-node complete graphs and
evaluated the GRP, used either directly as a policy or as a
heuristic within A∗, on graphs of larger size. Figure 4(b-c)
shows generalization performance of the GRP, both in terms
of planning speed (number of nodes explored) and in terms
of plan quality (average relative cost). We compare both to
a greedy policy, and to A∗ with the minimum spanning tree
(MST) heuristic. Note that the GRP heuristic is significantly
more efficient than MST, while not losing much in terms of
plan quality, especially when compared to the greedy policy.

Leap-Frogging Algorithm

The effective generalization of the GRP heuristic to larger
problem sizes motivates a novel algorithmic idea for learning
to plan on iteratively increasing problem sizes, which we
term leap-frogging. The idea is that, we can use a ‘general

6The Manhattan heuristic is only admissible in one-object
Sokoban. We tried Euclidean distance and Hamiltonian distance.
However, Manhattan distance had the best trade-off between perfor-
mance and computation time.

7FD uses an anytime algorithm, so we constrained the planning
time to be no more than 5 minutes per instance. For the problem
instances we evaluated, FD always found the optimal solution.

and optimal’ planner, such as FD, to generate data for a
small domain, of size d. We then train a GRP using this
data, and use the resulting GRP heuristic in A∗ to quickly
solve planning problems from a larger domain d′ > d. These
solutions can then be used as new data for training another
GRP on the domain size d′. Thus, we can iteratively apply
this procedure to solve problems of larger and larger sizes,
while only requiring the slow ‘general’ planner to be applied
in the smallest domain size.
In Figure 4c we demonstrate this idea in the TSP domain.

We used the solver to generate training data for a graph with
4 nodes. We then evaluate the GRP heuristic trained using
leapfrogging on larger domains, and compare with a GRP
heuristic that was only trained on the 4-node graph. Note that
we significantly improve upon the standard GRP heuristic,
while using the same initial optimal data obtained from the
slow Google solver. We also compare with a GRP heuristic
that was re-trained with optimal data for each graph size.
Interestingly, this heuristic performed only slightly better
than the GRP trained using leap-frogging, showing that the
generalization of the GRP heuristic is effective enough to
produce reliable new training data.

Conclusion

We presented a new approach in learning for planning, based
on imitation learning from execution traces of a planner. We
used deep convolutional neural networks for learning a gen-
eralized policy, and proposed several network designs that
improve learning performance in this setting, and are capa-
ble of generalization across problem sizes. In addition, we
showed that our networks can be used to extract a heuristic for
off-the-shelf planners, which led to significant improvements
over standard heuristics that do not leverage learning.
Our results on the challenging Sokoban domain suggest

that DNNs have the capability to extract powerful features
from observations, and the potential to learn the type of ‘vi-
sual thinking’ that makes some planning problems easy for
humans but very hard for automatic planners. The leapfrog-
ging results, suggest a new approach for planning – when
facing a large and difficult problem, first solve simpler in-
stances of the problem and learn a DNN heuristic that aids
search algorithms in solving larger instances. This heuristic
can be used to generate data for training a new DNN heuris-
tic for larger instances, and so on. Our preliminary results
suggest this approach to be promising.

There is still much to explore in employing deep networks
for planning. While representations for images based on deep
conv-nets have become standard, representations for other
modalities such as graphs and logical expressions are an
active research area (Dai et al. 2017; Kansky et al. 2017). We
believe that the results presented here will motivate future
research in representation learning for planning.
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Appendix

Graph Convolution Network

Consider a graph G = (V, E) with adjacency matrix A
where V has N nodes and E is the weighted edge set with
weight matrix W . Suppose that each node v ∈ V has a
corresponding feature xv ∈ R

m and consider a parametric
function fθ : R2m → R

m parameterized by θ ∈ R
f . Let

Ni : V → 2V denote a function mapping a vertex to its ith
degree neighborhood. The propagation rule is given by the
following equation

Hv = σ

⎛
⎝ ∑

u∈N (v)

Auvfθ(xu, xv)

⎞
⎠ (1)

where σ is the ReLU function. Consider a graph G of size n,
with each vertex having feature vector of size C encoded in
the feature matrix X ∈ R

n×C . In the TSP experiments, we
use the propagation rule where the ij entry of the next layer
is given by

Hij = σ

⎛
⎝ ∑

s∈N (i)

Asi[xs, xi,Wsi]
TΘj + bj

⎞
⎠ (2)

Here,W is the weight matrix of G, A is the adjacency matrix,
and Θ ∈ R

(2C+1)×C′ is the matrix of weights that we learn
and b ∈ RC′ is a learned bias vector. Θj is the jth column
of Θ.
In the networks we used for the TSP domain, the initial

feature vector is of sizeC = 6. We then applied 4 convolution
layers of size C = 26. We then applied a convolution of size
C = 1, corresponding to a fully connected layer. Thus, j = 1
in Hij for all i in the last convolution layer.
The final layer of the network is a softmax overHi1, and

we select the node i with the highest score that is also con-
nected to the current node.
Relation to Image Convolution In the next proposition
we show that this graph-based propagation rule can be seen as
a generalization of a standard 2-D convolution, when applied
to images (grid graphs). Namely, we show that there exists
features for a grid graph and parameters Θ for which the
above propagation rule reduces to a standard 2-D convolution.

Proposition 2. When G is a grid graph, for a particular
choice of fθ the above propagation rule reduces to the tra-
ditional convolutional network. In particular, for a filter of
size n, choosing fθ as a polynomial of degree 2(N − 1) and
θ ∈ R

N2

works.

Proof. For each node v, consider its representation as v =
(vx, vy) where (vx, vy) are the grid coordinates of the vertex.

Num Params Deep-8 Wide-2 Wide-1
556288 0.068 0.092 0.129 error rate

0.83 0.62 0.38 succ rate

Table 2: Comparison of deep vs. shallow networks. The deep
network has 8 convolution layers with 64 filter per layer. The
shallow networks contain 2 and 1 layers respectively with
256 and 512 filters per layer respectively. Clearly, deeper
networks outperform shallow networks while containing an
equal number of parameters.

Figure 5: This shows the affect of data bootstrapping on
the performance of two-object Sokoban, as a function of
the dataset size. Smaller datasets benefit more from data
augmentation.

Let a := n−1
2 . We first transform the coordinates to center

them around v by transforming u→ (ux − vx, uy − vy) so
that u lies in the set [−a, a]× [−a, a].

We wish to design a polynomial g that takes the value θi,j
at location (i, j). We show that it is possible to do with a
degree 2(n−1) polynomial by construction. The polynomial
g is given by

g(x, y) :=
a∑

i=−a

a∑
j=−a

θi,j

a∏
s=−a,s �=i

(s+ y)

a∏
t=−a,t �=j

(t+ x)

(3)

To see why this is correct, note that for any (s, t) ∈ [−a, a]×
[−a, a] there is exactly one polynomial inside the summands
that does not have either of the terms (i + uy) or (j + ux)
appearing in its factorization. Indeed, by construction this
term is the polynomial corresponding to θi,j so that g(i, j) =
Cθi,j for some constant C.
The polynomial inside the summands is of degree (n −

1) + (n− 1) = 2(n− 1), so g is of degree 2(n− 1). Letting
pu denote th pixel value at node u, setting

fθ(xu, xv) := pug(xu − xv) (4)

completes the proof.

TSP domain heuristic

We can use the graph convolution network as a heuristic
inside A-star search. Given a feature encoding of a partial
cycle P , we can compute the probability pi of moving to
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(a) (b) (c)

Figure 6: Chord-graph TSP results. (a) Success rate of neural network policy on chord graphs of size 3− 9, respectively. Note
that the agent is only allowed to visit each node once, so the agent may visit a node with no un-visited neighbors which is a dead
end. We also show the success rate of the greedy policy. (b) Performance of neural network policy on chord graphs of size 3-9.
(c) Leapfrogging algorithm results on chord graphs of size 7-12. We compare to a baseline greedy policy

(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 7: Analysis of Failure Modes. (a-c): Success rate vs features of the domain. Plan length (a) seems to be the main factor in
determining success rate. Longer plans fail more often. While there is some relationship between planning time and success rate
(b), planning time is not always an accurate indicator, as explained in (d,e). The number of walls (c) does not affect success rate.
(d,e): Domains containing large open rooms results in a high branching factor and thus produce the illusion of difficulty while
still having a simple underlying policy. The domain in (d) took FD significantly longer time to solve, 8.6 seconds compared
to 1.6 seconds for the domain in (e), although it has a shorter optimal solution, 51 steps compared to 65 steps. This is since
the domain in (e) can be broken up into small regions which are all connected by hallways, a configuration that reduces the
branching factor and thus the overall planning speed. (f-h): Demonstration of the 2nd failure mode in Section . From the start
state, the policy moves the first object using the path shown in (f). It proceeds to move the next object using the path in (g). As
the game state approaches (h) it becomes clear that the current domain is no longer solvable. The lower object needs to be pushed
down but is blocked by the upper object, which can no longer be moved out of the way. In order to solve this level, the first
object must ether be moved to the bottom goal or must be moved after the second object has been placed at the bottom goal.
Both solutions require a look-ahead consisting of 20+ steps.

any node i. We then use the quantity (N − v)(1− pi)/2 as
the heuristic, where N is the total number of nodes and v
is the number of visited nodes in the current partial path.
Multiplying by (N − v)/2 puts the output of the heuristic on
the same scale as the current cost of the partial path.

Deep VS Shallow Networks

Here we present another experiment to further establish the
claim that the depth of the network improves performance
and not necessarily the number of parameters in the network.
In Table 2 we compare deep networks against shallow net-
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works containing the same number of parameters. Note that
we evaluate based on two different metrics. The first met-
ric is classification error on the next action, which shows
whether or not the action matches what the planner would
have done. The second metrics is execution success rate, as
defined above.

Evaluation of Bootstrap Performance

We briefly summarize the evaluation of data bootstrapping in
the Sokoban domain. Table 1 shows the success rate and plan
length prediction error for architectures with and without the
bootstrapping. As can be observed, the bootstrapping resulted
in better use of the data, and led to improved results.
While investigating the performance of data bootstrap-

ping with respect to training set size, we observed that a
non-uniform sampling performed better on smaller datasets.
For each τ ∈ Dimitation, we sampled an observation ô from
a distribution that is linearly increasing in time, such that
observations near the goal have higher probability. The per-
formance of this bootstrapping strategy is shown in Figure
5. As should be expected, performance improvement due to
data augmentation is more significant for smaller data sets.

Analysis of Failure Modes

While investigating the failure modes of the learned GRP in
the Sokoban domain, we noticed that there were two primary
failure modes. The first failure mode is due to cycles in the
policy, and is a consequence of using a deterministic policy.
For example, when the agent is between two objects a de-
terministic policy may oscillate, moving back and fourth be-
tween the two. We found that a stochastic policy significantly
reduces this type of failure. However, stochastic policies have
some non-zero probability of choosing actions that lead to a
dead end (e.g., pushing the box directly up against a wall),
which can lead to different failures. The second failure mode
was the inability of our policy to foresee long term depen-
dencies between the two objects. An example of such a case
is shown in Figure 7 (f-h), where deciding which object to
move first requires a look-ahead of more than 20 steps. A
possible explanation for this failure is that such scenarios are
not frequent in the training data. This is less a limitation of
our approach and more a limitation of the neural network,
more specifically the depth of the neural network.

Additionally, we investigated whether the failure cases can
be related to specific features in the task. Specifically, we con-
sidered the task plan length (computed using FD), the number
of walls in the domain, and the planning time with the FD
planner (results are similar with other planners). Intuitively,
these features are expected to correlate with the difficulty of
the task. In Figure 7 (a-c) we plot the success rate vs. the
features described above. As expected, success rate decreases
with plan length. Interestingly, however, several domains that
required a long time for FD were ‘easy’ for the learned policy,
and had a high success rate. Further investigation revealed
that these domains had large open areas, which are ‘hard’ for
planners to solve due to a large branching factor, but admit a
simple policy. An example of one such domain is shown in
Figure 7 (d-e). We also note that the number of walls had no

visible effect on success rate – it is the configuration of the
walls that matters, and not their quantity.
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Abstract

In this paper, we are concerned with making the execution of
abstract action plans for robotic agents more robust. To this
end, we propose to model the internals of a robot system and
its ties to the actions that the robot can perform. Based on
these models, we propose an online transformation of an ab-
stract plan into executable actions conforming with system
specifics. With our framework, we aim to achieve two goals.
First, modeling the system internals is beneficial in its own
right in order to achieve long term autonomy, system trans-
parency, and comprehensibility. Second, separating the sys-
tem details from determining the course of action on an ab-
stract level leverages the use of planning for actual robotic
systems.

Introduction

Despite promising advances in planning systems, they see
surprisingly little use in actual robotics environments. We
believe this is because solving a planning task by itself is
not sufficient to accomplish high-level behavior control of a
robotic system. For one, the robot’s platform (i.e., its hard-
ware and low-level software components) often requires ad-
ditional constraints that are ignored during planning, e.g.,
a domestic service robot participating in RoboCup@Home
(Wisspeintner et al. 2009) must calibrate its arm before per-
forming any manipulation tasks. During planning, we do not
want to plan for all the requirements of the underlying plat-
form, as this would increase the problem size significantly
and would make it infeasible in practice. However, ignoring
those constraints at the behavior level and dealing with them
at the lower levels is often impossible, because platform con-
straints may entail changes to the action plan.

Another reason for such a separation of high-level be-
havior and low-level platform is a design problem: When
modelling the domain, an agent programmer usually does
not want to deal with the robot platform. On the other
hand, a platform designer should not need to consider and
adapt the high-level behavior when modifying the platform.
Also, a robot often has to deal with failed actions, unex-
pected changes, and exogenous events. Thus, a considerable
amount of monitoring is required when executing a high-
level plan on a robot.

For these reasons, we propose a framework that allows the
modelling of the robot platform and its constraints indepen-

dent of the behavioral component. While designing the plat-
form, the user designs a self model of the robot and defines
all the constraints of the platform. The world model of the
agent can be designed without taking low-level constraints
into account. During execution, the abstract action plan is
transformed into a concrete executable plan that satisfies the
constraints of the lower levels.

To actually achieve a separation between the problem do-
main and platform-related execution concerns, the platform
needs a certain degree of “self-awareness” in terms of its
components, their capabilities, their states and their inter-
dependencies. Our goal in this paper is to sketch out re-
quirements for a logically founded constraint language that
can be used by platform experts to explicitly model compo-
nent state transitions, dependencies among them, error con-
ditions and possible recovery strategies, including the po-
tential need for human assistance. The result is an agent
system capable of self-maintenance by generating platform-
specific monitoring and recovery strategies from the plat-
form model and a platform-independent action plan. This
eliminates much of the expert intervention that is required
to keep robots running in dynamic domains, while provid-
ing a generic framework that helps in decoupling strategic
decision-making from any platform details.

Foundations & Related Work

Especially the research into planning systems that is fo-
cused on temporal coordination of (concurrent) actions is of
particular interest to our endeavour (Tsamardinos, Muscet-
tola, and Morris 1998; Jónsson et al. 2000; Kim, Williams,
and Abramson 2001; Lemai and Ingrand 2004). In theory,
it would allow generalizing both the domain logic and the
platform details as a temporal planning problem.

Temporal optimization and parallelization of platform-
dependent operations is also being performed successfully
at the task execution level. Keith et al. (2009) employ a
temporal network that describes platform constraints to re-
order and optimize the manipulator trajectories specified
by a sequential plan. Konečnỳ et al. (2014) separate the
strategic planning layer that only handles an abstract do-
main conceptualization from the detailed execution strategy
that makes a plan executable on a real robot. However, the
Consistency Based Execution Monitoring directly maps ab-
stract, but fully grounded plan elements to a domain-specific
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execution strategy, without specifying an explicit platform
model.

Kunze, Roehm, and Beetz (2011) introduce the Semantic
Robot Description Language (SRDL) to bridge the gap be-
tween purely kinematic description languages and the more
abstract level at which task specifications are usually for-
mulated. They leverage the Web Ontology Language (Bech-
hofer et al. 2004) to model how domain-specific actions
depend on platform-specific components that are required
to realize them. Waibel et al. (2011) use SRDL to imple-
ment a shared knowledge base that allows robots to improve
their search and execution strategies with previous observa-
tions possibly made by other robots. In this case, the knowl-
edge base covers both platform-specific and domain-specific
knowledge within a common deduction engine based on De-
scription Logic (Baader 2003). The works based on SRDL
are related to our work in their purpose, but differ signifi-
cantly in that the SRDL model is purely a translation layer
that sits between the abstract action plan and the executive
layer. As such, SRDL specifications cannot be used to mod-
ify execution strategies at runtime, and thus cannot be used
to dynamically deduce error recovery strategies. Mansouri
and Pecora (2016) describe a constraint-based approach to
hybrid reasoning with a meta-CSP that describes the differ-
ent types of knowledge. The CSP is solved by a meta-solver
that combines different kinds of reasoners. CHIMP (Stock et
al. 2015) uses HTNs to solve such constraint-based hybrid
reasoning tasks. HTN-based task decomposition approaches
often model platform details as part of the planning prob-
lem. Dvorák et al. (2014) limit the problem size by delegat-
ing execution monitoring to a PRS subsystem with a simple
success/failure interface.

Based on the Situation Calculus (McCarthy and Hayes
1969), the action language GOLOG allows a programmer to
intermix imperative programming with planning on a logi-
cally formulated domain model (Levesque and Lakemeyer
2008). READYLOG (Ferrein and Lakemeyer 2008) extends
the search functionality of GOLOG to allow for decision-
theoretic planning. Finzi and Pirri (2005) provide a theo-
retical integration of the Situation Calculus with temporal
constraints. De Giacomo, Reiter, and Soutchanski (1998)
define an execution monitor in Golog that allows to re-
act to unexpected changes during execution. Hofmann et
al. (2016) interleave PDDL-based planning with Golog-
based execution for monitoring purposes. Schiffer, Wort-
mann, and Lakemeyer (2010) describe an online transforma-
tion of a READYLOG program by inserting actions to satisfy
qualitative temporal platform-specific constraints, under the
assumption that agent domain and platform domain are dis-
junct.

Approach

Our goal is to design a framework that allows the user to
formulate a platform constraint model that describes inter-
nal and external dependencies of component states, both in
terms of hardware and software. An agent framework can
then turn an abstract plan into a platform-specific execution
and monitoring strategy that satisfies these constraints. This

Off

Ready for Calibration

Error

Calibrating Ready Parked

Busy

calibrate()
[4, 5]s park()

move()[0, 10]s

move()

Figure 1: A finite state machine as a platform model for
the Katana arm with three types of transitions: agent actions
(black/solid), system events (blue/dotted), exogenous events
(red/dashed). The edges are annotated with their action and
expected time bounds.

allows a separation of the high-level program from the spe-
cific platform properties while complying with the platform
constraints. In the following, we present the different com-
ponents of such a framework.

Platform Models

Figure 1 shows an example for a model of a robotic manip-
ulator arm, the Katana. Before the Katana arm can be used,
it needs to be calibrated. Initially, the arm is turned off. It
can only start its calibration process from a specific cali-
bration position, so a human assistant must move the arm
into the right position and then turn it on, which brings the
arm into the state Ready for Calibration. From that state, the
agent can decide to start the calibration. Note that this usu-
ally does not happen automatically, because the agent first
has to make sure that it is in a location that allows an arm
calibration, and second it may not need the arm at all. Since
calibration is time-consuming, it should only be done if the
arm is actually required. When the calibration is finished,
the component driver triggers a transition to either the Error
state or the Ready state. Similar to Schiffer, Wortmann, and
Lakemeyer (2010), we model system components as state
automata. But as the example in Fig. 1 shows, we need to
differentiate between different kinds of transitions: 1. ac-
tions by the agent (black), 2. events triggered by the system
(blue), 3. exogenous events (red).

Suitable Automata Models The platform model shown in
Figure 1 is a finite state automaton with multiple edge types.
However, more expressive automata models may be required
to represent platform components. Consider a navigation
stack that depends on the states of several low-level com-
ponents, e.g., collision avoidance and localization. Each of
these components will be modeled separately, but we might
also want to formulate constraints on composite states cov-
ering multiple components. Hierarchical state machines as
described in Girault, Lee, and Lee (1999) may be suitable to
formulate such component-level abstractions. Timed transi-
tions, such as the transition Calibrating → Ready may be
modeled with timed automata (Alur and Dill 1994). While
we will not change the foundation of our high-level rea-
soning, i.e., a situation calculus-based framework, we might
consider a Petri-Net-based model such as the one described
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by Ziparo et al. (2011) for the component description as
well.

Constraints

Platform constraints define properties that must always hold
during the execution of the action plan. Based on Figure 1
and using Allen’s interval relations (Allen 1983), we can de-
fine multiple constraints that must hold for the arm:
1. To calibrate the arm, the robot must be at a free location
(i.e., a location without close objects).

free(at(x)) during state(arm) = Calibrating

2. When starting to pick up an object, the arm must be ready
or parked.

state(arm) = Ready meets pickup(x)∨
state(arm) = Parked meets pickup(x)

3. Whenever the robot is moving, the arm must be parked.

state(arm) = Parked during

state(navigation) = Moving

Quantitative Temporal Constraints The examples above
are qualitative temporal constraints. However, some com-
ponents also require quantitative temporal constraints. Con-
sider an RGBD camera that is used for perception. We can
formulate the following constraints about the camera:
1. The camera needs some time to initialize, and therefore

needs to be started one second before it can be used:

state(camera) = Running before≥1s detect(x )

2. On the other hand, image processing is expensive, and
thus should only be turned on if it is actually used within
the next two seconds:

state(camera) �= Running unless≤2s detect(x )

The constraints above will be formulated in a temporal ex-
tension of the Situation Calculus and may refer to states
of system components, fluents, and actions. While previous
work only allowed qualititative temporal constraints (Schif-
fer, Wortmann, and Lakemeyer 2010), we want to allow for
quantitative temporal constraints. In order to do so, we will
extend the Situation Calculus based on Reiter (1996) and
Gabaldon (2003) with qualitative and quantitative tempo-
ral aspects and embed the Metric Interval Temporal Logic
(MITL) (Alur, Feder, and Henzinger 1996) into the Situa-
tion Calculus.

Events, Temporal Constraints, and Concurrency

The model of the Katana arm shown in Figure 1 has three
kinds of edges: 1. Action edges that are directly triggered
by the agent and are therefore under agent control, 2. Events
that are triggered by the component itself, e.g. to end a du-
rative action, 3. Exogenous events that are triggered by an
external participant not under the agent’s direct control, e.g.,
a human. Previously, both kinds of events were modeled as
explicit exogenous actions with respective waiting actions.

In our approach, we want to make use of concurrency in
Golog with the waitFor construct (Grosskreutz and Lake-
meyer 2003).

If we want to use the model of a system component to
plan for a certain system configuration, e.g., a calibrated
arm, we need to know about expected events. As an exam-
ple, if the agent decides to start the calibration, it expects
the calibration to finish successfully. If this was not the case,
the agent could not cause state changes of system compo-
nents in a meaningful way, as the outcome of any event tran-
sitions would be unknown. In addition to the information
which transition is to be expected, we also annotate system
events with expected time bounds. This allows the agent not
only to reason about which event will occur, but also when
it will occur. In the Katana example, we annotate the edge
Calibrating → Ready with the expected time bounds [4, 5],
i.e., we expect the calibration to take at least four and at most
five seconds. This way, the agent knows that it needs to start
the calibration at least five seconds before it can use the arm.

Action Plan Transformation & Constraint
Satisfaction

Given a platform-specific constraint model, an abstract ac-
tion plan can be transformed into a platform-specific ac-
tion plan that satisfies all constraints. To create such a
plan, first the Golog interpreter determines an abstract ac-
tion plan as usual. Next, the constraints are transformed
into constraint networks (Dechter, Meiri, and Pearl 1991;
Meiri 1996). In contrast to Finzi and Pirri (2005), we will not
make use of timelines, but instead restrict our approach to in-
terleaved and possibly true concurrency in order to allow a
simpler formalization. Additionally, our approach will sup-
port quantitative constraints. The resulting constraint net-
work will be evaluated with existing constraint solvers. A
solution of the constraint network will determine the or-
der of events with their interval limits. Platform constraints,
e.g., state(arm) = Ready , must be transformed into ac-
tions by determining a suitable action sequence based on the
platform model. The method of determining this action se-
quence depends on the underlying state machine model. For
a simple state machine as shown in Figure 1, the actions can
be determined by searching for a sequence of transitions that
result in the desired state. For other, more expressive mod-
els, more complex methods may be necessary.

In some cases, such as the calibration of the Katana arm,
inserting a single action may suffice. In other cases, the orig-
inal action plan must be modified, e.g. to actively seek out
localization features before some delicate manipulation task
can be performed. Thus, a clear separation of the abstract
agent and the plan transformation is not always possible and
significant modifications of the original plan may be neces-
sary. For this reason, the transformation of the abstract ac-
tion plan into an executable plan will be part of the high-
level agent and implemented within the Golog interpreter.

Conclusion

We presented a concept for an agent system with an explicit
model of the robotic platform and its constraints. The robotic
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platform is modeled with state automata based on timed au-
tomata and hierarchical state machines and allows multiple
transition types for agent actions, system events, and exoge-
nous events. Based on these models, the user can formu-
late constraints in an extension of the Situation Calculus,
which allows to define platform-specific, quantitative tem-
poral constraints. During execution, the abstract action plan
is modified to satisfy all constraints of the underlying plat-
form. The proposed agent system allows the user to separate
behavior control and platformmanagement while taking into
account that the constraints may require significant changes
to the abstract action plan, which are handled by the agent
system during execution.
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Abstract

We investigate the scenario that a robot needs to reach a des-
ignated goal after taking a sequence of appropriate actions in
a non-static environment that is partially structured. One ap-
plication example is to control a marine vehicle to move in
the ocean. The ocean environment is dynamic and the ocean
waves typically result in strong disturbances that can disturb
the vehicle’s motion.
Modeling such dynamic environment is non-trivial, and in-
tegrating such model in the robotic motion control is partic-
ularly difficult. Fortunately, the ocean currents usually form
some local patterns (e.g. vortex) and thus the environment
is partially structured. The historically observed data can be
used to train the robot to learn to interact with the ocean flow
disturbances. In this paper we propose a method that applies
the deep reinforcement learning framework to learn such par-
tially structured complex disturbances. Our preliminary re-
sults show that, by training the robot under artificial and real
ocean disturbances, the robot is able to successfully act in
complex and spatiotemporal environments.

Introduction and Related Work

Acting in unstructured environments can be challenging es-
pecially when the environment is dynamic and involves con-
tinuous states. We study the goal-directed action decision-
making problem where a robot’s action can be disturbed by
environmental disturbances such as the ocean waves or air
turbulence.

To be more concrete, consider a scenario where an un-
derwater vehicle navigates across an area of ocean over a
period of a few weeks to reach a goal location. Underwa-
ter vehicles such as autonomous gliders currently in use can
travel long distances but move at speeds comparable to or
slower than, typical ocean currents [Wynn et al., Smith et
al.]. Moreover, the disturbances caused by ocean eddies of-
tentimes are complex to be modeled. This is because when
we navigate the underwater (or generically aquatic) vehicles,
we usually consider long term and long distance missions,
and during this process the ocean currents can change sig-
nificantly, causing spatially and temporally varying distur-
bances. The ocean currents are not only complex in patterns,
but are also strong in tidal forces and can easily perturb the

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Ocean currents consist of local patterns (source:
NASA). Red box: uniform pattern. Blue box: vortex. Yellow
box: meandering

underwater vehicle’ motion, causing significantly uncertain
action outcomes.

In general, such non-static and diverse disturbances are a
reflection of the unstructured natural environment, and of-
tentimes it is very difficult to accurately formulate the com-
plex disturbance dynamics using mathematical models. For-
tunately, many disturbances caused by nature are seasonal
and can be observed, and the observation data is available for
some time horizons. For example, we can get the forecast,
nowcast, and hindcast of the weather including the wind (air
turbulence) information. Similarly, the ocean currents infor-
mation can also be obtained, and using such data allows us
to train the robot to learn to interact with the ocean currents.

Recently, studies on deep and reinforcement learning have
revealed a great potential for addressing complex decision
problems such as game playing [Mnih et al., Silver et al.,
Oroojlooyjadid et al.].

We found that there are certain similarities between
our marine robots decision-making and the game play-
ing scenarios if one regards the agent’s interacting plat-
form/environment here is the nature instead of a game. How-
ever, one general critical challenge that prevents robots from
using deep learning is the lack of sufficient training data. In-
deed, using robots to collect training data can be extremely
costly (e.g., in order to get one set of marine data using
on-board sensors, it is not uncommon that a marine vehi-
cle needs to take a few days and traverse hundreds of miles).
Also, modeling a vast area of environment can be computa-
tionally expensive.

Fortunately, oftentimes the complex-patterned distur-
bance can be characterized by local patches, where a sin-
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gle patch may possess a particular disturbance pattern (e.g.,
a vortex/ring pattern) [Oey, Ezer, and Lee], and the total
number of the basic patterns are enumerable. Therefore,
we are motivated by training the vehicle to learn those lo-
cal patches/patterns offline so that during the real-time mis-
sion, if the disturbance is a mixture of a subset of those
learned patterns, the vehicle can take advantage of what it
has learned to cope with it easily, thus reducing the compu-
tation time for online action prediction and control. We use
the iterative linear quadratic regulator [Li and Todorov] to
model the vehicle dynamics and control, and use the pol-
icy gradient framework [Levine and Koltun] to train the net-
work. We tested our method on simulations with both artifi-
cially created dynamic disturbances as well as from a history
of ocean current data, and our preliminary results show that
the trained robot achieved satisfying performance.

Technical Approach

We use the deep reinforcement learning framework to model
our decision-making problem. Specifically, we use s, a to
denote the robot’s state and action, respectively. The input
of the deep network is the disturbance information which
is typically a vector field. Our goal is to obtain a stochas-
tic form of policy πθ(s, a) = P(a|s, θ) paramterized by θ
(i.e., weights of the neural network) that maximizes the dis-
counted, cumulative reward Rt =

∑T
t′=t γ

t′−trt′ , where T
is a horizon term specifying the maximum time steps and
rt is the reward at time t and γ is a discounting constant
between 0 and 1 that ensures the sum converges. A deep
convolutional neural network is used to approximate the op-
timal action-value function Q∗(s, a) = max

π
E[Rt|st, at, π].

More details of the basic model can be found in [Mnih et
al.].

Network Design

Since the ocean currents data over a period is available, we
build our neural network with an input that integrates both
the ocean (environmental) and the vehicle’s states. The envi-
ronmental state here is a vector field representing the ocean
currents (their strengths and directions). Fig. 2 shows the
structure of the neural network.

Specifically, the input consists of two components: envi-
ronment and vehicle states. The environment component has
three channels, where the first two channels convey informa-
tion of the x-axis and y-axis of the disturbance vector field.
Since in the environment we need to define goal states, and
there may be obstacles, thus, we use a third channel to cap-
ture such information. In greater detail, we assume that each
grid of the input map has three forms: it can be occupied by
obstacle (we set its value -1), or be free/empty for robot to
transit to (with value 0), or be occupied by the robot (with
value 1). The other component of the input is a vector that
contains vehicle state information, including the vehicle’s
velocity and its direction towards the goal. Note that we do
not include the robot’s position in input because we want the
robot to be sensitive only to environmental dynamics but not
to specific (static) locations.

Environ-
ment

Vehicle States

Convolutional Layer 1

Convolutional Layer 2

FC Layer 1

FC Layer 2

Softm
ax

Rew
ards

Drop Out

Convolutional Layer 3

FC Layer v1

FC Layer v2

Figure 2: Neural Network Structure

The design of internal hidden layers is depicted in Fig. 2.
The front 3 convolutional layers process the environment
information, while the vehicle states begin to be combined
starting from the first fully connected (FC) layer. The reason
of such a design lies in that, the whole net could be regarded
as two sub-nets that are not strongly correlated: one sub-
net is used to characterize features of disturbances, which is
analogous to that of image classification; the other sub-net is
a decision component for choosing the best action strategy.
In addition, such separation of input can reduce the number
of parameters so that the training process can be accelerated.

After each convolutional layer a max-pool is applied. The
vehicle states will pass through 2 FC layers, and then are
combined with the environmental component output from
convolutional layer 3 as the input to a successive FC Layer
1. Between FC Layer 1 and 2 there exists a drop-out layer
to avoid overfitting. The Softmax layer is used to normal-
ize outputs for generating a probability distribution that can
be used for sampling future actions. Additionally, the loss
funciton is calculated using this probability distribution as
well as the actual rewards.

Loss Function and Reward

We employ the policy gradient framework for solution con-
vergence. With the stochastic policy πθ(s, a) and the Q-
value Qπθ (s, a) for the state-action pair, the policy gradient
of loss function is L(θ) can be defined as follows:

∇θL(θ) = Eπθ

[
Qπθ (s, a)∇θlogπθ(s, a)

]
. (1)

To improve the sampling efficiency and accelerate the
convergence, we adopt the importance sampling strategy us-
ing guided samples [Levine and Koltun].

With the objective of reaching the designated goal, our re-
warding mechanism is therefore to minimize the cost from
start to goal. The main idea is to reinforce with a large pos-
itive value for those correct actions that lead to reaching the
goal quickly, and punish those undesired actions (e.g., those
take long time or even fail to reach the goal) with small or
even negative values. Formally, we define the reward r of
each trial/episode as:

r =

{
rs, succeeded,
−(αrs + (1− α)rd), failed.

(2)
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where

rs =
1∑

t πθ(s, a)||pt − pG||2 , (3)

rd = 1− e−Dmin . (4)

where ||pt − pG||2 denotes the distance from the t-th step
position to the goal state, and Dmin = mint||pt − pG||2 is
the minimum such distance along the whole path. The term
rs in Eq. (3) evaluates the state with respect to the goal state,
whereas the term rd in Eq. (4) summarizes an evaluation
over the entire path. Coefficient α ∈ [0, 1] is an empirical
value to scale between rs and rd so that they contribute about
the same to the total reward r. In our experiments α is set to
0.9.

Offline Training and Online Decision-Making

We train the robot by setting different starting and goal
positions in the disturbance field, and the experience re-
play [Mnih et al., Riedmiller] mechanism is employed.
Specifically, we define an experience as a 3-tuple (s, a, r)
consisting of state s, action a, and reward r. The idea is to
store those experiences obtained in the past into a dataset.
Then during the reinforcement learning update process, a
mini-batch of experiences is sampled from the dataset each
time for training. The process of training is described in Al-
gorithm 1, which can be summarized into four steps.

1. Following incumbent action policies, sample actions and
finish a trial path or an episode.

2. Upon completion of each episode, obtain corresponding
rewards (a list) according to whether the goal is reached,
and assign the rewards to actions taken on that path.

3. Add all these experiences into dataset. If the dataset has
exceeded the maximum limit, erase as many as the oldest
ones to satisfy the capacity.

4. Sample a mini-batch of experiences from the dataset. This
batch should include the most recent path. Then shuffle
this batch of data and feed them into the neural network
for training. If current round number is less than the max
training rounds, go back to step 1.

With the offline trained results, the decision-making is
straightforward: only one forward propagation of the net-
work with small computational effort is needed. This also
allows us to handle continuous motion and unknown states.

Results

We validated the method in the scenario of marine robot
goal-driven decision-making, where the ocean disturbances
vary both spatially and temporally.The simulation environ-
ment was constructed as a two dimensional ocean surface,
and the spatiotemporal ocean currents are external distur-
bances for the robot and are represented as a vector field,
with each vector representing the water flow speed captured
at a specific moment in a specific location.

The robot used in simulation is a underwater glider with
a kinematic motion model with state z = (x, y, φ) including

Algorithm 1: Training
round← 0
while round < n do
Obtain reward List〈s, a〉 of each episode.
experiences← ∅

for all 〈s, a〉 ∈ List〈s, a〉 do
r ← get reward(s, a)
experiences← experiences

⋃〈s, a, r〉
end for
subset← experiences
pad up subset to batch size with data from dataset
store experiences into dataset
shuffle subset
feed subset into neural network
perform back propagation
round← round+ 1

end while

(a) Input (b) Input(mix)

(c) Convolutional Layer 3

Figure 3: Illustration of disturbance features captured by
hidden layer

the vehicle’s position and orientation in the world frame, re-
spectively. Since the behavior of the vehicle on the 2D ocean
surface is similar to that of the ground mobile robot, thus
we opt to use a Dubins car model to simulate its motion.
(Similar settings can be found in [Yao, Wang, and Su, Mah-
moudian and Woolsey].) The dynamics can be written as:

ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω, (5)

where control inputs u = (v, ω) are the vehicle’s net speed
and turning rate, respectively. The dynamics are obvious
nonlinear and in the discrete time case are denoted as zt+1 =
f(zt, ut). Such non-linear control problem can be solved us-
ing the iterative Linear Quadratic Regulator (iLQR) [Li and
Todorov].

Network Training

We use Tensorflow [Abadi et al.] to build and train the net-
work described in Fig. 2. In our experiments, the input vec-
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Figure 4: Demonstration of the ocean currents and a path of
the robot

tor field map is 48 × 48, and the size of dataset for action
replay is set to 10000. The learning rate is 1e − 6, and the
batch size we used for each iteration is 500. We also set the
length of each episode as 1000 steps.

Fig. 3 shows some features extracted from internal layers
of the network. Fig. 3(a) illustrates the feature of a random
disturbance vector field. Specifically, the first two channels
of Fig. 3(a) are x and y components of the vector field, and
the grey-scale color represents the strength of disturbance.
The third channel of Fig. 3(a) is a pixel map that contains
the goal point (white dot) and obstacle information (black
borders).

Other grey grids denote free place. Fig. 3(b) shows a
mixed view of the features, with three channels colored in
red, green and blue, respectively. The picture depicts a local
vortex pattern with the vortex center located near the upper
left corner. Fig. 3(c) shows outputs of convolutional layer
3, from which we can observe that the hidden layers extract
some local features.

Evaluations

We implemented two methods: one belongs to the control
paradigm and we use the basic iLQR to compute the con-
trol inputs; the other one is the deep reinforcement learning
(DRL) framework that employs the guided policy mecha-
nism, where the policy is guided by (and combined with)
the iLQR solving process [Levine and Koltun].

Artificial Disturbances We first investigate the method
using artificially generated disturbances. We tested differ-
ent vector fields including vortex, meandering, uniform, and
centripetal patterns.

For different trials, we specify the robot with different
start and goal locations, and the goal reaching rate is cal-
culated by the times of success divided by total number of
simulations.

The results in Table 1 show that within given time limits,
both the iLQR and DRLmethods lead to a good success rate,

and particularly the DRL performs better in complex envi-
ronments like the vortex field; whereas the iLQR framework
has a slightly better performance in relatively mild environ-
ments where current speed is low, like the meander distur-
bance field.

Then, we test the average time costs, as shown in Table 2.
The results reveal that the trials using iLQR tend to use less
time than those of the DRL method. This can be due to the
“idealized” artificial disturbances with simple and accurate
patterns, which can be precisely handled by the traditional
control methodology.

Disturbance
pattern Method Num of

trials
Num of
success

Success
rate

Vortex DRL 50 48 0.96
iLQR 50 46 0.92

Meander DRL 50 49 0.98
iLQR 50 50 1.00

Uniform DRL 50 49 0.98
iLQR 50 48 0.96

Centripetal DRL 50 49 0.98
iLQR 50 48 0.96

Table 1: Simulation with artificially generated disturbances

Ocean Data Disturbances In this part of evaluation, we
use ocean current data obtained from the California Re-
gional Ocean Modeling System (ROMS) [Shchepetkin and
McWilliams]. The ocean data along the coast near Los An-
geles is released every 6 hours and a window of 30 days of
data is maintained and retrievable [Chao].

An example of ocean current surface can be visualized in
Fig. 4, which also demonstrates a robot’s path from execut-
ing our training result.

Because the raw ROMS ocean data covers a vast area and
practically it requires several days for the robot to travel
through the whole space, thus, we randomly cropped local
areas to evaluate our training results. Fig. 5 demonstrates a
few paths generated in such randomly selected areas.

Similar to the evaluation process for the artificial distur-
bances, we also looked into those aforementioned perfor-
mances under the real ocean disturbances. We then evalu-
ate the success rate and time cost, and Table. 3 shows the
results (robot speed does not scale to map). Fig. 5 gives a
more friendly visualization of those three areas used in our
experiments. The results indicate that in most cases the DLR
performs better than the basic iLQR strategy.

Fig. 5(c) and 5(d) show scenarios that can be challenging
due to strong vortexes. Fig. 5(c) shows that by selecting a
good path going around the vortex, the robot successfully
reached the goal state. Note, in the area 3 of Fig. 5(d), a
very curvy path (e.g., near the goal point) could occur due
to some strong vortex in certain local areas. In this example,
the ocean current around the goal area has a speed approx-
imately equal to (or even greater than) the robot’s maximal
speed, but is against the robot’s moving direction, so that the
robot cannot easily proceed, and both DRL and iLQR even-
tually failed to reach the goal in this situation. A possible
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(a) area1 (b) area2 (c) area3 (d) area3

Figure 5: Examples of robot paths under different spatiotemporal disturbance patterns.

Pattern Method Num of
trials

Average
time cost

Vortex DRL 50 20.549
iLQR 50 14.811

Meander DRL 50 16.926
iLQR 50 15.367

Uniform DRL 50 17.667
iLQR 50 17.803

Centripetal DRL 50 20.220
iLQR 50 14.792

Table 2: Average time cost under artificial disturbances

Area Method Num of
trials Success rate Average

time cost

Area 1 DRL 15 1.00 13.787
iLQR 15 0.93 16.375

Area 2 DRL 15 1.00 14.998
iLQR 15 1.00 15.530

Area 3 DRL 15 0.60 22.875
iLQR 15 0.80 19.546

Table 3: Average time cost under ocean disturbances

solution is to manipulate the robot’s maximal speed to be
larger (this however may be against the reality).

From Table 1 to Table 3, we can conclude that the DRL
framework is particularly capable of handling complex and
(partially) unstructured environments.

Conclusions

In this paper we investigate applying the deep reinforce-
ment learning framework for robotic learning and acting in
partially-structured environments. We use the scenario of
marine vehicle decision-making under spatiotemporal dis-
turbances to demonstrate and validate the framework. We
show that the deep network well characterizes local features
of varying disturbances. By training the robot under artificial
and real ocean disturbances, our simulation results indicate
that the robot is able to successfully and efficiently act in
complex and partially structured environments.
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Abstract

We review the psychological notion of affordances and exam-
ine it anew from a cognitive systems perspective. We distin-
guish between environmental affordances and their internal
representation, choosing to focus on the latter. We consider is-
sues that arise in representing mental affordances, using them
to understand and generate plans, and learning them from ex-
perience. In each case, we present theoretical claims that, to-
gether, form an incipient theory of affordance in cognitive
systems. We close by noting related research and proposing
directions for future work in this arena.

1 Introduction and Background

Intelligent agents, both human and artificial, often operate
in the context of an external environment and interact with
entities therein. The agent can interact effectively with these
objects in some ways but not others. For instance, depend-
ing on its manipulators, an agent will be able to grasp, lift,
or throw some items but not different ones. Similarly, it can
sit or recline on some objects but not others. Gibson (1977)
referred to such relationships as affordances, a term that
has been widely adopted in perceptual psychology, human-
computer interaction, and, more recently, AI and robotics.

Gibson viewed affordances as existing in the environ-
ment, but others have used the term, rather differently, to
refer to internalized models of these relations. For example,
Vera and Simon (1993) have proposed that they are encoded
as symbol structures which the agent can use to guide its de-
cision making. They mapped affordances onto both the con-
dition sides of production rules and onto perceptual chunks
to which they refer. More recently, Sahin et al. (2007) and
Zech et al. (2017) have reviewed different formalizations in
robotics, focusing on relations between agents and the envi-
ronment. We will incorporate ideas from each of these ear-
lier efforts in our own analysis.

In this paper we present a high-level theory of affordances
that makes commitments about a number of key issues. Like
Vera and Simon, we focus on internal representations of af-
fordances that describe an agent’s ability for action. How-
ever, we move beyond their treatment to make more spe-
cific statements about the role of affordances in intelligence,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

focusing in turn on issues of representation, performance,
and learning. We propose theoretical postulates about affor-
dances that we feel are promising, but we do not report im-
plemented agents that incorporate these tenets or experimen-
tal evaluations of them, which we reserve for future work.

2 Representing Knowledge of Affordances

Because representation constrains both performance and
learning, we should address first how an intelligent agent
can encode affordances in memory and how they relate to
other cognitive structures. We distinguish between grounded
short-term elements, say a belief that the agent can lift a par-
ticular box, and generic long-term ones, say a predicate and
associated rule that specifies the class of situations in which
lifting is possible. The typical usage of ‘affordance’ focuses
on the grounded version, but we maintain that such elements
are always instances of generic structures, so the primary
representational challenges concern encoding the latter.

We hypothesize two distinct forms of knowledge: con-
cepts that denote classes of objects or relations among them;
and skills that specify the conditions in which multi-step ac-
tivities produce specific outcomes.1 Skills refer to concepts
when describing their conditions and effects, making the lat-
ter structures more basic than the former. This leads natu-
rally to our first theoretical postulate:

• Affordances are concepts that describe the class of situa-
tions and the characteristics of agents for which particu-
lar activities produce specific effects.

In other words, they are reified predicates that link the struc-
tures of objects and the features of agents that can use those
objects to achieve given ends. Affordances take the same
form as other concepts, in that they specify a predicate with
associated arguments and a set of conditions that describe
when they hold. The key difference is that each affordance
concept serves as the sole condition on a skill, indicating
when the latter produces its associated effects. Conceptual
memory also contains other concepts, such as ones that de-
scribe situations which result from a skill’s application.

Note that we view affordances as three-way relationships
among the way an object is used, structural aspects of that

1We have borrowed this disctintion from Li, Stacuzzi, and Lan-
gley’s (2012) ICARUS architecture, but it has roots in psychology.
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object, and characteristics of the agent that uses it. A typical
hammer has a handle with a head on one end, but it cannot
be used to drive a nail or spike unless the agent is strong
enough to lift and swing it. This means that a sledge ham-
mer may afford the hammering activity for some agents but
not others. Some conditions in an affordance concept will be
qualitative, but others will specify numeric relations, such as
whether a tool’s weight is less than what the agent can lift.

We also postulate that many affordances are matters of
degree. Some handles are easier for a given agent to grasp
than others, while some ladders are easier for that agent to
climb. This suggests that logical definitions of concepts, of-
ten assumed in AI, are insufficient. Instead, we propose that:

• Affordances are graded concepts that match situations
to greater or lesser degrees.

For instance, a hammer may be more or less usable by a per-
son depending on the difference between its weight and what
he can lift, among other factors. Probabilistic categories are
one way to support graded behavior, but any approach that
measures distance from a prototype or central tendency will
suffice. Most work in this tradition has assumed attribute-
value notations, but one can also define relational concepts
that match to different degrees (e.g., Choi 2010).

Finally, treating affordances as reified conceptual pred-
icates suggests another representational characteristic that,
we hypothesize, is especially important for describing ex-
tended activities that involve multiple steps:

• Complex affordances are decomposable into elements
that denote different aspects of usability.

For example, a tool has a hammering affordance when an
agent can grasp its handle, lift it upward, and propel its flat
head against the target. We can view each of these elements
as a distinct ‘subaffordance’ that must hold, for a given agent
and to a reasonable degree, to let the agent use a tool for
its intended function. A hammer may be light enough for a
person to lift, but it will not drive home a nail if its handle
is so slippery that it flies out of his grasp or if its head is so
narrow that it misses the target.

3 Using Knowledge of Affordances

Humans and other intelligent agents engage in two broad
classes of knowledge-based cognition. One involves inter-
preting situations and events in the environment, in some
cases the activities of other agents. For instance, we may
observe someone stacking some boxes but appear to have
difficulty lifting one that is too heavy. The simplest variant
is intention recognition, which assigns an agent’s behavior
to some known category, such as picking up a hammer or
stacking a box. A more complex version, plan understand-
ing (e.g., Meadows et al. 2014), infers an agent’s multi-step
plan, including goals it aims to achieve. Our next claim in-
volves two facets of this performance task:

• Affordances enable both proposal of hypotheses during
plan understanding and their evaluation.

To clarify hypothesis creation, suppose that we observe
someone holding a nail and reaching in the direction of two
objects, a hatchet and a screwdriver. The hatchet’s structure,

specifically its handle and the flat side of its head, can be
used to hammer the nail, suggesting this as a candidate in-
tention. The latter occurs because the hatchet’s description,
obtained through perception and inference, matches the af-
fordance conditions associated with hammering a nail. The
screwdriver does not lend itself structurally to this activity,
so it would not produce a comparable hypothesis.

The graded nature of affordances helps during evaluation
of candidate explanations. Given a set of observations, some
intentions and plans will be more plausible than others. For
example, suppose we observe someone in a room picking
up a shoe that has a flat heel. We might hypothesize that he
plans to put the object on his foot or that he plans to use it
to hammer a nail. The shoe can be used for both activities,
but it matches the affordance concept for placing on a foot
much better than it does the one for hammering. We can use
this degree of match in our evaluation of the two hypotheses
and conclude that the first alternative is more plausible.

The second performance task concerns generating activi-
ties that support one’s goals. As before, the simplest cases
involve selection of primitive actions, such as grasping a
glass or lifting a held box. More complicated variants in-
volve chaining sequences of actions into multi-step plans to
achieve the agent’s goals. This suggests another tenet:

• Affordances aid both the proposal of actions during plan
generation and their evaluation.

For instance, suppose we want a nail embedded in a wall and
we have two tools, a hatchet and a screwdriver. We might
use means-ends analysis to propose a hammering activity
that achieves the goal and then realize the hatchet, held in
a particular orientation, satisfies the affordance concept for
hammering, but the screwdriver does not. Or we might use
forward chaining to identify which affordances match the
current situation, retrieve their associated activities, and con-
sider the resulting states. Hammering the nail with the re-
versed hatchet is an applicable action that achieves the goal,
but no screwdriver-related activities are applicable. If the
nail were a screw, the situation would be inverted.

Affordances can also influence evaluation of candidate in-
tentions during the planning process. Suppose, again, that
we want a nail embedded in the wall, and that we have gen-
erated two possible intentions: hammering the nail with a
reversed hatchet and hammering it with a shoe. Both satisfy
the relational conditions of the graded affordance for ham-
mering, but the hatchet would match its specification better
than the shoe. The reasons involve both the relative abilities
for grasping the two tools and their capacities for driving the
nail into the wall even when they are held firmly.

4 Acquiring Knowledge of Affordances

Now that we have discussed the representation and use of
internal affordances, we can turn briefly to their acquistion
from experience. Recall that affordance concepts describe
the conditions under which an activity has a particular effect
for an agent. The AI community has pursued two different
approaches to learning about agents’ activities that suggest
a final theoretical postulate:
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• Primitive affordances are learned inductively whereas
complex affordances are learned analytically.

When an agent first interacts with a new object or situation,
it has little knowledge on which to build. In response, learn-
ing the conditions under which an action will have desired
effects – the affordance concept – is primarily empirical. For
example, this can occur by attempting to grasp different ob-
jects, with induction comparing configurations of successful
and unsuccesful cases (e.g., Shen and Simon 1989).

In contrast, acquisition of complex affordances occurs in
the presence of existing components, enabling use of ana-
lytic methods like those used to determine conditions on
macro-operators (Iba 1989). This involves composing the
conditions of actions not satisfied by the effects of those
that occur before them. For instance, if we have affordance
concepts for grasping a hammer’s handle, lifting it, and hit-
ting a nail with its head, then each of these would appear
as components of a complex affordance for hammering a
nail. Interactions among these elements may require induc-
tive refinement, but creation of an initial concept can occur
analytically based on a single training case. Li et al. (2012)
have adapted this compositional method to acquire defini-
tions for new conceptual predicates, in some cases recursive
ones, that serve as conditions on learned hierarchical skillls.

5 Related Research

Recent years have seen growing interest in internalized af-
fordances within the AI and robotics communities. Horton,
Chakraborty, and St. Amant (2012) review many of these
efforts, which often use visual processing to classify ob-
jects as appropriate for actions. Sahin et al. (2007) and Zech
et al. (2017) also offer insightful surveys of computational
research on the topic. We should examine how our theoreti-
cal claims relate to the growing body of work in this area.

• Affordances are concepts that map relations between
situations and agents on the effects of actions.

A review of the literature reveals that some aspects of this
statement are widely accepted but not others. Treatments
of affordances have always involved mapping objects or
situations onto action relevance, and many efforts to learn
such mappings produce conceptual descriptions or classi-
fiers. However, the notion that affordances involve inter-
actions between features of agents and features of objects
has been much less common. Stoffregen (2003) provides an
early and clear statement of this claim, but his treatment was
informal and, to our knowledge, AI and robotics papers have
only rarely incorporated his insight. We maintain that this
important idea deserves more attention in the computational
literature than it has received.

• Affordances are graded concepts that match situations
to greater or lesser degrees.

Prior researchers have not discussed this idea directly. For
instance, Sarathy and Scheutz (2016) describe an approach
that uses probabilistic rules to infer affordances of objects
for actions. Their framework shares our assumption that af-
fordances are reified concepts, but not that these mental
structures are graded. Zech et al. (2017) consider dynamic

affordances that vary with changing properties of objects,
but they remain Boolean in each case. They also suggest that
agents choose among objects based on appropriateness to a
given outcome, but stop short of proposing degrees of affor-
dance. Of course, probabilistic approaches can predict how
features of the agent and situation affect an action’s chance
of success, but graded affordances can also encode the time,
effort, and difficulty of achieving an objective. Thus, this
claim seems like an important contribution to the literature.

• Complex affordances are decomposable into elements
that denote different aspects of usability.

This idea appears in a few places but has not been explored
in detail. Zech et al. review a few papers that discuss a hi-
erarchy of affordances, including Ellis and Tucker’s (2000)
experimental studies of ‘micro-affordances’ as ‘potentiated
components’ of higher-level activities (e.g., turning a wrist
while reaching for an object). However, computational re-
searchers have generally focused on a single level of anal-
ysis. Therefore, the decomposition of complex affordances
into simpler elements, and the compositional semantics it re-
quires, is a notion that merits substantially more effort than
the community has given it to date.

• Affordances enable the proposal and evaluation of hypo-
theses during plan understanding.

This theoretical tenet is both uncontroversial and supported
in the literature, although few publications state it in these
terms. For instance, Sindlar and Meyer (2010) report a sys-
tem that uses logical reasoning about affordances to generate
hypotheses about a BDI agent’s intentions in a video game,
but also uses numeric scores to evaluate them. In contrast,
Freedman, Jung, and Zilberstein (2015) describe a proba-
bilistic approach that ranks all candidate activities, using in-
formation about tool affordances for evaluation but not hy-
pothesis generation. We encourage researchers who work in
this area to be more explicit about the ways in which affor-
dances guide their systems’ decision making.

• Affordances aid the proposal and evaluation of actions
during plan generation.

This postulate is also supported by publications in the area.
One example comes from Ugur, Oztop, and Sahin (2011),
who use learned object affordances during planning to pro-
pose candidate actions whose conditions match the current
state, but not to evaluate them. In contrast, Boularias et al.
(2015) use information about affordances, acquired by rein-
forcement learning, to evaluate alternative actions by com-
paring the values expected from their application.

• Primitive affordances are learned inductively whereas
complex affordances are learned analytically.

Nearly all computational research in this arena has focused
on acquiring primitive affordances and has relied exclusively
on inductive methods, which is consistent with the first half
of our claim. For instance, Kjellström, Romero, and Kragić
(2010) describe a statistical approach to learning primitive
affordances from observation for use in activity recognition,
whereas Ugur et al. (2011) learn action models from explo-
ration that map continuous features of objects to effect cat-
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egories. Similarly, Boularias et al. (2015) report a system
that estimates the expected values of actions in different sit-
uations, which they view as affordances, from delayed re-
wards. More interesting is recent work by Sridharan, Mead-
ows, and Gomez (2017) that learns primitive affordances in-
ductively and then combines them analytically into compos-
ite affordances on finding that sequences of actions achieve
the agent’s goals. However, this is the only work we have
found that addresses the second half of our final tenet.

In summary, a number of theoretical claims about affor-
dances appear to be novel, while others have received little
attention. Taken together, they offer a new perspective that
can drive work on embodied agents in interesting directions.

6 Concluding Remarks

In the preceding pages, we presented an account of affor-
dances in intelligent systems. Our theory postulated these
structures are reified concepts that specify when skills have
particular effects for given agents, that allow graded mem-
bership, and that can be composed from more basic affor-
dances. An intelligent system can use such structures to hy-
pothesize and evaluate candidate plans that help understand
others’ behavior and achieve its own goals. Finally, such
an agent can acquire affordance concepts from experience
through a mixture of inductive and analytic learning mecha-
nisms.We saw that others have explored some of these ideas,
but that some appear novel, and there is no existing account
of affordances that combines them into a unified theory.

In future research, we should incorporate these ideas into
an implemented system, ideally an existing agent architec-
ture that makes assumptions which are largely consistent
with the new postulates (e.g., Li et al. 2012). We should also
demonstrate the extended architecture on scenarios that il-
lustrate the representation, use, and acquisition of graded,
composite affordances for agents with different abilities. Fi-
nally, we should carry out experiments that test the benefits
of affordance-driven processing over alternative approaches
to intelligent systems. If studies reveal that this leads to bet-
ter explanations, more effective plans, and reduced search,
they will serve as evidence that supports the theory.
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Abstract

Learning is an important aspect of human intelligence. People
learn from various aspects of their experience over time. We
present an episodic infrastructure for learning in the context
of a cognitive architecture, ICARUS. After a review of this ar-
chitecture, we formally define the architectural extensions for
episodic capabilities. We then demonstrate the extended sys-
tem’s capability to learn planning operators using the episodic
traces from two Minecraft-like scenarios.

1 Introduction

Learning is of central importance to intelligent agents. From
the beginning of artificial intelligence back in 1950’s, re-
searchers have recognized that the learning process is inti-
mately tied to the nature of intelligence (Simon 1980). In
order to adapt to dynamic environments, intelligent agents
must possess mechanisms that allow them to acquire a broad
repertoire of relevant behaviors. For this reason, there has
been a significant amount of research on learning domain
models in a variety of manners. But we rarely find any theo-
ries that provide a complete account of how experiences are
gathered and how knowledge is derived from such experi-
ences over time.

Our research aims to provide an infrastructure for orga-
nizing and processing collected experience, which then es-
tablishes a foundation for an experiential learning in intel-
ligent agents. We model human episodic capabilities (Tulv-
ing 1983) in the context of a cognitive architecture, ICARUS
(Langley and Choi 2006), and attempt to bridge these ca-
pabilities with other learning modalities. In this paper, we
begin our study with the experiential learning of planning
operators including action and event models. This will pro-
duce agents capable of learning throughout their lives to
develop low-level expertise and adapt to dynamic environ-
ments. Such agents will also be able to recover from incor-
rect or incomplete knowledge over time. Additionally, be-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cause ICARUS learns structured models, agents retain the
advantage of explainability.

Our work is motivated by situated agents that learn in
changing, dynamic environments. Certainly, robots are one
kind of such agent, but this paper focuses on a simulated
domain described in the next section. After a description
of this illustrative domain, we review the ICARUS architec-
ture by providing necessary definitions that contextualize the
episodic extensions we describe next. Then we present some
preliminary results in the domain. Finally, we will discuss
related work before we conclude.

2 Illustrative Domain

To motivate our research on episodic agents and evaluate
our system’s capabilities, we use a simplified version of a
popular open-world game, Minecraft (Johnson et al. 2016),
where players attempt to survive in a continuous, dynamic
world by collecting resources, forging tools, building struc-
tures, and fighting enemies. Consider a novice agent learn-
ing from an expert player who starts at the lower left corner
of a room. There are resources scattered around the room
and a craft desk nearby the player. The player should gather
the resources to make a sword for protection, but there are
zombies in this room that guard the resources. The player
must be careful because she will lose health if a zombie at-
tacks her.

The expert player starts by selecting a resource and mov-
ing north toward it. Once she is on the same row as the re-
source, the player moves east toward it until she is on the
same column. Now the player is standing by the resource
and picks up the resource to hold it. But there was a zom-
bie in the same location, so the player’s health was reduced
while the player was standing there. Then she moves south
and then west to the craft desk. When the player arrives
there, she puts down the resource on the desk. After re-
peating this process several times, the expert player would
have gathered all the resources necessary to build a sword
and achieve its mission by crafting one. The novice observer
stores in its mind all the situations the expert has encoun-
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Figure 1: A 5x5 notional plot of Minicraft.

tered, and learns action and event models from them that it
will be able to use to play the game.

We began our work by creating a grid world, Minicraft,
that is inspired by the original Minecraft. Although simpli-
fied, this game captures enough dynamism to demonstrate
the learning ability of our system. Figure 1 shows a notional
view of Minicraft, which consists of four entities: resource,
craftdesk, zombie, and the agent. The only entities with dy-
namic properties are the zombie and the agent. The agent
begins at the star and moves one grid at a time while picking
up or dropping resources and crafting items. Zombies, once
placed on the map, are stationary, but provide dynamism to
the world by decreasing the agent’s health by one for every
moment that the agent resides in the same grid as the zom-
bie. All world dynamics, such as the effects of movement
and action are unknown to the observer.

3 ICARUS Review

As a cognitive architecture, ICARUS provides a framework
for modeling human cognition and programming intelligent
agents. The architecture makes commitments to its repre-
sentation of knowledge and structures, the memories that
store these contents, and the processes that work over them.
ICARUS shares some of these commitments with other archi-
tectures like Soar (Laird 2012) and ACT-R (Anderson and
Lebiere 1998), but it also has distinct characteristics like the
architectural commitment to hierarchical knowledge struc-
tures, teleoreactive execution, and goal reasoning capabili-
ties (Choi 2011). Section 3.1 describes the key knowledge
and memory structures of ICARUS, while Section 3.2 out-
lines how processes operate on these memories as part of a
cognitive cycle.

ICARUS learns in the context of propositional states and
action event models. Given a finite set of first order propo-
sitions P we define a propositional language L(P ), and a
finite set of labeled procedures, called actions, A such that
L(P ) ∩ A = ∅.

�������	

�������
�	�

����	�����	

�������
�	�

��������
�	�

��	��������
����	

���	��
���

������	�����
���� ���	����

�����!��	����

������"������

��	������

�������	

�������������
�	�

��������	���

��#������
�	���

Figure 2: ICARUS cycle prior to episodic memory extension.

3.1 Representation and Memories

ICARUS distinguishes two main types of knowledge: con-
cepts and skills which represent semantic and procedu-
ral knowledge, respectively. Both have parameterized (i.e.,
lifted) variants that are grounded when variables are as-
signed to objects. Figure 2 shows the long-term and short-
term memories of ICARUS, in which concepts and skills are
stored. Paramaterized concept and skill definitions are stored
in conceptual and procedural long-term memories, respec-
tively. Instances of these definitions are stored in their re-
spective conceptual or procedural short-term memories.

Concepts describe certain aspects of a situation in the en-
vironment. They resemble horn clauses (Horn 1951), com-
plete with a predicate as the head, perceptual matching con-
ditions, tests against matched variables, and references to
any sub-relations.

Definition 1 (Concepts (C)) A primitive concept is defined
over P as ci = 〈λ, ε〉 where λ ∈ P known as the concept
head, ε denoting elements to pattern match in the world state
S, where S is a subset of P . Let Cp be the set of primitive
concepts. A non-primitive concept is defined over P ∪ Cp

as cj = 〈λ, ε, γ〉 where γ denotes cj’s subrelations. We can
further define non-primitive concepts over P ∪ Cp ∪ Cn,
where Cn is the set of non-primitive concepts.

Figure 3 shows example concepts for Minicraft. The first,
north-of, is a primitive concept that describes the situ-
ation where a zombie is to the north of the agent, using
perceptual matching and test conditions for self and zom-
bie. The second, on-horizontal-axis, depicts a non-
primitive concept where a zombie is on the same horizontal
line as the agent. The third, standing-by, describes an
even more abstract non-primitive concept where the zombie
is standing right next to the agent.

Skills describe procedures to achieve certain concept in-
stances in the environment. These are hierarchical versions
of STRIPS operators (Fikes and Nilsson 1971) with a named
head, perceptual matching conditions, preconditions that
need to be true to execute, direct actions to perform in the
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((north-of ?o1 ?self)

:elements ((self ?self y ?y) (zombie ?o1 y ?y1))

:tests ((> ?y1 ?y)))

((on-horizontal-axis ?o1 ?self)

:elements ((self ?self) (zombie ?o1))

:conditions ((not (north-of ?o1 ?self))

(not (south-of ?o1 ?self))))

((standing-by ?self ?o1)

:elements ((self ?self) (zombie ?o1))

:conditions ((on-horizontal-axis ?o1 ?self)

(on-vertical-axis ?o1 ?self)))

Figure 3: Three ICARUS concepts in the Minicraft domain.

((gather-resource ?o1)

:elements ((self ?self) (resource ?o1))

:conditions ((not (carrying ?any))

(standing-by ?self ?o1))

:effects ((carrying ?o1))

:actions ((*pick-up-resource ?o1)))

((go-to ?o1)

:elements ((self ?self))

:conditions ((north-of ?o1 ?self))

:subskills ((go-up-to ?o1))

:effects ((standing-by ?self ?o1)))

((gather-resource ?o1)

:elements ((self ?self) (resource ?o1))

:conditions ((not (carrying ?any)))

:subskills ((go-to ?o1) (gather-resource ?o1))

:effects ((carrying ?o1)))

Figure 4: Three ICARUS skills in the Minicraft domain.

world or any sub-skills, and the intended effects of the exe-
cution.

Definition 2 (Skills (K)) Given the finite set of actions A,
a skill defined over C ∪ S where C is the set of con-
cepts and S is a propositional state, is a primitive skill if
ki = 〈ε, γ, α, σ, η〉, where pattern match conditions ε ⊆ S,
preconditions γ ⊆ {λ|〈λ, ·〉 ∈ C}, actions α ⊆ A, sub-
skills σ = ∅, and effects η ⊆ {λ|〈λ, ·〉 ∈ C}. Let Kp be the
set of primitive skills.

A skill defined over C ∪ S ∪Kp is a non-primitive skill if
kj = 〈ε, γ, α, σ, η〉, where ε ⊆ S, γ ⊆ {λ|〈λ, ·〉 ∈ C}, α =
∅, σ ⊆ Kh, and η ⊆ {λ|〈λ, ·〉 ∈ C}. Kh is the set of non-
primitive skills.

Figure 4 shows example skills for Minicraft. The first,
gather-resource, is a primitive skill that describes a
procedure to collect a resource that is executable when the
agent is not carrying anything and is standing next to the re-
source. This skill uses a direct action to pick up the resource
and its intended effect is carrying the resource. The bottom
two are non-primitive skills that use sub-skills: go-to uses
a sub-skill go-up-to to achieve the goal of standing near
the object, while gather-resource uses the two sub-
skills above it to collect a resource.

3.2 The ICARUS Cognitive Cycle

The ICARUS architecture operates in a cognitive cycle re-
peating two steps: conceptual inference and skill execution.
Conceptual inference is the process of creating concept in-
stances (i.e., beliefs). At the beginning of each cycle, the
system receives sensory input from the environment as a
list of objects with their attribute-value pairs; this can be
thought of as the world state and is represented as propo-
sitions. Based on this information, the architecture infers the
concept instances (i.e., beliefs) that are true in the current
state by matching its concept definitions to perceived objects
and other concept instances in a bottom-up fashion.

In summary, Figure 2 shows concept definitions housed
in the conceptual long-term memory are used to infer the
beliefs of the system from the world state and are stored as
concept instances in the conceptual short-term memory.

Definition 3 (Beliefs (B)) Let C be the set of concepts.
∀c = 〈λ, ε, γ, τ〉 ∈ C, ∃ belief b = 〈λ, ε, γ, τ, β〉 where
β represents bindings that ground b on the perceptual el-
ements, ε. Let B be the set of all possible beliefs, and let
B = 2B be the set of all belief states. A belief state s ∈ B.

Skill execution proceeds after conceptual inference
whereby ICARUS finds all the relevant skill definitions for
the current goal(s) that are executable based on the current
beliefs. ICARUS chooses a skill and sets it as its intention
and executes it in the world.

Definition 4 (Intentions (ι)) Let K be the set of skills.
∀k = 〈ε, γ, α, σ, η〉 ∈ K, there exists intention ι =
〈ε, γ, α, σ, η, β〉 where β represents bindings that ground ι
in the belief state.

Each cycle may introduce changes in the environment,
which may modify the sensory input for the next cycle, re-
sulting in new beliefs and intentions. The architecture iter-
ates in this manner until all of its goals are achieved or its
operations are terminated for any other reasons.

4 Constructing Episodes

We now shift our attention to extending ICARUS with an
episodic memory. In particular, we highlight the core data
structures of ICARUS’s Episodic Memory (Section 4.1), how
it encodes episodes within that memory through a process
called event segmentation (Section 4.2), and how it general-
izes episodes over time (Section 4.3).

4.1 The Episodic Memory

The episodic memory in ICARUS is a long-term, cue-based
memory that the agent uses to deliberately encode and
retrieve episodes. The architecture organizes its episodic
memory E = 〈ρ,F,T〉 in a compound structure composed
of an episodic beliefs-action cache ρ, a concept frequency
forest F, and the episodic generalization tree T.
Figure 5 shows how information is processed within the

episodic memory and is discussed through this section. ρ
acts as a storage for the agent’s unprocessed history. We as-
sume that the agent has sufficient memory to store the com-
plete beliefs-action sequence. F records counts for the num-
ber of times concepts and their instantiations as beliefs have
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occurred during the execution of the agent. T is the main
data structure that organizes and stores episodes; the con-
tents of T are used in the process of learning new skills. The
elements ρ and F (Definitions 5 and 6), discussed next, fa-
cilitate the workings of the event segmentation and episodic
encoding (Section 4.2). Generalization with T is discussed
in Section 4.3.

Since episodes are built on top of sequences of beliefs,
we introduce first the beliefs-action cache, which stores the
moment-by-moment changes in belief, inferred from the
world state, as well as the actions that were taken based on
those beliefs.

Definition 5 (Beliefs-action cache (ρ)) The beliefs-action
cache ρ, is an ordered sequence of belief-action pairs. This
cache stores a complete, detailed history of what the agent
observed. Figure 5 shows that the contents of the belief mem-
ory are inputs to the beliefs-action cache.

Once these traces are collected, they must be processed
for interesting events, which are tracked in the concept fre-
quency forest.

Definition 6 (Concept frequency forest (F)) Let X be a
set of location predicates, and let Y = {x.first|x ∈ S}
be the set of object types. A concept frequency tree is a tree
whose the root μ is a location predicate from X . The chil-
dren of μ are all the concepts the agent has observed in that
location. For each child concept, c, of μ, ∃ a set of types from
Y , to specify concept disjunctions. Under each disjunction,
j, there exists concept instances. Each node in the tree has
a count field, denoting the number of times this node has
been observed. A concept frequency forest is a collection of
concept frequency trees.

ICARUS uses F to model expectation violation. The agent
sets two thresholds: one for positive expectations and one
for negated expectations. Any belief with a conditional
probability, given the location, is greater than the positive
threshold is said to be expected. Any belief with a condi-
tional probability, given the location, is less than the negated
threshold is not expected to be in the state. A belief that vio-
lates an expectation is a significant belief, which prompt the
system to create an episode. This is a primitive method for
novelty detection that only uses spatial information, but we
can further extend the novelty detection method to include
the temporal domain as well.

The episode structure defined in Definition 7 represents
the agent’s experiences in the architecture. Once they are
stored in memory, episodes are processed to abstract general
rules that allow the agent to predict environmental dynamics.

Definition 7 (Episode (ε)) An episode is a tuple
〈Bs, Be,Σ, ψ〉, where Bs is the start state of the episode,
Be is the end state of the episode, Σ is the set of significant
beliefs in Be, and ψ is a count for the number of times the
episode has occurred.

During episodic encoding, the start and final states are
taken from the ρ (i.e., the beliefs-action cache). In the
current implementation, Bs and Be are consecutive belief
states, but our work does not require this. Our rationale is
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Figure 5: Block diagram depicting episodic memory compo-
nents and information flow starting from the belief memory.

psychologically inspired. When humans perform low-level
actions, kicking a soccer ball for instance, humans know that
the effect is not always observed in their next cognitive cy-
cle. The ball travels in time before it reaches the goal. This
dynamic is readily understood by most humans. Modeling
actions with temporally delayed effects is part of our future
work.

4.2 Episodic Encoding

Episodic Encoding in ICARUS is a two-step process. First,
ICARUS operates on the ρ to returns a new episode ε. This
is referred to as “Event Segmentation” in Figure 5. Once the
episode exists, the second process places it into the episodic
generalization tree. Algorithm 1 shows that encoding is trig-
gered by the presence of one or more significant beliefs in
belief state.

Algorithm 2 traces how episodes are inserted into the
episodic generalization tree. Suppose the generalization tree
contains several episodes. Γ is a list of sibling episodes un-
der parent � ∈ T If ∀εi ∈ Γ, (εi, ε) /∈ E then (�, ε) ∈ E.
That is ε becomes a child of �. A new episode has success-
fully been encoded into the episodic memory. If ∃εj � εj =
ε, then the counter for εj increments by one and ε is not
inserted.

On every cycle, ICARUS records the belief state and exe-
cuted actions into the episodic cache and updates F. When
the agent infers one or more significant beliefs, it encodes

Algorithm 1 CREATEEPISODE(ρ, loc, Bc)
1: ρ is beliefs-action cache
2: loc is current location
3: Bc is current belief state
4: Bprev ← last state in ρ
5: ρ← ρ.add(Bc, a)
6: sigs← GETSIGNIFICANTBELIEFS(Bc, loc)
7: if not NULL(sigs) then
8: ε← MAKEEPISODE(sigs, Bc, Bprev)
9: T ← INSERT(ε, T)
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Algorithm 2 INSERTEPISODE(ε,T)
1: queue← ∅
2: temp← root of T
3: match← ∅
4: p← ∅
5: while not NULL(temp) do
6: match← STRUCTURALEQ?(temp, ε)
7: if match is exact match then
8: temp.count← temp.count+ 1
9: Try to learn from temp if count high enough

10: BREAK
11: else if match is bc of unification then
12: temp.count← temp.count+ 1
13: queue← ∅
14: queue← temp’s children
15: Try to learn from temp if count high enough
16: p← temp

17: temp← queue.FIRST
18: queue← queue.POP

19: if null(temp) andmatch not exact then
20: p← p.ADDCHILD(ε)
21: T ← GENERALIZE(p, ε)

a new episode. The root node of the generalization tree is
the most general episode and is allowed to have an arbitrary
number of children. Under the root, episodes are grouped
according to structural similarity. Two episodes e1, e2 are
structurally similar if their significant beliefs unify. By
“unify” we mean that there must exist a binding set that
transforms the significant beliefs of e1 to those of e2 and
vise versa. This is a rigid generalization scheme that needs
more consideration in future work. Each child is a k-ary tree
where k ∈ N. Episodes become more specific at each de-
creasing level of the tree according to structural similarity.
At the leaf nodes exist fully instantiated episodes.

4.3 Episodic Generalization

ICARUS supports generalization of the episodic tree dur-
ing encoding of episode, εi. Definition 8 shows that an
episode hierarchy is induced by structural similarity. Two
sibling episodes εi, εj generalize iff ∃ episode εg such that
(εg, εi) ∈ E and (εg, εj) ∈ E, but (εi, εg) /∈ E and
(εj , εg) /∈ E. This means that εg unifies with its children,
εi, εj , but its children cannot unify with it because they con-
tain more specified bindings. If εg exists, ICARUS tests to
see if it is still more specific than the parent of εi. If so, then
εg’s parent becomes εi’s parent and εg’s children become
εi, εj . The count for a generalized episode is the summation
of the count of its children.

Definition 8 (Generalization tree (T)) An episodic gener-
alization tree is a tree (V, E) where V is a set of episodes,
and E is a set of edges. For any εi, εj ∈ V, (vi, vj) ∈ E if
they are structurally similar. An episode is said to be gener-
alized or partially instantiated if the bindings contain one or
more unbound variables.

The generalization tree naturally lends itself to the learn-

ing process as a result of generalization. For example, if per-
son x drops a glass on the ground and it breaks, and person
y drops a glass on the ground and it breaks as well, ICARUS
forms a generalized episode that implies if anyone drops a
glass on the ground, it will break. The ability to gain knowl-
edge in this way is central to general intelligence. As the tree
adds more episodes, they are sorted into increasingly sensi-
ble taxonomies. The resulting tree after insertion is ICARUS’
best estimate of the ideal generalization tree. This organi-
zational structure was inspired by the incremental concept
formation literature (Gennari, Langley, and Fisher 1989).
As episodes become more general, the skills ICARUS learns
from those episodes are equivalently general. So, general-
izing skills is performed within the episodic generalization
tree, not the skill learning algorithm.

5 Skill Learning using the Episodic Memory

In previous work, ICARUS supported learning by observing
problem solving traces that include goals, conditions, and
the skills used (Nejati 2011). The system relied on the expla-
nations it generated based on the given trace, and this pro-
cess required, at the very least, primitive skills in ICARUS’
memory. In the current work, we start with only the concepts
that are sufficient to describe situations in the world but the
agent does not have any skills in its knowledge base.

ICARUS starts as an observer and records the history
of belief states and ground actions in its episodic mem-
ory. As its experience accumulates, the agent will insert an
episode whose count surpasses a predefined threshold for
model learning. At that moment, the system uses the ac-
tions from Bs → Be as a search cue for collecting other
episodes where that ordering of actions took place. This
trace of episodes is then used in the rule induction algorithm,
MLEM2 (Grzymala-Busse and Rzasa 2010). Although we
are using MLEM2, this need not be the case. Any rule learn-
ing algorithm may be used as long as there is a transforma-
tion from ICARUS’s representation of experience to the rep-
resentation that the learning algorithm requires. After learn-
ing, the agent can seamlessly utilize the learned skills during
problem solving.

5.1 Learning Action and Event Models

In order to learn models of the world, ICARUS must first
retrieve experiences via a retrieval cue. The system gen-
erates an observation, as defined in Definition 9 for each
episode that matches the cue. For the case of model learn-
ing, the retrieval cue is some subset of actions ai from A.
As the episodes are examined, matches are collected into an
episodic trace of evidence related to ai.

Definition 9 (Observations (O)) Let o = 〈si, ai, sf 〉 be an
observation from ρ, the beliefs-action cache, where si, sf ∈
ς are respectively initial and final belief states, and ai ⊆ Λ
be the set of actions that transformed si to sf An episodic
trace, O is a collection of observations.

MLEM2 learns rules from data tables, therefore, once the
episodic trace is obtained it needs to be transform O into a
table. The x-axis for this table is an enumeration of all the
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Belief �b �b ∩ {1, 3, 4}
(holding sword1) {1,2,3,4,5} {1,3,4}
(holding nothing) {6} ∅
(holding food1) {7,8} ∅
(next-to ?zombie) {1,3,4,7} {1,3,4}
(next-to tree1) {5,2, 6,8} ∅
(health good) {1,2,3,4,5,6,7,8} {1,3,4}

Table 1: Sample attribute and decision blocks.

unique beliefs in O, and the y-axis numbers each observa-
tion in O. Each belief, b on the x-axis has an associated list
, blockb = {i|〈sj , aj , sk〉 ∈ O[i], b ∈ sj} of the observation
indices it appeared in. The last column of the data table is the
list of the effects, fx for each associated observation. Table 1
summarizes the data table in a way that clearly shows each
belief’s block list. For example, the middle column states for
the first row, that the (holding sword1) belief was present in
observations 1 through 5.

For each effect, f in fx, the algorithm computes a list,
blockfx = {i|〈sj , aj , sk〉 ∈ O[i], f ∈ sk} of observation
indices that it appeared in as well. MLEM2 tries to find, for
each effect, conditions whose associated blocks cover the
effect block. These coverings are what are the learned action
and event models.

In this example, assume ai = ((∗attack)), and fx =
{((zombie-dead ?zombie), {1, 3, 4}), ((wood wood1), {2})}.l

MLEM2 attempts to find local coverings of fx from the
list of belief conditions. MLEM2 tries the pair (b, blockb)
whose listing, blockb intersected with an uncovered effect
block0fx = {1, 3, 4} is the largest. If blockb ≤ block0fx,
then that condition becomes a rule that covers that effect. If
blockc � block0fx then other conditions need to be added to
cover it. Once a rule has been found that covers all the cases
of for an effect, the same process repeats for the uncovered
effects in fx. In the example, the system learns the following
rule: (next-to ?zombie) ∩ (holding sword)→ (zombie-dead
?zombie).

In the ICARUS context, MLEM2 results are converted to
action and event models, which are primitive skills. The left
hand side of the rules become the preconditions, the right
hand side would be the effects of the skill. The action infor-
mation would capture what work needs to be done to realize
the effects.

6 Experimental Setup

The goal with this research was to create an agent that could
learn unknown domain dynamics from experience. Further-
more, we want a system that is flexible and continues learn-
ing over the course of its life to reflect the changes in the
world’s changing dynamics. We assume that the world is
fully observable, and that the agent has a vocabulary that
distinguishes belief states perfectly. Also, we assume effects
come immediately after actions, and that the environment is
not stochastic.

We tested on two scenarios. Each scenario has one ex-
pert with perfect concept and skill knowledge, and one ob-
server with full observability of the state, perfect concept

(achieve-bottom-horizontal-axis-and-more)

:conditions ((at minicraft) (north-of r1 me)

(north-of r3 me) (east-of r2 me)

(east-of r3 me) (east-of craftdesk1 me)

(north-of zombie2 me) (north-of zombie3 me)

(east-of zombie1 me) (east-of zombie2 me)

(good-health me) (on-ground r1)

(on-ground r2) (on-ground r3)

(on-vertical-axis r1 me)

(on-vertical-axis zombie3 me)

(on-horizontal-axis zombie1 me)

(on-horizontal-axis craftdesk1 me)

(on-horizontal-axis r2 me))

:actions ((*move-up))

:effects ((south-of ?r3 me) (south-of craftdesk1 me)

(south-of ?zombie3 me)

(bottom-of-horizontal ?zombie3)

(bottom-of-horizontal ?r3)

(bottom-of-horizontal craftdesk1))

(achieve-bottom-horizontal-axis-and-more)

:conditions ((on-horizontal-axis ?r3 me)

(on-horizontal-axis craftdesk1 me)

(on-horizontal-axis ?zombie3 me))

:actions ((*move-up))

:effects ((south-of ?r3 me) (south-of craftdesk1 me)

(south-of ?zombie3 me)

(bottom-of-horizontal ?zombie3)

(bottom-of-horizontal ?r3)

(bottom-of-horizontal craftdesk1))

Figure 6: Learned action models for the *move-up action
before (top) and after (bottom) generalization.

knowledge, but no skill knowledge (i.e., no knowledge of
the domain dynamics). We are primarily interested in what
action and event models the agent learns and know how they
change in response to new evidence. In the first scenario,
we place the expert at (1,1), and zombies and resources are
at the other three corners. At (5, 1) there exists a craftdesk.
The expert is tasked with collecting resources and placing
them on the craftdesk. For the case of the expert, this prob-
lem is easily solved, but for the novice, we are interested
in how well it learns the dynamics of the world. An exam-
ple of an event model would be knowing that being next to
a zombie reduces the agent’s health, and an example of an
action model would be learning about what happens to the
state when the agent moves.

The second scenario extends the first with the zombies
and resources have been randomly re-assigned to different
corners. This makes for two different, but structurally iden-
tical scenarios. By doing this, we ensure that the agent con-
structs episodes that will generalize with the other episodes
in its memory.

7 Results

We demonstrate that the agent is able to learn goal-directed,
specific or generalized action and event models from experi-
ence. Because of the episodic memory, ICARUS agents have
a mechanism for experiential learning which allows them
to learn world dynamics in the form of ICARUS skills. The
learned skills are continually revised according to evidence.

Figure 6 demonstrates how the action model for moving
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(achieve-fair-health-and-more)

:conditions ((good-health me) (on-ground r1)

(healthy-standing-by zombie3))

:actions (nil)

:effects ((fair-health me) (slouching-by me zombie3))

(achieve-fair-health-and-more)

:conditions ((good-health me)

(healthy-standing-by ?zombie2))

:actions (nil)

:effects ((fair-health me) (slouching-by me ?zombie2))

Figure 7: Action models for the event model before learning
(top) and after learning (bottom).

up changes with experience. The initial action model in Fig-
ure 6 (top) contains many irrelevant conditions, while the
final version (bottom) contains no irrelevant conditions; not
shown are intermediate versions. The same is true for the
event model the agent learns for achieving (fair health). Fig-
ure 7 shows that the irrelevant condition is removed from the
event model by the last refinement, where the event model
also successfully generalizes the initial version (top) to the
final version (bottom).

In our framework the system learns models based on the
agent’s interpretation of the ground truth. This is interesting
because it clarifies certain properties of inference. Specif-
ically, if an agent is lacking conceptual vocabulary to de-
scribe situations, its learned models will show evidence of
stochasm. In other words, there will be cases where the same
action occurred in identical belief states resulting in different
effects.

8 Related Work

Earlier research in action recognition and learning aims
to teach robots to recognize and perform human gestures
(Yang, Xu, and Chen 1997). In that work the researchers
used a discrete hidden Markov model to decode human
intentions, and to learn the motor actions that controlled
making gestures. Along this line, Liu et al. (2017) recently
developed a multi-task learning system that hierarchically
recognizes human actions. Also, another recent approach
attempted to learn control policies for continuous, non-
Gaussian stochastic domains (Wang et al. 2017). The work
describes a reinforcement learning system that learns an in-
complete policy for a discrete controller. Given the policy, a
robot executes the action for the nearest state to the current
one.

The main distinction from our work and these is that they
do not learn action models in the way that we have de-
fined them. The action models these systems learn are often
limited to scenario-specific transition functions, and control
policies. The semantic meaning of actions, however is still
unknown to the agent, so planning with the notion of explicit
goals is not possible. Moreover, when these system refer to
action models they typically refer to modeling the human
motor controls that produce gestures.

In addition to machine learning, researchers are also try-
ing to learn operator descriptions that can be used in per-

formance systems. As Langley and Simon point out, our
goal is to understand and characterize the invariants of in-
telligence. Building systems that help explain how novices
become experts in general is key to this endeavor. Wang et
al. (1994) created a system built on PRODIGY (Carbonell
et al. 1991) that incrementally learned planning operators
based on STRIPS (Fikes and Nilsson 1971) via observation
and practice. Expert demonstrations allowed the system to
estimate initial versions of the operators. The agent refined
its knowledge base by attempting to use learned operators
to solve problems. The system was able to learn subgoal or-
derings for the operators, but the system could not learn op-
erator decompositions, so operators were learned and stored
in a flat structure. Gil et al. (1994) discussed how imperfec-
tions in domain knowledge do not always lead to planning or
execution failures. They also presented a system that learns
to refine imperfect operators by experimenting. The experi-
mentation process can refine both operator pre and post con-
ditions.

Another system, ALPINE provided methods for induc-
ing abstraction hierarchies over operators (Knoblock 1990).
Given a set of low-level operators, the system could induce
abstraction hierarchies that reduced the search space.

Another interesting approach learned operators with as-
sociated numeric attributes to denote the utility of a partic-
ular operator (Garcı́a-Martı́nez and Borrajo 2000). In this
way the system favored more accurate operators. Walsh and
Littman (2008) addressed the problem of efficiently learn-
ing STRIPS-like operators via experience. They define their
own notion of an episode to be an initial state, s0 goal state,
and all state-action pairs following s0 until the problem is
solved or marked unsolvable. Their notion of episode, how-
ever, is not tied to a larger theory of episodic memory.

Lastly,Molineaux and Aha (2014) describe a surprise-
driven method for learning event models. Given a problem,
the system returned a plan of actions that would achieve
the goal as well as a sequence of expected state changes
caused by executing those actions. The system notices sur-
prises when discrepancies exist between actual and expected
state transitions. Discrepancies trigger an explanation mod-
ule, DISCOVERHISTORY to hypothesize the cause of the
discrepancies. When explanations fail, the system uses a
variant of FOIL to learn an action model that repairs bro-
ken explanations.

In our work we addressed the problem of model learning
from the vantage point of episodic memory for intelligent
agents. Other research has investigated episodic memory.
In the work most similar to ours, Nuxoll and Laird (2007)
extended the Soar architecture (Laird, Newell, and Rosen-
bloom 1987) with episodic memory. They present results for
action modeling in their work, but details about the learning
mechanism are left out. There are also significant theoreti-
cal differences between the episodic memory in ICARUS and
Soar. ICARUS has strong commitments to hierarchical or-
ganization of knowledge throughout the architecture, which
helps support our theory for incremental learning. Soar, al-
though it has had many successes, does not have such strict
commitments to hierarchy. In their architecture episodes are
stored in a flat container for experiences. Moreover, episodes
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in ICARUS have temporal components, meaning that they
contain a sequence of states, whereas Soar’s episodes do not
have any temporal dimension.

9 Conclusion

We presented a new extension to the ICARUS architecture
that allows agents to learn goal-directed planning operators
from episodic traces. Our results from the Minicraft do-
main showed that our theory incrementally learns skills in a
specific-to-general manner, and also refines skills based on
evidence. This evidence is collected from ICARUS episodic
memory, a dedicated facility for constructing, storing and
organizing experience.
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Abstract

Human-agent teaming is a difficult yet relevant problem do-
main to which many goal reasoning systems are well suited,
due to their ability to accept outside direction and (relatively)
human-understandable internal state. We propose a formal
model, and multiple variations on a multi-agent problem, to
clarify and unify research in goal reasoning. We describe ex-
amples of these concepts, and propose standard evaluation
methods for goal reasoning agents that act as a member of a
team or on behalf of a supervisor.

1 Introduction

An important focus of research on intelligent agents is to
achieve goals quickly and reliably. In recent years, goal rea-
soning researchers have considered the issue of goal change,
a process by which an agent can shift the overall focus of its
activities. This change can be prompted by a nameless out-
side goal source and/or an internal motivation model. In this
work, we advocate modeling the other agents whose goals
an agent attempts to achieve. With this model change, it be-
comes clear that goal reasoning agents are particularly well-
suited to being team players. We define a human-agent team-
ing model and problem, and discuss how future goal reason-
ing research can leverage it.

Research on goal reasoning has investigated multiple
framework abstractions for algorithms and agent architec-
tures (e.g., Goal-Driven Autonomy (Molineaux, Klenk, and
Aha 2010) and the Goal Lifecycle (Roberts et al. 2014)),
but has not focused on common problems. Areas such as
reinforcement learning and automated planning have bene-
fited greatly from such a focus, receiving additional attention
from competitions and comparing results via easy-to-use
benchmarks. While one problem may not suffice to compare
all goal reasoning agents, a small number of common prob-
lems could facilitate comparative publications, and thereby
focus goal reasoning research. This paper focuses on elab-
orating this position, and a candidate formal framework for
describing classes of problems; we expect that future work
will specify concrete representations and initial problems.

In Section 2, we provide a formal description of a general
human-agent teaming problem, along with several important

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

variations that are commonly encountered in goal reasoning
research. We then discuss some examples of the concepts
described in Section 3, and discuss useful metrics for com-
parison in Section 4. Finally, in Section 5 we conclude.

2 Models of Goal Reasoning for

Human-Agent Teaming

In recent work, goal reasoning systems have explicitly rea-
soned over the presence of other agents and their goals.
For example, goal reasoning agents may be aware that their
opponent in a real-time strategy game is attempting to de-
feat them (Weber, Mateas, and Jhala 2010; Jaidee, Muñoz-
Avila, and Aha 2013; Dannenhauer and Muñoz-Avila 2015),
that other agents may attack them (Bonnano et al. 2016),
or that other agents may impede them (Cox 2013). Other
work has described explicit exchange of goals and other in-
formation between agents and humans for the purpose of
general collaborative tasks (Geib et al. 2016), control of
unmanned vehicles (Richards and Stedmon 2017), and au-
tonomous community formation (Golpayegani and Clarke
2016). The framework presented here is designed to facil-
itate communication and comparison of agents that work
together in these ways. Concepts described here help with
the modeling of the goals, plans, and motivations of other
agents, especially those that reason over goals themselves.
In the spirit of the successful reinforcement learning prob-
lem (Sutton and Barto 1998), we describe a simple set of
functions and informational items intended to be general
enough to be easily applied and used by all agents that solve
these problems. In order to keep this framework generic and
approachable, we avoid committing to representations and
functions that many agents may not be able to provide.

In our model (Figure 1), a team is situated in an environ-
ment. This team can comprise goal reasoning agents, human
teammates, and other software agents. At each time t (t ∈ T ,
the set of discrete time points at which communications oc-
cur), each teammate observes the environment. The environ-
ment’s state is given by st (st ∈ S, the set of all environment
states), and teammate m (m ∈M , the set of teammates) re-
ceives an observation omt (omt ∈ O, the set of all observa-
tions). The environment creates individualized observations
for each agent; we model the observation generation pro-
cess as a function obsm : S → O. Teammates can perform
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Figure 1: Human-Agent Teaming Problem Model

an action at each time t, denoted amt (amt ∈ A, the set of
all actions). Changes in the environment are dependent on
these actions as well as the prior state, which we model as
the transition function λ : S ×A|M | → S. This generic rep-
resentation allows for description of a wide variety of envi-
ronments, including those with heterogeneous observability,
exogenous events, and role-based actions; however, it does
not permit continuous time.

Acting as teammates imposes some extra requirements on
an agent. Work in human factors (Klein et al. 2004) has rec-
ognized four distinct requirements for acting as a member of
team. Loosely summarized, they are: (1) agree on common
goals; (2) direct and take direction from other teammates; (3)
predict the behavior of other teammates and act in a way they
can predict; and (4) maintain a common understanding of the
shared environment. To support these requirements, in our
framework teammates communicate via requests and expla-
nations. A teammate m can make a request rm,n

t of another
teammate n ∈ M (rm,n

t ∈ R, the set of all requests). Re-
quests should describe everything agent m desires of agent
n at time t. They are used both for direction and describing
desired changes to common goals. Our model makes no spe-
cific commitment to representation; however, we expect that
goal reasoning agents might directly exchange lists of goals,
preferences, and constraints.

Explanations are intended to communicate information
about an agent’s internal state that motivates that agent’s cur-
rent behavior (e.g., “I moved the box because it was block-
ing my vision”, “My battery is low so my movement range is
limited”). Each teammate m provides an explanation xm,n

t
to each other teammate n (xm,n

t ∈ X , the set of all expla-
nations). These explanations should help other teammates
to understand an agent’s actions and predict their future ac-
tions, to facilitate coordination. One particular area of im-
portance is that an agent should explain why it does or does
not pursue another agent’s request; if an agent does not,
for example, have sufficient resources to succeed, this may
prompt the requester to provide resources or assistance.

Note that the explanations described here are proactive
and not query-based. While query-based explanations are an
important problem, a clean separation of agent-based coor-
dination and decision-making issues from natural-language

issues will permit objective evaluations and comparisons
without human interaction issues. We expect, however, that
an external query interface could be provided that translates
queries into informational requests.

Each teammate m uses the various pieces of informa-
tion they have received over time1 (i.e., observed environ-
ment states, received requests, and received explanations)
along with their sent requests (and, implicitly, their inter-
nal motivations) to guide their action selection policy πm :
O|T | × R|M | × X |M |×|T | × R|M | → A. This policy is ex-
pected to be dynamic, and may be influenced by an agent’s
interactions with its teammates, as well as by the environ-
ment. A typical goal reasoning agent’s policy may involve
considering and reselecting goals and replanning to achieve
them, but the model accommodates various types of policies.

We also model the satisfaction of each teammate, which
describes how well an agent’s desires are being met. Satis-
faction is a function of an agent’s observations (which may
indicate the achievement of desired states), requests made
and received (which help determine the success and failure
of collaboration), and explanations received (which may jus-
tify failures or provide confidence in the current collabora-
tion): satm : O|T |×R|M |×X |M |×|T |×R|M | → R. The sat-
isfaction of the entire team can also be modelled as a func-
tion of each teammate’s satisfaction (f(sat1, . . . , sat|M |));
optimizing this measure incorporates an agent’s own satis-
faction, as well as the estimated satisfaction of each of its
|M | − 1 teammates.

To exemplify how our model could be used in practice,
we describe it in terms of four variations on the human-
agent teaming problem that describe existing goal reasoning
work: single supervisor, silent teammates, silent assistant,
and rebel agent. These examples are not meant to be ex-
haustive, but instead to show that our model can represent
common team structures encountered in goal reasoning re-
search.

2.1 Single Supervisor

Even autonomous goal reasoning agents often receive goals
or tasks from an outside source. In this framework, we model
that source as an agent who makes requests and wants expla-
nations to understand what the agent is doing to fulfill them.
This results in the Single Supervisor version of the human-
agent teaming problem model, shown in Figure 2. In this
version, an agent has a single teammate whose satisfaction
it wishes to maximize, referred to as the supervisor. While
both teammates can sense and act in the environment2, the
superior-subordinate relationship results in requests and ex-
planations being unidirectional (i.e., the agent cannot make
requests of the supervisor and the supervisor does not ex-
plain itself to the agent). As such, the agent’s action selec-
tion policy does not include explanations it has received or

1We assume that, since the requests at the current time contain
the complete request to/from each agent, the policy does not need
to consider past requests. If this is not the case, the action selection
policy can be extended to include past requests.

2Although the supervisor does not need to be situated in the
environment.
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Figure 2: Single Supervisor version of the Human-Agent
Teaming Problem Model

Figure 3: Silent Teammates version of the Human-Agent
Teaming Problem Model

requests it has sent, and only deals with a single teammate
(the policy is simplified to π : O|T | × R → A). The pri-
mary performance measure for this problem is the supervi-
sor’s true satisfaction, measured either at the termination of
interaction, or as an average over time.

2.2 Silent Teammates

In the Silent Teammates version of the human-agent team-
ing problem model (Figure 3), an agent operates as a mem-
ber of a human-agent team, but does not receive any direct
requests from its teammates. This is an unusual teaming ar-
rangement, but necessary when a team is communication-
restricted in some way (possibly to avoid giving an adver-
sary knowledge). In this problem, the agent does not make
requests of other teammates, nor expect explanations from
them. However, the agent still provides an explanation on
demand, to assist teammates in understanding when they
have questions. An example of such a goal reasoning agent
is the Autonomous SquadMember (ASM), an agent control-
ling an unmanned ground vehicle that is embedded in a team
of humans (Gillespie et al. 2015). The ASM agent must infer
and respond to teammates’ desires (e.g., follow along, pro-
vide cover in a fight) without explicit requests. This results
in an action selection policy that inputs only observations:
π : O|T | → A. Similarly, the satisfaction function does
not include requests: satm : O|T | × X |M |×|T | → R. The
primary performance measure in this problem is the team’s
overall satisfaction.

Figure 4: Silent Assistant version of the Human-Agent
Teaming Problem Model

2.3 Silent Assistant

The Silent Assistant version is a multi-agent teaming prob-
lem with no explanation requirement (Figure 4). In this ex-
ample, the agent assists one or more other agents by acting
on their requests, but does not provide explanations, receive
explanations, or make requests of others (i.e., it does not ini-
tiate coordination). An example of such a goal reasoning
agent is the Tactical Battle Manager (TBM), an agent that
controls an unmanned air vehicle while serving as a wing-
man for an aircraft controlled by a human pilot (Floyd et
al. 2017). The TBM operates autonomously but receives ex-
plicit tasks from a human pilot. The lack of communication
from the agent is largely due to the real-time adversarial na-
ture of the domain; goal changes are motivated by dangerous
situations or opportunistic targets, so explanations are not a
primary requirement for this system. Additionally, since the
TBM is a human pilot’s wingman, it serves a subordinate
role and therefore does not generate requests. As such, the
agent’s action selection function and the satisfaction func-
tions do not include explanations or requests from the agent
(π : O|T | × R|M | → A, satm : O|T | × R|M | → R). The
primary performance measure is the team satisfaction func-
tion.

2.4 Rebel Agent

The previous three problem versions we described assume
that the agent’s primary drive is to satisfy teammates’ re-
quests. In the Rebel Agent version (Coman, Gillespie, and
Muñoz-Avila 2015), an agent has internal goals or moti-
vations that differ from (and may conflict with) those of
its teammates. There are two ways in which a rebel agent
can be represented using our model. The simplest method
is to consider the agent as a member of its team but hav-
ing internal motivations that are unknown to its teammates.
Thus, when attempting to maximize team satisfaction it
may prioritize its own satisfaction above the satisfaction of
its teammates (e.g., provide them with different weights).
The ARTUE agent (Molineaux, Klenk, and Aha 2010) is
a rebel agent that receives explicit requests in the form
of goals that it may choose to ignore in order to achieve
goals more important to it. A more complex representa-
tion would be to consider the agent to be a member of
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two teams concurrently (i.e., in Figure 1 the agent would
be at the intersection of two teams). For example, con-
sider an agent that is a member of a corporate catering
team, but is also a member of a vegetarian team. While the
agent contributes toward achieving catering goals (e.g., host
a successful event, maximize profit) it may choose actions
to maximize the vegetarian team’s satisfaction (e.g., mini-
mize the amount of meat used). In the internally motivated
case, the primary performance measure is a team/rebel sat-
isfaction function f(sat1, . . . , sat|M |,mot(sfinal)), where
mot(sfinal) describes how well a rebel’s internal mo-
tivations are satisfied in the true final state of the
environment. In the dual-membership case, the pri-
mary performance measure is a combined function of
two (or potentially more) team satisfaction functions:
fC(f1(sat

1, . . . , sat|M |), f2(sat1, . . . , sat|M |)).

2.5 Assumptions

Consideration of important assumptions is necessary for this
framework. Existence of the transition and observation func-
tions means that environments can be static or dynamic, de-
terministic or probabilistic, and fully or partially observable.
Existence of the policy and satisfaction functions of team-
mates implies that we should also consider whether to as-
sume complete or incomplete knowledge about these func-
tions, and whether information given regarding them (i.e.,
requests and explanations) is perfect or noisy. This cuts
across all problems, and those purporting to address these
problems should state their assumptions regarding these
functions.

3 Examples

Requests and explanations can take many forms includ-
ing natural language utterances, structured text, or low-level
state representations. In this section we provide examples of
requests, explanations, and how they can be used.
Requests: In general, we expect requests to vary in com-
plexity across agents. An example complex request repre-
sentation might be a tuple 〈Savoid, Fprefs, G,C〉, including
constraints Savoid ⊂ S in the form of states to avoid (e.g.,
“battery should never fall below 10%”), preference func-
tions Fprefs : S × S → {True, False} (e.g., “spend as lit-
tle money as possible”), goal states G ⊂ S (with or without
priorities), and context C that describes why achievement of
a particular goal is desired (e.g., the reason for requesting
an agent to cook food could be because (1) ‘supervisor is
hungry’ or (2) ‘supervisor needs to bring food to a dinner
party later’). Context and preferences are especially relevant
for goal reasoning agents, as these can guide which goals
should be considered when goal change is warranted. Addi-
tionally, the reasons for a supervisor’s request of a goal are
likely to be useful in making goal change decisions; for ex-
ample, the context may include a higher-level goal of which
the current request is a subgoal (e.g., a “cook food” goal is a
subgoal of a ¬hungry goal).
Explanations: An important reason for explanations is that
goal reasoning agents may change their local objectives (i.e.,
subgoals) in response to changes in the environment prevent-

ing the accomplishment of the original task. Thus, when-
ever an agent changes its goal, an explanation could be
a tuple 〈gfailed, cfailed, gnew, pnew〉 composed of a failed
goal gfailed, description of state properties that prevent goal
achievement cfailed, new goal gnew, and new plan pnew.
Note that in this framework, explanations are always proac-
tive for simplicity of discussion; to support reactive expla-
nations, an external interface could store this information to
present to a human in answer to specific queries.
A Supervisor Requests Cake: We now describe an exam-
ple of the Single Supervisor problem: first, a human su-
pervisor σ makes a request of a chef agent α to “bake
me a chocolate cake that I can eat when I get home”.
Here, the request rσ,αt is the tuple 〈∅, ∅, {{exists(chocolate-
cake), on(chocolate-cake,table)}}, {hungry(me), wants(me,
chocolate)}〉, which describes a single goal state based on
the original English utterance (translating human utterances
to goals has garnered attention in the human-robot interac-
tion community, see (Briggs, McConnell, and Scheutz 2015)
for an example). No constraints or preferences are provided.

The chef agent α represents its supervisor’s satisfaction
function satσ as a weighted average of (1) the percentage
of his desires that are satisfied in the current state and (2)
the time delay between t (time of request issuance) and ta
(time of request achievement). Based on this, the agent uses
an automated planner to produce a plan that achieves the
requested goal in the shortest possible time. Its policy πα

removes the first action from this plan and executes it; this is
repeated until the following action aαt is known to be inad-
missible based on a state observation oαt . We now describe a
situation that may warrant the agent to consider goal change.

Soon after it begins acting to achieve the goal, the agent
discovers it cannot continue baking because there is no cake
flour in the kitchen. The agent considers adoption of a new
goal acquire(cake-flour), and creates a plan: go to the gro-
cery store, purchase cake flour, and return. However, the plan
to accomplish the new goal would significantly increase the
time required to fulfill the supervisor’s request. Knowing
that the supervisor is hungry and wants chocolate cake, the
chef agent decides to instead switch to a goal to make choco-
late chip pancakes, which seems like a reasonable substitute.
When the supervisor comes home, the agent provides him
with an explanation:
〈{exists(chocolate-cake), on(chocolate-cake, table)},
{available(cake-flour)},
{exists(pancakes), on(pancakes, table)},
{acquire(pancake-mix), acquire(chocolate-chips),

bake(pancakes, pancake-mix, chocolate-chips),
serve(pancakes)}〉.

This explanation serves to communicate why the agent
changed its goal, and what it did instead. If the context of the
supervisor’s request had been a birthday party, the agent α
might have reasoned that the subgoal of going to the grocery
store was warranted.

In general, the issue of how much information must be
exchanged between teammates is unresolved. In this exam-
ple, we assume sufficient knowledge to minimize the need
for communication; for example, the agent knows that the
supervisor’s desires would be met to some degree by choco-
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late chip pancakes. Future work on goal reasoning agents
will need to consider this question.

4 Evaluating Explainable Goal Reasoning

Agents

We expect that typical evaluations will consider a specific
problem and assumptions, and show results on a primary
performance metric in a subset of domains. Results should
be directly comparable with other agents that make the same
assumptions, use the same domain, and use a similar set of
teammates. For this reason, sharing domains as well as ap-
propriate automated teammates (i.e., other software agents
that are part of the team) should promote comparison.

When discussing the four versions of the human-agent
teaming problem, we briefly described the various metrics
that can be used to measure whether the goal reasoning
agent is an effective member of the team. However, in ad-
dition to agent performance there is also the issue of how
well the agent interacts with its human teammates. In these
cases, evaluations should consider whether the provided ex-
planations are appropriate for aiding human collaboration.
We consider metrics for explanation as falling into four cat-
egories: tests of explanation quality, tests of user satisfac-
tion, tests of user comprehension, and tests of user or user-
system team performance. These are based directly on Hoff-
man, Klein and Mueller’s (2017) work on evaluating expla-
nations. Two agents need not use the same explanation rep-
resentation (e.g., natural language, internal state variables)
to be compared.
Tests of Explanation Quality: Experiments that measure
explanation quality can be conducted without humans in the
loop, but often still require a human to assess the results.
These can be compared against explanations generated by
another system or by a human. Some measures of explana-
tion quality are surveyed in Table 1.
Tests of User Satisfaction: These should solicit a user’s
subjective satisfaction with an agent’s performance, typi-
cally using Likert scale questions.
Tests of User Comprehension: These gauge how well ex-
planations generated by an agent improve the accuracy of
a user’s mental model of an agent’s behavior. For explain-

Table 1: Abstract Measures of Explanation Quality
Soundness Plausibility, internal consistency
Appropriate
Detail

Amount of detail and its focus points

Veridicality Does not contradict the ideal model (al-
though there are times when inaccurate
explanations work better for some users
and some purposes)

Usefulness Fidelity to the designer’s or user’s goal
for system use

Clarity Understandability
Completeness Relative to an ideal model
Observability Explains an agent mechanism
Dimensions
of Variation

Reveals boundary conditions

able autonomous agents, experiments could include ques-
tions about the system’s policy to measure user understand-
ing.
Tests of User or User-System Team Performance: These
measure how explanation affects the user’s ability to accom-
plish some task, often an interactive task involving the ex-
plaining agent. A scenario-specific performance metric can
be used to evaluate the team’s performance for this purpose.
To provide a comparison, the same evaluation should be ap-
plied with and without agent-provided explanations, and, if
possible, against a human-only team.

5 Conclusions and Future Work

We have presented new formal models and problem vari-
ations for human-agent teaming, in hopes of promoting
comparisons, competitions, and sharing of evaluation code
among goal reasoning researchers. We have made the case
that explanation is an important and attainable capability
for goal reasoning agents. Finally, we have described useful
evaluations to be used to provide evidence of how well both
goal reasoning agents and human-agent teams, perform.

In future work, we will produce refined models based on
community feedback; furthermore, we will provide concrete
problem instances and representations for use in benchmark-
ing and comparison.
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Abstract

Magicians have been a source of entertainment for
many centuries, with the ability to play on human bias,
and perception to create an entertaining experience.
There has been rapid growth in robotics throughout
industrial applications; where primary challenges in-
clude improving human-robot interaction, and robotic
perception. Despite preliminary work in expressive AI,
which aims to use AI for entertainment; there has not
been direct application of fully embodied autonomous
agents (vision, speech, learning, planning) to enter-
tainment domains. This paper describes preliminary
work towards the use of magic tricks as a method
for developing fully-embodied autonomous agents. A
card trick is developed requiring vision, communica-
tion, interaction, and learning capabilities all of which
are coordinated using our script representation. Our
work is evaluated quantitatively through experimen-
tation, and qualitatively through acquiring 2nd place
at the 2016 IROS Humanoid Application Challenge.
A video of the live performance can be found at
https://youtu.be/OMpcmcPWAVM.

Introduction

Humans have long enjoyed the clever trickery that comes
from a good magic show. Magic tricks embody the primary
features desired for an intelligent agent. These include reac-
tivity: the ability to quickly perceive and respond to changes
in the environment; proactivity: being goal-driven and act-
ing towards reaching some desired goal; and social ability:
the ability to communicate with others to further reach their
goal (Wooldridge 2009).

Non-deterministic and dynamic environments pose chal-
lenges in developing robust autonomous agents that possess
these features. This difficulty lies in balancing the proactive
and reactive behaviour (Wooldridge 2009). An agent that is
purely reactive may fail to reach a desired goal, whereas a
purely proactive (goal driven) agent may not spend enough
time acting to reach a goal (Wooldridge 2009).

During a live performance, reactivity is desired to provide
authentic response time for each event in the script. Proac-
tiveness involves seeking an end-performance goal that log-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ically entails from the events in the script. The script is cen-
tral to both reactivity and proactiveness. Lastly, social abil-
ity is required to leverage off the audience and guide a per-
formance to cater towards their demographic and play off
of their bias. For example, non-explicit humorous remarks
are prioritized for an audience containing youth. Our work
presents an autonomous agent that performs a magic card
trick. We created motion, speech, and vision components on
top of our custom DARwIn OP2 framework. These com-
ponents utilize PocketSphinx for speech recognition, and
OpenCV2 for playing card classification. The use of a finite
state machine gives structure to the performance and allows
the agent to seek an end-performance goal that accounts for
potential problems that may arise during the show. Lastly, an
easily adjustable design of events allows for a unique perfor-
mance and user experience.

Related Work

Live performance takes many forms. Humanoid robotics
competitions have explored the development of robust, ver-
satile agents that perform multiple distinct sporting events
autonomously (Baltes et al. 2016). Furthermore, teams of
robots are used to research how cooperation techniques are
used in reaching a desired goal (Ashar et al. 2015). Such
competitions have grown in popularity and have evolved to
use more entertaining events that remain as useful bench-
marks (Gerndt et al. 2015), but do not yet cater easily to a
non-research audience.

Expressive AI has explored artificial intelligence for
pure entertainment purposes in domains that include games
(Mateas 2003) and music (De Mántaras and Arcos 2002);
but lacks a robotics implementation. In the domain of
Robotics, work has been done on incorporating entertain-
ment (Kuroki 2001) with further specialization into card
magic (Koretake, Kaneko, and Higashimori 2015). This
work however puts focus on card manipulation, and mechan-
ical aspects rather than timing and interaction. There has
been growing discussion of the need for timing and human-
robot interaction for effective live performance (Nuñez et al.
2014; Tamura, Yano, and Osumi 2014); but this discussion
has been purely theoretical. Our work outlines a new appli-
cation of robot entertainment for live magic that incorporates
computer vision, machine learning, speech recognition and
motion in order to deliver an authentic and robust perfor-
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Figure 1: The live performance at IROS 2016. The robot is
about to reveal the cards.

mance.
Employing template-matching for playing card recogni-

tion has demonstrated higher overall classification accuracy,
but only in settings where the card is viewed from a fixed
distance and angle (Brinks and White 2007). Similarly, this
approach had significant latency (6 seconds) using a client-
server architecture and has not yet been tested on a local-
ized model (Brinks andWhite 2007). Work from (Zheng and
Green 2007) demonstrated higher rank classification accu-
racy along with robustness to card rotation and scale, how-
ever there is no evaluation of the overall classification ac-
curacy. Furthermore we achieved higher accuracy on Jack,
Queen, and King cards, along with higher suit accuracy.
Other approaches such as (Martins, Reis, and Teófilo 2011)
achieved higher rank classification; but share similar chal-
lenges in suit classification. Despite marginally lower per-
formance on rank classification, our system demonstrates
significant overall classification accuracy while being robust
to card rotation, translation, and scale.

The Magic Trick

The trick is based on the classic straight-man act, in which a
stern robot assistant contrasts with a charismatic but conde-
scending human magician. A DARwIn-OP2 robot is asked
to select and observe 3 cards from a deck. Vocal cues
from the human magician provoke responses from the robot.
Throughout the performance the robot grows impatient with
the magicians’ rude gestures and treatment, and takes over
the magic performance by knocking the deck out of the ma-
gicians’ hand. After the robot acquires the deck, the robot
explains the simplicity of the magic trick, and reveals the 3
cards that were originally chosen, from the face-down deck.

Problem Representation

We represent a performance as a collection of ordered
phases. A phase is some discrete set of events that must take
place together within a limited time. For example one phase
may involve multiple listen-response events where an agent
uses speech recognition and speech synthesis to follow dia-
log with a human magician. Another phase may rely on both
motion gestures to hold a deck of cards, and computer vision
to recognize playing cards.

Grouping events into phases allows for a graceful recov-
ery from potential interrupts in the performance. If, for ex-
ample, a dialog-only phase is taking place, and noise inter-

Figure 2: Phases of the performance

Figure 3: Control flow of speech processing

ference occurs, the agent may transfer to a backup phase
which involves asking where the noise is coming from. Dur-
ing a card recognition phase that uses only the vision and
motion components, it would not make sense for the agent
to stop reading cards, or freeze up; because of the noise. It
would make sense to have a backup phase in case the light-
ing is poor, in which the agent may ask for better lighting.
The use of a state machine guides the performance by tran-
sitioning through pre-designed phases which together form
a coherent story.

Implementation

Speech Recognition and Synthesis

Voice audio was recorded using a NESSIE Adaptive USB
Condenser Microphone at 16kHz. Incoming audio is pro-
cessed using PocketSphinx in order to generate a hypothesis
string. This hypothesis string is checked against a custom
language dictionary containing 89 keywords from the magic
show script. If selected keywords are found in said string,
this will trigger a response from the robot. Each dialog event
may be customized to require multiple distinct keywords.

Vision

Input images are captured using the built-in DARwIn-OP2
Logitech camera and passed to a custom vision module. The
vision module was built with C++ and OpenCV2. The input
image is first preprocessed by gray scaling, applying blur,
and then applying a binary threshold. Contours are then ex-
tracted from the image and organized into a hierarchical tree
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Figure 4: The vision pipeline

Figure 5: The training process

and compressed with OpenCV’s simple chain approxima-
tion to gather only end-points of the contours. Polygon ap-
proximation is used on the contour to gather estimated cor-
ner points for a playing card. In order to eliminate false de-
tection, the points are checked to be rectangular(based on
the ratio between them). An affine transformation is used on
the card ROI. Due to symmetry of playing cards, the bot-
tom left corner is checked for a card symbol. If this symbol
is missing, the card is assumed to be mirrored, and will be
reflected to the correct orientation.

Card Classification Card suit (Diamonds, Hearts, Spades,
Clubs) and rank (1-10, Jack, King, Queen, Ace) ROI are
extracted. These ROI are then either dilated or eroded ac-
cording to lighting in the environment. The suit and rank
ROI are then classified using the K-Nearest Neighbours al-
gorithm (Cover and Hart 1967).

Machine Learning

The training process took place using a deck of 52 cards. The
initial training set contained 5images × 4suits × 13cards =
260 samples collected using the robots built-in camera. Each
sample is stored as a 30x30 gray-scale image in csv format
as a 1×900matrix of pixel brightness values [0-255]. The K-
Nearest Neighbours algorithm (Cover and Hart 1967) is used
to classify each suit and rank. An iterative training process is
used. Initially each card within the full deck is shown in front
of the robot. If the card is correctly classified, it is placed
in a success pile. Misclassification may take place on either
the card rank or suit. In either case, the misclassification is
recorded and 2 positive samples of this rank or suit are added
to the training set. The card will then be placed in a fail pile.
For example if a Two of Hearts is misclassified as a Two of
Diamonds, we will add 2 positive samples of the Hearts suit
to the training set. The next iteration will begin using cards
from the fail pile. This iterative process terminates when the
fail pile is empty.

Figure 6: The dynamic evaluation setup.

Evaluation

Our iterative training process was used, yielding the final
training set. The test set was then created by randomly
shuffling the deck and placing each card in front of the
robot. This process was repeated 5 times to create a total
of 5samples × 13ranks = 65 test samples for each suit, and
5samples × 4suits = 20 test samples for each rank. Evalua-
tion was first completed in a dynamic setting. This included
exposure to daylight, and randomization from a human hold-
ing the card in front of the robot. A second controlled eval-
uation consisted of static lighting, and a fixed placement of
each card on a black surface.

A rank classification accuracy of 89.23% across the 13
card ranks was achieved using the dynamic setting. This
surpassed the controlled setting which achieved 83.46% ac-
curacy. Similarly the dynamic setting achieved a higher
classification accuracy (90.38%) than the controlled setting
(83.46%) on card suits. It is interesting to note the difference
in spread between the two evaluations. The controlled set-
ting has a higher standard deviation (10.76% for card rank,
15.99% for card suit) than the dynamic setting (4.07% for
card rank, 11.15% for card suit). We believe this is due to
our system being trained in a more dynamic setting.

Conclusions and Future Work

This work explored the use of live entertainment in agent-
based research. Specifically live magic performance was
chosen as an avenue for developing a fully-embodied au-
tonomous agent. Our card trick incorporates on-board vi-
sion, communication, interaction, and learning capabilities
that allow for robust performance. This work may be greatly
enhanced with improvements to the vision and machine
learning components. Overall classification accuracy is de-
pendent on both rank and suit accuracy. Our method demon-
strated robustness to card rotation, translation and scale;
but fell short in overall accuracy. We share similar chal-
lenges to other aforementioned vision techniques (Brinks
and White 2007; Zheng and Green 2007; Martins, Reis, and
Teófilo 2011), and believe improvements to image resolution
would combat these challenges. Similarly, we see the use
of colour recognition as a simple and promising approach
to improve suit classification accuracy (Martins, Reis, and
Teófilo 2011). Such improvements are challenging to ac-
quire under time and space constraints imposed by on-board
hardware. Lastly, we are interested in generalizing our work
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Figure 7: Classification results for card ranks. Taken from 20 samples of each card rank.

Figure 8: Classification results for card suits. Taken from 60
samples of each card suit.

into a framework for building agents capable of live perfor-
mance. We believe this framework would provide easier en-
try, and thus encourage agent-based research using live en-
tertainment.
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Abstract

One of the major drivers for the progress in scalability of au-
tomated planners has been the introduction of the Planning
Domain Definition Language (PDDL) and the International
Planning Competition (IPC). While PDDL provides a con-
venient formalism to describe planning problems, there is a
significant gap with regards to describing domains. Although
PDDL is split into a domain description and a problem de-
scription, the domain description is not enough to specify a
domain completely, as it does not constrain the possible prob-
lems in the domain. For example, there is nothing in the
BLOCKSWORLD PDDL domain description which says that
a block can not be on top of itself in the initial state. In this
position paper, we argue that PDDL domains should be ex-
tended to incorporate a new section which constrains possible
problems in the domain. We argue that such an extension can
be based on first-order logic, and describe several use cases
where this extension might be of use. We also provide some
preliminary empirical results of one way for automatically
extracting such constraints based on mutual exclusion.

Introduction

The domain-independent planning community has made
significant progress scaling up planners, allowing them to
address bigger and more complicated problem instances.
One of the major drivers for this progress has been the in-
troduction of the International Planning Competition (IPC),
with its standard language for describing planning prob-
lems — PDDL, the Planning Domain Definition Language
(McDermott 2000). The PDDL language was further ex-
tended to support additional features, which were intro-
duced in later iterations of the IPC (Fox and Long 2003;
Edelkamp and Hoffmann 2004; Gerevini and Long 2005).

PDDL splits the definition of a planning problem into two
parts: domain and problem. The domain describes the types
of objects this domain deals with, along with schemata for
the predicates used to describe the state of the world and the
operators used to change it. The problem describes the spe-
cific objects in the world in this problem instance, as well as
the initial state and the goal. Typically, a domain in the IPC
is defined by a single PDDL domain description (usually in

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a separate file), and a random problem instance generator1.
Planners are then evaluated based on their performance on a
set of problem instances generated by the problem generator.

While this is a reasonable way to evaluate how well plan-
ners solve planning problems, we claim that it is extremely
difficult to reason over a domain. For example, consider
the well known BLOCKSWORLD domain, which features the
predicate ON(x, y), indicating that block x is directly on
top of block y. We would like to be able to prove that a
block can never be on top of itself. This is fairly easy to
do using techniques such as relaxed reachability. However,
relaxed reachability takes an initial state as input, and the
initial state is only described in the PDDL problem. In fact,
there is nothing preventing us from generating an instance
of BLOCKSWORLD in which ON(A,A) does appear in the
initial state. Thus, in order to be able to prove that a block is
never on top of itself, we would need some explicit descrip-
tion of the fact that a block is never on top of itself in the
initial state of any valid problem instance. Currently, this
knowledge is only implicit from our understanding of the
meaning of the domain.

Previous work (Helmert 2003) has defined a domain as an
infinite set of grounded planning problems. While this defi-
nition is good enough to theoretically analyze the complex-
ity of planning in a domain, it does not consider the issue
of representation. In this position paper, we argue that the
PDDL language needs to be further extended, in order to al-
low for automated reasoning about domains, rather than only
single problem instances. We argue that such an extension
can be based on first-order logic, and describe several use
cases where this extension might be of use. We also provide
some preliminary empirical results where we can identify
what are probably domain-level mutual exclusion (mutex)
groups, providing some automated support for encoding our
suggested constraints.

Background

We begin with a brief review of PDDL. For the full details,
we refer the reader to the various papers describing the dif-
ferent versions of PDDL (McDermott 2000; Fox and Long
2003; Edelkamp and Hoffmann 2004; Gerevini and Long

1Some domains have a separate domain description for each
problem instance. We will address this issue in the final discussion.
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2005). As previously mentioned, PDDL divides the defini-
tion of a planning problem into two parts: the domain, and
the problem, which typically are contained in two different
files. The division allows for the same domain file to be used
with multiple problem files.

A PDDL domain consists of a description of the possible
types of objects in the world. A type t can inherit from an-
other type s, so that all objects with type s are also of type
t. While there is a small controversy regarding whether the
type hierarchy must form a proper tree, or can be a graph,
this issue is irrelevant for the purposes of this paper. The
domain also consists of a set of constants, which are objects
which appear in all problem instances of this domain.

The second part of the domain description is a set of predi-
cates. Each predicate is described by a name and a signature,
consisting of an ordered list of types. Given a set of objects,
we can ground the given predicates, yielding a set of propo-
sitions which describe the state of the world. Note, however,
that these objects are only given as part of the problem de-
scription, and not in the domain description. The domain
also describes a set of derived predicates, which are predi-
cates associated with a logical expression. The idea is that
the value of each derived predicate is computed automati-
cally by evaluating the logical expression associated with it.

Finally, the domain description consists of a set of opera-
tors. Each operator is also described by a name, a signature,
a precondition, and an effect. The signature is now an or-
dered list of named parameters, each with a type. The pre-
condition is a logical formula, whose basic building blocks
are the above mentioned predicates, combined using the
standard first order logic logical connectives. We remark
that the predicates can only be parametrized by the operator
parameters, the domain constraints, or, if they appear within
the scope of a forall or exists statement, by the variable intro-
duced by the quantifier. The effect of the operator is similar,
except that it described a partial assignment, rather then a
formula, and thus can not contain any disjunctions. An op-
erator can also be grounded given a set of objects, yielding
grounded actions.

A PDDL problem is much simpler than the domain. It
consists of a set of objects, each associated with a type (if a
type is not specified, the object is assumed to be of a default
type), and a description of the initial state and the goal. The
initial state is described by the list of propositions (grounded
predicates) that are true in it, where any proposition that is
not listed it assumed to be false. The goal is also a logical
expression, similarly to the precondition of an operator, ex-
cept that it can refer to all objects in the problem instance.
Although the goal can be an arbitrarily complex logical ex-
pression, in most existing planning benchmarks domains, it
is a simply conjunction of positive propositions. In the rest
of this paper, we will assume the goal takes this simple form,
and discuss more complex goals in the conclusion.

As mentioned above, a domain can be grounded given a
set of objects, which are described in the problem. Most
modern planners start by grounding the given planning prob-
lem, and operate on the grounded problem description.
However, if our intention is to reason over a domain, this
approach is not practical, as there is no single problem to

(forall (?x) (not (init (on ?x ?x))))

(forall (?x ?y ?z) (implies
(and (init (on ?y ?x)) (init (on ?z ?x)))
(= ?z ?y)))

(forall (?x) (or
(init (on-table ?x))
(exists (?y) (init (on ?x ?y)))))

(forall (?x) (not (goal (on ?x ?x))))

(forall (?x ?y ?z) (implies
(and (goal (on ?y ?x)) (goal (on ?z ?x)))
(= ?z ?y)))

Figure 1: BLOCKSWORLD Domain Constraints

ground over. In the next section, we present our proposal to
extend PDDL to allow some reasoning over a domain, even
when a problem instance is not given.

Extending PDDL

The heart of our proposed extension to PDDL is to add con-
straints about the problem to the domain description. Fol-
lowing the BLOCKSWORLD example from the introduction,
we could specify that in the initial state of any legal instance
of BLOCKSWORLD, no block is on top of itself.2 We could
then use a lifted version of relaxed reachability analysis to
infer that no block can ever be on top of itself.

Specifically, we propose to add another section to the
PDDL domain description, which will consist of a set of
constraints. Each constraint will be a first order logic state-
ment, which can refer to domain constants, and, of course,
to variables introduced by each quantifier within its scope.
However, the basic building blocks will not be predicates,
but rather predicates perpended with a modal operator, spec-
ifying if this refers to the initial state or the goal. One caveat
is that we can not check whether some proposition if false in
the goal, as the goal is only a partial state. We also explic-
itly allow the usage of the (object) equality predicate. As the
following examples will show, it is quite useful.

The interpretation of these constraints is, naturally, as
constraints over a problem description. We can treat each
problem as specifying a full initial state, and a partial goal
state (as we assume the goal only describes the propositions
we want to be true). Thus, we can evaluate each constraint,
and check whether a given problem satisfies it.

Figure 1 shows how our extension can be applied to
BLOCKSWORLD. The first constraint states that a block is
never on top of itself in the initial state. The second con-
straint states that there can be at most one block on top of
another block (i.e., if y and z are both on top of x, then they
must be the same block). The third constraint states that ev-
ery block must be on top of another block or on the table in

2These are different than the constraints introduced in PDDL
3.0 (Gerevini and Long 2005), which constrain possible plans for
a given problem.
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the initial state. Finally, the last two constraints are similar
to the first two, except they are applied to the goal.

Another example highlights the differences between two
different versions of the LOGISTICS domain: the one used
in the first IPC (1998) and the one used in the second IPC
(2000). Even though the PDDL domain description was
the same in both competitions, LOGISTICS-98 is still much
harder to solve than LOGISTICS-2000. This is because in
the instances generated for second IPC, there was an im-
plicit constraint, that there is exactly one truck in each city.
This constraint is shown in Figure 2.

Use Cases

So far, we have only proposed an extension to PDDL, with-
out explaining why we believe such an extension is useful.
In this section we provide several use cases where our pro-
posed extension can be useful. We remark that we have not
implemented any of these ideas, we simply claim that these
can be the subject of future work.

Learning and Using Domain Control Knowledge

There has been a significant body of work on learning, and
using, domain control knowledge. While a full review of
all the relevant literature is beyond the scope of this pa-
per, we review some influential works in this area. First,
the original STRIPS system had a macro learning compo-
nent, which attempted to generalize successful plans from
one problem to others (Fikes, Hart, and Nilsson 1972). This
is, in fact, an example of explanation based learning (EBL)
(e.g., (Mooney and Bennett 1986; Minton 1990)), where a
system typically look at a single example and attempts to
generalize it.

Another example is the TLPlan planner (Bacchus and Ka-
banza 2000), which was able to exploit manually coded
domain-specific control knowledge expressed in a tempo-
ral logic. Later work tried to learn such rules automatically
(Yoon, Fern, and Givan 2008). In fact, the learning track in
the international planning competition (IPC), introduced in
2011 (Fern, Khardon, and Tadepalli 2011), focuses on learn-
ing domain control knowledge. In the learning track, each
competitor is given access to a PDDL domain file and a ran-
dom problem generator. The competitor is then given a very
long time to produce a domain control knowledge (DCK)
file, which the planner can then use to solve new problems
in the domain, with the intent that the DCK will help the
planner improve its performance.

With the way this track is set up, the best type of guar-
antee that can be provided is a probably approximately cor-
rect (PAC) (Valiant 1984) style guarantee, i.e., that there is a
high probability that the learner has learned something that
is fairly good. However, there is no way to guarantee that
the learned domain control knowledge will work, because
there is no characterization of all possible instances in the
domain, but only a sample of problem instances. Adopting
the proposed extension to PDDL will allow learners to prove
something about what they are learning.

For example, suppose we wanted to make the Fast Down-
ward translator (Helmert 2009) more efficient by learning

what propositions are grouped together into a finite-domain
variable. We might be able to learn, for example, that the
location of a truck in LOGISTICS is always a mutex group,
and can thus be used to create a finite domain variable. In
fact, since the translator looks for invariants in a lifted way in
the domain and then generates possible mutex groups from
invariants which have a single matching fact that is true in
the initial state, it is relatively straightforward to so, as our
preliminary empirical results demonstrate. Of course, this
is only possible if we know that AT(T, L) has exactly one
true proposition for each given truck T in the initial state
— something which is easily described using our proposed
PDDL extension.

Similar invariants can be seen in the BLOCKSWORLD do-
main. The same as trucks, blocks each are represented as
single finite domain variables, which are generated using the
invariants founded in the domain description, and the pred-
icates in the initial state. These mutexes however, are not
enough to randomly generate a “realistic” BLOCKSWORLD
problem. As we mentioned before, a single block can not be
placed on itself, and thus there are no predicates of the form
ON(x, x) in the initial state. However, consider a problem
with two blocks A and B, where block A is placed on top of
block B and block B is placed on top of block A. It is easy
to see that this position satisfies the condition described in
the previous section, but in the same time, it’s both “unreal-
istic” and unsolvable, given the blocks A and B have some
other positions in the goal description. Even more so, this
“ouroboros”3 of a sort can be extended to a cycle of an ar-
bitrary length, making this condition hard to detect without
some recursive logical formula. Thus, our proposed exten-
sion must be able to support recursive formulas, to be able
to express these restrictions.

Generalized Planning

A somewhat similar use case occurs in generalized plan-
ning. In generalized planning, the objective is to generate
a controller which can solve all possible problems from a
given planning domain. Examples of work on generalized
planning include generating plans with loops and branch-
ing (Srivastava, Immerman, and Zilberstein 2011) and fi-
nite state controllers (Bonet, Palacios, and Geffner 2009;
Aguas, Celorrio, and Jonsson 2016). Again, the issue is that
with no formal specification of a domain, it is impossible to
prove that a controller will solve all problems in a domain.

On the other hand, using our proposed PDDL extension,
it is very easy (in theory) to use the following scheme. First,
call a generalized planner on a given set of problems in the
domain of interest. Second, verify if the resulting controller
solves all possible problems in the domain. If the answer is
yes, we have a controller that can solve all problems in the
domain. Otherwise, generate a counter example, add it to
the given set of problems, and repeat. Of course, the prob-
lem of verifying if the given controller works for all possible
problems in the domain, and generating a counter example if
it does not is undecidable (as we can generate a domain that
corresponds to a Turing machine, and each problem corre-

3A serpent eating its own tail.
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(forall (?c - city ?s ?t - truck) (implies
(and (exists (?l - location) (and (init (in-city ?l ?c)) (init (in ?t ?l))))

(exists (?l - location) (and (init (in-city ?l ?c)) (init (in ?s ?l)))))
(= ?s ?t)))

Figure 2: LOGISTICS-2000 Additional Constraint

sponds to a given instance terminating). Nevertheless, ef-
ficient (incomplete) termination analyzers do exist, thus al-
lowing us to hope this idea might work in practice on some
domains of interest.

Almost Automatic Random Problem Generators

When creating a new domain in PDDL, the burden of spec-
ifying which problems are legal and which are not falls to
the problem generator. For example, the problem gener-
ator for BLOCKSWORLD will never generate a problem in
which on(A,A) appears in the initial state. However, this
knowledge is part of the problem generator’s code. On top
of this, the problem generator provides some distribution on
the problems.

With our proposed extension, the first part of the ran-
dom problem generator’s job could be automated. The only
implementation necessary in a random problem generator
would be just the random part — the distribution.

While we believe this would be beneficial by itself, this
also has the potential of enabling bootstrapping approaches
(Arfaee, Zilles, and Holte 2010), where larger and larger
problem instances must be generated. Of course, the issue
of where the distribution comes from is still a critical com-
ponent of such an approach, which is beyond the scope of
our proposed PDDL extension.

State Estimation

Finally, another use case comes from the combination of
planning with real world sensing. Consider, for example,
a camera looking at a BLOCKSWORLD scene. The camera,
along with the image processing and object recognition soft-
ware that looks at its output, will typically produce a set of
real-world coordinates for the position of each block. These
coordinates will typically have some error associated with
them, due to sensor noise, lighting conditions, probabilistic
image processing algorithms, and more.

A state estimator will look at the history of these mea-
surements to produce the symbolic description of the cur-
rent state. Without telling the state estimator that a block
can only be on top of one other block, we might end up with
states containing both on(A,B) and on(A,C). However, if
our state estimator was able to infer mutual exclusion invari-
ants for the domain, it could reject samples which violate
these constraints, yielding more accurate state estimates.

Case Study: Discovering Domain Mutexes

As a first step to demonstrate reasoning over a domain,
rather than over individual problems, we used the Fast
Downward translator (Helmert 2009), in order to examine
invariant candidates in PDDL domains from IPC bench-
marks. As previously mentioned, the Fast Downward trans-
lator identifies lifted invariant candidates looking only at the

PDDL domain. For example, the translator identifies that
for a given truck T , the number of locations L for which
AT(T, L) holds does not increase for any applicable action.
The translator then checks whether this invariant candidate
generates a set of mutexes, by checking if the number of
locations each truck T is at in the initial state is 1 or less.
In this case study, we used the invariants discovered by

the Fast Downward translator for each domain. For each in-
variant, we checked whether it always led to mutexes in all
instantiations of the invariant in all problems. If so, then it
is likely safe to add a problem constraint derived from this
invariant to the domain. However, without an explicit exten-
sion to PDDL, we can never know that this is a true lifted
mutex, or whether the random problem generator just hap-
pened to only generate problems where this invariant hap-
pened to lead to mutexes.

Experimental Results

For our experiment we used the International Planning Com-
petition benchmarks (IPC‘98 – IPC‘11), from which we ex-
cluded all the benchmarks that have more than one domain
description file. In the relevant benchmarks we count the in-
variant candidates extracted by the Fast Downward transla-
tor, and check which of those invariant lead to mutex groups,
and which did not (due to the fact that the number of initial
state propositions participating in these invariants exceeded
1). The results are presented in Table 1. Note that there are
no domain invariants that have not been grounded to a mu-
tex group due to the absence of the appropriate initial states
facts.

Most of the invariants in these benchmarks are either al-
ways mutex groups, or always overcrowded – there are at
least 2 propositions in the initial state that participate in that
invariant. However, there are some invariants that are mixed,
that is, lead to mutex groups in some cases, and are over-
crowded in others. Detailed analysis shows that this hap-
pens mostly due to the fact that there is a smaller invariant
that is contained in a larger one. For example, in the LOGIS-
TICS domain all the locations of a given truck T constitute
an invariant, but all the locations of all the trucks are also an
invariant of the domain. The latter invariant leads to a mutex
group only in the case where there is exactly one truck in the
problem. Thus, mixed invariants can be seen grounded in the
small problems of the domains, but getting overcrowded in
the large ones.

Conclusion

In this paper, we have proposed an extension to PDDLwhich
will allow for automated formal reasoning about domains.
This extension will make no difference to the task of solving
a single planning problem, with the possible exception of
first validating the given problem instance. However, as we
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Domain Inv Pure Over Mixed
AIRPORT-ADL 8 6 0 2
ASSEMBLY 0 0 0 0
BARMAN-OPT11-STRIPS 3 3 0 0
BARMAN-SAT11-STRIPS 3 3 0 0
BLOCKS 3 3 0 0
DEPOT 5 4 1 0
DRIVERLOG 2 2 0 0
ELEVATORS-OPT11-STRIPS 3 3 0 0
ELEVATORS-SAT11-STRIPS 3 3 0 0
FLOORTILE-OPT11-STRIPS 5 4 1 0
FLOORTILE-SAT11-STRIPS 5 4 1 0
FREECELL 7 6 1 0
GRID 7 5 2 0
GRIPPER 3 3 0 0
LOGISTICS00 1 1 0 0
LOGISTICS98 1 1 0 0
MICONIC-SIMPLEADL 1 1 0 0
MICONIC 1 1 0 0
MOVIE 0 0 0 0
MPRIME 3 3 0 0
MYSTERY 3 3 0 0
NO-MPRIME 2 2 0 0
NO-MYSTERY 3 3 0 0
NOMYSTERY-OPT11-STRIPS 2 2 0 0
NOMYSTERY-SAT11-STRIPS 2 2 0 0
OPENSTACKS 8 5 3 0
OPTICAL-TELEGRAPHS 7 6 1 0
PARKING-OPT11-STRIPS 4 3 1 0
PARKING-SAT11-STRIPS 4 3 1 0
PEGSOL-OPT11-STRIPS 2 1 1 0
PEGSOL-SAT11-STRIPS 2 1 1 0
PHILOSOPHERS 7 6 1 0
PIPESWORLD-NOTANKAGE 2 1 1 0
PSR-LARGE 0 0 0 0
PSR-MIDDLE 0 0 0 0
ROVERS 12 6 3 3
SATELLITE 2 1 0 1
SCANALYZER-OPT11-STRIPS 0 0 0 0
SCANALYZER-SAT11-STRIPS 0 0 0 0
SOKOBAN-OPT11-STRIPS 3 2 1 0
SOKOBAN-SAT11-STRIPS 3 2 1 0
STORAGE 3 3 0 0
TIDYBOT-OPT11-STRIPS 3 3 0 0
TIDYBOT-SAT11-STRIPS 3 3 0 0
TPP 5 5 0 0
TRANSPORT-OPT11-STRIPS 2 2 0 0
TRANSPORT-SAT11-STRIPS 2 2 0 0
TRUCKS 3 3 0 0
VISITALL-OPT11-STRIPS 1 1 0 0
VISITALL-SAT11-STRIPS 1 1 0 0
WOODWORKING-OPT11-STRIPS 7 6 1 0
WOODWORKING-SAT11-STRIPS 7 6 1 0
ZENOTRAVEL 2 2 0 0

Table 1: Inv – number of invariants in the domain; Pure –
number of invariants that are always grounded; Over – num-
ber of invariants that always have at least two predicates in
the initial state; Mixed – number of invariants that some-
times are grounded, and sometimes have to many predicted
in the initial state.

have illustrated in the previous section, such an extension
will allow us to perform formal reasoning over a domain
description, as well as provide a cleaner definition of what
constitutes a planning domain.

While the focus of this paper has been on classical plan-
ning, our proposal becomes perhaps even more relevant in
the context of non-deterministic planning. Specifically, fi-
nite state controllers are very useful with non-deterministic
and partially observable planning problems, and state esti-
mation is a must for realistic applications that involve sens-
ing in a partially observable world.

The paper does not presume to provide the definitive, best
possible, extension to PDDL. Two issue that were already
mentioned are that some domains have a separate domain
description for each problem instance, and that the goal can
be a logical formula, not just a single conjunction. With re-
gards to the first issue, this is usually the result of simplify-
ing ADL (Pednault 1989) to STRIPS for the sake of planners
that can not handle ADL. We argue this is not a real issue
here, as reasoning over our proposed extension will require
ADL-like reasoning (specifically, quantifiers). Furthermore,
it is possible to perform reasoning over a domain using the
complex ADL domain specification, and then planning us-
ing the simplified STRIPS version of the given problem.
The second issue, of complex goals, deserves further dis-

cussion. It could be possible to modify our proposed ex-
tension to PDDL to contain more general statements about
the goal, such as “the goal entails X” or “the goal contains
X as a subexpression in a location specified by y”. We are
skeptical that such statements would be of use in modeling
domains of interest to the planning community, and so we
do not propose them here.

Finally, despite the issues mentioned above, we believe
this paper serves as a starting point for a discussion about
what exactly constitutes a domain, and on what the auto-
mated planning community can contribute on top of state-
of-the-art automated planners.
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degli Studi di Brescia.
Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. AIJ 143(2):219–262.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ 173:503–535.
McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.
Minton, S. 1990. Quantitative results concerning the utility
of explanation-based learning. AIJ 42(23):363–391.
Mooney, R. J., and Bennett, S. 1986. A domain independent
explanation-based generalizer. In Proc. AAAI 1986, 551–
555.
Pednault, E. P. D. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proc. KR
1989, 324–332.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. AIJ 175(2):615–647.
Valiant, L. G. 1984. A theory of the learnable. CACM
27(11):1134–1142.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. JMLR 9:683–718.

587



On Chatbots Exhibiting Goal-Directed
Autonomy in Dynamic Environments
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Abstract

Conversation interfaces (CIs), or chatbots, are a popular
form of intelligent agents that engage humans in task-
oriented or informal conversation. In this position paper
and demonstration, we argue that chatbots working in
dynamic environments, like with sensor data, can not
only serve as a promising platform to research issues
at the intersection of learning, reasoning, representation
and execution for goal-directed autonomy; but also han-
dle non-trivial business applications. We explore the un-
derlying issues in the context of Water Advisor, a pre-
liminary multi-modal conversation system that can ac-
cess and explain water quality data.

Introduction

Chatbots (McTear, Callejas, and Griol 2016), which can en-
gage people in natural dialog conversation, have gained pop-
ularity recently drawn by numerous platforms to create them
quickly for any domain (Accenture 2016). Most common
types of such agents deal with a single user at a time and con-
duct informal conversation, answer the user’s questions or
provide recommendations in a given domain. They need to
handle uncertainties related to human behavior and natural
language, while conducting dialogs to achieve system goals.
Chatbots have been deployed in customer care in many in-
dustries where they are expected to save over $8 billion per
annum by 2022 (Juniper 2017).

However, the data sources used by common chatbots
are static databases like product catalogs or user manuals.
Therefore, for their problem of dialog management, i.e.,
creating dialog responses to user’s utterances, effective ap-
proaches include learning policies over predictable nature of
data(Young et al. 2013) or reasoning on its abstract represen-
tations (Inouye 2004).

The application scenarios become more compelling when
the chatbot works in a dynamic environment, e.g., with sen-
sor data, and interacts with groups of people, who come and
go, rather than only an individual at a time. In such situ-
ations, the agent has to execute actions to monitor the en-
vironment, model different users engaged in conversation
over time and track their intents, learn patterns and repre-
sent them, reason about best course of action given goals and

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

system state, and execute conversation or other multi-modal
actions.

We now explore the underlying issues of goal-directed au-
tonomy in dynamic environment in the context of Water Ad-
visor (WA) (Ellis et al. 2018), a prototypical multi-modal
conversation system that can access and explain water qual-
ity data to a variety of stake-holders. We identify opportuni-
ties for learning, reasoning, representation and execution in
WA and motivate more such applications.

Decision-Support for Water Usage With a

Multi-Modal Conversation Interface

The global situation of water quality around the world
is alarming in both developing and developed coun-
tries((UNEP) 2016) because water demand continues to rise
while existing sources for fresh water are getting polluted.
A key strategy for tackling water pollution is engaging peo-
ple. A person makes many daily decisions touching on water
usage activities like for profession (e.g., fishing, irrigation,
shipping), recreation (e.g, boating), wild life conservation
(e.g., dolphins) or just regular living (e.g., drinking, bathing,
washing). Accessible tools for public are particularly useful
to handle public health challenges such as the Flint water
crisis (Pieper, Tang, and Edwards 2017).

A decision in this space needs to consider the activity
(purpose) of the water use; relevant water quality param-
eters and their applicable regulatory standards for safety;
available measurement technology, process, skills and costs;
and actual data. There are further complication factors: there
may be overlapping regulations due to geography and ad-
ministrative scope; one may have to account for alternative
ways to measure a particular water quality parameter that
evolves over time; and water data can have issues like miss-
ing values or at different levels of granularity. The very few
tools available today target water experts such as WaterLive
mobile app for Australia 1, Bath app for UK2, and Gan-
gaWatch for India (Sandha, Srivastava, and Randhawa 2017)
and assume technical understanding of sciences.

1http://www.water.nsw.gov.au/realtime-data
22https://environment.data.gov.uk/bwq/profiles/

The 2018 AAAI Spring Symposium Series

588



Figure 1: A screenshot of Water Advisor. See video of it in action at https://youtu.be/z4x44sxC3zA.

Water Advisor

Water Advisor (WA) is intended to be a data-driven assis-
tant that can guide people without requiring any special wa-
ter expertise. One can trigger it via a conversation to get an
overview of water condition at a location, explore it by filter-
ing and zooming on a map, and seek details on demand (Fig-
ure 1) by exploring relevant regulations, data or other loca-
tions. The current prototype uses water quality data available
from Flint, MI3 but future extensions will use open water
data from US Geological Survey4 (USGS) that is refreshed
for thousands of places in US per day. However, the num-
ber of water quality parameters, for which data is available,
varies widely between locations and over time, making gen-
eration of useful advice challenging. For regulations, WA
relies on information provided by multiple agencies at na-
tional (US, India) and state levels (Michigan, New York),
which has been consolidated for reuse5.

Technical Issues

In a water advising application, one or more users may need
to interact with the chatbot if handling a complex decision
like water contamination. The tool has to detect the user’s in-
formation goals and meet them at lowest cognitive cost. The
system uses a natural language classifier (NLC) to under-
stand user utterance, and its error rate varies with input. The
system has to decide whether to ask clarifying questions if it
has low confidence and there are many ways to respond. The
user may have preferences about how they specify an input
(like location) and the kind of response they want (visual v/s
textual). We discuss a range of issues below for exposition

3http://www.michigan.gov/flintwater/0,6092,7-345-
76292 76294 76297—,00.html

4https://waterdata.usgs.gov/nwis/current/?type=quality
5https://github.com/biplav-s/water-info

but note that the current WA prototype handles only a subset
of following integration issues.

Learning plays an important role in understanding user’s
utterance, finding reliable water data samples in the database
based on region and duration of interest, discovering issues
in water quality and improving overall performance over
time. In the prototype, for utterances, we use trained user
models from commercial systems and for water quality, a
simple regression method.

Representation is needed to map water’s usage purpose to
quality parameters and model safe limits of pollution param-
eters with different mathematic properties (e.g., polarity). It
also helps map water purpose to regulations and further, ag-
gregate and reconcile the latter when a region falls under
overlapping jurisdiction of regulations. We represent this as
geographically-scoped attribute-value pair in JSON format
and make it publicly available for others to use and extend6.

Reasoning is crucial to keep conversation focused based
on system usability goals and user needs. One can model
cognitive costs to user based on alternative system response
choices and seek to optimize short-term and long-term be-
havior. Reasoning can further help to short-list regulations
based on water activity and region of interest, generate ad-
vice and track explanations. We currently use rules on geo-
graphical scope and missing values to determine system re-
sponse.

Execution is autonomous as the agent can choose to act
by (a) asking clarifying questions about water usage goals
or locations, (b) asking user’s preference about advice, (c)
seeking most reliable water data for region and time interval
of interest from available external data sources, and corre-

6https://github.com/biplav-s/water-info
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sponding subset of compatible regulations (d) invoking rea-
soning to generate an advice for water usage using filtered
water data and regulations, (e) visualizing and explaining its
output using water regulations, and (f) using one or more
suitable modalities available at any turn of user interaction,
i.e., chat, maps and document views. The current prototype
uses a simplistic strategy for execution based on error rates,
system confidence and usability rules.

Human Usability Factors have to be modeled and sup-
ported during WA’s operation. In the current prototype, the
user-interface controller module automatically keeps the dif-
ferent modalities synchronized so that the user is looking at
consistent information across them. The system has to be
aware of missing data or assumptions it is making, and needs
to take them into account while communicating output ad-
vice in generated natural language. One avenue for future
exploration is to measure and track complexity of interaction
(Liao, Srivastava, and Kapanipathi 2017) and use sensed sig-
nals to pro-actively improve user experience. Another is to
combine close-ended and open-ended questioning strategies
for efficient interaction (Zhang, Liao, and Srivastava 2018).

Ethical Issues can emerge whenever a piece of technology
is used among people at large. In the context of conversa-
tions, a recent paper surveys ethical issues (Henderson et al.
2018) like biases, adversarial examples, privacy violations,
safety challenges and reproducibility concerns. A water-use
chatbot can conceivably create bias among users of differ-
ent activity subgroups (e.g., preferring recreation over drink-
ing), compromise on privacy of users who submit queries
about an activity or a region, and create public safety con-
cerns (e.g., when users find scarcity of good quality water).
We have not considered them in the prototype, however.

Discussion and Conclusion

In this paper, we used decision-support in water as a use-
case to demonstrate that chatbots can serve as a promising
platform to integrate AI sub-disciplines for goal-directed au-
tonomy. Apart from learning, reasoning, representation and
execution, chatbots also need to work with human usabil-
ity factors and ethical issues. An interesting aspect of these
applications is that the chatbot may be helping a group of
people take collective decision making, like conducting an
interview, and data changes over time. Beyond water and
customer support, complex applications are emerging in sci-
ences (astronomy(Kephart et al. 2018)), business (career
counseling7, hospitality8) and societal domains (health9).
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Young, S.; Gašić, M.; Thomson, B.; and Williams, J. D.
2013. Pomdp-based statistical spoken dialog systems: A re-
view. Proceedings of the IEEE 101(5):1160–1179.
Zhang, Y.; Liao, V.; and Srivastava, B. 2018. Towards an
optimal dialog strategy for information retrieval using both
open-ended and close-ended questions. In Proc. Intelligent
User Interfaces (IUI 2018, Tokyo, Japan, March.

590



Safe Goal-Directed Autonomy and
the Need for Sound Abstractions

Siddharth Srivastava
School of Computing, Informatics and Decision Systems Engineering

Arizona State University
Tempe, AZ 85282
siddharths@asu.edu

Abstract

The field of sequential decision making (SDM) captures a
range of mathematical frameworks geared towards the syn-
thesis of goal-directed behaviors for autonomous systems.
Abstract benchmark problems such as the blocks-world do-
main have facilitated immense progress in solution algorithms
for SDM. there is some evidence that a direct application of
SDM algorithms in real-world situations can produce unsafe
behaviors. This is particularly apparent in task and motion
planning in robotics. We believe that the reliability of today’s
SDM algorithms is limited because SDM models, such as the
blocks-world domain, are unsound abstractions (those that
yield false inferences) of real world situations.
This position paper presents the case for a focused research ef-
fort towards the study of sound abstractions of models for
SDM and algorithms for efficiently computing safe goal-
directed behavior using such abstractions.

Introduction

The increasing maturity of AI techniques presents us with
a unique opportunity to develop physical and electronic AI
agents that could autonomously assist humans. Such agents
would need to be able to accept high-level commands, and
reason about what to do over extended periods of time span-
ning multiple decision epochs. The field of sequential de-
cision making (SDM) captures such problems. In order to
solve them, an AI agent needs to the assess different courses
of action available to it: which course of actions would ac-
complish the assigned task? would it be safe to execute?
which course of actions would be beneficial? Evaluating a
possible courses of action in this way requires some knowl-
edge about the environment and the possible impacts of the
agent’s actions in it—in other words, a model.

In the absence of a model, such evaluations would need to
be done through trial and error. It is difficult to conceive of
situations where deploying robots would have a high value
and where such trials and their associated errors would be
acceptable. In situations that involve proximal human-robot
collaboration, or situations that are too dangerous for humans,
errors are usually associated with forbidding penalties. Just
as a bomb-disposal robot that learns on the fly would be an
ephemeral investment, a household assistant that attempts
to learn through trial an error, which medication is required
when a person goes into insulin shock, would be of dubious

ethical, social and economic value. It is well known in the
AI community that PAC-learning guarantees alone are not
sufficient for ensuring safe behavior in such situations; recent
analyses have highlighted their limitations in the face of the
anticipated roles of AI systems (Russell, Dewey, and Tegmark
2015; Brynjolfsson and Mitchell 2017).
The focus of this position paper is on the mechanisms

for creating domain models that are efficient but sound ab-
stractions of real-world problems, and the algorithmic ad-
vances required for using such models for safe behavior
synthesis. Models can be in the form of closed-form math-
ematical specifications, (such as Markov Decision Process
with transition probability specifications) or in the form of
black-box simulators or generative models that can sample
possible action outcomes (as typically used in reinforcement
learning). Models of either form can be derived from ex-
isting knowledge, or learned through past experience in the
field. Indeed, some of the most popular demonstrations of
AI systems rely upon perfect models (Silver et al. 2017;
Mnih et al. 2015) in the form of game simulators for effi-
ciently obtaining millions of labeled behavioral experiences.
Regardless of the form or the nature of acquisition of

models, higher fidelity models feature larger branching fac-
tors and larger time horizons and therefore result in SDM
problems of higher computational complexity (regardless
of the solution approach taken, be it dynamic program-
ming, search, learning from trials and past experience,
or a combination thereof). Hierarchical abstractions are
used to alleviate this problem by creating input models
that are abstractions of the true problem (Sacerdoti 1974;
Knoblock 1990; Parr and Russell 1998; Dietterich 2000;
Marthi, Russell, and Wolfe 2007).
Hierarchical abstractions include state abstractions (mod-

els that maintain fewer environment properties than the real
situation) as well as temporal abstractions (models featuring
high-level actions that span multiple primitive operations of
the underlying actuators).
In recent work (Srivastava, Russell, and Pinto 2016) we

showed that simple forms of abstractions can result in models
that are not consistent with the underlying problem scenario
as well as models that are not Markovian, or not solvable!
As a result many real-world problems have never truly been
addressed by SDM solution techniques that treat their input
models as perfect abstractions.
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Figure 1: A realistic blocks-world problem. Pickups can be
made only from the sides. Although there is no stacking and
the preconditions of the pickup action are satisfied, there is
no feasible motion plan for picking up most of the objects on
the table.

For instance, consider the blocks-world domain, which
is among the most easily recognizable, perhaps even infa-
mous, benchmarks for sequential decision making. Given
initial and desired configurations of blocks on a surface, the
problem is to compute a behavior that would transform the
initial configuration to the desired configuration. The set
of available actions typically consists of maneuvers such
as pickup and place. Stochastic action effects and noisy
sensors for this domain can be easily expressed in most mod-
eling languages for SDM (Boutilier, Reiter, and Price 2001;
Younes and Littman 2004; Sanner 2010; Srivastava, Cheng,
and Russell 2014). Although SDM models for the blocks-
world domain are considered to be too “well studied” to be in-
teresting for research, they are poor abstractions of the under-
lying SDM problems of rearranging objects while avoiding
collisions (see Fig. 1 for a simplified yet realistic problem).
Consequently the underlying problems remain unsolved and
feature significant research challenges.
Indeed, while the true space of blocks-world problems

captures all pick-and-place problems, ongoing research in
robotics shows that SDM solvers that perform well on the
standard blocks-world model produce poor unsafe solu-
tions even in simplified real-world situations that feature
robots with perfect sensing and actuation, and block arrange-
ments without stacking (Cambon, Alami, and Gravot 2009;
Kaelbling and Lozano-Pérez 2011; Plaku and Hager 2010;
Kaelbling and Lozano-Pérez 2013; Srivastava et al. 2014).
These solutions could violate arbitrarily many of the con-
straints that were abstracted in an unsound fashion, and result
in unsafe behaviors that include unintended collisions. This
situation is representative of several problems where goal-
directed autonomy is desired; we believe that this potential
for unsafe behavior effectively prohibits the safe deployment
of general purpose AI agents.

Problem with the Current Situation

Conventional modeling paradigm As noted above, it is
well appreciated that abstraction is a useful mathematical
tool for solving real-world SDM problems. The conventional

wisdom along these lines is to use an abstract domain model
with an SDM solver to compute the “high-level strategy” for
solving a problem (e.g., one that determines the order of un-
stacking and stacking block-tower configurations), and then
use a low-level planner (e.g., a motion planner) or controller
to implement each of the actions in the strategy.

Underlying assumptions and their limitations This wis-
dom is based on the assumption that the effect of applying an
action in the real world will be consistent with the modeled
effect in the abstract model. This in turn is based on the
assumption that the result of applying a desired abstraction
function on the real situation will be a Markovian model.
On the other hand, constructing a Markovian model re-

quires the inclusion of several properties of the environment
as state variables or predicates; abstraction requires removing,
or coarsening properties in the model. It should therefore
be natural to expect the abstraction of an accurate domain
model to possibly result in a non-Markovian domain model.
Recent work shows that this intuition is in fact true (Srivas-
tava, Russell, and Pinto 2016): simple abstractions can result
in models that are not Markovian; furthermore, it is often not
possible to express the resulting models accurately in existing
modeling languages for SDM.
This raises a few questions: all the SDM models we use

are Markovian (and naturally, are expressed in the modeling
languages that we have been using). Few, if any, of these are
accurate, non-abstracted depictions of the real world situation
that they represent. Have we been lucky enough to always get
Markovian abstractions? Do the domain designers intuitively
construct perfect abstract transition systems that retain just
the right properties to make the resulting abstracted model
tractable as well as Markovian?

To answer these questions, we turn once again to the blocks
world and its abstraction expressed as the blocks-world do-
main. Among other details, this domain states that if a block
has nothing on top of it, the robot’s gripper should be able
to pick it up. In a real situation (e.g. Fig. 1), this is not true
because there may be no collision-free path for the gripper
to pick up the block. The vocabulary used in the blocks-
world domain is not sufficient to accurately express this prop-
erty (Cambon, Alami, and Gravot 2009; Hertle et al. 2012;
Kaelbling and Lozano-Pérez 2011). As a result the standard
blocks-world domain is not a sound model of the real blocks
world because it implies action consequences that are not
true 1. Policies computed using such models are unsafe, and
can be dangerous. Although our example refers to situations
where geometric constraints were abstracted out, such errors
can arise with all forms of abstraction. One would not ap-
preciate a robot using such principles in most applications
that could benefit from a safe and productive robot, including
mining, firefighting, bomb disposals, household help, etc.

1It is sound for environments where the gripper is either infinites-
imally thin (so that it can slip between adjacent towers), or is an
electromagnet suspended from the ceiling. Either way, the ceiling
should be arbitrarily high and the table should be broad enough to
lay any number of blocks on it. Such situations are unusual if not
impossible.

592



In fact, the sound abstraction of the blocks world using the
vocabulary of the blocks-world domain is a non-Markovian
transition system: the effect of reaching for a block in this
transition system depends on the occurrence of preceding
place actions. If the target block was initially reachable, and
no other place actions placed a block on the same table, the
block will remain accessible. Otherwise, it may not be. There-
fore, the standard blocks-world model is not only inconsistent
with the underlying problem, its vocabulary is insufficient
to make the abstract transition system Markovian! Forcing
such a non-Markovian abstract transition system into domain
languages that can only express Markovian models results
in a model that is inconsistent with the modeled problem.
Our research indicates that the situation can be resolved if
the modeling languages are extended to annotate parts of the
model as imprecise due to abstraction, and algorithms uti-
lize this information to extract more information from higher
fidelity models when needed.

Non-solutions The preceding discussion may seem to indi-
cate that a stochastic formulation (such as an MDP) would
help resolve these issues. However, this is not true. First, it
would require enumerating and solving for the complete set
of possible outcomes for an action in an abstract state space.
This is infeasible. E.g., in the blocks-world model’s vocabu-
lary, every time a robot (not a ceiling mounted gripper) tries
to move its hand, all possible subsets of movable objects in
the room would need to be considered as potentially being
knocked over. Second, such models would not be complete:
they would disallow solutions that are feasible under a more
accurate representation.
The problems highlighted above are orthogonal to ef-

forts aimed at increasing the level of detail expressible in
our input modeling languages (e.g., (Hertle et al. 2012;
Fox and Long 2002)). Even if we could model SDM prob-
lems at the level of detail of sub-atomic particle interactions,
this is unlikely to yield more efficient solution techniques.
It is equally unlikely that modeling an entire household at
the level circuit diagrams of every appliance would “help” a
household robot efficiently compute useful behavior. Natural
computational consequences of increasing branching factors
and time horizons make it clear that a uniformly detailed
model at the highest possible fidelity will not yield the most
efficient SDM system, regardless of the solution approach.
Thus, SDM solvers will continue to rely upon hierarchical
abstractions for efficiency in modeling and in solution com-
putation.

Paths Ahead

We believe that the limitations in correctly expressing abstract
SDM models of real-world situations (and consequently, of
efficiently solving such problems) have limited the applica-
bility of SDM techniques in the real world. As a community
we have made numerous advances under the assumption that
inputs will be perfect abstractions that yield exactly the true
consequences. Our position is that these advances are nec-
essary, but not sufficient towards deployable autonomous
systems. We also need to expand the scope of SDM technol-

ogy towards principled approaches for designing and com-
puting abstract SDM models that may be imprecise, but not
incorrect. New representations for such abstract SDM mod-
els (generative models or simulators, as well as analytical)
would require and facilitate corresponding algorithms that
produce truly executable solutions.

Some prior research efforts are highly relevant to this prob-
lem. Work on algorithms for planning with models that
may be incomplete addresses situations when unknown per-
turbations may have been applied to accurate domain mod-
els that are expressible in the modeling language (Nguyen
and Kambhampati 2014). Angelic semantics for high-level
actions increase the scope of representation languages to
specify upper and lower bounds on reachable states in situa-
tions with temporal abstraction rather than state abstraction.
The resulting algorithms are able to effectively utilize such
bounds in pruning irrelevant high-level actions (Marthi, Rus-
sell, and Wolfe 2007). Related research in motion planning
highlights the value of state abstractions of control-theoretic
models, which are constructed using subsets of the full set
of variables required to describe a system (Styler and Sim-
mons 2017). We have been developing representations for
efficiently expressing imprecise but sound abstract models
resulting from state and temporal abstraction for arbitrary
SDM problems. Our solution algorithms utilize sound and
imprecise abstract models, but dynamically improve them
by deriving abstracted, context-sensitive information from
more accurate models. This information is abstracted and
incorporated in the abstract models (Srivastava et al. 2014;
Srivastava, Russell, and Pinto 2016), allowing SDM algo-
rithms to compute agent behaviors with strong guarantees
of safety and correctness. Some of our main results can be
summarized as follows:

1. Under certain conditions, abstraction can indeed result in
Markovian models. These conditions appear to be rare.

2. In many cases, abstraction results in domain models that in-
cludes forms of model-imprecision that could have been re-
solved during computation had they been expressed. How-
ever, current modeling languages do not support constructs
that distinguish model imprecision arising due to abstrac-
tion from non-determinism or stochasticity that is a feature
of the environment.

3. If model imprecision caused due to abstraction is recorded
in the abstract model (e.g., by noting that the effect of
a place action is imprecise, along with the abstraction
function that caused the imprecision), the situation can be
resolved. It is possible to dynamically tune the abstraction
to include more information from accurate models using
different solvers for models at different levels of abstrac-
tion. Used in this fashion, SDM solvers can effectively
produce executable behavior. Dynamically tuning an im-
precise (but not incorrect) model during search allowed us
to produce a competitive task and motion planner that uses
existing SDM solvers.

These initial results indicate that new methods for computing
and utilizing abstract models that are sound even when they
are imprecise allow us to leverage SDM technology towards
solving entire new classes of problems that are abstractions
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of real-world situations.
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Abstract

This paper describes our approach to integrating rep-
resentation, reasoning, learning, and execution in our
data-mining robots by exploiting micro-clusters to close
the loop of the KDD process model. Based on our sev-
eral kinds of autonomous mobile robots that monitor
humans with Kinect and discover patterns, we are work-
ing on designing data-mining robots, each of which
makes trials and errors in its data observation, data pro-
cessing, pattern extraction, and mobile explorations. In
other words, the robots continuously refine their goals at
the micro-cluster level. We briefly discuss our four re-
search directions, i.e., the balance between the exploita-
tion and the exploration, the use of weak labels, the any-
time algorithm, and the countermeasure to the concept
drift, and describe potential, promising approaches for
some of them.

Data-Mining Robots for Human Monitoring

We have constructed several kinds of autonomous mobile
robots that monitor humans with Kinect and discover pat-
terns. For instance, one to three robots, either a TurtleBot 2
or a hand-crafted robot each with Kobuki, jointly monitor
a walking human, typically with elderly-experience equip-
ment, to discover fall risks by clustering his/her skeletons
(Deguchi et al. 2017; Takayama et al. 2014). Another ex-
ample is a TurtleBot 2 with Kobuki that clusters facial ex-
pressions to discover smiling, yawning, and reading clusters
of a desk worker (Kondo, Deguchi, and Suzuki 2014). This
robot was later used to detect his/her hidden fatigue by clus-
tering classifiers of neutral faces and smiling faces, which
were observed every 30 minutes with their weak class labels
input through a wireless mouse (Deguchi and Suzuki 2015).
Figure 1 shows snapshots of these robots in the respective
series of experiments.

All these robots represent the monitored person with mi-
cro clusters, which are learnt based on procedures similar
to BIRCH, a hierarchical clustering algorithm (Zhang, Ra-
makrishnan, and Livny 1997; Han, Kamber, and Pei 2012).
A micro cluster, which represents a group of similar exam-
ples each described with a set of numerical features, in its

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

original form is a triplet (n,v, s), where n, v, and s re-
spectively represent the number of examples in the micro
cluster, the add-sum of the examples in the micro cluster,
and the add-sum of the squared L2-norm of the examples in
the micro cluster (Zhang, Ramakrishnan, and Livny 1997).
This triplet is called a Clustering Feature (CF) vector and
has virtues of enabling an exact, incremental update and a
reproduction of various cluster-wise distances without using
the original examples. We initially adopted this approach to
cluster colors of subimages observed by an autonomous mo-
bile robot (Suzuki, Matsumoto, and Kouno 2012), and then
extended the idea to cluster skeletons (Deguchi et al. 2017;
Takayama et al. 2014), facial expressions (Kondo, Deguchi,
and Suzuki 2014), and linear classifiers (Deguchi and Suzuki
2015). In these applications, an example is represented by a
point in an Euclidean space spanned by the vectors of fea-
tures, e.g., instability features described with skeleton joints
inferred by Kinect (Deguchi et al. 2017; Takayama et al.
2014), action units inferred by Kinect to code emotional fa-
cial expressions (Kondo, Deguchi, and Suzuki 2014), coef-
ficients of a logistic repression classifier to discriminate be-
tween neutral faces and smiling faces (Deguchi and Suzuki
2015).

Currently, we are working on extending our robots to
data-mining robots, each of which makes trials and errors in
its data observation, data processing, pattern extraction, and
mobile explorations. The idea comes from the Knowledge
Discovery in Databases (KDD) process model (Fayyad,
Piatetsky-Shapiro, and Smyth 1996) shown in Figure 2. The
Knowledge Discovery in Databases (KDD) process model
states that a data mining process can be modeled as a series
of several kinds of pre-/post-processing and pattern extrac-
tion. Our application domain is on a TurtleBot with Kobuki
equipped with Kinect ver. 2 that continuously navigates in-
side a 90-m2 room, observes desk workers, report discov-
ered patterns to them, and receives their comments as re-
wards through its mouse. We believe that our data-mining
robots are still goal-oriented, though their goals are unclear
at the pattern level during their operations due to the nature
of the KDD process model.

Exploiting Micro-Clusters to Close The Loop

Our previous robots either neglect the discovered pat-
terns and micro-clusters or use them through static proce-
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Figure 1: Snapshots of our autonomous mobile robots that monitor humans with Kinect and discover patterns. (Top left) Turtle-
Bot 2 with Kobuki clusters facial expressions to discover smiling, yawning, and reading clusters of a desk worker (Kondo,
Deguchi, and Suzuki 2014). (Right) Two TurtleBots 2 with Kobuki jointly monitor a walking human with elderly-experience
equipment to discover fall risks by clustering his/her skeletons (Deguchi et al. 2017; Takayama et al. 2014). (Bottom left)
TurtleBot 2 with Kobuki detects hidden fatigue of a desk worker by clustering classifiers of neutral faces and smiling faces,
which were observed every 30 minutes with their weak class labels input through a wireless mouse (Deguchi and Suzuki 2015).

dures (Deguchi et al. 2017; Takayama et al. 2014; Kondo,
Deguchi, and Suzuki 2014; Deguchi and Suzuki 2015). On
the other hand, our intended data-mining robots closes “The
Loop”, i.e., realizes the trials and errors of the KDD process
model especially by exploiting their results of the pattern
discovery in their data observation and mobile explorations.
In other words, the robots continuously refine their goals at
the micro-cluster level. We have adopted four research di-
rections: the balance between the exploitation and the ex-
ploration, the use of weak labels, the anytime algorithm, and
the countermeasure to the concept drift.

Realizing the balance between the exploitation and the ex-
ploration requires care in our application due to the difficulty
in estimating the interestingness of a discovered pattern in
data mining. Though we have already built naive methods,
e.g., moving to observe from a different angle when the set
of micro clusters reaches a pre-defined degree of stability,
the reward given by humans is not necessarily related to such
diversity and how to estimate the correct, new angle for ob-
servation is unclear. Note that we are mostly faced with sig-
nal data, as the symbol grounding problem is far from being
resolved. Modeling the diversity related to the interesting-
ness would be the next step, though the exploration for new
data would remain hard-wired.

We define a weak label as a piece of information related
with supervisory signal, or the desired output value. It could
be a class label of a bag of examples in the multiple instance
learning, a class label in relevant learning tasks in multi-
task or transfer learning, a (probabilistic) constraint on the

target class labels in classification. See for instance (Mann
and McCallum 2010). In our problem, the reward by a desk
workers is rarely given, even if our robot reports an interest-
ing pattern. We have recently developed a one-class selective
transfer machine for personalized anomalous facial expres-
sion detection (Fujita, Matsukawa, and Suzuki 2018), which
would be useful in both designing how to exploit weak la-
bels and using the detected anomalous facial expressions as
weak labels.

Naturally, our robot has to adopt an anytime algorithm,
e.g., (Ueno et al. 2006), which can return the so-far best
output anytime by using the available resources, especially
the computation time. In BIRCH (Zhang, Ramakrishnan,
and Livny 1997; Han, Kamber, and Pei 2012) and our dis-
covery robots (Deguchi et al. 2017; Takayama et al. 2014;
Kondo, Deguchi, and Suzuki 2014; Deguchi and Suzuki
2015), the micro-clusters are managed by a Clustering Fea-
ture (CF) tree, which may be viewed as a result of hierarchi-
cal clustering (Han, Kamber, and Pei 2012). Handling and
reporting the micro-clusters in an intermediate level of the
CF tree is a naive but natural solution. The closing the loop
problem dictates that this research direction is deeply related
with the first one: the balance between the exploitation and
the exploration. Combined with the other two problems, de-
signing an adequate anytime algorithm for our robots raises
numerous challenges, even if partial solutions exist in the
literature, e.g., (Ivanov, Blumberg, and Pentland: 2001).

Last but not least, our robot has to take a countermea-
sure to the concept drift, which is inherent in data stream
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Figure 2: KDD process model (adopted and modified from (Fayyad, Piatetsky-Shapiro, and Smyth 1996)).

mining (Krempl et al. 2014). The statuses of desk workers
change gradually or abruptly, though our robot platform in-
cluding its batteries and sensors is reliable and can be re-
garded as static. Comparing CF trees (Boubou, Hafez, and
Suzuki 2015) is in fact a nontrivial procedure and thus we
are rather seeking for another approach of managing a set of
micro-clusters.
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Abstract

Learning from demonstration is an effective paradigm to
teach specific tasks to robots. However, such demonstrations
often have to be performed on the robot, which is both time-
consuming and often still requires expert knowledge (e.g.,
kinesthetically controlling the joints). It is often easier to
specify tasks at a high level of abstraction, and let the robot
figure out the grounding to the robot/agent space. We consider
how to learn such a mapping. In particular, we consider the
task of learning to navigate on a mobile robot given only an
abstraction of the path and potential landmarks. We cast this
as a learning problem between abstract and robot (grounded)
state spaces and illustrate how this works in several cases.
Through these cases, we see that the “abstract navigation”
task touches on many interesting issues related to abstraction,
and suggest avenues for further investigation.

Introduction

To tackle the high-dimensional complexity of the world and
long-horizon nature of complex tasks, agents need abstrac-
tion, the act of compressing both state and time in service
of certain goals. Much of artificial intelligence has been
devoted to manually endowing agents with abstractions,
such as via symbols (state abstraction) (Dietterich 2000;
Konidaris, Kaelbling, and Lozano-Pérez 2018) and sub-
tasks/options (temporal abstraction) (Sutton, Precup, and
Singh 1999). However, agents that operate in a continual and
lifelong setting will eventually encounter conditions unfore-
seen to the designer, and must come up with its own ab-
stractions. Existing work in learning abstractions, most no-
tably in reinforcement learning, typically require much ex-
perience within the domain, and arguably have not achieved
widespread success. Indeed, one of the challenging aspects
of abstraction is that in the time it takes to induce an abstrac-
tion and learn how to use it effectively, the specific ground /
non-abstract task could already have been solved.

In contrast, humans use abstractions very effectively. For
example, when provided a 2-D map of a new location (e.g.,
Figure 1), people can typically follow the map to reach a
desired destination on the first try, without requiring the nu-
merous episodes of trial and error that reinforcement learn-
ers require. This feat is even more remarkable when con-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Humans can navigate in new places by using ab-
stract 2-D maps, such as by following the walking directions
depicted by the red arrows in the map above, which direct
a person to exit a certain subway exit and cross two roads
to reach an office (red square in the bottom left). They are
able to take abstract policy-related knowledge encoded in
the map, and ground the relevant actions in the real world. If
robotic agents can learn to use existing abstractions, not only
will they be easier to instruct by humans, they may even be
able to produce abstract and interpretable knowledge.

sidering that the real-world looks nothing like the 2-D map:
it is 3-D, is perceived from a first-person perspective (in-
stead of bird’s-eye for maps), and contains many more ob-
jects and other distractors compared to the map itself. Even
so, when encountering these completely new percepts and
‘states’, people can follow where they are on the map and
navigate as desired. Humans have mastered the abstraction
of 2-D maps: from the current ground state in the real world,
they are able to find the corresponding abstract state as a 2-
D point on the map, determine the appropriate next abstract
action within the abstract world, and then ground this action
into physical motion. Furthermore, humans have mastered
the entire class of such 2-D map abstractions; given a new
instance of the abstraction (e.g, a map of a new place), hu-
mans can immediately perform the necessary grounding.

We first formalize the notion of abstraction, then frame
the problem of learning how to use existing abstractions as a
fully supervised, learning-from-demonstration problem. For
the “abstract navigation” task described above, we consider
several classes of possible abstractions, some of which are
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fs

π

π̃

fa

Figure 2: Abstraction diagram.

easy to learn, whereas others remain unsolved. Finally, we
discuss directions of ongoing and future investigation.

Related Work

The general problem setup has ties to transfer learning (Tay-
lor and Stone 2009) and learning from demonstration (Ar-
gall et al. 2009). Cobo et al. (Cobo et al. 2014) also ex-
plored learning abstractions from demonstrations, using an
approach based on feature selection and task decomposition.

The formulation of abstractions in this work is inspired
by the pioneering work of Ravindran (Ravindran 2004) and
subsequent work by Abel et al. (Abel, Hershkowitz, and
Littman 2016). Both lines of work analyze theoretical prop-
erties of abstraction in reinforcement learning.

Recently, there has been work on navigation using ab-
stract 2-D maps such as hand-sketched maps (Boniardi et
al. 2015; 2016), floor plans (Gao et al. 2017), and mazes
(Brunner et al. 2018). However, most of these approaches
are specific to 2-D robot/agent navigation.

Model and Problem Formulation

The agent operates in the grounded state space S and action
space A. The objective is to determine a plan or policy π :
S → A that achieves some given task in the world. The
premise of this work is that we are given an abstract solution
for the task, such as a route to follow on an abstract 2-D
map that reaches a desired goal location. Formally, we are
given an abstraction in abstract state and action spaces S̃, Ã,
as well as an abstract policy π̃ : S̃ → Ã.

The abstract policy is a solution for the (grounded) task
if there exist abstraction functions fs : S → S̃ and fa :

Ã → A+ that can produce a grounded policy according to
the diagram in Figure 2. In particular, the requirement is:

π = fa ◦ π̃ ◦ fs (1)

To find the next ground action(s), we first lift the ground
state to the abstract state using fs, apply the given abstract
policy π̃, then ground the resulting abstract action using fa
to an executable primitive action (or action sequence, if there
is temporal abstraction). If π̃ is an abstract solution for the
task, then repeatedly applying this procedure should result
in the agent reaching the goal in its grounded space.

Our goal is to learn the abstraction functions fs and fa,
such that when presented with a new instance of the abstrac-
tion class (e.g., a 2-D map of a new location), the agent can

follow the given abstract solution via Equation 1, i.e., trans-
fer an abstract policy to the agent’s grounded state space.

To learn the abstraction functions, we need training data.
We consider the simplest setting, where paired trajectories in
both ground and abstract spaces are provided. This is a fully-
supervised, learning-from-demonstration setting, where the
agent is shown grounded solutions to various task instances
(e.g., by guiding it through the real world), together with
annotated abstract solutions to the same problems (e.g., by
drawing the route on the 2-D map).

Abstract Navigation

We consider several instances of a problem where the task
is to follow a specified path, given in an abstract space. The
grounded state space in all these cases is the state of the
robotic agent, which includes highly relevant state dimen-
sions such as odometry (noisy estimate of location relative
to its starting position), moderately relevant features such as
detected landmarks, and irrelevant features such as its arms’
joint angles (if it has arms) or its battery level.

Isometric path

In the simplest case, the abstract path is given as a 2-D tra-
jectory that accurately preserves relative lengths and angles,
except possibly in a different global coordinate frame and
scale. (This would be the case if the path was specified in
most popular web mapping services such as Google Maps.)
If the abstract path is also annotated at each point with the
appropriate ground action, which could also be easily in-
ferred from an isometric 2-D solution trajectory, then fa can
be assumed to be the identity function. The paired trajecto-
ries during training give corresponding pairs (s, s̃) of high-
dimensional ground states and 2-D abstract states respec-
tively. Learning fs then becomes a multi-label linear regres-
sion problem (mapping s to s̃), since the ground and abstract
states are related via an affine transformation (in the case
of an isometric abstract path). In simulation, this method
alone is highly effective at ignoring irrelevant features in the
ground state s and handling zero-mean additive noise.

For abstract paths that are not perfect isometries, we need
to learn non-linear regression functions. This is still strictly
within the realm of supervised machine learning, for which
many approaches exist to learn non-linear fs functions.

The issue of orientation

The previous case provided a way to accurately find the ab-
stract (x, y) location on the provided abstract path. How-
ever, the first problem one encounters when implementing
the strategy on a point robot is orientation: if the robot is not
facing in the same direction as the path intended, then fol-
lowing the abstract policy π̃ causes the robot to deviate from
the path. The main issue is that the abstraction is insufficient
to distinguish between the canonical path-following orienta-
tion from other states sharing the same abstract (x, y).

There are several potential ways to fix this. The simplest
is to expand the abstract space to incorporate orientation θ as
well; however, this requires a more complicated abstract pol-
icy to be specified. Alternatively, the burden may be placed
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on the agent, by formulating each step of the path-following
as a subtask (instead of a primitive action), where the sub-
goal is to return to a canonical orientation. The canonical ori-
entation can be learned during training, or may be required
to be the initial heading of the robot.

More generally, incomplete abstractions are likely to be
encountered, and it would be useful to detect them and make
local corrections, such as by inserting subgoals. This points
to one argument for learning both ground and abstract tran-
sition models, T and T̃ respectively: an incomplete abstrac-
tion will not generally be able to enforce one-step consis-
tency between fs ◦ T and T̃ ◦ fs. Thus transition models
enable error detection in abstraction.

Landmarks

In typical maps, even in the case that the map is an isome-
try, there are additional features such as street names, room
numbers, and other iconic elements such as architecturally
distinct buildings. For example, in Figure 1, various street
names (black font) and store names (blue font) are given
near their respective locations. As humans, our sense of
odometry is likely worse than mobile robots, so we must
rely on these highly distinguishable landmark cues for ro-
bustness. If the robot is provided with detectors that allow it
to detect landmark features, then these detections can simply
be incorporated as additional ground state dimensions, and
we can proceed to learn fs from demonstrations via non-
linear regression. In simulation, we considered landmarks in
the form of ‘color patches’ encountered in local regions of
the world; if the color is confined to a unique region in the
abstract space, these landmarks are highly informative and
can correct for otherwise inaccurate geometric mappings.

Topological path

In the previous case, landmarks provide information that is
redundant with the geometric abstract map. Hence it is pos-
sible to remove the geometric aspects of the abstraction and
simply retain the topological information provided by land-
marks. A path in the space of landmarks can now be rep-
resented as a deterministic finite automaton; for example,
in the case of street names as landmarks, nodes may corre-
spond to streets, and edges with street intersections (with an
appropriate output ground action to perform the correct turn,
if any). Note that this abstraction only allows specifying a
single action to be repeatedly performed between two land-
marks; for example, when on a certain street, the agent can
only move in one direction on the street, until an intersection
is encountered. In this case, uniqueness of landmarks is es-
sential, since they are the only source of information, unless
transition models are also provided to enable tracking.

Richer abstractions

The initial motivation for the abstract mapping task was to
follow an abstract 2-D map, such as the one in Figure 1. Ul-
timately, these maps are typically perceived via vision, and
it would be much easier for a robot to use existing maps
if it can process them in image form, rather than requiring
a manual encoding of the abstract policy π̃. Compared to

previous cases, using the 2-D map in image form is inter-
esting because it is both featurally richer compared to pre-
vious abstractions, while at the same time still much lower-
dimensional with respect to the robot. One possibility for us-
ing this image-based abstraction is to extract features from
it, such as using convolutional neural networks, and to then
learn to map ground states to abstract visual features.

The automaton-based abstraction in the previous case is
also closely related to using natural language instructions
for navigation. For example, “go straight on street A for two
blocks until the intersection with street B, then turn left”
can be represented as an automaton. We can therefore con-
sider using natural language itself as an abstraction, either
by mapping the sequence of instructions to an automaton,
or by directly mapping ground states to abstract linguistic
features, as in the case for images.

Discussion
We considered the problem of learning to use existing ab-
stractions in novel environments, in the context of the prob-
lem of navigation using abstract 2-D maps. The problem
was formulated as a fully-supervised, learning from demon-
stration problem, and several cases of potential abstraction
classes were considered. In the process of analyzing these
cases, various aspects and issues of abstraction were encoun-
tered, and many problems and solutions still lie ahead.

There remains the issue of learning the action abstraction
function fa. This is the problem of temporal abstraction,
which has arguably received greater attention in the field
thus far. One way to consider an abstract action ã is to view
it as a subgoal, which instantiates a local planning problem.
This was a potential strategy used to overcome the lack of
orientation information in the abstract 2-D map.

So far, the problem has only been considered in the fully-
supervised setting. Although this provides the strongest sig-
nal for learning, it also requires significant effort from the
user. One possibility is provide weak supervision through re-
inforcement learning, in the extreme case only providing re-
ward if the correct path is followed. An intermediate regime
would be to still provide demonstrations, but no longer with
ground-abstract state correspondences.

Two cases in the previous section touched upon the utility
of learning transition models. The benefit so far appears to
be increased robustness in determining the correct abstract
state. Transition models are also needed for planning; if the
solution path is not provided, and only an abstract map is
given (which is the case when using a standard map), then
planning in the abstract space will be necessary. This is a
useful extension to the problem considered so far: find an
abstract policy and follow it via the same grounding mecha-
nism, with the assumption that the abstraction is a “faithful”
representation of the world with respect to the task.

The proposed approach may also provide useful theoreti-
cal analysis of abstractions. Since the problem of learning
abstractions has been transformed into one of supervised
learning, we may be able to adapt theoretical tools from
computational learning theory in this more familiar setting,
and characterize the utility of various abstractions. In partic-
ular, to use the given abstraction effectively, we had to learn
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the abstraction function fs (and eventually fa); the complex-
ity of this learning problem tells us how practical the abstrac-
tion is. If it is difficult to learn fs, then it may not be worth
the extra learning effort for the potential reduction in repre-
sentational complexity. An abstraction may only be useful if
it is an accurate representation of the world with respect to
the task, provides some degree of information compression,
and the abstraction functions are easy to learn.
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Abstract

This paper aims to identify in a practical manner unknown
physical parameters, such as mechanical models of actuated
robot links, which are critical in dynamical robotic tasks. Key
features include the use of an off-the-shelf physics engine and
the data-efficient adaptation of a black-box Bayesian optimiza-
tion framework. The task being considered is locomotion with
a high-dimensional, compliant Tensegrity robot. A key insight
in this case is the need to project the system identification
challenge into an appropriate lower dimensional space. Com-
parisons with alternatives indicate that the proposed method
can identify the parameters more accurately within the given
time budget, which also results in more precise locomotion
control.

Introduction

This paper presents an approach for model identification by
exploiting the availability of off-the-shelf physics engines
used for simulating dynamics of robots and objects they inter-
act with. There are many examples of popular physics engines
that are becoming increasingly efficient (Erez, Tassa, and
Todorov, 2015; Bul; MuJ; DAR; Phy; Hav). These physics
engines receive as input mechanical and mesh models of the
robots in a particular scene, in addition to controls (force,
torque, velocity, etc.) applied to them, and return a prediction
of the robot’s dynamical response.

The accuracy of the prediction depends on several factors.
The first one is the limitation of the mathematical model
used by the engine (e.g., the Coulomb approximation). The
second factor is the accuracy of the numerical algorithm used
for solving the equations of motion. Finally, the prediction
depends heavily on the accuracy of the physical parameters
of the robots, such as mass, friction and elasticity. In this
work, we focus on the last factor and propose a method to
improve the accuracy of the physical parameters used in the
physics engine.

In the context of compliant locomotion systems, the
Tensegrity robot of Figure 1 is a structurally compliant plat-
form that can distribute forces into linear elements as pure
compression or tension (Caluwaerts et al., 2014). This robot’s
tensile elements can be actuated, enabling it to effectively
adapt to complex contact dynamics in unstructured terrains.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The Tensegrity robot (Caluwaerts et al., 2014).

A policy for a rolling locomotive gait of the platform has
been learned from simulated data (Geng et al., 2016). Tenseg-
rity robots are inherently high-dimensional, highly-dynamic
systems, and providing a predictive model requires a physics-
based simulator (NTRT). The accuracy of such a solution
critically depends upon physical parameters of the robot, such
as the density of its rigid elements and the elasticity of the
tensile elements. While a manual process can be followed to
tune a simulation to match the behavior of a real prototype
(Mirletz et al., 2015), it is highly desirable to conduct this
calibration using as few observed trajectories as possible. In
this work, trajectories generated by a simulation manually
tuned to a prototypical robotic platform are used to identify
the parameters of a physics engine for tensegrity modeling.
Given the high-dimensionality of the parameter space, this
is a challenging problem. This work proposes the mapping
of the system identification process to a lower dimensional
space of parameters. Methods used for dimensionality reduc-
tion include Random Embedding (REMBO) (Wang et al.,
2016) as well as Variational Auto Encoder (VAE) (Kingma
and Welling, 2014). A data-efficient Bayesian optimization
technique is used for searching in the lower dimensional
space, instead of the original high dimensional parameter
space. The proposed method is able to efficiently identify
the parameters that produce a simulation that most closely
matches the observed ground-truth trajectories of this excit-
ing locomotive platform.
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Foundations and Contributions

Two high-level approaches exist for learning robotic tasks
with unknown dynamical models: model-free and model-
based ones. Model-free methods search for a policy that best
solves the task without explicitly learning the system dy-
namics (Sutton and Barto, 1998; Bertsekas and Tsitsiklis,
1996; Kober, Bagnell, and Peters, 2013; Levine and Abbeel,
2014). Model-free methods are accredited with the recent suc-
cess stories of reinforcement learning in video games (Mnih
et al., 2015). For robot learning, a relative entropy policy
search has been used (Peters, Mülling, and Altün, 2010) to
successfully train a robot to play table tennis. The PoWER
algorithm (Kober and Peters, 2009) is another model-free
policy search approach widely used in robotics.

Model-free methods, however, do not easily generalize to
unseen regions of the state-action space. To learn an effective
policy, features of state-actions in learning and testing should
be sampled from distributions that share the same support.
This is rather dangerous in robotics, as poor performance in
testing could lead to irreversible damage.

Model-based approaches explicitly learn the dynamics
of the system, and search for an optimal policy using stan-
dard simulation, planning, and actuation control loops for
the learned parameters. There are many examples of model-
based approaches for robotic manipulation (Dogar et al.,
2012; Lynch and Mason, 1996; Merili, Veloso, and Akin,
2014; Scholz et al., 2014; Zhou et al., 2016), some of which
have used physics-based simulation to predict the effects of
pushing flat objects on a smooth surface (Dogar et al., 2012).
A nonparametric approach was employed for learning the out-
come of pushing large objects (furniture) (Merili, Veloso, and
Akin, 2014). A Markov Decision Process (MDP) has been
applied to modeling interactions between objects; however,
only simulation results on pushing were reported (Scholz et
al., 2014). For general-purpose model-based reinforcement
learning, the PILCO algorithm has been proven efficient in
utilizing a small amount of data to learn dynamical mod-
els and optimal policies (Deisenroth, Rasmussen, and Fox,
2011).

Bayesian Optimization is a popular framework for data-
efficient black-box optimization (Shahriari et al., 2016). In
robotics, some recent applications include learning con-
trollers for bipedal locomotion (Antonova, Rai, and Atkeson,
2016), gait optimization (Calandra et al., 2016) and transfer
policies from simulation to real world (Marco et al., 2017).

This work is based on a model-based approach, which
instead of learning a dynamics model, it utilizes a physics
engine, and concentrates on identifying only the mechanical
properties of the objects instead of recreating the dynamics
from scratch. Furthermore, it utilizes Bayesian optimization
and identifies a process for dealing with high-dimensional
system identification challenges efficiently.

Proposed Approach

This work proposes an online approach for robots to learn
the physical parameters of their dynamics through minimal
physical interaction. Because of the high dimensionality of
the parameter space of the tensegrity robot, even with efficient

optimization method like Bayesian optimization (BO), it
is still challenging to identify all the parameters efficiently.
The overall framework of the model identification process
is first introduced, then the approaches of dimensionality
reduction to decrease the search space of BO in order to
achieve efficient optimization are covered in detail.

Model Identification

For the tensegrity robot, the physical properties of interest
correspond to the density, length, radius, stiffness, damping
factor, pre-tension, motor radius, motor friction, and motor
inertia of the various rigid and tensile elements and actuators.

These physical properties are represented as a D-
dimensional vector θ ∈ Θ, where Θ is the space of all pos-
sible values of the physical properties. Θ is discretized with
a regular grid resolution. The proposed approach returns a
distribution P on discretized Θ instead of a single point θ ∈Θ
since model identification is generally an ill-posed problem.
In other terms, there are multiple models that can explain an
observed trajectory with equal accuracy. The objective is to
preserve all possible explanations for the purposes of robust
planning.

The online model identification algorithm (given in Algo-
rithm 1) takes as input a prior distribution Pt , for time-step
t ≥ 0, on the discretized space of physical properties Θ. Pt
is calculated based on the initial distribution P0 and a se-
quence of observations (x0,μ0,x1,μ1, . . . ,xt−1,μt−1,xt). For
the Tensegrity robot, xt is a state vector concatenating the 3D
centers of all rigid elements, i.e., the rods in the correspond-
ing Figure 1, and μt is a vector of motor torques.

The process consists of simulating the effects of the con-
trols μi on the robot in states xi under various values of param-
eters θ and observing the resulting states x̂i+1, for i = 0, . . . , t.
The goal is to identify the model parameters that make the
outcomes x̂i+1 of the simulation as close as possible to the
real observed outcome xi+1. In other terms, the following
black-box optimization problem is solved:

θ ∗ = argmin
θ∈Θ

E(θ) de f
=

t

∑
i=0
‖xi+1− f (xi,μi,θ)‖2, (1)

wherein xi and xi+1 are the observed states of the robot at
times i and i + 1, μi is the control that applied at time t,
and f (xi,μi,θ) = x̂i+1, the predicted state at time t +1 after
simulating control μi at state xi using physical parameters θ .

The proposed approach consists of learning the error func-
tion E from a sequence of simulations with different parame-
ters θk ∈Θ. To choose these parameters efficiently in a way
that quickly leads to accurate parameter estimation, a belief
about the actual error function is maintained. This belief is a
probability measure over the space of all functions E : RD →
R, and is represented by a Gaussian Process (GP) (Rasmussen
and Williams, 2005) with mean vector m and covariance ma-
trix K. The mean m and covariance K of the GP are learned
from data points {(θ0,E(θ0)

)
, . . . ,

(
θk,E(θk)

)}, where θk is
a vector of physical properties of the object, and E(θk) is
the accumulated distance between actual observed states and
states that are obtained from simulation using θk.

The probability distribution P on the identity of the best
physical model θ ∗, returned by the algorithm, is computed
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Input: State-action-state data {(xi,μi,xi+1)} for
i = 0, . . . , t
Θ, a discretized space of possible values of
physical properties;

Output: Probability distribution P over Θ according to
the provided data;

Sample θ0 ∼ Uniform(Θ); L← /0; k← 0;
repeat

lk ← 0;
for i = 0 to t do

Simulate {(xi,μi)} using a physics engine with
physical parameters θk and get the predicted
next state x̂i+1 = f (xi,μi,θk) ;

lk ← lk +‖x̂i+1− xi+1‖2;
end
L← L∪{(θk, lk)};
Calculate GP(m,K) on error function E, where

E(θ) = l, using data (θ , l) ∈ L;
Sample E1,E2, . . . ,En ∼ GP(m,K) in Θ;
foreach θ ∈Θ do

P(θ)≈ 1
n ∑n

j=0 1θ=argminθ ′∈Θ E j(θ ′)
end

θk+1 = argminθ∈Θ P(θ) log
(
P(θ)

)
;

k← k+1;
until Timeout;

Algorithm 1: Model Identification with Greedy Entropy
Search

from the learned GP as

P(θ) de f
= P

(
θ = arg min

θ ′∈Θ
E(θ ′)

)

=
∫

E:RD→R

pm,K(E)Πθ ′∈Θ−{θ}H
(
E(θ ′)−E(θ)

)
dE

(2)

where H is the Heaviside step function, i.e., H
(
E(θ ′)−

E(θ)
)
= 1 if E(θ ′)≥ E(θ) and H

(
E(θ ′)−E(θ)

)
= 0 other-

wise, and pm,K(E) is the probability of a function E according
to the learned GP mean m and covariance K. Intuitively, P(θ)
is the expected number of times that θ happens to be the
minimizer of E when E is a function distributed according to
GP density pm,K .

Distribution P from Equation 2 does not have a closed-
form expression. Therefore, a Monte Carlo sampling is em-
ployed for estimating P. Specifically, the process samples
vectors containing values that E could take, according to the
learned Gaussian process, in the discretized space Θ. P(θ)
is estimated by counting the fraction of sampled vectors of
the values of E where θ happens to have the lowest value, as
indicated in Algorithm 1.

Finally, the computed distribution P is used to select the
next vector θk+1 to use as a physical model in the simula-
tor. This process is repeated until the entropy of P drops
below a certain threshold, or until the algorithm runs out
of the allocated time budget. The entropy of P is given as
∑θ∈Θ−Pmin(θ) log

(
Pmin(θ)

)
. When the entropy of P is close

to zero, the mass of distribution P is concentrated around a
single vector θ , corresponding to the physical model that

best explains the observations. Therefore, the next vector
θk+1 should be selected such that the entropy of P would de-
crease after adding the data point

(
θk+1,E(θk+1)

)
to train the

GP and re-estimate P using the new mean m and covariance
K in Equation 2.

The Entropy Search method (Hennig and Schuler, 2012)
follows this reasoning and use Monte Carlo again to sample,
for each potential choice of θk+1, a number of values that
E(θk+1) could take according to the GP in order to estimate
the expected change in the entropy of P and choose the pa-
rameter vector θk+1 that is expected to decrease the entropy
of P the most. The existence of a secondary nested process
of Monte Carlo sampling makes this method impractical for
online model identification. Instead, this work proposes a
simple heuristic for choosing the next θk+1. In this method,
called Greedy Entropy Search, the next θk+1 is chosen as the
point that contributes the most to the entropy of P, i.e.,

θk+1 = argmax
θ∈Θ

−P(θ) log
(
P(θ)

)
.

This selection criterion is greedy because it does not antici-
pate how the output of the simulation using θk+1 would affect
the entropy of P. Nevertheless, this criterion selects the point
that is causing the entropy of P to be high. That is, a point
θk+1 with a good chance P(θk+1) of being the real model,
but with a high uncertainty P(θk+1) log

( 1
P(θk+1)

)
.

Random Embedding for Model Identification in
the High Dimensional Space

For problems where the space Θ of physical properties has a
high dimension D, the method presented in Algorithm 1 is
not practical because the number of elements in discretized
Θ is exponential in dimension D. This is a common problem
in global search methods (Wang et al., 2016). In fact, it has
been shown that Bayesian optimization techniques do not
perform better than a random search when the dimension of
the search space is too large (10 dimension in the experiment
in (Ahmed, Shahriari, and Schmidt, 2016)). Therefore, Algo-
rithm 1 cannot be directly used for robotic platforms with a
large number of joints and parameters, such as the Tensegrity
robot or compliant dexterous hands.

Dimensionality reduction is a popular solution to the prob-
lem of searching in high-dimensional spaces. This solution is
particularly appealing in the context of this work because we
are more interested in the accuracy of the predicted trajectory
than in identifying the true underlying physical parameters.
Mechanical models of motion tie together several parameters
of an object. For example, in Coulomb’s model, the mass
and the friction of an object are used in a linear function to
predict the motion of a sliding planar object. Therefore, one
can map linearly these two parameters to a single parameter
and still make accurate predictions of the motion.

Random embedding is an efficient and effective dimen-
sionality reduction technique (Wang et al., 2016). Given a
space of parameters Θ with dimension D, we generate a ran-
dom matrix A ∈ RD×d that projects points from Θ ⊂ R

D

to a lower-dimensional space of parameters Ω⊂ R
d where

d < D. Instead of discretizing Θ, we discretize Ω into a
regular grid and map each point ω ∈ Ω to a point θ in the
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Figure 2: LEFT: A example of 1D-to-2D projection resulting
in points outside the original domain. RIGHT: REMBO ap-
proaches this issue by projecting the point outside Θ to the
nearest boundary point of Θ.

original high-dimensional space by using A, i.e. θ = Aω .
One can show (Wang et al., 2016) that with probability one,
minθ∈Θ E(θ) = minω∈Ω E(Aω) where E is the error func-
tion in Equation 1. Consequently, we run Algorithm 1 using
discretized Ω as input instead of Θ. We project back the low-
dimensional vectors ω ∈ Ω to original parameter space Θ
using θ = Aω when we need to run the physical simulation
to get the trajectory under a sampled value of ω .

However, For a randomly generated matrix A and point
ω ∈Ω, the corresponding high-dimensional vector θ = Aω
is not guaranteed to belong to Θ, but could instead lie any-
where within R

D. The simulator may consider θ as invalid if
it is outside of Θ as shown in Fig.2. Moreover, just doing a
rejection sampling does not always work because most of the
points could be rejected for being invalid in some cases. Ran-
dom EMbedding Bayesian Optimization (REMBO) (Wang et
al., 2016) addressed this issue simply by projecting the point
outside Θ to the nearest boundary point of Θ.

Variational Auto Encoder for Model Identification
in the High Dimensional Space

An auto encoder is a neural network that learns to reconstruct
the input by going through a latent space, which is in a lower
dimensional space than the original input space(Vincent et
al., 2010). It has shown to be very useful in unsupervised
learning of low dimensional representations. A variational
auto encoder (VAE) adds an additional constraint that the la-
tent space follows a prior distribution, usually assumed to be
Gaussian (Kingma and Welling, 2014). This additional con-
straint makes the model more useful as a generative model,
as it also learns to generate output from the prior distribution
in addition to reconstruction.

We adapt the VAE and combine it with the Bayesian op-
timization process, as shown in Fig. 3. Firstly, the VAE is
trained with randomly sampled physical parameter data θ to
learn a low dimension embedding α . Once the VAE is opti-
mized, the decoder part is used to project the low dimensional
α back to the original physical parameter space θ . Thus, the
Bayesian optimization process as detailed in Algorithm 1 can

Figure 3: The auto encoder is trained first to learn the latent
low dimensional embedding. Then Bayesian optimization
is performed in this low dimensional space to search for
the optimal parameter. The decoder is used to reconstruct
the original 15 dimensional parameter in order to perform
physical simulation.

Figure 4: Simulation of the Tensegrity robot resulting in
different states when executing the same control for different
parameters.

be done efficiently in the low dimensional space. The decoder
can be seen as a learned non-linear version of the projection
matrix A in REMBO.

Experimental Results

Setup: This experiment aims to identify the 15 parameters
of the T6 model of the Tensegrity SuperBall robot in NASA’s
Tensegrity Robotics Toolkit (NTRT). The complex dynamics
and high dimensionality of the robot make this problem very
hard. Fig. 4 shows an example of the different results of
applying the same control to the robot with 1% difference
in the rod length (one of the 15 parameters). In absence of
access to the real robot, the default values of the T6 model in
NTRT are used as ground-truth. The Guided Policy Search
(GPS) algorithm (Levine and Abbeel, 2014) was used to
discover fast trajectories of several flops through iterative
exploration and refinement (GPS controller).

The Greedy Entropy Search (GES) method is compared
against random search, where random values of the parame-
ters are selected within the ±10% range. Nevertheless, it is
well-known that Bayesian optimization in high dimensions is
difficult due to the exponential growth of the search space. To
deal with this issue, the two dimensionality reduction meth-
ods, REMBO and VAE are used to reduce the dimensionality
of the parameter space from 15 to 5.

605



Figure 5: Test trajectory errors of different methods for the
Tensegrity robot as a function of time budget for the pa-
rameter optimization process. Greedy Entropy Search in the
5-dimensional space using VAE achieves the lowest trajec-
tory error, outperforming random search and Greedy Entropy
Search in the original 15 dimensional space, as well as Greedy
Entropy Search in the 5-dimensional space using REMBO.

The encoder and decoder of the VAE used in the experi-
ment are both two-layer neural networks. The input dimen-
sion of the encoder and the output dimension of the decoder
is 15, which is the dimension of the parameter space. The
latent space is 5 dimensional. Between them is one layer
of 400 dimensions. This dimension is chosen through cross
validation by balancing accuracy and network complexity.
The prior distribution of the latent space in the VAE is as-
sumed to be N(0,1). Based on the three-sigma rule, when
sampling between [−3,3], this interval should cover 99.7%
of the latent space when the VAE is optimized. For REMBO,
each time a random projection matrix is generated to project
the parameters into [0,1].

To train the VAE, 10,000 training trajectories are gener-
ated. These trajectories are generated by running the GPS
controller in the simulator with different physical parame-
ters and adding random noise of up to ±10% to the default
parameter values. This means each trajectory is generated
under slightly different physical parameters.
Results: Fig. 5 shows the average error between the tra-
jectories using the model parameters identified by different
methods and the trajectories generated from the ground-truth
simulator. When optimizing in the original 15-dim. space,
as a data-efficient global optimization method, Bayesian
optimization with Greedy Entropy Search outperformed
random search. Further improvements are achieved by di-
mensionality reduction, making the search more efficient.
Greedy Entropy Search in the 5-dimensional space using
VAE achieves the lowest trajectory error, outperforming the
method using REMBO. This shows that a learned better la-
tent embedding enables more efficient parameter search in
the Bayesian optimization process. A video showing exam-

ples of the Tensegrity robot locomotion can be found on
https://youtu.be/lD31s0c tqM.

Fig. 6 provides the errors for each of the parameter as a
function of time budget for the parameter optimization pro-
cess. Only the combination of Greedy Entropy Search with
VAE achieves close to 1% error for all parameters. Some
parameters may have stronger influence on the robot dynam-
ics. An intelligent way to identify these parameters would be
helpful to reduce the dimensionality of the parameter space
and could be more informative than random embeddings.
This will be a direction for future work.

Conclusion

This work proposes an information and data efficient frame-
work for identifying physical parameters critical for robotic
tasks, such as compliant robot locomotion. The framework
aims to minimize the error between trajectories observed in
experiments and those generated by a physics engine. To
minimize the number of needed experiments, a Greedy vari-
ant of Entropy Search is proposed, which is shown to be
data efficient. To solve high-dimensional challenges, this
work integrates Greedy Entropy Search with a projection
to a lower-dimensional space through random embedding or
learning a latent embedding utilizing variational auto encoder.
The evaluation of the proposed method against alternatives
is favorable both in terms of identifying parameters more
efficiently, as well as resulting in more accurate locomotion
trajectories.

An interesting extension of this work would involve the
identification of controls during the learning process that help
in quickly minimizing the error. This can be a robust control
process, which takes advantage of Bayesian Optimization’s
output in terms of a belief distribution for the identified pa-
rameters, so as to minimize entropy and maximize the safety
of the experimentation process. Furthermore, it is interesting
to compare the generality of the learned models and resulting
control schemes that utilize them against completely model-
free and end-to-end approaches for reinforcement learning
and control.
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Abstract

This position paper explicates the notion of learning
machines and how they may cooperate and compete to
scale over multiple domains. We argue that important
problem applications very soon will start to benefit from
cross-domain learning housed in learning machines. We
outline an architecture involving human-machine inter-
play, including education of, and assessments of the
value of learning machines.

Introduction

This position paper has been written with the intent to spark
interest in discussing how to best design multiple-machine
systems that learn for applications important to humans or
to the planet. We thus consider a class of problems much
too hard for adequate solutions to be completed in the next
decade. Because elements of such designs are fully under-
standable already today, we argue that a pro-active discus-
sion could help focus research and development efforts on
providing value to humans and their environment.

A learning machine (LM) is an autonomous self-
regulating open reasoning machine that actively learns in
a decentralized manner, over multiple domains. The auton-
omy of the machine allows it to move between domains, sit-
uated, between abstract domain models, or both. Feedback
allows it to self-correct its models and its processes of edu-
cation. Openness pertains to simple I/O as well as to the ma-
chine changing its component materials. The I/O behavior
regulates human-machine- but also machine-machine com-
munication. That its learning is active means that it can pur-
sue learning goals in batch, and reinforce by means of self-
testing and evolutionary learning. The process of education
may be represented in the learning machine as a classical
planning-inference-action loop, but it may also be more ex-
ploratory and, e.g., replace planning by serendipitous stim-
ulus learning. We prefer the modernized loop of perception-
reasoning-interaction (Figure 1). Its decentralized nature lets
it interact, but also links to its autonomous migration in that
a machine may create copies of itself, or otherwise mod-
ify its appearance, even if no human or machine observes
these changes. The models employed inside the machine

Copyright c© 2018, Association for the Advancement of Artificial
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are essentially statistical learning theory models, although
the knowledge representation may vary, for the purposes of
experimentation or for domain tailoring. Finally, the multi-
ple domain aspect goes beyond transfer learning, in that the
knowledge representation lets the machine learn where it is
and what is appropriate in this particular setting, situated or
not. The latter point includes ethics, norms, and other behav-
ioral constraints, all subject to dynamic control modulo the
autonomy of the machine.

Education of LMs may be the result of human-LM in-
teraction, but it may also result from LM2LM interaction.
Given the current emphasis in machine learning research
on reinforcement learning and its high performance in lim-
ited application domains, we would like to see more efforts
towards adoption and delegation mechanisms in multi-LM
systems, and for important applications. Our starting point is
Internet-based psychiatry. Cross-domain use of such an LM
may be used in different patient groups, varying, e.g., age
intervals, geographic location, or syndrome. In a national
project in Sweden, we are currently building LMs for 16+
age patients with social anxiety, social phobia, or depres-
sion, in cooperation with Karolinska Institute, at Stockholm.
While our short-term goals are finding predictor sets for pa-
tient adherence and activity (Yardley et al. 2016), the long-
term goals are to define and implement multi-LM systems
for settings in which multiple humans interact, under (rela-
tively forgiving, compared to, e.g., the OpenAI team tack-
ling DOTA2 5v5 in the future) real-time constraints. These
are thus multi-LM systems in which humans must be mod-
eled, and in which LMs must adapt accordingly, in real-time.
A possible future scenario is a discussion in natural lan-
guage between a group of human and artificial therapists,
taking place in an Internet psychiatry room (in which there
are never any patients).

Education

The education of learning machines in the sense conceived
by Turing is now possible at scale, thanks to adequate com-
putational resources, enough data, and the modularity of LM
capabilities (allowing for compartmentalized training and a
reductionist approach to machine education). We are inter-
ested in both hardware and software self-modification, i.e.
what Turing called screwdriver and paper interference, re-
spectively. In his terminology, we take on the role of LM
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Figure 1: We conceptually divide an LM system into perception, reasoning, and interaction, possibly closed in an iterative
loop where an action performed by the LM affects the environment as well as input data. As approaches and algorithms may
overlap, and as data types and their processing vary, the figure should be seen as an illustrative example for structuring reusable
components. The perception part of the system largely performs supervised or unsupervised machine learning tasks such as
classification, prediction, clustering, and anomaly detection, the output of which can be used directly for interaction, or as
input to LM reasoning. In the latter case, the task performed by the perception layer can be viewed as lifting the level of
abstraction from raw input data to more abstract concepts. An example would be the use of the units of the last few layers
of a deep convolutional neural network as a representation of discrete abstract features in image data. The reasoning system
involves making optimal decisions under uncertainty, planning, generating hypotheses, explaining hypotheses and detailing its
reasoning, and responding to queries. A central challenge is to find general representations of knowledge that can continuously
learn arbitrary relations from data. This is particularly challenging when meta-level reasoning is involved, which is necessary
for cross-domain applications. The interaction part may involve, but is not restricted to, visualization and natural language for
human interaction or direct LM2LM interaction. We envision that LM algorithms rest on a system architecture, a substrate for
LMs, that can manage the trade-off between uncertainty or precision, time, and computing resources, and that can operate on
very large data sets and streaming data. To enable end-to-end optimization of a whole LM, we need declarative programming
models that encapsulate linear (or tensor) algebra, graph processing, and relational algebra. This would be translated to an
intermediate language performing dataflow optimizations and type checking, running on distributed environments that allow
for performing run-time optimization for multiple architectural choices and criteria.
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educators, and as “highly competent schoolmasters” we are
denied detailed information on the inner workings of the
machine; as designers we are not denied this, but as “me-
chanics” we do not educate the LM; and “they would be
able to converse with each other to sharpen their wits” (Tur-
ing 1948). Having pattern recognition methods and classi-
fication of new non-trivial features built into an LM makes
inductive inference efficient and possible to validate, even
in cases of unsupervised education. We also subscribe to
the original idea of an LM as a guessworks expert, hav-
ing the ability of making correct assignments or statements,
as if the machine had guessed a rule (Gamba 1961), even
though the LM were presented with no rules during learn-
ing. Probabilistic reasoning based on weight adjustments
and discrete success/failure-based learning turns LM edu-
cation into a branch of probability theory, leaning in particu-
lar towards statistical learning theory (Vapnik 1995). In gen-
eral, success-reinforced models are averaging models, and
an understanding of higher-order concepts on the LM’s part
and how these related to assumptions of underlying distri-
butions are of great importance, not least for understanding
bias and risks associated with over-learning. The education
material is in all interesting cases, as in our Internet psy-
chiatry case, multi-modal: we may incorporate text, images,
biobank data, as well as random noise of various forms.
A particularly challenging problem is how to learn how to
learn, e.g., how to train a neural network to dynamically ad-
just models of perfect precision/recall (Reed and de Freitas
2015), or if the interest is towards mimicking biological sys-
tems, Universal LMs (Duch and Maszczyk 2009).

Language learning
A successful application domain for AI in recent years has
been to learn language representations that can be used to
quantify semantic similarity between linguistic items. Such
models – normally referred to as word embeddings – are
data-intensive statistical algorithms (often implemented as
neural networks) that learn to generalize word usage pat-
terns from observed samples of language use. Training such
a model is currently done by throwing as much data as possi-
ble to it, and parameterizing by informed guessworks. Each
language model is thus employed as part of the learning
process by observing as much as possible of human lan-
guage use. In a weak sense, this is like a child trying to
learn language by only listening to her parents; it might go a
long way, but it is essentially underdetermined; only through
feedback from use and interaction that the child becomes a
proficient language user.

We suggest that the same should apply to a learning ma-
chine applied to language data. In analogy with a human
language learner, listening to, and interacting with, a teacher
(which in the case of the LM is a human, and in the case
of the child can be a parent or a school teacher) provides
strong and (often) precise feedback. However, interacting
with other language learners (which in the case of an LM
is other LMs, and in the case of a child is other children)
may provide more frequent, but less precise feedback. We
are particularly interested in LM2LM interaction in this re-
spect; can LMs learn language from each other and not

only from observations of human linguistic behavior?Would
such multi-LM systems acquire their own language, and how
do you capture dialogue dynamics? Recurrence, convolu-
tion, higher-order relations, and more generally the concept
of hidden variables and layers are part of the current an-
swer, but the problem is understudied (Jordan 1989) (Elman
1990).

Perception and Reasoning

LMs learn to extract relevant information from sensory in-
puts and reason about this information using internal repre-
sentations such as knowledge graphs. Symbolic reasoning is
then supported by higher-order concept discovery—an abil-
ity to abstract concepts into other concepts—hypothesis gen-
eration, and inference. A key feature then is adaptability:
representations are plastic and knowledge is always ques-
tioned as an LM may arguably be designed to be eager to
learn as well as curious.

LMs can collectively perceive, learn, and reason across
domains, resulting in improved learning rates and versatility,
where both sensory inputs and gained knowledge are shared
among machines. Cooperating LMs, sharing experiences,
lessons learned from pitfalls, etc., also increase robustness
and adaptability since a collective of LMs is more resilient
than a single, possibly myopic or even solipsistic machine.
The boundary between LMs may then be obscured, where
a system of LMs can be interpreted as a meta-machine that
could constitute an LM in its own right.

Treating LMs as a collective comes with multiple sys-
temic challenges pertaining to self-organizing dynamics.
How do we for example avoid negative spirals causes by
feedback loops in the system as to ensure robust collec-
tive dynamics? Collective learning also requires both ro-
bust and flexible LM2LM communication and knowledge
transfer, and commonly agreed knowledge representations.
Here, delegation/adoption loops constitute one alternative
(Castelfranchi and Falcone 1998), and so do norm-regulated
systems (Boman 1999) and lower-level representations, like
contract nets (Smith 1977). These representations can them-
selves then be subject to learning among machines. An LM
needs to be empathic, at least in a weak sense, understanding
experiences and internal states of other LMs.

Conclusion

Reinforcement learning in toy domains, such as turn-taking
board games or early arcade-style computer games, consti-
tutes essentially a structuralist representation of knowledge.
Because the game representation is in full grasped by the
learner in terms of pixels or board piece configurations—
what is learned is a surface structure model—making gen-
eralizations difficult. That the results are still impressive is
in part due to how the results are presented by the educa-
tors of the learner. It is easy then easy to forget that when we
consider the future of learning machines, with reinforcement
learning as one candidate for how to educate them, these ed-
ucators and their designs are not part of the model. In other
words, reinforcement learners do not, to paraphrase Turing,
roam the countryside and learn from their experience. By
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contrast, our interest lies in the pursuit of knowledge sit-
ting in learning machines, and how to best support it by de-
sign. In this position paper, we have outlined an architecture
making such behavior possible, and we ourselves seek to
complete implementations in line with this architecture in
the next few years in cross-domain fashion. Our first field
of application is Internet psychiatry, but we will complete
implementations in parallel in several other domains in or-
der to pinpoint exactly how cross-domain learning machines
may provide value to humans. Our work is open-ended and
collaborative and we are currently establishing academic as
well as industry networks of cooperation to make this possi-
ble.

References

Boman, M. 1999. Norms in artificial decision making. Artif.
Intell. Law 7(1):17–35.
Castelfranchi, C., and Falcone, R. 1998. Towards a theory
of delegation for agent-based systems. Robotics and Au-
tonomous Systems 24(3):141 – 157. Multi-Agent Rational-
ity.
Duch, W., and Maszczyk, T. 2009. Universal learning ma-
chines. In Leung, C. S.; Lee, M.; and Chan, J. H., eds., Neu-
ral Information Processing, 206–215. Berlin, Heidelberg:
Springer Berlin Heidelberg.
Elman, J. L. 1990. Finding structure in time. Cognitive
Science 14(2):179 – 211.
Gamba, A. 1961. Optimum performance of learning ma-
chines. Proceedings of the IRE 49:349 – 350.
Jordan, M. I. 1989. Serial order: A parallel, distributed pro-
cessing approach. In Elman, J. L., and Rumelhart, D. E.,
eds., Advances in Connectionist Theory: Speech. Erlbaum.
Reed, S. E., and de Freitas, N. 2015. Neural programmer-
interpreters. CoRR abs/1511.06279.
Smith, R. G. 1977. The contract net: A formalism for the
control of distributed problem solving. In Proceedings of the
5th International Joint Conference on Artificial Intelligence
- Volume 1, IJCAI’77, 472–472. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Turing, A. 1948. Intelligent machinery, A heretical theory.
In Ince, D., ed., Collected Works of A. M. Turing Volume 1:
Mechanical Intelligence. North Holland.
Vapnik, V. N. 1995. The Nature of Statistical Learning The-
ory. New York, NY, USA: Springer-Verlag New York, Inc.
Yardley, L.; Spring, B. J.; Riper, H.; Morrison, L. G.; Crane,
D. H.; Curtis, K.; Merchant, G. C.; Naughton, F.; and Bland-
ford, A. 2016. Understanding and promoting effective en-
gagement with digital behavior change interventions. Amer-
ican Journal of Preventive Medicine 51(5):833 – 842.

613



Learning in Ad-Hoc Anti-Coordination Scenarios

Panayiotis Danassis, Boi Faltings
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Abstract

We present a brief overview of learning dynamics for anti-
coordination in ad-hoc scenarios. Specifically, we consider
multi-armed bandit algorithms, reinforcement learning, and
symmetric strategies for the repeated resource allocation
game. In a multi-agent system with dynamic population
where every agent is able to learn, the anti-coordination prob-
lem exhibits unique challenges. Thus, it is essential for the
success of a joint plan that the agents can quickly and ro-
bustly learn their optimal behavior. In this work we will fo-
cus on convergence rate, efficiency, and fairness in the final
outcome.

1 Introduction

In multi-agent systems, most scenarios require coordination
on the same value which involves solving the consensus
problem, a well-studied problem in distributed computing
(Coulouris, Dollimore, and Kindberg 2005). However, there
are also many situations where agents are required to choose
distinct actions as in role allocation (e.g. teammates dur-
ing a game), task assignment (e.g. employees of a factory),
resource allocation (e.g. wireless bandwidth (channels) for
IoT devices, parking spaces and/or charging stations for
autonomous vehicles) etc. This is called anti-coordination.
Figure 1 provides an illustrative example. For simplicity, we
focus on resource allocation scenarios, although the consid-
ered learning models can be applied in any analogous anti-
coordination scenario.

Anti-coordination in multi-agent systems presents many
unique challenges. First, it requires agents to take differ-
ent actions while facing the same problem. Hence, we need
agents that are able to learn to behave differently in the pres-
ence of (possibly) identical agents while having similar pref-
erences across their available actions. An autonomous vehi-
cle would prefer the route with the least traffic, an IoT device
would prefer the higher bandwidth channel, a bidding agent
participating in multiple auctions would prefer the one with
the fewer participants, etc. Nevertheless, in order to achieve
high efficiency, we need some agents to take less desirable
actions. An added challenge is ensuring fairness in the final
outcome, i.e. make sure that those agents are not exploited,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Every day N employees have lunch at a cafete-
ria which accommodates R patrons, thus their goal is to
anti-coordinate their lunch breaks. Each of them has a strat-
egy (gn, ∀n ∈ {1, . . . , N}) for selecting their lunch time.
All employees have similar preferences (e.g. have lunch be-
tween 12p.m. - 2p.m., find an empty seat etc.). Each time
they attempt to have a lunch break, they update their strat-
egy based on their personal feedback of success or failure.

and ensuring that self-interested, rational agents are not able
to manipulate the algorithm to maximize their utility. Fur-
thermore, in real world applications agents tend to receive
only partial feedback; i.e. each agent is only aware of his
own history of action/reward pairs. Hence, we require com-
pletely uncoupled learning rules and agents that are capable
of achieving high efficiency and fast convergence in such
information-restrictive settings. Finally, intra-agent interac-
tions might need to take place in an ad-hoc fashion, which
brings forth the need for robust agents that are able to coor-
dinate with previously un-encountered participants (Stone et
al. 2010). However, planning in such environments becomes
even more challenging. Part of this difficulty stems from the
lack of responsiveness and/or communication between the
participants.

Little work has been done in anti-coordination problems
as compared to classical coordination scenarios. Mapping
anti-coordination to the consensus problem results in an ex-
ponential expansion of the solution space. Hence, special
effort is required from a learning perspective. In this pa-
per we present a brief comparative overview of multi-agent
learning paradigms applicable to the anti-coordination set-
ting. The rest of the paper is organized as follows. Section
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2 provide a formal definition of the repeated resource allo-
cation (anti-coordination) problem, Section 3 presents the
evaluated multi-agent learning models, and finally, Section
4 concludes the paper.

2 Preliminaries

2.1 The Repeated Resource Allocation Problem

In this section we formally define the repeated resource al-
location problem. The goal for the agents is to maximize
their discounted cumulative payoff. We refer to a ‘resource’
as any element that can be successfully assigned to only
one agent at a time. At each time-step, N = {1, . . . , N}
agents try to access R = {1, . . . , R} identical and indi-
visible resources. The set of available actions is denoted as
A = {Y,A1, . . . , AR}, where Y refers to yielding, while
Ar refers to accessing resource r. We assume that access to
a resource is slotted and of equal duration. A successful ac-
cess yields a positive payoff, while no access has a payoff
of 0. If more than one agent accesses a resource simultane-
ously, a collision occurs and the colliding parties incur a cost
ζ < 0. The payoff function is defined by Equation 1, where
an denotes agent n’s action, and a−n = ×∀n′∈N\{n}an′ the
joint action for the rest of the agents.

un(an, a−n) =

⎧
⎪⎨
⎪⎩

0, if an = Y

1, if an �= Y ∧ ai �= an, ∀i �= n

ζ, otherwise
(1)

In accordance to real-world phenomena we further-
more assume that the agents receive only partial feed-
back of success or failure; i.e. each agent n is only
aware of his own history of action/reward pairs, Ht

n =
{(ατ

n, un(α
τ
n, α

τ
−n))∀τ≤t}. The payoff matrix of the stage-

game of a simple 1-resource, 2-agents, repeated resource al-
location game is presented in Figure 2.

Finally, we assume that the agents can observe side infor-
mation (context) from their environment at each time-step
t (e.g. time, date etc. in the example of Figure 1), before
taking their action. Let K = {1, . . . ,K} denote the context
space. We do not assume any a priori relation between the
context space and the problem. The only constraint is that
the context values should repeat periodically. In this work
we assume that the context is a set of random integers. The
motivation behind the introduction of the context space will
become apparent in the following section. In short, we want
to achieve high efficiency and fairness. In anti-coordination
games with completely uncoupled learning rules such a goal
is hard to attain since the aforesaid rules do not allow for cor-
relation between the agents. The introduction of a common
signal (such as the proposed context) resolves that issue.

2.2 Solution Concepts

In this section we examine possible game theory1 solution
concepts of the repeated resource allocation game, focusing
on the following two axes:

1See (Nisan et al. 2007) for an introduction to game theory.

Y A
Y 0, 0 0, 1
A 1, 0 ζ, ζ

Figure 2: Resource allocation game, R = 1, N = 2. Two
agents want to access a single resource. Both of them have
two actions, either to yield (Y), and get a payoff of 0, or
access (A). If only one of the agents accesses the resource,
he gets a payoff of 1. But if both of them access the resource
at the same time, they collide and both incur a cost ζ < 0.

i Efficiency: Percentage of utilized resources after conver-
gence (alternatively, social welfare).

ii Ex-post Fairness: Equality of allotted resources after
convergence (alternatively, ex-post expected payoff).

As a measure of fairness, we will use the Jain index (Jain,
Chiu, and Hawe 1998). The Jain index exhibits a lot of desir-
able properties such as: population size independence, conti-
nuity, scale and metric independence, and boundedness. For
a resource allocation game ofN users, such that the nth user
receives an (expected) allocation of wn ≥ 0 resources, the
Jain index is given by Equation 2. This equation measures
the equality of allocation w = (w1, . . . , wN )�. An alloca-
tion is considered fair, iff J(w) = 1.

J(w) =

∣∣∣∑n∈N wn

∣∣∣
2

N
∑

n∈N w2
n

(2)

Resource allocation games often admit undesirable equi-
libria; asymmetric pure Nash equilibria (PNE) which are ef-
ficient but not fair, or symmetric mixed-strategy Nash equi-
libria (MNE) which are fair but not efficient. For example,
the set of asymmetric PNE corresponds to R agents access-
ing while N − R yield. This results to 100% efficiency,
but JPNE(w) = R2

NR = R
N . In the symmetric MNE, each

agent decides to access with probability Pr[A \ {Y }] =

min

{
R

(
1− N−1

√
|ζ|

1+|ζ|

)
, 1

}
and then chooses which re-

source to access uniformly at random (Cigler 2013)). The
latter results to expected JMNE(w) = 1, but 0% expected
efficiency (assuming small number of resources, R). As
such, the aforementioned equilibria are rather undesirable.
We can overcome the previously mentioned drawbacks us-
ing the notion of correlated equilibria (Aumann 1974).

Correlated equilibria (CE) are a superset of Nash equi-
libria. They allow for dependencies amongst the the agents’
probability distributions, thus the optimization takes place
on the joint action space. Correlated equilibria are desired
solution concepts in resource allocation games, as they allow
for efficient and fair solutions by avoiding positive probabil-
ity mass on less desirable outcomes. Moreover, an optimal
correlated equilibrium for resource allocation games may
be found in polynomial time (Papadimitriou and Rough-
garden 2008). Subsequently, a central coordinator who pos-
sesses complete information can recommend an action to
each agent. Yet, an omniscient central coordinator is not al-
ways available, and in real-world applications with partial
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observability agents might not be willing to trust such rec-
ommendations. In a multi-agent scenario we are interested in
agents who are able to learn; adapt their strategies and con-
verge to an equilibrium. In order to be able to reach richer
solution concepts, like correlated equilibria, the agents re-
quire a common signal upon which they can learn to anti-
coordinate their actions. Hence the introduction of the envi-
ronmental context, proposed in Section 2.1.

3 Overview of Learning Approaches

In this section we will outline potential multi-agent learn-
ing approaches for tackling the anti-coordination problem.
We will examine bandit algorithms, reinforcement learn-
ing algorithms, and finally, symmetric equilibria for the re-
peated resource allocation game. We will focus on bimatrix
(2-agents, 1-resource) games since, in spite of their simple
form, they present many challenges in multi-agent learning
scenarios (Littman and Stone 2002).

3.1 Ad-hoc Coordination & Multi-armed Bandit
Algorithms

In ad-hoc multi-agent coordination the goal is to design au-
tonomous agents that achieve high flexibility and efficiency
in a setting that admits no prior coordination between the
participants (Stone et al. 2010). Typical scenarios include
the use of Monte Carlo algorithms (Barrett et al. 2017),
Bayesian learning (Albrecht, Crandall, and Ramamoorthy
2016), or bandit algorithms (Chakraborty et al. 2017), (Bar-
rett and Stone 2011). Traditionally, ad-hoc approaches suffer
from slow learning, which makes ad-hoc coordination a very
ambitious goal for real-life applications. Due to their ability
to learn from partial feedback, bandit algorithms would be
the natural choice for solving the anti-coordination problem
in an ad-hoc setting.

In multi-armed bandit problems an agent is given a num-
ber of arms and at each time-step has to decide which arm
to pull to get the maximum expected reward. Bandit (or no-
regret) algorithms typically minimize the total regret of each
agent, which is the difference between the expected received
payoff and the payoff of the best strategy in hindsight. Addi-
tionally, they satisfy incentive constraints for rational agents
since they constitute an approximate correlated or coarse
correlated equilibrium (Nisan et al. 2007). Nevertheless, the
studied problem presents many challenges: there is no sta-
tionary distribution (adversarial rewards), all agents are able
to learn (similar to recursive modeling), and yielding gives a
reward of 0 which might be a desirable option for minimiz-
ing regret, but not in respect to fairness.

To better understand these limitations, we evaluate three
state-of-the-art, well established adversarial bandit algo-
rithms, namely the EXP3 (Auer et al. 2002), the EXP4 (Auer
et al. 2002), and the EXP4.P (Beygelzimer et al. 2011). The
last two belong to a variant of multi-armed bandits, called
contextual bandits2, that is, at each time-step t, they can ex-
ploit the observed context kt ∈ K before making their de-
cision. As such, the chosen arm can be different depending

2See (Zhou 2015) for a survey on contextual bandits.

Figure 3: Resource utilization over time achieved by the em-
ployed bandit algorithms in the 1-resource, 2-agents alloca-
tion game of Figure 2 (x-axis in logarithmic scale).

on the context. Moreover, the EXP4.P combines the con-
fidence bounds of UCB1 (Auer, Cesa-Bianchi, and Fischer
2002) with the EXP4 to achieve the same regret as EXP4 but
with high probability. Figure 3 depicts the total utilization
of resources for the 1-resource, 2-agents allocation game of
Figure 2. The x-axis is in logarithmic scale, and the reported
values are the average over 128 runs of the same simula-
tion. The input parameters for the EXP family of algorithms
are set to their optimal values, as prescribed in (Auer et al.
2002), and (Beygelzimer et al. 2011), assuming time horizon
of T = 105 time-steps3. As depicted, all of the evaluated al-
gorithms take a significant number of time-steps to reach a
high utilization state, never achieve 100% efficiency, and ex-
hibit high variance.

Along with efficiency, we are interested in the fairness of
the final outcome. Being able to achieve both is of the utmost
importance for the adoption of such learning paradigms in
real-world applications. The evaluated bandit algorithms ex-
hibit considerably low fairness, specifically: JEXP3(w) =
0.50, JEXP4(w) = 0.76, JEXP4.P (w) = 0.73. As a matter
of fact, EXP3’s achieved fairness is equal to that of an unfair
asymmetric PNE: JPNE(w) = R

N = 0.5 = JEXP3(w).
The contextual bandits performed somewhat better but, con-
sidering the simplicity of the evaluated example, not good
enough. This leads to suggest that the evaluated contextual
bandit algorithms are unable to handle the large policy space
of anti-coordination games.

3.2 Reinforcement Learning & Replicator
Dynamics

Closely related to the bandit algorithms of Section 3.1 is
reinforcement learning. Reinforcement learning is based on
the concept of learning through the interactions with the en-
vironment. An agent takes an action, observes some feed-
back from the environment, and updates his policy so as to
maximize some notion of cumulative reward. The most em-
inent example of such an algorithm is Q-learning (Watkins

3Note the high sensitivity to the input parameter (γ ∈ (0, 1]),
which is another crucial shortcoming of the studied bandit algo-
rithms in ad-hoc scenarios.
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Figure 4: The replicator dynamics, plotted in the unit sim-
plex, for the 1-resource, 2-agents allocation game of Figure
2. x denotes the first agent’s probability of playing the first
action (Y), while y denotes the second agent’s probability of
playing the first action (Y). The probabilities of playing the
second action (A) are 1− x and 1− y respectively.

and Dayan 1992) which solves Bellman’s optimality equa-
tion (Bellman 2013) using an iterative approximation pro-
cedure. A detailed taxonomy of multi-agent reinforcement
learning algorithms can be found in (Busoniu, Babuska, and
De Schutter 2008).

There is a formal relationship between reinforcement
learning and the replicator dynamics of evolutionary game
theory (Bloembergen et al. 2015), hence reinforcement
learning algorithms can satisfy our incentive constraints.
Evolutionary game theory (EGT)4 differs from classical
game theory in that it focuses on the dynamics of the learn-
ing process (strategy change). In a multi-agent system in
which agents adapt their behavior in response to strategic in-
teractions with other agents, evolutionary game theory pro-
vides a solid mechanism to analyze and understand it (Tuyls
and Parsons 2007). Evolutionary game theory is built around
the replicator equations:

ẋi = xi

[
fi(x)− φ(x)

]
(3)

Equation 3 describes the evolution of a population (x) of
individuals (xi) over time, or alternatively (and more be-
fitting to multi-agent learning), the evolution of an agent’s
strategy x = (x1, . . . , xR)

�. In the latter interpretation, the
population share of each type (xi : 0 ≤ xi ≤ 1, ∀i) rep-
resents the probability of selecting action ai, fi(x) is the
fitness (utility) of action ai, φ(x) =

∑
j xjfj(x) is the

weighted average fitness, and ẋi = dxi/dt. For the the two
agent game of Figure 2, we can rewrite Equation 3 for the
strategy vector of the first agent x as:

ẋi = xi

[
(Uy)i − x�Uy

]
(4)

where U is the payoff matrix (similar for y).
Finding the optimal policy in a multi-agent system where

all agents learn simultaneously is inherently more complex.
Each agent is faced with a moving-target learning problem.

4See (Gintis 2000) for an introduction to EGT.

Figure 5: Resource utilization over time achieved by Q-
learning in the 1-resource, 2-agents allocation game of Fig-
ure 2 (x-axis in logarithmic scale).

Changes in the policy of one agent can affect the rewards and
thus have a cascading effect on the optimal policies of the
others. Furthermore, just as with the bandit algorithms, the
adaptation of such dynamics in real-world multi-agent prob-
lems requires fairness guarantees. An insight to the quality
of the final allocation can be provided by examining the
replicator dynamics (Equation 4) of the simple 1-resource,
2-agents allocation game of Figure 2, depicted in Figure 4.
As seen by the plot, the two evolutionary stable strategies are
the two unfair asymmetric PNE, (Y, A) and (A, Y). More-
over, Figure 5 depicts the total utilization of resources of
two Q-learning approaches (the reported values are the av-
erage over 128 runs of the same simulation). The Q1 ap-
proach uses the context as its state, while the Q2 approach
uses both the context and the former action as the state. The
intuition behind Q2 is to enable the learning of a possibly
more fair multi-step best respond, i.e. investigate the pos-
sibility of learning a correlated equilibrium where the two
agents alternate between accessing and yielding. The Q ta-
ble is updated according to Equation 5:

Q(s, a) = α(u+ δmax
a′

Q(s′, a′)) + (1− α)Q(s, a) (5)

where α is the learning rate, δ the discount factor, and
s, s′, a, u the state, next state, action, and utility (reward) re-
spectively. Both approaches select their actions according to
an ε-greedy policy (as in (Littman and Stone 2002)), i.e. in
state s, with probability ε they choose a random action, while
with probability 1 − ε they take action argmaxa Q(s, a).
The algorithm’s performance is highly sensitive to the afore-
mentioned parameters. We have identified two interesting
scenarios, presented in Figure 5. Setting α = 0.75 and
ε = 0.01 results in higher efficiency and lower variance,
but lower fairness (JQ1(w) = 0.64, and JQ2(w) = 0.83).
On the other hand, α = 0.5 and ε = 0.075 results in
lower efficiency and higher variance (due to the increased
randomness), but higher fairness (JQ1

(w) = 0.82, and
JQ2

(w) = 0.89). The above are true for both approaches
(Q1, and Q2).

The aforementioned results of Figure 5 suggest that by in-
corporating a larger state space (i.e. using the common con-
text and the former action) we can achieve better results than
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the replicator dynamics indicated. Given a broad enough
state space, Q-learning can learn a multi step best response
(Littman and Stone 2002). Nevertheless, in both cases, both
approaches require a significant number of time-steps to
reach a high utilization state. As such, reinforcement learn-
ing in anti-coordination scenarios faces similar shortcom-
ings as bandit algorithms, albeit it seems to achieve higher
fairness in the evaluated example. Furthermore, it is worth
noting that basic reinforcement learning algorithms like Q-
learning, compute quantity values for each possible state or
state-action pair. As mentioned, mapping anti-coordination
to the consensus problem results in an exponential expan-
sion of the solution space, thus in an exponential increase
of the computational and memory complexity for the rein-
forcement learning algorithms as well. The latter constitutes
such approaches infeasible for real-world applications.

Instantiations of a correlated equilibrium can be achieved
via reinforcement learning. One example is Correlated Q-
learning (Greenwald, Hall, and Serrano 2003), albeit it re-
quires the sharing of Q-tables amongst the agents. The latter
necessitates either to allow full observability, or a central
planner, neither of which is feasible in ah-hoc scenarios.

3.3 Symmetric Strategies & The Price of
Anonymity

The two agent resource allocation game of Figure 2 is an in-
herently symmetric game, yet the only efficient Nash equi-
libria are asymmetric; one agent yields while the other ac-
cesses, achieving 100% efficiency. Asymmetric equilibria
of symmetric games are undesirable for two reasons. First,
they are unfair and second they require possibly identical
agents to differentiate their actions (and thus learning rules).
The symmetric MNE (access with probability 1

|ζ|+1 ) on the
other hand achieves 0% efficiency. The Price of Anonymity
(Cigler and Faltings 2014) allows us to measure the degrada-
tion of the system’s efficiency (social welfare) due to the re-
quirement of symmetry imposed by anonymity. In an anony-
mous game agents do not distinguish between other agents,
i.e. agents have different utilities but an agent’s utility de-
pends only on its own strategy and the number of other
agents that chose the same strategy, and not on their identi-
ties (Nisan et al. 2007). The Price of Anonymity is the ratio
between the optimal social payoff of any (possibly asym-
metric) equilibrium and the expected social payoff of the
worst symmetric equilibrium. In this example, the price of
anonymity is infinite. Nevertheless, it is possible to have so-
lution concepts that are symmetric and efficient by making
use of correlated equilibria (Aumann 1974).

Cigler and Faltings developed a symmetric learning rule
for reaching an efficient and fair correlated equilibrium of
the repeated resource allocation game (Cigler and Faltings
2013). By exploiting the history of their interactions along
with the environmental context as a correlation mechanism,
the agents are able to learn to coordinate their accesses. Each
agent n has a strategy gn : K → {0} ∪ R which maps con-
text to resources. As the algorithm progresses, agents who
have successfully accessed a resource (un(an, a−n) = 1)
for a given context value k ∈ K will continue to access the

Algorithm 1 Pseudo-code of (Cigler and Faltings 2013).

Require: ∀n ∈ N initialize gn u.a.r. inR.
1: Agents observe context kt ∈ K.
2: if gn(kt) > 0 then
3: Agent n accesses resource r ← gn(kt).
4: if Collision(r) then
5: Set gn(kt)← 0 with probability pbackoffn .
6: end if
7: else if gn(kt) = 0 then
8: Agent n monitors random resource r ∈ R.
9: if Free(r) then

10: Set gn(kt)← r with probability 1.
11: end if
12: end if

Figure 6: Resource utilization over time of CA3NONY vs.
EXP3, Q1, and Q2 in the 1-resource, 2-agents allocation
game of Figure 2 (x-axis in logarithmic scale).

same resource every time they observe the same context k.
Agents who have not accessed a resource for a given context
value k will not attempt to access an occupied resource. If
there is a collision, the colliding parties will back-off with
probability pbackoffn . Algorithm 1 provides the pseudo-code
of the allocation algorithm.

Algorithm 1 is only applicable in cooperative scenarios.
A self-interested agent could stubbornly keep accessing a
resource forever, until everyone else backs off (also known
as ‘bully’ strategy (Littman and Stone 2002)5). There ex-
ist equilibrium back-off probabilities, but in order to actu-
ally play them, the agents need to be able to calculate them.
It is not always possible to obtain the closed form of the
back-off probability distribution of each resource. We have
build upon the ideas of (Cigler and Faltings 2013) and pro-
posed instead the adoption of a human-inspired convention
of courtesy, which prescribes a constant positive back-off
probability in case of collision (pbackoffn = p > 0, ∀n ∈
N ). Coupled with a bookkeeping scheme and punishments
for deviating agents, we have proven that adhering to the al-
gorithm is a best-response strategy at each sub-game of the
original stage game, given any history of the play. The devel-
oped an anti-coordination framework (CA3NONY (Danas-

5Such strategies similarly affect Q-learning (Littman and Stone
2002) and bandit algorithms.
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sis and Faltings 2018)) still follows to the simple learning
rule of Algorithm 1, which allows for fast convergence and
its applicability to large scale multi-agent systems.

To verify its performance, Figure 6 depicts the total uti-
lization of resources for the simple 1-resource, 2-agents al-
location game of Figure 2, while Figure 7 compares the con-
vergence time of CA3NONY to the fastest of the presented
algorithms (EXP3, Q1, and Q2) for increasing number of
resources R (N = 2 × R). In every case we report the av-
erage value over 128 runs of the same simulation. Note that
in the first graph, the x-axis is in logarithmic scale, while
the second graph is in double logarithmic scale and the er-
ror bars represent one standard deviation of uncertainty. For
the second simulation (Figure 7), we chose a high enough
time horizon (= 108) to facilitate EXP3 in achieving the
convergence criterion (≥ 90% efficiency) in larger simula-
tions (R > 64). Nevertheless, it was unable to do so for
R > 256, hence the gaps in the EXP3’s lines in Figure 7.
For the same reason (again regarding Figure 7), we set Q1

and Q2’s parameters as α = 0.75 and ε = 0.001. The high
learning rate and low randomness were necessary, otherwise
Q1 and Q2 were unable to reach high utilization. As de-
picted, CA3NONY is significantly faster than both the ban-
dit and Q-learning algorithms, exhibits lower variance, and
can gracefully handle increasing number of resources. In ad-
dition to being efficient, CA3NONY converges to a fair allo-
cation JCA3NONY (w) = 1. Fairness plays an important role,
especially in scenarios with scarcity of resources. If the final
allocation is fair, rational agents will be more willing to ad-
here to the protocol and wait for their turn. Under low fair-
ness, the competition between rational agents is increased,
which in turn slows down convergence. In Figure 7, the two
Q-learning approaches (especiallyQ1) might look appealing
from the perspective of scalability, but both result in consid-
erably low fairness (lower on average than an unfair PNE).
For any number of resources, JQ1

(w) ∈ [0.45, 0.52], with
a mean value of 0.48, while JQ2

(w) ∈ [0.37, 0.48], with a
mean value of 0.44. Thus, both Q-learning approaches con-
verge to a situation similar to an unfair PNE. In repeated
games though, rational agents might not be willing to con-
cede to a PNE (as in the ‘bully’ strategy of (Littman and
Stone 2002)). Finally, CA3NONY provides higher average
payoff for the agents (45.09 for CA3NONY vs. −50.54 for
the EXP3,−79.03 forQ1, and−84.08 forQ2 in the scenario
of Figure 6, assuming collision cost ζ = −1), which is an
essential indicator of the algorithms individual performance.
The latter constitute CA3NONY a promising framework for
real-life applications.

4 Conclusion
The relevance of anti-coordination in multi-agent scenarios
stems from the need of sharing (possibly) indivisible, lim-
ited resources. The curse of dimensionality encompassing
the mapping of anti-coordination problems to the classical
consensus problem along with the non-stationarity arisen
from the simultaneous learning of all the participants make
achieving a desirable outcome even more challenging. Fur-
thermore, contrary to coordination problems which are typ-
ically encountered in cooperative settings, anti-coordination

Figure 7: Convergence time of CA3NONY vs. EXP3, Q1,
and Q2 for increasing number of resources R, N = 2 × R
(double logarithmic scale).

deals mostly with self-interested, rational agents. Rational
agents are able to manipulate the algorithm to maximize
their own utility, which brings forth the need for develop-
ing algorithms resilient to such manipulations. Ultimately,
anti-coordination boils down to incentivizing participants to
systematically and consistently adopt less desirable actions,
albeit in a way that ensures high efficiency and fairness in
the final outcome.

In this paper, we presented a brief overview of multi-
agent learning dynamics for the anti-coordination problem,
to increase interest and motivate research in the area. We fo-
cused on satisfying incentive constraints, efficiency, fairness
and convergence speed. Specifically, we examined bandit
algorithms, reinforcement learning, and symmetric strate-
gies for the repeated resource allocation game. We demon-
strated that most of the classical, well-established multi-
agent learning techniques suffer from slow convergence rate
and/or poor fairness. An exception to that is CA3NONY , an
anti-coordination framework based on the human-inspired
convention of courtesy. Contrary to the aforementioned ap-
proaches, CA3NONY is able to reach efficient and fair allo-
cations in polynomial time. Moreover, adhering to the pro-
tocol constitutes a rational strategy. The latter suggests that
human-inspired conventions may prove beneficial in other
ad-hoc coordination scenarios as well. An interesting future
direction would be to combine well-established multi-agent
learning techniques with simple conventions (e.g. allowing
others to acquire a resource first (courtesy convention), or
maintaining the acquired resource after convergence) for
solving more complex anti-coordination problems.

Finally, a generalization of anti-coordination games,
called dispersion games, was described in (Grenager, Pow-
ers, and Shoham 2002). In a dispersion game, agents are
able to choose from several actions, favoring the one that
was chosen by the smallest number of agents (analogous to
minority games (Challet et al. 2013)). In (Grenager, Pow-
ers, and Shoham 2002) the agents do not have any particular
preference for the attained equilibrium. Contrary to that, we
are interested in achieving an efficient and fair outcome. Ex-
panding the studied techniques to tackle dispersion games,
and therefore non-binary utilities, would be another interest-
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ing avenue for future research.
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Abstract

Humans, like all animals, both cooperate and compete with
each other. Through these interactions we learn to observe,
act, and manipulate to maximise our utility function, and con-
tinue doing so as others learn with us. This is a decentralised
non-stationary learning problem, where to survive and flour-
ish an agent must adapt to the gradual changes of other agents
as they learn, as well as capitalise on sudden shifts in their be-
haviour. To learn in the presence of such non-stationarity, we
introduce the Switching Agent Model (SAM) that combines
traditional deep reinforcement learning – which typically per-
forms poorly in such settings – with opponent modelling, us-
ing uncertainty estimations to robustly switch between multi-
ple policies. We empirically show the success of our approach
in a multi-agent continuous-action environment, demonstrat-
ing SAM’s ability to identify, track, and adapt to gradual and
sudden changes in the behaviour of non-stationary agents.

1 Introduction

Cooperation and competition are the cornerstones of both
human and animal societies, appearing deeply embedded in
our understanding of social intelligence. For an individual
agent to maximise their utility function in these societies,
they must learn to interact with and against others, as well
as understand the consequences of their actions. Studies on
this interaction have a long history across domains including
game theory (Rapoport and Chammah 1965), evolutionary
biology (Strassmann et al. 2011), and multi-agent systems
(Shoham, Powers, and Grenager 2007).

A key component of learning to interact with others is the
ability to reason about their behaviour. This is accomplished
through constructing and utilising models of their decision-
making processes, and is commonly referred to as opponent
modelling. Due to recent advances in machine learning, au-
tonomous agents are increasingly interacting with others, be
it negotiating with humans (Lewis et al. 2017) or communi-
cating with other agents (Foerster et al. 2016). It is therefore
important that they are able to take into account more than
just their own agency.

If done correctly, these models can be used to derive an
optimal policy against an agent, such as by exploiting their
suboptimal behaviour to yield a higher reward (Ganzfried

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Sandholm 2011). However, the construction of these
models is non-trivial as an agent’s behaviour is rarely sta-
tionary, thus requiring any learned opponent model to be
continuously updated (Hernandez-Leal et al. 2017b). For ex-
ample, such non-stationarity can occur in human-computer
interaction, whereby a user’s behaviour changes gradually
as they become familiar with a system, as well as sud-
denly when the user switches with another user. Likewise,
in a competitive setting an agent may initially learn before
switching to an alternative strategy as its beliefs about the
world change.

One of the most successful paradigms for learning a
policy is reinforcement learning (Sutton and Barto 1998),
whereby agents learn to maximise their cumulative long-
term reward through trial-and-error interactions with their
environment. In recent years, the area has experienced
a string of successes in the single-agent domain due to
advances in deep learning (Mnih et al. 2015). However,
the non-stationarity that arises from interacting with other
agents renders many single-agent algorithms unsuitable
(Hernandez-Leal et al. 2017a). By not taking into account
the agency of others, traditional deep reinforcement learn-
ing methods struggle to transfer their successes to the multi-
agent setting.

Within deep reinforcement learning, opponent modelling
has started to receive increasing attention. It has been suc-
cessfully applied to modelling the policy of agents which
switch between episodes (He et al. 2016), albeit requiring
handcrafted behavioural features, and more recently it has
been used to learn approximate policies of learning agents
(Foerster et al. 2017; Lowe et al. 2017). However, to date
there has been little progress made on folding in uncertainty
into these deep models – a vital component for a robust op-
ponent model – and both forms of non-stationarity have been
rarely considered.

In this work, we consider the setting where multiple in-
dependent non-stationary agents interact in the same envi-
ronment. Specifically, we look at two distinct forms of non-
stationary behaviour:

1. Sudden changes, whereby an agent switches between a set
of behaviours through time.

2. Gradual changes, whereby an agent’s behaviour slowly
adjusts over time as it learns.

The 2018 AAAI Spring Symposium Series
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To learn and succeed in this setting, we propose the
Switching Agent Model (SAM). By combining traditional
deep reinforcement learning algorithms with models of
the decision-making processes of other agents, our method
learns a general policy which is more robust and adaptive
to non-stationary agents. We achieve this combination by
explicitly learning from an agent’s state-action trajectory
with an approximate Bayesian neural network, using Monte
Carlo dropout (Gal and Ghahramani 2016) to obtain predic-
tive uncertainty of our model’s predictions. The model’s pre-
dictive error and uncertainty are tracked by a switchboard to
robustly identify changes in an opposing agent’s behaviour,
switching between opponent models and their associated
policies through time.

We demonstrate the capabilities of SAM through two ex-
periments in a multi-agent continuous-action environment.
First, we show that our approach can identify, track, and
adapt to the behaviour of an agent which switches between
policies over time, outperforming traditional deep reinforce-
ment learning. Next, we show that the same method also
helps in the presence of a learning agent, yielding a higher
performance as a result. We finish with an analysis into
the uncertainty of our learned opponent models throughout
training in both experiments.

2 Switching Agent Model (SAM)

The motivation behind our work is that opposing agents can
change their behaviour through time, and therefore our abil-
ity to derive an optimal policy in their presence depends on
how well we can identify and track this change.

To track these changes and learn an appropriate response,
we propose the Switching Agent Model. SAM is a collection
of inferred opposing agent policies μ̂ and associated approx-
imate best-response policies μ which are connected through,
and controlled by, a switchboard. In the following sections
we describe each of these components in detail. To aid read-
ability, we refer to inferred opposing agent policies as ‘op-
ponent models’ and learned approximate best-response poli-
cies as ‘response policies’. Furthermore, to ease notation we
omit the parameters θ and φ of μ and μ̂ respectively.

2.1 Switchboard

At the heart of SAM is the switchboard. It tracks the perfor-
mance of opponent models through time, switching between
them and their associated response policies as the opposing
agent adjusts its behaviour.

As we consider agents which can adapt both gradually and
suddenly, it is important that our switching mechanism can
operate in the presence of both changes. To achieve this, our
switchboard tracks the running error of the opponent mod-
els, expecting notable spikes when an agent switches be-
haviour and a gradual accumulation over time as they learn.
In both of these situations, the value of this running error
can be used to initiate a switch. We describe this switching
process here and also present it in Algorithm 1.

While an opponent model μ̂k is active, the switchboard
monitors its running error r. At each timestep t, the active
model predicts the next action of the opposing agent us-

Algorithm 1: Model Switching Algorithm

Input: opponent models μ̂ = {μ̂1, ..., μ̂K}, error
threshold rmax, error decay d, predict action
parameters Z = (N, p,N )

Initialise running error r ← 0
Initialise current opponent model index k ← 1
for episode = 1 to ... do

Receive initial state s0
â0, η0 ← Predict(s0, μ̂k, Z) ; // Algorithm 2
for timestep t = 1 to ... do

Receive state st and action at−1
Update running error r using (at−1, ât−1, ηt−1)
if r >= rmax then

Switch to different opponent model, updating
k

Reset rolling error r ← 0
else

Decay rolling error r ← r − d
end

Train μ̂k on (st−1, at−1)
ât, ηt ← Predict(st, μ̂k, Z)

end

end

ing Monte Carlo dropout, obtaining an action prediction âjt
along with its associated predictive uncertainty ηt. On the
following timestep t + 1, the true action ajt is observed and
the running error is updated as follows:

r = r +
|ajt − âjt |

ηt
. (1)

If the running error r is less than the specified switch thresh-
old, i.e. r < rmax, then the running error is decayed by
d. Otherwise, a switch occurs whereby a different opponent
model is chosen and the running error is reset, r ← 0.

Similar to related approaches which consider switching
behaviours (Hernandez-Leal et al. 2016), we assume that the
modelled agent will not switch while our method is initially
learning an opponent model.

2.2 Response Policies

To learn a policy which can act in an environment, as well as
take advantage of our inferred opponent models, we use the
Deep Deterministic Policy Gradient (DDPG) algorithm (Lil-
licrap et al. 2015). We refer to these as ‘response’ policies
due to their association with a specific opponent model.

By alternating between models over time according to
the opposing agent’s behaviour, and therefore alternating be-
tween response policies, our general policy is comprised of
multiple sub-policies μ = {μ1, ..., μK}.

Each policy μk is trained by sampling from its own replay
bufferDk, learning an approximate best-response to the his-
torical average behaviour of the opponent contained within
the buffer. The learned response policies are then used by the
agent to select actions given their observed state sit and the
predicted next actions from the associated opponent model
ât = μ̂k(sit), plus some optional noise from an exploration
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Algorithm 2: Predict Action Algorithm
Input: state s, opponent policy μ̂, Z=(number of

passes N , dropout probability p, inherent
noise N )

Output: action prediction â, predictive uncertainty η
for n = 1 to N do

ân ← μ̂(s) ; // with dropout (p)
end

â← 1
N

∑N
n=1 ân ; // model prediction

σ̂2 ← 1
N

∑N
n=1(ân − â)2 ; // model uncertainty

η ← √
σ̂2 + Var(N ) ; // predictive

uncertainty

process:
at = μk(sit‖ât) +Nt. (2)

2.3 Opponent Models

The final component of SAM is the set of inferred op-
posing agent policies, i.e. opponent models μ̂, which are
learned from observed state-action trajectories and switched
between across time by the switchboard.

Our method takes advantage of these learned opponent
models in two distinct ways. First, as shown in Equation 2,
we input their predictions of the agent’s next actions directly
into our response policy. Depending on the quality of our
models, this can help reduce the perceived non-stationarity
of the environment. Second, we use the model’s uncertainty
estimations in its predictions to obtain a measure of nor-
mal and unexpected behaviour, allowing our switchboard to
change models accordingly.

As our agent acts in a domain with continuous actions,
predicting an agent’s next action is a regression problem. In
this context, our model’s uncertainty can be thought of as a
confidence interval around its predictions.

To learn an approximation of agent j’s true policy μk
j , we

use a neural network μ̂k
j parametrised by φk

j which we opti-
mise by minimising the loss:

L(φk
j ) =

(
μ̂k(sit−1)− ajt−1

)2

, (3)

where sit−1 is the previously observed state by agent i and
ajt−1 is the true action which agent j performed.

To identify changes in the behaviour of an agent, our
opponent models need a measure of uncertainty to detect
and assign error to unexpected actions. We do this by ap-
proximating our model’s predictive uncertainty using Monte
Carlo dropout (Gal and Ghahramani 2016). The process for
this is presented in Algorithm 2 and described below.

First, to obtain our model’s prediction of agent j’s true
next action ajt+1 we pass the observing agent’s state sit
through the network N times, where on each pass the out-
put is computed by randomly dropping out each hidden unit
with probability p:

âjt+1 =
1

N

N∑
n=1

μ̂k(sit). (4)

Figure 1: Gathering environment.

Next, to obtain predictive uncertainty we first determine our
model’s uncertainty which can be approximated using the
sample variance:

σ̂2(μ̂k(sit)) =
1

N

N∑
n=1

(
μ̂k(sit)− âjt+1

)2

. (5)

Our complete predictive uncertainty is thus given by:

η =

√
σ̂2(μ̂k(sit)) + Var(N ), (6)

where N is the inherent noise in the agent’s actions.
Both of the outputs of this process, namely the prediction

â and its predictive uncertainty η, are used by the switch-
board to determine the running error r of the current oppo-
nent model (see Equation 1).

3 Experiments

In our experiments, we train an agent against a non-
stationary adversary with the aim of showing that traditional
reinforcement learning performs sub-optimally in such a set-
ting, and that our proposed methods – i.e. deep opponent
modelling with uncertainty estimates and multiple policies
– help improve performance.

We compare the performance of SAM and DDPG. This
comparison is done indirectly in our first experiment, plac-
ing both agents against a separate switching adversary, while
in second experiment we compare them directly.

3.1 Experimental Details

Environment: Both of our experiments take place in a
gathering scenario between two independent agents in a con-
tinuous world populated by apples as shown in Figure 1.

In this scenario, agents can receive a reward in two ways:

1. Collecting apples by moving onto them, yielding a small
reward.

2. Stealing from another agent by colliding into them, yield-
ing a larger reward but penalising the other agent.

Under this reward structure, an agent’s behaviour can be
characterised along a scale ranging from purely cooperative
(i.e. never stealing) to purely defective (i.e. only stealing).
An agent’s optimal behaviour along this scale depends on
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the behaviour of their opposing agent. For example, against
a purely cooperative agent it is desirable to steal more, while
against a purely defective agent it is advantageous to focus
on avoiding them while collecting apples as fast as possible.

At each timestep, agents observe their own position and
velocity, their relative position and velocity to the opposing
agent, their relative position to each apple, and whether they
can steal. In addition, they can move around the environment
by exerting a continuous force in two directions.

To help speed up training, each agent is given a small neg-
ative reward proportional to their distance to the nearest ap-
ple, as well as a small negative reward proportional to their
distance to the opposing agent when it is possible to steal.

Model Architecture: The actor and critic networks in our
response policies have 2 hidden layers with 64 hidden units
in each layer, ReLU activation functions, and tanh on the
actor’s output layer. Opponent model networks consist of 3
hidden layers with 64 hidden units in each layer, ReLU acti-
vation functions, and tanh on the output layer.

Algorithm Parameters: We train using Adam (Kingma
and Ba 2014) with a learning rate of 0.0001 and 0.001 for the
actors and critics respectively. Soft target updates are done
with τ = 0.01. We set the discount factor to γ = 0.95,
store 106 transitions in our replay buffer (which are equally
distributed between the K buffers in SAM), and train on
mini-batches of 64 transitions. During training, exploration
is achieved by adding noise using an Ornstein-Uhlenbeck
process with σ = 0.1.

Our opponent models are trained with a learning rate of
0.001. Predictive uncertainty is obtained using N = 30
forward passes with dropout probability p = 0.10, and er-
rors are decayed by d = 5 with the switch threshold set
to rmax = 50. Additionally, we set K = 2 (i.e. two oppo-
nent models and two response policies), and therefore switch
calls alternate k between 1 and 2.

Train & Test Procedure: For training, we segment
timesteps into episodes of 1,000 timesteps, resetting the en-
vironment at the start of each episode. Agents sample a mini-
batch of transitions to learn from at each timestep, and ac-
tions are selected with an added exploration noise. Between
training episodes we test agents for a further 1,000 steps,
selecting actions with no exploration noise.

3.2 Experiment 1: Sudden Changes

In this experiment, we consider the setting of a learning
agent competing against a non-stationary adversary that
switches between policies throughout time. To perform op-
timally in this setting, an agent needs to be able to quickly
identify when the adversary has switched behaviours and re-
spond accordingly.

Switching Adversary To construct the policies used by
the switching adversary, we train two agents with different
reward schedules:

1. Passive: rewarded for collecting apples and penalised for
collisions.
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Figure 2: Average reward of SAM (blue) and DDPG (or-
ange) against the switching adversary. Normalised by the
oracle’s best performance (black dashed line) and smoothed
across switches to improve readability. Average of 5 trials.

2. Offensive: only rewarded for stealing apples from the op-
posing agent.
The switching adversary is made non-stationary by

switching between these two learned policies, whereby the
agent follows one policy for a number of timesteps before
switching to the other, repeating this process through time.
To meet our assumption mentioned in Section 2.1, we en-
force a minimum number of timesteps between switches.

As the switching adversary’s behaviour changes through
time, so too does the optimal response. Specifically, the opti-
mal strategy against a passive agent is to steal apples, while
the optimal strategy against an offensive agent is to avoid
them while collecting apples.

When comparing agents against the switching adversary,
we normalise their performance metrics by the highest met-
rics achieved by an agent with access to true state of the
switching adversary (known as the oracle).

Results In Figure 2, we present the reward of each agent
throughout training, normalising by the performance of the
oracle. As can be seen, there are clear differences between
the performances of the two agents.

Due to the DDPG agent learning one response policy
rather than two, it can reuse what is has learned in new situa-
tions, even if that behaviour is not necessarily optimal. This
leads to DDPG quickly performing better than SAM. How-
ever, again due to its single policy, it learns a best response
to the switching adversary’s average behaviour, leading to
a suboptimal performance as training continues. In contrast,
SAM is able to learn a specific best response to each of the
agent’s behaviours, yielding an eventual higher reward.

Switch Analysis As our model relies on detecting changes
in the opposing agent’s behaviour, it is important to know
how long it takes to detect a change once is has occurred.
To do this, we run our trained opponent model over known
change points, which the model does not know, measuring
the error rate and logging when a change occurs.
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Figure 3: Average running error of our opponent model
(blue). Adversary agent switches behaviour at t = 0 (dotted
orange) and SAM switches around t = 19 (dotted black).
Results are averaged across 100 examples.

The results of this are presented in Figure 3, whereby we
visualise the running error of a learned opponent model for
100 switches, centering the agent’s switch on timestep t =
0. On average, our method is able to detect a switch in the
adversary’s behaviour after 19.2± 4.4 timesteps as indicated
by the dotted black line. In other words, on average we can
detect a change in an agent’s behaviour from observing≈19
of their actions.

3.3 Experiment 2: Gradual Changes

In this experiment, we consider the setting of two agents si-
multaneously learning in the same environment. We train
a SAM agent against a DDPG agent, evaluating them af-
ter training for 10,000 further timesteps with no exploration
noise in their action selection.

Normalising performance metrics by the total achieved by
both agents, we find that SAM manages to obtain a higher
reward than DDPG (0.57 to 0.43), doing so by both stealing
more (0.53 to 0.47) as well as collecting more apples (0.56
to 0.44). Along with our results from Experiment 1, this sug-
gests that our methods help improve learning against a non-
stationary agent which not only changes suddenly but also
gradually as they learn.

3.4 Uncertainty Analysis

As we use our uncertainty estimations to determine when to
switch policies, it is important that they are robust and have
meaning across training. In Figure 4, we present our findings
on this from the start, middle, and end of training from the
previous two experiments.

At the top we visualise our model’s predictive uncertainty
in the switching adversary’s actions along two dimensions,
where each ring represents one standard deviation from the
zero-centered mean. As can be seen, predictive uncertainty
is high at the start of training and markedly low at the end.
This is encouraging as it means that our model will return
errors with high confidence when the switching adversary
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Figure 4: Predictive uncertainty of the opponent model
trained on the switching adversary (top) and learning agent
(middle) for the same state, along with the learning agent’s
trajectory (bottom). Columns represent the stage of training
from start (left) to end (right).

starts behaving anomalously compared to our current be-
liefs, causing a switch to occur. We saw this in practice in
our first experiment (see Figure 3).

While it is intuitive that introducing uncertainty will help
against a switching adversary, it is less intuitive when ap-
plied to an agent who is also learning. To investigate this,
we repeat the previous analysis but instead consider a learn-
ing agent (middle row) and visualise their trajectory through
time (bottom row).

From these rows, we can see that our model’s predictive
uncertainty decreases as the agent’s actions become more
consistent and meaningful. In comparison to the switching
adversary’s result, the predictive uncertainty is higher due to
the learning agent selecting actions with some exploration
noise. We conclude from this that an agent’s trajectory (and
therefore their actions) is indicative of the stage of training,
and that our opponent models are able to capture this.

4 Conclusions & Future Work

In this work, we proposed the Switching Agent Model
(SAM) as a way of learning in the presence of non-stationary
agent behaviour. We achieved this through combining tra-
ditional deep reinforcement learning with opponent mod-
elling, using uncertainty estimations from Monte Carlo
dropout to robustly switch between opponent models and
their associated response policies. We empirically demon-
strated the benefits of our approach in a continuous-action
environment against two types of agents and presented in-
sights into the uses of uncertainty.

Future work will further investigate the applicability of
opponent modelling in the presence of another deep learn-
ing agent. Additionally, we will also investigate the dynam-
ics of our switching strategy in the presence of other types
of non-stationary agents, such as those who are actively try-
ing to exploit the switching mechanism, looking at how it
compares to alternative strategies.
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Abstract

Two fundamental problems in computational game theory are
computing a Nash equilibrium and learning to exploit op-
ponents given observations of their play (opponent exploita-
tion). The latter is perhaps even more important than the for-
mer: Nash equilibrium does not have a compelling theoreti-
cal justification in game classes other than two-player zero-
sum, and for all games one can potentially do better by ex-
ploiting perceived weaknesses of the opponent than by fol-
lowing a static equilibrium strategy throughout the match.
The natural setting for opponent exploitation is the Bayesian
setting where we have a prior model that is integrated with
observations to create a posterior opponent model that we
respond to. The most natural, and a well-studied prior dis-
tribution is the Dirichlet distribution. An exact polynomial-
time algorithm is known for best-responding to the poste-
rior distribution for an opponent assuming a Dirichlet prior
with multinomial sampling in normal-form games; however,
for imperfect-information games the best known algorithm is
based on approximating an infinite integral without theoreti-
cal guarantees. We present the first exact algorithm for a nat-
ural class of imperfect-information games. We demonstrate
that our algorithm runs quickly in practice and outperforms
the best prior approaches. We also present an algorithm for
the uniform prior setting.

1 Introduction

Imagine you are playing a game repeatedly against one or
more opponents. What algorithm should you use to maxi-
mize your performance? The classic “solution concept” in
game theory is the Nash equilibrium. In a Nash equilibrium
σ, each player is simultaneously maximizing his payoff as-
suming the opponents all follow their components of σ. So
should we just find a Nash equilibrium strategy for ourselves
and play it in all the game iterations?

Unfortunately, there are some complications. First, there
can exist many Nash equilibria, and if the opponents are
not following the same one that we have found (or are not
following one at all), then our strategy would have no per-
formance guarantees. Second, finding a Nash equilibrium is
challenging computationally: it is PPAD-hard and is widely
conjectured that no polynomial-time algorithms exist (Chen

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Deng 2006). These challenges apply to both extensive-
form games (of both perfect and imperfect information) and
strategic-form games, for games with more than two play-
ers and non-zero-sum games. While a particular Nash equi-
librium may happen to perform well in practice, there is
no theoretically compelling justification for why comput-
ing one and playing it repeatedly is a good approach. Two-
player zero-sum games do not face these challenges: there
exist polynomial-time algorithms for computing an equilib-
rium (Koller, Megiddo, and von Stengel 1994), and there
exists a game value that is guaranteed in expectation in
the worst case by all equilibrium strategies regardless of
the strategy played by the opponent (and this value is the
best worst-case guaranteed payoff for any of our strategies).
However, even for this game class it would be desirable to
deviate from equilibrium in order to learn and exploit per-
ceived weaknesses of the opponent; for instance, if the oppo-
nent has played Rock in each of the first thousand iterations
of rock-paper-scissors, it seems desirable to put additional
weight on paper beyond the equilibrium value of 1

3 .

Thus, learning to exploit opponents’ weaknesses is desir-
able in all game classes. One approach would be to construct
an opponent model consisting of a single mixed strategy that
we believe the opponent is playing given our observations of
his play and a prior distribution (perhaps computed from a
database of historical play). This approach has been success-
fully applied to exploit weak agents in limit Texas hold ’em
poker, a large imperfect-information game (Ganzfried and
Sandholm 2011). A drawback is that it is potentially not ro-
bust. It is very unlikely that the opponent’s strategy matches
this point estimate exactly, and we could perform poorly if
our model is incorrect. A more robust approach, which is the
natural one to use in this setting, is to use a Bayesian model,
where the prior and posterior are full distributions over
mixed strategies of the opponent, not single mixed strate-
gies. A natural prior distribution, which has been studied and
applied in this context, is the Dirichlet distribution. The pdf
of the Dirichlet distribution is the belief that the probabili-
ties of K rival events are xi given that each event has been
observed αi − 1 times: f(x, α) = 1

B(α)

∏
xαi−1
i .1 Some

1B(α) is the beta function B(α) =
∏
Γ(αi)

Γ(
∑
i αi)

, where Γ(n) =

(n− 1)! is the gamma function.
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notable properties are that the mean is E[Xi] =
αi∑
k αk

and
that, assuming multinomial sampling, the posterior after in-
cluding new observations is also Dirichlet, with parameters
updated based on the new observations.

Prior work has presented an efficient algorithm for op-
timally exploiting an opponent in normal-form games in
the Bayesian setting with a Dirichlet prior (Fudenberg
and Levine 1998), which is essentially the fictitious play
rule (Brown 1951). Given prior counts αi for each opponent
action, the algorithm increments the counter for an action
by one each time it is observed, and then best responds to a
model for the opponent where he plays each strategy in pro-
portion to the counters. This algorithm would also extend
directly to sequential games of perfect information, where
we maintain independent counters at each opponent decision
node; this would also work for games of imperfect informa-
tion where the opponent’s private information is observed
after each round (so that we would know exactly what infor-
mation set he took the observed action from). For all of these
game classes the algorithm would apply to both zero and
general-sum games, for any number of players. However, it
would not apply to imperfect-information games where op-
ponents’ private information is not observed after play.

An algorithm exists for approximating a Bayesian best re-
sponse in imperfect-information games, which uses impor-
tance sampling to approximate an infinite integral. This al-
gorithm has been successfully applied to limit Texas hold
’em poker (Southey et al. 2005). However, it is only a heuris-
tic approach with no guarantees. The authors state,

“Computing the integral over opponent strategies de-
pends on the form of the prior but is difficult in any
event. For Dirichlet priors, it is possible to compute the
posterior exactly but the calculation is expensive ex-
cept for small games with relatively few observations.
This makes the exact BBR an ideal goal rather than a
practical approach. For real play, we must consider ap-
proximations to BBR.”

However, we see no justification for the claim that it is possi-
ble to compute the posterior exactly in prior work, and there
could easily be no closed-form solution. In this paper we
present a solution for this problem, leading to the first ex-
act optimal algorithm for performing Bayesian opponent ex-
ploitation in imperfect-information games. While the claim
is correct that the computation is expensive for large games,
we show that in a small (yet realistic) game it outperforms
all prior approaches. Furthermore, we show that the compu-
tation can run extremely quickly even for large number of
observations (though it can run into numerical instability),
contradicting the second claim. We also present general the-
ory, and an algorithm for another natural prior distribution
(uniform distribution over a polyhedron).

2 Meta-algorithm

The problem of developing efficient algorithms for opti-
mizing against a posterior distribution, which is a proba-
bility distribution over mixed strategies for the opponent
(which are themselves distributions over pure strategies)
seems daunting. We need to be able to compactly represent

the posterior distribution and efficiently compute a best re-
sponse to it. Fortunately, we show that our payoff of playing
any strategy σi against a probability distribution over mixed
strategies for the opponent equals our payoff of playing σi

against the mean of the distribution. Thus, we need only rep-
resent and respond to the single strategy that is the mean of
the distribution, and not to the full distribution.While this re-
sult was likely known previously, we have not seen it stated
explicitly, and it is important enough to be highlighted so
that it is on the radar of the AI community.

Suppose the opponent is playing mixed strategy σ−i

where σ−i(s−j) is the probability that he plays pure
strategy s−j ∈ S−j . By definition of expected util-
ity, ui(σi, σ−i) =

∑
s−j∈S−j σ−i(s−j)ui(σi, s−j). We

can generalize this naturally to the case where the op-
ponent is playing according to a probability distribu-
tion with pdf f−i over mixed strategies: ui(σi, f−i) =∫
σ−i∈Σ−i

[f−i(σ−i) · ui(σi, σ−i)] . Let f−i denote the mean

of f−i. That is, f−i is the mixed strategy that selects s−j

with probability
∫
σ−i∈Σ−i

[σ−i(s−j) · f−i(σ−i)] . Then we
have the following:
Theorem 1.

ui(σi, f−i) = ui(σi, f−i).

That is, the payoff against the mean of a strategy distribution equals
the payoff against the full distribution.

Proof.

ui(σi, f−i)

=
∑

s−j∈S−j

[
ui(σi, s−j)

∫
σ−i∈Σ−i

[σ−i(s−j) · f−i(σ−i)]
]

=
∑

s−j∈S−j

[∫
σ−i∈Σ−i

[ui(σi, s−j) · σ−i(s−j) · f−i(σ−i)]
]

=

∫
σ−i∈Σ−i

⎡
⎣ ∑
j∈S−j

[ui(σi, s−j) · σ−i(s−j) · f−i(σ−i)]
⎤
⎦

=

∫
σ−i∈Σ−i

[ui(σi, σ−i) · f−i(σ−i)]

= ui(σi, f−i)

Theorem 1 applies to both normal and extensive-form
games (with perfect or imperfect information), for any num-
ber of players (σ−i could be a joint strategy profile for all
opposing agents).

Now suppose the opponent is playing according a prior
distribution p(σ−i), and let p(σ−i|x) denote the posterior
probability given observations x. Let p(σ−i|x) denote the
mean of p(σ−i|x). As an immediate consequence of Theo-
rem 1, we have the following corollary.

Corollary 1. ui(σi, p(σ−i|x)) = ui(σi, p(σ−i|x)).
Corollary 1 implies the meta-procedure for optimizing

performance against an opponent using p:
There are several challenges for applying Algorithm 1.

First, it assumes that we can compactly represent the prior
and posterior distributions pt, which have infinite domain
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Algorithm 1 Meta-algorithm for Bayesian opponent exploitation
Inputs: Prior distribution p0, response functions rt for 0 ≤
t ≤ T

M0 ← p0(σ−i)
R0 ← r0(M0)
Play according to R0

for t = 1 to T do
xt ← observations of opponent’s play at time step t
pt ← posterior distribution of opponent’s strategy

given prior pt−1 and observations xt

Mt ← mean of pt
Rt ← rt(Mt)
Play according to Rt

(the set of opponents’ mixed strategy profiles). Second, it re-
quires a procedure to efficiently compute the posterior distri-
butions given the prior and the observations, which requires
updating potentially infinitely many strategies. Third, it re-
quires an efficient procedure to compute the mean of pt. And
fourth, it requires that the full posterior distribution from one
round be compactly represented to be used as the prior in the
next round. We can address the fourth challenge by using a
modified update step:

pt ← posterior distribution of opponent’s strategy given
prior p0 and observations x1, . . . , xt.

We will be using this new rule in our main algorithm.
The response functions rt (which return a strategy for our-

selves that performs well against input opponents’ strate-
gies) could be standard best response, for which linear-time
algorithms exist in games of imperfect information (and a
recent approach has enabled efficient computation in ex-
tremely large games (Johanson et al. 2011)). They could also
be a more robust response, e.g., one that places a limit on the
exploitability of our own strategy, perhaps one that varies
over time based on performance (or a lower-variance estima-
tor) (Johanson, Zinkevich, and Bowling 2007; Johanson and
Bowling 2009; Ganzfried and Sandholm 2015). In particu-
lar, the restricted Nash response has been demonstrated to
outperform best response against agents in limit Texas hold
’em whose actual strategy may differ substantially from the
exact model (Johanson, Zinkevich, and Bowling 2007).

3 Robustness of the approach

It has been pointed out that, empirically, the approach de-
scribed is not robust: if we play a full best response to a point
estimate of the opponent’s strategy we can have very high
exploitability ourselves, and could perform very poorly if in
fact we are wrong about our model (Johanson, Zinkevich,
and Bowling 2007). This could happen for several reasons.
Our modeling algorithm could be incorrect: it could make an
incorrect assumption about the prior and form of the oppo-
nent’s distribution. This could happen because the opponent
changes his strategy over time (possibly either by improving
his own play or by adapting to our play), in which case a
model that assumes a static opponent could be predicting a
strategy that the opponent is no longer using. The opponent

could also have modified his play strategically in an attempt
to deceive us (e.g., the opponent initially starts off playing
extremely conservatively, then switches to a more aggressive
style as he suspects we try to exploit his conservatism).

A second reason that we could be wrong in our opponent
model other than our modeling algorithm incorrectly mod-
eling the opponents’ dynamic approach is that our observa-
tions of his play are very noisy (due to both randomization
in the opponent’s strategy and to the private information se-
lected by chance), particularly over a small sample. Even if
our approach is correct and the opponent is in fact playing a
static strategy according to the distribution assumed by the
modeling algorithm, it is very unlikely that our actual per-
ception of his strategy is precisely correct. A third reason, of
course, is that the opponent may be following a static strat-
egy that does not exactly conform to our model for the prior
and/or sampling method used to generate the posterior.

Suppose we believe the opponent is playing x−i, while
he is actually playing x′

−i. LetM be the maximum absolute
value of a utility to player i, and letN be the maximum num-
ber of actions available to a player. Let ε > 0 be arbitrary.
Then, if |x−i(j)−x′

−i(j)| < δ for all j, where δ = ε
MN , we

can show that |ui(σ
∗, x−i) − ui(σ

∗, x′
−i)| < ε. This same

analysis can be applied to show that our payoff is continuous
in the opponent’s strategy for many popular distance func-
tions (i.e., for any distance function where one strategy can
get arbitrarily close to another as the components get arbi-
trarily close). For instance this would apply to L1, L2, and
earth mover’s distance, which have been applied previously
to compute distances been strategies for opponent model-
ing (Ganzfried and Sandholm 2011). Thus, if we are slightly
off in our model of the opponent’s strategy, even if we are
doing a full best response we will do only slightly worse.

4 Exploitation algorithm for Dirichlet prior
As described in Section 1 the Dirichlet distribution is the
conjugate prior for the multinomial distribution, and there-
fore the posterior is also a Dirichlet distribution, with the pa-
rameters αi updated to reflect the new observations. Thus,
the mean of the posterior can be computed efficiently by
computing the strategy for the opponent in which he plays
each strategy in proportion to the updated weight, and Algo-
rithm 1 yields an exact efficient algorithm for computing the
Bayesian best response in normal-form games with a Dirich-
let prior. However, the algorithm does not apply to games
of imperfect information since we do not observe the pri-
vate information held by the opponent, and therefore do not
know which of his action counters we should increment. In
this section we will present a new algorithm for this setting.
We present it in the context of a representative motivating
game where the opponent is dealt a state of private informa-
tion and then takes publicly-observable action, and present
the algorithm for the general setting in Section 4.3.

We are interested in studying the following two-player
game setting. Player 1 is given private information state xi

(according to a probability distribution). Then he takes a
publicly observable action ai. Player 2 then takes an action
after observing player 1’s action (but not his private informa-
tion), and both players receive a payoff. We are interested
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Figure 1: Chance deals player 1 king or jack with probability
1
2 at the green node. Then player 1 selects big or small bet at
a red node. Then player 2 chooses call or fold at a blue node.

in player’s 2’s problem of inferring the (assumed station-
ary) strategy of player 1 after repeated observations of the
public action taken (but not the private information). Note
that this setting is very general. For example, in poker xi

could denote the opponent’s private card(s) and ai denote
the amount he bets, and in an ad auction xi could denote his
valuation (e.g., high or low), and ai could denote the amount
he bids (Tang, Wang, and Zhang 2016).

4.1 Motivating game and algorithm

For concreteness and motivation, consider the following
poker game instantiation of this setting, where we play the
role of player 2. Let’s assume that in this two-player game,
player 1 is dealt a King (K) and Jack (J) with probability 1

2 ,
while player 2 is always dealt a Queen. Player 1 is allowed
to make a big bet of $10 (b) or a small bet of $1 (s), and
player 2 is allowed to call or fold. If player 2 folds, then
player 1 wins the $2 pot (for a profit of $1); if player 1 bets
and player 2 calls then the player with the higher card wins
the $2 pot plus the size of the bet.

If we observe player 1’s card after each hand, then we
can apply the approach described above, where we maintain
a counter for player 1 choosing each action with each card
that is incremented for the selected action. However, if we do
not observe player 1’s card after the hand (e.g., if we fold),
then we would not know whether to increment the counter
for the king or the jack. To simplify analysis, we will as-
sume that we never observe the opponent’s private card after
the hand (which is not realistic since we would observe his
card if he bets and we call); we can assume that we do not
observe our payoff either until all game iterations are com-
plete, since that could allow us to draw inferences about the
opponent’s card. There are no known algorithms even for
the simplified case of fully unobservable opponent’s private
information. We suspect that an algorithm for the case when
the opponent’s private information is sometimes observed
can be constructed based on our algorithm, and we plan to
study this problem in future work.

From analysis in the accompanying tech report (Ganzfried
and Sun 2016), we are able to compute a closed-form ex-
pression for the expectation of the posterior probability that
the opponent takes action b with a Jack given that we have
just observed him take action b (the other quantities can be

computed analogously), which is denoted by P (b|O, J).

B(αKb + 1, αKs)B(αJb + 1, αJs) + B(αKb, αKs)B(αJb + 2, αJs)

Z
(1)

where the denominator Z is equal to

B(αKb + 1, αKs)B(αJb + 1, αJs) + B(αKb, αKs)B(αJb + 2, αJs)

+B(αKb+1, αKs)B(αJb, αJs+1)+B(αKb, αKs)B(αJb+1, αJs+1).

Note that the algorithm we have presented applies for the
case where we play one more game iteration and collect
one additional observation. However, it is problematic for
the general case we are interested in where we play many
game iterations, since the posterior distribution is not Dirich-
let, and therefore we cannot just apply the same procedure
in the next iteration using the computed posterior as the new
prior. We will need to derive a new expression for P (b|O, J)
for this setting. Suppose that we have observed the opponent
play action b for θb times and s θs times (in addition to the
number of fictitious observations reflected in the prior α),
though we do not observe his card. Then P (b|O, J) equals

∑θb
i=0

∑θs
j=0 B(αKb + i, αKs + j)B(αJb + θb − i + 1, αJs + θs − j)

Z
(2)

The normalization term is

Z =
∑

i

∑

j

[B(αKb+i, αKs+j)B(αJb+θb−i+1, αJs+θs−j)

+B(αKb + i, αKs + j)B(αJb + θb − i, αJs + θs − j + 1)].

Details of the derivation are in the tech report.
Thus the algorithm for responding to the opponent is the

following. We start with the prior counters on each private
information-action combination, αKb, αKs, etc. We keep
separate counters θb, θs for the number of times we have
observed each action during play. Then we combine these
counters according to Equation 2 in order to compute the
strategy for the opponent that is the mean of the posterior
given the prior and observations, and we best respond to this
strategy, which gives us the same payoff as best respond-
ing to the full posterior distribution according to Theorem 1.
There are only O(n2) terms in the expression in Equation 2,
so this algorithm is efficient.

4.2 Example

Suppose the prior is that the opponent played b with K 10
times, played s with K 3 times, played b with J 4 times, and
played s with J 9 times. Thus αKb = 10, αKs = 3, αJb =
4, αJs = 9. Now suppose we observe him play b at the next
iteration. Applying our algorithm using Equation 1 gives

p(b|O, J) =
B(11, 3)B(5, 9) + B(10, 3)(6, 9)

Z
=

2.65209525e−7

Z

p(s|O, J) =
B(11, 3)B(4, 10) + B(10, 3)(5, 10)

Z
=

5.5888056e−7

Z

−→ p(b|O, J) =
2.65209525e−7

2.65209525e−7 + 5.5888056e−7
= 0.3218210361.
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So we think that with a jack he is playing a strategy that
bets big with probability 0.322 and small with probability
0.678. Notice that previously we thought his probability of
betting big with a jack was 4

13 = 0.308, and had we been in
the setting where we always observe his card after gameplay
and observed that he had a jack, the posterior probability
would be 5

14 = 0.357.
An alternative “naı̈ve” (and incorrect) approach would be

to increment αJb by αJb
αJb+αKb

, the ratio of the prior probabil-
ity that he bets big given J to the total prior probability that
he bets big. This gives a posterior probability of him betting
big with J of 4+ 4

13

14 = 0.308,which differs significantly from
the correct value. It turns out that this approach is actually
equivalent to just using the prior:

x+ x
x+y

x+ y + 1
· x+ y

x+ y
=

x(x+ y) + x

(x+ y + 1)(x+ y)
=

x

x+ y

4.3 Algorithm for general setting

We now consider the general setting where the opponent can
have n different states of private information according to an
arbitrary distribution π and can takem different actions. As-
sume he is given private information xi with probability πi,
for i = 1, . . . , n, and can take action ki, for i = 1, . . . ,m.
Assume the prior is Dirichlet with parameters αij for the
number of times action j was played with private informa-
tion i (so the mean of the prior has the player selecting action
kj at state xi with probability αij∑

j αij
). Assume that action

kj∗ was observed in a new time step, while the opponent’s
private information was not observed. We now compute the
expectation for the posterior probability that the opponent
plays kj∗ with private information xi∗ .

P (A = kj∗ |O,C = xi∗)

=

∫ [
qk∗j |x∗i

∑n
i=1

[
πiqkj∗ |xi

∏m
h=1

∏n
j=1 q

αjh−1
kh|xj

]]

p(O)
∏n

i=1B(αi1, . . . , αim)

=

∑
i

[
πi

∏
j B(γ1j , . . . , γnj)

]

Z
,

where γij = αij + 2 if i = i∗ and j = j∗, γij = αij + 1
if j = j∗ and i �= i∗, and γij = αij otherwise. If we denote
the numerator by τi∗j∗ then Z =

∑
i∗ τi∗j∗ . Notice that the

product is over n terms, and therefore the total number of
terms will be exponential in n (it is O(m · 2n)).

For the case of multiple observed actions, the posterior is
not Dirichlet and cannot be used directly as the prior for the
next iteration. Suppose we have observed action kj θj times
(in addition to the number of fictitious times indicated by the
prior counts αij). We compute P (q|O) analogously as

P (q|O) =

∑n
i=1

[
πi

∑
{ρab}

∏m
h=1

∏n
j=1 q

αjh−1+ρjh
kh|xj

]

p(O)
∏n

i=1 B(αi1, . . . , αim)
,

where the
∑

{ρab} is over all values 0 ≤ ρab ≤ θb with

∑
a ρab = θb for each b, for 1 ≤ a ≤ n, 1 ≤ b ≤ m:

∑

{ρab}
=

θb∑
ρ1b=0

θb−ρ1b∑
ρ2b=0

. . .

θb−
∑n−2
r=0 ρrb∑

ρn−1,b=0

θb−
∑n−1
r=0 ρrb∑

ρnb=θb−
∑n−2
r=0 ρrb

.

The expression for the full posterior distribution is

P (q|O) =

∑
i

[
πi

∑
{ρab}

∏
h B(α1h + ρ1h, . . . , αnh + ρnh)

]

Z

The total number of terms is O
((

(T+n)!
n!T !

)m)
, which is ex-

ponential in the number of private information states and ac-
tions, but polynomial in the number of iterations.

The following theorem shows an approach for computing
products of the beta function that leads to an exponential im-
provement in the running time of the algorithm for one ob-
servation, and reduces the dependence onm for the multiple
observation setting from exponential to linear, though the
complexity still remains exponential in n and T for the lat-
ter. See tech report for full details (Ganzfried and Sun 2016).
Theorem 2. Define γj =

∑n
i=1 γij and the empirical probability

distribution P̂j(i) =
γij∑n
i=1 γij

=
γij
γj

. Define the Gamma function

Γ(x) =
∫∞
0

xz−1e−x dx, for integer x, Γ(x) = (x − 1)!. Now
define the entropy of P̂i as E(P̂j) = −∑n

i=1 P̂j(i) ln P̂j(i). Then
we have

∏m
j=1B(γ1j , . . . , γnj) equals

exp

⎛
⎝ m∑
j=1

(
−γjE(P̂j) −

1

2
(n − 1) ln(γj) +

n∑
i=1

ln(Pj(i)) + d

)⎞
⎠ .

Here d is a constant such that 1
2 ln(2π)n − 1 ≤ d ≤ n −

1
2 ln(2π), where ln(2π) ≈ 0.92.

5 Algorithm for uniform prior distribution

Another prior that has been studied previously is the uniform
distribution over a polyhedron. This can model the situa-
tion when we think the opponent is playing uniformly within
some region of a fixed strategy, such as a specific Nash equi-
librium or a “population mean” strategy based on historical
data. Prior work has used this model to generate a class of
opponents who are more sophisticated than opponents who
play uniformly at random over the entire space (Ganzfried
and Sandholm 2015)). For example, in rock-paper-scissors,
we may think the opponent is playing a strategy uniformly
out of strategies that play each action with probability within
[0.31,0.35], as opposed to completely random over [0,1].

Let vi,j denote the jth vertex for player i, where vertices
correspond to mixed strategies. Let p0 denote the prior distri-
bution over vertices, where p0i,j is the probability that player
i plays the strategy corresponding to vertex vi,j . Let Vi de-
note the number of vertices for player i. Algorithm 2 com-
putes the Bayesian best response in this setting. Correctness
follows straightforwardly by applying Corollary 1 with the
formula for the mean of the uniform distribution.

6 Experiments

We ran experiments on the game described in Section 4.1.
For the beta function computations we used the Colt Java
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Algorithm 2 Algorithm for opponent exploitation with uni-
form prior distribution over polyhedron
Inputs: Prior distribution over vertices p0, response functions rt
for 0 ≤ t ≤ T

M0 ← strategy profile assuming opponent i plays each vertex
vi,j with probability p0i,j = 1

Vi

R0 ← r0(M0)
Play according to R0

for t = 1 to T do
for i = 1 to N do

ai ← action taken by player i at time step t
for j = 1 to Vi do

pti,j ← pt−1i,j · vi,j(ai)

Normalize the pti,j’s so they sum to 1
Mt ← strategy profile assuming opponent i plays each ver-

tex vi,j with probability pti,j
Rt ← rt(Mt)
Play according to Rt

math library. For our first set of experiments we tested our
basic algorithm which assumes that we observe a single op-
ponent action (Equation 1). We varied the Dirichlet prior pa-
rameters to be uniform in {1,n} to explore the runtime as a
function of the size of the prior (since computing larger val-
ues of the Beta function can be challenging). The results (Ta-
ble 1) show that the computation is very fast even for large n,
with running time under 8 microseconds for n = 500. How-
ever, we also observe frequent numerical instability for large
n. The second row shows the percentage of the trials for
which the algorithm produced a result of “NaN” (which typ-
ically results from dividing zero by zero). This jumps from
0% for n = 50 to 8.8% for n = 100 to 86.9% for n = 200.
This is due to instability of algorithms for computing the
beta function. We used the best publicly available beta func-
tion solver, but perhaps there could be a different solver that
leads to better performance in our setting (e.g., it trades off
runtime for additional precision). Despite the cases of insta-
bility, the results indicate that the algorithm runs extremely
fast for hundreds of prior observations, and since it is exact,
it is the best algorithm for the settings in which it produces
a valid output. Note that n = 100 corresponds to 400 prior
observations on average since there are four parameters, and
that the experiments in previous work used a horizon of 200
hands per match against an opponent (Southey et al. 2005).

n 10 20 50 100 200 500
Time 0.0005 0.0008 0.0018 0.0025 0.0034 0.0076
NaN 0 0 0 0.0883 0.8694 0.9966

Table 1: Results of modifying Dirichlet parameters to be
U{1,n} over one million samples. First row is average run-
time in milliseconds. Second row is percentage of the trials
that output “NaN.”

We tested our generalized algorithm for different num-
bers of observations, using a fixed Dirichlet prior with all
parameters equal to as has been done in prior work (Southey
et al. 2005). We observe (Table 2) that the algorithm runs

quickly for large numbers of observations, though again it
runs into numerical instability for large values. As one ex-
ample, it takes 19 milliseconds for θb = 101, θs = 100.

n 10 20 50 100 200 500 1000
Time 0.015 0.03 0.36 2.101 10.306 128.165 728.383
NaN 0 0 0 0 0.290 0.880 0.971

Table 2: Results using Dirichlet prior with all parameters
equal to 2 and θb, θs in U{1,n} averaged over 1,000 samples.
First row is average runtime (ms), second row is % of trials
producing “NaN.”

We compared our algorithm against the three heuristics
described in previous work (Southey et al. 2005). The first
heuristic Bayesian Best Response (BBR) approximates the
opponent’s strategy by sampling strategies according to the
prior and computing the mean of the posterior over these
samples, then best-responding to this mean strategy; Max
A Posteriori Response heuristic (MAP) samples strategies
from the prior, computes the posterior value for these strate-
gies, and plays a best response to the one with highest pos-
terior value; Thompson’s Response samples strategies from
the prior, computes the posterior values, then samples one
strategy for the opponent from these posteriors and plays
a best response to it. For all approaches we used a Dirich-
let prior with the standard values of 2 for all parameters.
For all the sampling approaches we sampled 1,000 strate-
gies from the prior for each opponent and used these strate-
gies for all hands against that opponent (as was done in
prior work (Southey et al. 2005)). Note that one can draw
samples xi from a Dirichlet distribution by first drawing in-
dependent samples yi from Gamma distributions each with

density Gamma(αi, 1) =
y
αi−1

i e−yi
Γ(αi)

and then setting xi =
yi∑
j yj

.We also tested a best response strategy that knows the
actual mixed strategy of the opponent, not just a distribution
over his strategies, as well as the Nash equilibrium strategy.2
Note that the game has a value to us of -0.75, so negative
values are not necessarily indicative of “losing.”

Table 3 shows that our exact Bayesian best response al-
gorithm (EBBR) outperforms the heuristic approaches, as
expected since it is optimal when the opponent’s strategy
is drawn from the prior. BBR performed best out of the
sampling approaches, which is not surprising because it is
trying to approximate the optimal approach while the oth-
ers are optimizing a different objective. All of the sampling
approaches outperformed just following the Nash equilib-
rium, and as expected all exploitation approaches performed
worse than playing a best response to the opponent’s ac-
tual strategy. Note that, against an opponent drawn from a
Dirichlet distribution with all parameters equal to 2 and no
further observations of his play, our best response would be
to always call, which gives us expected payoff of zero. Thus

2Note that the Nash equilibrium for player 2 is to call a big bet
with probability 1

4
and a small bet with probability 1 (the equilib-

rium for player 1 is to always bet big with K and to bet big with
probability 5

6
with J).
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for the initial column the actual value for EBBR when aver-
aged over all opponents would be zero. Against this distri-
bution the Nash equilibrium has expected payoff −0.375.

Algorithm Initial 10 25
EBBR 0.0003 ± 0.0009 -0.0024 0.0012

BBR 0.0002 ± 0.0009 -0.0522 -0.138
MAP −0.2701 ± 0.0008 -0.2848 -0.2984

Thompson −0.2593 ± 0.0007 -0.2760 -0.3020
FullBR 0.4976 ± 0.0006 0.4956 0.4963
Nash −0.3750 ± 0.0001 -0.3751 -0.3745

Table 3: Comparison with algorithms from prior work, full
best response, and Nash equilibrium using Dirichlet prior
with parameters equal to 2. For initial column we sampled
ten million opponents from the prior, for 10 rounds we sam-
pled one million, and for 25 rounds 100,000. Results are av-
erage winrate per hand over all opponents. Initial column
reports 95% confidence interval.

It is interesting that the exploitation approaches (particu-
larly EBBR and BBR) are able to exploit opponents and per-
form significantly better than the Nash equilibrium strategy
just from knowing the prior distribution for the opponents
(and without any observations). Previous experiments had
also shown that when the sampling approaches are played
against opponents drawn from the prior distribution, the
winning rates converge, typically very quickly (Southey et
al. 2005). For these experiments the performances of all
the approaches converged very quickly, and collecting ad-
ditional observations of the opponent’s public action did not
seem to lead to an additional improvement. This observation
agrees with the findings of the prior results in this setting.

We also tested the effect of using only 10 samples of
the opponent’s strategy for the sampling approaches. The
approaches would then have a noisier estimate of the op-
ponent’s strategy, and should achieve lower performance
against the actual strategy of the opponent.

Algorithm Initial 10 25 100
EBBR 0.000002 ± 0.0009 0.0019 0.0080 0.0160

BBR −0.1409 ± 0.0008 -0.1415 -0.1396 -0.2254
MAP −0.2705 ± 0.0007 -0.2704 -0.2660 -0.3001

Thompson −0.2666 ± 0.0007 -0.2660 -0.2638 -0.3182
FullBR 0.4979 ± 0.0006 0.4980 0.5035 0.5143
Nash −0.3749 ± 0.0001 -0.3751 -0.3739 -0.3754

Table 4: Comparison of our algorithm with algorithms from
prior work (BBR, MAP, Thompson), full best response,
and Nash equilibrium using Dirichlet prior with parameters
equal to 2. The sampling algorithms each use 10 samples
from the opponent’s strategy (as opposed to 1000 samples
from our earlier analysis). For the initial column we sam-
pled ten million opponents from the prior, for 10 rounds we
sampled one million, for 25 rounds 100,000, and for 100
rounds 1,000. Results are average winrate per hand over all
opponents. Initial column reports 95% confidence interval.

Thompson and MAP performed very similarly using 10
vs. 1000 samples (these approaches essentially end up se-

lecting a single strategy from the set of samples to be used as
the model, and the results indicate that they are relatively in-
sensitive to the number of samples used), but BBR performs
significantly worse, achieving payoff around -0.14 with 10
samples vs. payoff close to 0 with 1000 samples. EBBR out-
performs BBR much more significantly in this case where
BBR uses fewer samples to construct the opponent model.
It appears that the sampling approaches actually hurt perfor-
mance over time when fewer samples are used. BBR, MAP,
and Thompson perform clearly worse after 100 game itera-
tions than with fewer iterations, while EBBR performs better
as more iterations are used, indicating that it is actually able
to perform successful learning in this setting. For the others,
the noise from the samples outweighs the gains of learning
from additional observations.

7 Conclusion
One of the most fundamental problems in game theory is
learning to play optimally against opponents who may make
mistakes. We presented the first exact algorithm for per-
forming exploitation in imperfect-information games in the
Bayesian setting using the most well-studied prior distribu-
tion for this problem, the Dirichlet distribution. Previously
an exact algorithm had only been presented for normal-form
games, and the best previous algorithm was a heuristic with
no guarantees. We demonstrated experimentally that our al-
gorithm can be practical and that it outperforms the best
prior approaches, though it can run into numerical stability
issues for large numbers of observations.

We presented a general meta-algorithm and new theoret-
ical framework for studying opponent exploitation. Future
work can extend our analysis to many important settings.
For example, we would like to study the setting when the
opponent’s private information is only sometimes observed
(we expect our approach can be extended easily to this set-
ting) and general sequential games where the agents can take
multiple actions (which we expect to be hard, as indicated
by the analysis in the tech report). We would also like to
extend analysis for any number of agents. Our algorithm is
not specialized for two-player zero-sum games (it applies to
general-sum games); if we are able to compute the mean of
the posterior strategy against multiple opponent agents, then
best responding to this strategy profile is just a single agent
optimization and can be done in time linear in the size of
the game regardless of the number of opponents. While the
Dirichlet is the most natural prior for this problem, we would
also like to study other important distributions. We presented
an algorithm for the uniform prior distribution over a poly-
hedron, which could model the situation where we think the
opponent is playing a strategy from a uniform distribution in
a region around a particular strategy, such as a specific equi-
librium or a “population mean” based on historical data.

Opponent exploitation is a fundamental problem, and our
algorithm and extensions could be applicable to many do-
mains that are modeled as an imperfect-information games.
For example, many security game models have imperfect in-
formation, e.g., (Letchford and Conitzer 2010; Kiekintveld,
Tambe, and Marecki 2010), and opponent exploitation in se-
curity games has been a very active area of study, e.g., (Pita
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et al. 2010; Nguyen et al. 2013). It has also been proposed
recently that opponent exploitation can be important in med-
ical treatment (Sandholm 2015).
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Abstract

Interactive partially observable Markov decision processes (I-
POMDPs) provide a principled framework for planning and
acting in a partially observable, stochastic and multi-agent en-
vironment. It extends POMDPs to multi-agent settings by in-
cluding models of other agents in the state space and forming
a hierarchical belief structure. In order to predict other agents’
actions using I-POMDPs, we propose an approach that effec-
tively uses Bayesian inference and sequential Monte Carlo
(SMC) sampling to learn others’ intentional models which as-
cribe to them beliefs, preferences and rationality in action se-
lection. Empirical results show that our algorithm accurately
learns models of the other agent and has superior performance
than other methods. Our approach serves as a generalized
Bayesian learning algorithm that learns other agents’ beliefs,
and transition, observation and reward functions. It also effec-
tively mitigates the belief space complexity due to the nested
belief hierarchy.

Introduction

Partially observable Markov decision processes (POMDPs)
(Kaelbling, Littman, and Cassandra 1998) provide a princi-
pled, decision-theoretic framework for planning under un-
certainty in a partially observable, stochastic environment.
An autonomous agent operates rationally in such settings by
constantly maintaining a belief of the physical state and se-
quentially choosing the optimal actions that maximize the
expected value of future rewards. Although POMDPs can
be used in multi-agent settings, it usually treats the effect of
other agents’ actions as noise and folds it into the state tran-
sition function. Examples of such POMDPs are Utile Suf-
fix Memory (McCallum and Ballard 1996), infinite general-
ized policy representation (Liu, Liao, and Carin 2011), and
infinite POMDPs (Doshi-Velez et al. 2015). Therefore, an
agent’s beliefs about other agents are not part of the solu-
tions of POMDPs.

Interactive POMDPs (I-POMDPs) (Gmytrasiewicz and
Doshi 2005) generalize POMDPs to multi-agent settings by
replacing POMDP belief spaces with interactive hierarchi-
cal belief systems. Specifically, an I-POMDP augments the
plain beliefs about the physical states in POMDP by includ-
ing models of other agents. This augmentation forms a hi-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

erarchical belief structure that represents an agent’s belief
about the physical state, belief about the other agents and
their beliefs about others’ beliefs, and so on. And such be-
lief structure can be infinitely nested according to its defini-
tion. The models of other agents included in the new aug-
mented belief space consist of two types: intentional models
and subintentional models. An intentional model ascribes
beliefs, preferences, and rationality to other agents (Gmy-
trasiewicz and Doshi 2005), while a simpler subintentional
model, such as finite state controllers (Panella and Gmy-
trasiewicz 2016), does not. Solutions of I-POMDPs map an
agent’s belief about the environment and other agents’ mod-
els to actions. It has been shown (Gmytrasiewicz and Doshi
2005) that the added sophistication of modeling others as ra-
tional agents results in a higher value function compared to
one obtained from treating others as noise, which implies the
modeling superiority of I-POMDPs over other approaches.

However, the interactive belief augmentation of I-
POMDPs results in a drastic increase of the belief space
complexity, because the agent models grow exponentially as
the belief nesting level increases. Therefore, the complex-
ity of the belief representation is proportional to belief di-
mensions, which is known as the curse of dimensionality.
Moreover, since exact solutions to POMDPs are proven to
be PSPACE-complete for finite time horizon and undecid-
able for infinite time horizon (Papadimitriou and Tsitsiklis
1987), the time complexity of more generalized I-POMDPs
is at least PSPACE-complete for finite horizon and unde-
cidable for infinite horizon, because an I-POMDP may con-
tain multiple POMDPs or I-POMDPs of other agents. Due to
these complexities, a solution which accounts for an agent’s
belief over an entire intentional model has not been imple-
mented up to date. There are partial solutions that depend on
what is known about other agents’ beliefs about the physical
states (Doshi and Gmytrasiewicz 2009), but they do not in-
clude the state of an agent’s knowledge about others’ reward,
transition, and observation functions. Indirect approach such
as subintentional finite state controllers (Panella and Gmy-
trasiewicz 2016) do not include any of these elements either.
To unleash the full modeling power of intentional models
and mitigate the aforementioned complexities, a robust ap-
proximation algorithm is needed. The purpose of this ap-
proximation algorithm is to compute the nested interactive
belief over all elements of the intentional models and predict
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other agents’ actions. It is crucial to the trade-off between
solution quality and computational complexity.

To address this issue, we propose a Bayesian learning
method that utilizes customized sequential Monte Carlo
sampling (De Freitas, Doucet, and Gordon 2001) to obtain
approximate solutions to I-POMDPs and implement the al-
gorithms in a software package.1 We assume that agents
maintain beliefs over intentional models of other agents
and make sequential Bayesian updates using observations
from the environment. While in multi-agent settings, oth-
ers agents’ models other than their beliefs are usually as-
sumed to be known, in our assumption the modeling agent
does not know any information about other agents’ transi-
tion, observation, reward functions and their beliefs. It only
relies on learning indirectly from observations about the en-
vironment. Since this Bayesian inference task is analytically
intractable due to the need of computing high dimensional
integration, we have devised a customized sequential Monte
Carlo method starting from the interactive particle filter (I-
PF) (Doshi and Gmytrasiewicz 2009). The main idea of this
method is to descend the belief hierarchy and sample all
model parameters at each nesting level.

Our approach, for the first time, successfully recovers
others agents’ models over the intentional model space
which contains their beliefs, and transition, observation and
reward functions. It extends I-POMDP’s belief update to
larger model space, and therefore it serves as a general-
ized Bayesian learning method for multi-agent systems in
which other agents’ beliefs, transition, observation and re-
ward functions are unknown. By approximating Bayesian
inference using a customized sequential Monte Carlo sam-
pling method, we significantly mitigate the belief space
complexity of I-POMDPs.

The Model

I-POMDP framework

I-POMDPs (Gmytrasiewicz and Doshi 2005) generalize
POMDPs (Kaelbling, Littman, and Cassandra 1998) to
multi-agent settings by including models of other agents in
the belief state space. The resulting hierarchical belief struc-
ture represents an agent’s belief about the physical state, be-
lief about the other agents and their beliefs about others’ be-
liefs, and can be nested infinitely in this recursive manner.
Here we focus on the computable counterparts of infinitely
nested I-POMDPs: finitely nested I-POMDPs. For simplic-
ity of presentation, we consider two interacting agents i and
j. This formalism generalizes to more number of agents in a
straightforward manner.

A finitely nested interactive POMDP of agent i , I-
POMDPi,l, is defined as:

I-POMDPi,l = 〈ISi,l, A,Ωi, Ti, Oi, Ri〉 (1)

where:
• ISi,l is a set of interactive states, defined as ISi,l =

S ×Mj,l−1, l ≥ 1, where S is the set of physical states,
Mj,l−1 is the set of possible models of agent j, and l is

1https://github.com/solohan22/IPOMDP.git

the strategy (nesting) level. The set of models, Mj,l−1,
can be divided into two classes, the intentional mod-
els, IMj,l−1, and subintentional models, SMj,l−1. Thus,
Mj,l−1 = IMj,l−1 ∪ SMj,l−1.
The intentional models, IMj,l−1, ascribe beliefs, prefer-
ences, and rationality in action selection to other agents,
thus they are analogous to types, θj , used in Bayesian
games (Harsanyi 1967). The intentional models, Θj,l−1,
of agent j at level l − 1 is defined as θj,l−1 =
〈bj,l−1, A,Ωj , Tj , Oj , Rj , OCj〉, where bj,l−1 is agent j’s
belief nested to the level (l − 1), bj,l−1 ∈ Δ(ISj,l−1),
and OCj is j’s optimality criterion. It can be rewritten as
θj,l−1 = 〈bj,l−1, θ̂j〉, where θ̂j includes all elements of
the intentional model other than the belief and is called
the agent j’s frame.
The subintentional models, SMj,l−1, constitute the re-
maining models in Mj,l−1. Examples of subintentional
models are finite state controllers (Panella and Gmy-
trasiewicz 2016), no-information models (Gmytrasiewicz
and Durfee 2000) and fictitious play models (Fudenberg
and Levine 1998).
The ISi,l can be defined in an inductive manner:

ISi,0 = S, θj,0 = {〈bj,0, θ̂j〉 : bj,0 ∈ Δ(S)}
ISi,1 = S × θj,0, θj,1 = {〈bj,1, θ̂j〉 : bj,1 ∈ Δ(ISj,1)}
...... (2)

ISi,l = S × θj,l−1, θj,l = {〈bj,l, θ̂j〉 : bj,l ∈ Δ(ISj,l)}

• A = Ai ×Aj is the set of joint actions of all agents.

• Ωi is the set of agent i’s possible observations.

• Ti : S ×A× S → [0, 1] is the transition function.

• Oi : S ×A× Ωi → [0, 1] is the observation function.

• Ri : ISi ×A→ R is the reward function.

Interactive belief update

Given the definitions above, the interactive belief update can
be performed as follows, by considering others’ actions and
anticipated observations:

bti,l(is
t) = Pr(ist|bt−1i,l , at−1

i , oti) (3)

= α
∑

ist−1

bi,l(is
t−1)

∑

at−1
j

Pr(at−1
j |θt−1j,l−1)T (s

t−1, at−1, st)×

Oi(s
t, at−1, oti)

∑

otj

Oj(s
t, at−1, otj)τ(b

t−1
j,l−1, a

t−1
j , otj , b

t
j,l−1)

Compared with POMDP, the interactive belief update in
I-POMDP takes two additional elements into account. First,
the probability of other’s actions given his models needs to
be computed since the state now depends on both agents’
actions (the second summation). Second, the modeling agent
needs to update his beliefs based on the anticipation of what
observations the other agent might get and how it updates
(the third summation).
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Similarly to POMDPs, the value associated with a belief
state in I-POMDPs can be updated using value iteration:

V (θi,l) = max
ai∈Ai

{ ∑
is∈IS

bi,l(is)ERi(is, ai) (4)

+ γ
∑
oi∈Ωi

P (oi|ai, bi,l)V (〈SEθi(bi,l, ai, oi), θ̂i〉)
}

where ERi(is, ai) =
∑

aj
Ri(is, ai, aj)Pr(aj |θj,l−1).

Then the optimal action, a∗i , for an infinite horizon crite-
rion with discounting, is part of the set of optimal actions,
OPT (θi), for the belief state:

OPT (θi,l) = argmax
ai∈Ai

{ ∑
is∈IS

bi,l(is)ERi(is, ai) (5)

+ γ
∑
oi∈Ωi

P (oi|ai, bi,l)V (〈SEθi(bi,l, ai, oi), θ̂i〉)
}

Sampling Algorithms

The Markov Chain Monte Carlo (MCMC) method (Gilks,
Richardson, and Spiegelhalter 1996) is widely used to ap-
proximate probability distributions that are difficult to com-
pute directly. Sequential versions of Monte Carlo methods,
such as as particle filters (Del Moral 1996), work on sequen-
tial inference tasks, especially sequential decision making
under Markov assumption. At each time step, a particle fil-
ter draws samples (or particles) from a proposal distribu-
tion, commonly the conditional distribution p(xt|xt−1) of
the current state xt given the previous xt−1, then uses the ob-
servation function p(yt|xt) to compute importance weights
for all particles and resample them according to the weights.

The Interactive Particle Filter (I-PF) (Doshi and Gmy-
trasiewicz 2009) was devised as a filtering algorithm for in-
teractive belief update in I-POMDP, which generalizes the
classic particle filter algorithm to multi-agent settings. It
uses the state transition function as the proposal distribu-
tion, which is usually used in a specific particle filter algo-
rithm called bootstrap filter (Gordon, Salmond, and Smith
1993). However, due to the enormous belief space, the I-PF
implementation assumes that the other agent’s frame θ̂j is
known to the modeling agent, therefore it simplifies the be-
lief update from S ×Θj,l−1 to a significantly smaller space
S × bj,l−1.

Our interactive belief update described in Algorithm 1 and
2, however, generalizes I-POMDP’s belief update to larger
intentional model space which contains other agents’ be-
liefs, and transition, observation and reward functions. In the
remaining part of this section, we will firstly give a brief in-
troduction of our algorithms and discuss the motivations of
each sampling step. Then we will show the major differences
between our algorithm and the I-PF, since this generalization
is nontrivial. A concrete example of the algorithm is given
in Figure 1 in the next section as well.

The Algorithm 1 requires inputs of the modeling agent’s
prior belief, b̃t−1

k,l , which is represented in the form of a set

Algorithm 1: Interactive Belief Update

b̃tk,l = InteractiveBeliefUpdate(b̃t−1
k,l , a

t−1
k , otk, l > 0)

1 For is(n),t−1
k =< s(n),t−1, θ

(n),t−1
−k,l−1 >∈ b̃t−1

k,l :
2 sample at−1

−k ∼ P (A−k|θ(n),t−1
−k,l−1 )

3 sample s(n),t ∼ Tk(S
t|S(n),t−1, at−1

k , at−1
−k )

4 for ot−k ∈ Ω−k:
5 if l = 1:
6 b

(n),t
−k,0 = Level0BeliefUpdate(θ(n),t−1

−k,0 ,

at−1
−k , ot−k)

7 θ
(n),t
−k,0 =< b

(n),t
−k,0, θ̂

(n),t−1
−k,0 >

8 is
(n),t
k =< s(n),t, θ

(n),t
−k,0 >

9 else:
10 b

(n),t
−k,l−1 = InteractiveBeliefUpdate(b̃(n),t−1

−k,l−1 ,

at−1
−k , ot−k, l− 1)

11 θ
(n),t
−k,l−1 =< b

(n),t
−k,l−1, θ̂

(n),t−1
−k,l−1 >

12 is
(n),t
k =< s(n),t, θ

(n),t
−k,l−1 >

13 w
(n)
t = O

(n)
−k (o

t
−k|s(n),t, at−1

k , at−1
−k )

14 w
(n)
t = w

(n)
t ×Ok(o

t
k|s(n),t, at−1

k , at−1
−k )

15 b̃temp
k,l =< is

(n),t
k , w

(n)
t >

16 normalize all w(n)
t so that

∑N
n=1 w

(n)
t = 1

17 resample from b̃temp
k,l according to normalized w(n)

t

18 resample θ(n),t−k,l−1 ∼ N(θt−k,l−1|θ(n),t−1
−k,l−1 ,Σ)

19 return b̃tk,l = is
(n),t
k =< s(n),t, θ

(n),t
−k,l−1 >

of n samples is(n),t−1
k , along with the action, at−1

k , the ob-
servation, otk, and the belief nesting level, l > 0. Here k
represents either agent i or j, and −k represents the other
agent, j or i, correspondingly. We assume that the modeled
agent’s action set A−k, observation set Ω−k and optimality
criteria OCk are known to all agents. We want to learn the
other agent’s initial belief about the physical state, b0−k, the
transition function, T−k, the observation function, O−k and
the reward function, R−k.

The initial belief samples, is
(n),t−1
k , are generated

from the prior nested belief in the similar way as de-
scribed in the I-PF literature (Doshi and Gmytrasiewicz
2009) except that T (n)

−k , O
(n)
−k , and R

(n)
−k are sampled from

their prior distributions as well. Notice that T
(n)
−k , O

(n)
−k ,

and R
(n)
−k are all part of the frame, namely θ̂

(n)
−k =<

A−k,Ω−k, T
(n)
−k , O

(n)
−k , R

(n)
−k , OCk >, as appeared in line 7

and 11 in Algorithm 1.
With initial belief samples, the Algorithm 1 starts from

propagating each sample forward in time and computing
their weights (line 1-15), then it resamples according to
the weights and similarity between models (line 16-18). In-
tuitively, the samples associated with actual observations
perceived by agent k will gradually carry larger weights
and be resampled more often, therefore they will approxi-
mately represent the exact belief. Specifically, for each of
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is
(n),t−1
k , the algorithm samples the other agent’s optimal

actions at−1
−k from P (A−k|θ(n),t−1

−k ) (line 2) obtained from
POMDP solver Perseus2 (Spaan and Vlassis 2005). Then it
samples the physical state s(n),t using the state transition
function Tk(S

t|S(n),t−1, at−1
k , at−1

−k ) (line 3). Then for each
possible observation, if the current nesting level l is 1, it
calls the 0-level belief update, described in Algorithm 2, to
update other agents’ beliefs over physical state bt−k,0 (line
5 to 8); or it recursively calls itself at a lower level l − 1

(line 9 to 12), if l is greater than 1. The sample weights w(n)
t

are computed according to observation likelihoods of mod-
eling and modeled agents (line 13, 14). Lastly, the algorithm
normalizes the weights (line 16), resamples the intermediate
particles(line 17) and resamples another time from similar
neighboring models using a Gaussian distribution to avoid
divergence (line 18).

Algorithm 2: Level-0 Belief Update

btk,0 =Level0BeliefUpdate(θt−1
k,0 , at−1

k , otk)

1 get Tk and Ok from θt−1
k,0

2 P (at−1
−k ) = 1/at−1

−k

3 for st ∈ S:
4 for st−1:
5 for at−1

−k ∈ A−k:
6 P (st|st−1, at−1

k ) =
Tk(s

t|st−1, at−1
k , at−1

−k )P (at−1
−k )

7 sum+ = P (st|st−1, at−1
k )bt−1

k,0 (s
t−1)

8 for at−1
−k ∈ A−k:

9 P (otk|st, at−1
k )+ =
Ok(o

t
k|st, at−1

k , at−1
−k )P (at−1

−k )

10 btk,0 = sum× P (otk|st, at−1
k )

11 normalize and return btk,0

The 0-level belief update, described in Algorithm 2, takes
agent model, θt−1

k,0 , action, at−1
k , and observation, otk, as in-

put arguments and returns the belief about the physical state,
btk,0. The other agent’s actions are treated as noise (line 2),
and transition and observation functions are passed in within
the first input argument θt−1

k,0 . For each possible action at−1
−k ,

it computes the actual state transition (line 6) and observa-
tion function (line 9) by marginalizing over others’ actions,
and returns the normalized belief btk,0. Notice that the transi-
tion and observation functions, Tk(s

t|st−1, at−1
k , at−1

−k ) and
Ok(o

t
k|st, at−1

k , at−1
−k ) contained in θt−1

k , depend on partic-
ular model parameters of the actual agent on the 0th level.
Our interactive belief update algorithm differs in three

major ways from the I-PF. First, in order to update the
belief over intentional model space of other agents, their
initial belief, transition function, observation function
and reward function in their frames are all unknown
and become samples. For instance, the set of n sam-
ples of other agents’ intentional models θ

(n),t−1
−k,l−1 =<

2http://www.st.ewi.tudelft.nl/∼mtjspaan/pomdp/index en.html

b
(n),t−1
−k,l−1 , A−k,Ω−k, T

(n)
−k , O

(n)
−k , R

(n)
−k , OCk >.

The observation function of the modeled agents,
O

(n)
−k (o

t
−k|s(n),t, at−1

k , at−1
−k ) in line 13 of Algorithm

1, is now randomized consequently. Second, the transition
and observation functions of the level-0 agent, in line 6
and 9 of Algorithm 2, are passed in as input arguments
which correspond to each model sample. Lastly, we add
another resampling step in line 18 to avoid divergence, by
resampling the model samples from a Gaussian distribution
with the mean of current sample value. This additional
resampling step is nontrivial, since empirically the samples
diverge quickly due to the enormously enlarged sample
space.

Experiments

Setup

To demonstrate the correctness of our theoretical frame-
work, we present the results using the multi-agent tiger game
(Gmytrasiewicz and Doshi 2005) with various settings. The
multi-agent tiger game is a generalization of the classical
single agent tiger game (Kaelbling, Littman, and Cassandra
1998). It contains additional observations caused by others’
actions, and the transition and reward functions involve oth-
ers’ actions as well.

For the simplicity of presentation, assume there are two
agent i and j in the game and the nesting level is 1, then
for the two-agent tiger problem: ISi,1 = S × θj,0, where
S = {tiger on the left (TL), tiger on the right (TR)} and
θj,0 =< bj(s), Aj ,Ωj , Tj , Oj , Rj , OCj >}; A = Ai × Aj

are joint actions of listen (L), open left door (OL) and open
right door(OR); Ωi: {growl from left (GL) or right (GR)} ×
{creak from left (CL), right (CR) or silence (S)}; Ti = Tj :
S×Ai×Aj ×S → [0, 1]; Oi : S×Ai×Aj ×Ωi → [0, 1];
Ri : IS ×Ai ×Aj → R.

As mentioned before we assume that Aj and Ωj are
known, and OCj is infinite horizon with discounting. We

Table 1: Parameters for transition, observation and reward
functions

S A TL TR
TL L pT1 1− pT1

TR L 1− pT1 pT1

* OL pT2 1− pT2

* OR 1− pT2 pT2

S A GL GR
TL L pO1 1− pO1

TR L 1− pO1 pO1

* OL pO2 1− pO2

* OR 1− pO2 pO2

S A R
* L pR1

TL/TR OL/OR pR2

TL/TR OR/OL pR3
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Figure 1: An illustration of interactive belief update algo-
rithm for two agents and level-1 nesting.

want to recover the possible initial belief b0j about the phys-
ical state, the transition, Tj , the observation, Oj and the re-
ward, Rj . Thus the main idea of our experiment is to use
Bayesian parametric method to parametrize these functions
and learn all of them with the help of our sampling algo-
rithm.

The initial belief b0j is a real value between 0 and 1, while
the Tj , Oj and Rj can all be parametrized by seven parame-
ters as shown in Table ??. Thus for the intentional model
space, we see that it is a large 8-dimensional parameter
space to learn from: b0j × pT1 × pT2 × pO1 × pO2 × pR1 ×
pR2×pR3, where {bj , pT1, pT2, pO1, pO2} ∈ [0, 1] ⊂ R and
{pR1, pR2, pR3} ∈ [−∞,+∞].
Figure 1 illustrates the interactive belief update in the

game described above, assuming the sample size is 8. The
subscripts denotes the corresponding agents and each dot
represents a particular belief sample. The propagating step in
implemented in lines 2 to 12 in Algorithm 1, the weighting
step is in lines 13 to 16, and the resampling step is in lines 17
and 18. The belief update for a particular level-0 model sam-
ple, θj = 〈0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10〉, is solved
using Algorithm 2.

Results

We run experiments with agent j acting according to three
different policies shown in Figure 2. And In each experi-
ment, we compare the performance of three different mod-
eling agents: a level-1 I-POMDP, a level-2 I-POMDP and a
subintentional model (fictitious play). For brevity we focus
on showing results of learning models of the level-1 agent
whose policy is in Figure 2 (a), but give an effectiveness
comparison among all of them in Figure 5.

To learn all possible models of the agent in Figure 2(a),
we assign uninformative prior distributions to each param-
eter space , which is shown in Figure 3. They are uni-
form distributions: {b0j , pT1, pT2, pO1, pO2} ∼ U(0, 1),
pR1, pR2, pR3 ∼ U(−200, 200). After 50 time steps, the al-
gorithm converges to a posterior distribution over agent j’s
intentional models. From the marginal distributions of all

Figure 2: Optimal policies denoted as FSCs of: (a) θj1 =<
0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10 >, (b) θj2 = 〈 0.5, 1,
0.5, 0.95, 0.5, -1, -10, 10 〉, and (c) θj3 = 〈0.5, 0.66, 0.5,
0.85, 0.5, 10, -100, 10〉.

parameters, we can see that the majority of samples are cen-
tered around the true parameter values.

Due to the limitation of visualizing more than 3D space,
here we focus on showing a visualization of the learning
process of the level-1 I-POMDP agent. Since the original
parameter space is 8-dimensional, we use principal compo-
nent analysis (PCA) (Abdi and Williams 2010) to reduce it
to 2d and plot it out as a 3d histogram, as shown in Fig-
ure 4. This time it starts from a slightly informative prior
(for the illustrative purpose) and gradually converges to the
most likely models. Eventually the mean value of this cluster
〈 0.49, 0.69, 0.49, 0.82, 0.51, -0.95, -99.23, 10.09 〉 is very
close to the actual model. In Figure 5 we show that the learn-
ing quality in terms of KL-Divergence, which measures the
distance between mean values of the learned model param-
eters and the ground truth, becomes better as the number of
particles increases.

Because agent i is now able to learn others’ likely mod-
els, he should be capable of predicting j’s actions rela-
tively accurately. Therefore, we tested the performance of
our algorithm in terms of prediction accuracy towards oth-
ers’ actions, which is the number of incorrect predictions
with respect to others’ actions over the ground truth. For
conciseness, we show the average prediction error rates for
the first experiments in Figure 6. We compared the results
with other modeling approaches, such as a frequency-based
(fictitious play) (Fudenberg and Levine 1998) approach, in
which agent j is assumed to choose his action according to
a fixed but unknown distribution. The shown results are av-
eraged plots of 10 random runs. It shows that the intentional
I-POMDP approaches has significantly lower error rates as
agent i perceives more observations, and level-2 I-POMDP
performs slightly better than level-1. The frequency based
approach has certain learning ability but is far from sophis-
ticated enough to be able to model a rational agent, therefore
its performance is worse than both I-POMDP models.
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Figure 3: Histograms of assigned uniform pri-
ors (left column) and learned posterior distribu-
tions (right column) over parameters of model
θj1 = 〈0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10〉 in Fig-
ure 2(a). The modes of the posteriors are close to the true
model parameters.

Conclusions and Future Work

We have described a new approach to learn other agents’
intentional models by approximating the interactive belief
update using Bayesian inference and Monte Carlo sampling
methods. We show the correctness of our theoretical frame-
work using a multi-agent tiger game in which it accurately
learns others’ models over the entire intentional model space
and can be generalized to problems of larger scale in a
straightforward manner. Therefore, it provides a generalized
Bayesian learning algorithm for multi-agent settings.

For future research opportunities, the applications pre-
sented in this paper can be extended to more complicated
multi-agent problems. For higher nesting levels, more efforts
can be made on leveraging nonparametric Bayesian methods
which inherently deal with nested belief structures.

Figure 4: Histogram of all model samples during learning,
after projection from 8D to 2D.

Figure 5: Learning quality measured by KL-Divergence im-
proves as the number of particles increases. It measures the
distance of mean values of learned model parameters and the
ground truth. The vertical bars are the standard deviations.

Figure 6: Performance comparisons in terms of pre-
diction error rate vs observation length for θj1 =
〈0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10〉
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Abstract

The uncertainty induced by unknown attacker locations is one
of the problems in deploying AI methods to security domains.
We study a model with partial observability of the attacker lo-
cation and propose a novel reinforcement learning method us-
ing partial information about attacker behaviour coming from
the system. This method is based on deriving beliefs about
underlying states using Bayesian inference. These beliefs are
then used in the QMDP algorithm. We particularly design the
algorithm for spatial security games, where the defender faces
intelligent and adversarial opponents.

Introduction and Motivation

In security domains we often face several uncertainties
which make acting effectively very difficult. Overcoming
the uncertainties is one of the main challenges in order to
deploy AI techniques in real-world applications. The reason-
ing agent has often an access to extra information about the
environment which if used properly can help significantly
in effective strategy-making. In security games this knowl-
edge can come from several types of surveillance available
to the agent. We focus on a model-based approach, where
we continually learn and improve our knowledge about the
opponent behaviour. The main uncertainty lies in not be-
ing able to always observe the opponent location. To tackle
this challenge we develop a statistical probability model to
enable us to reason about opponent location. We base op-
ponent location modelling on observed frequencies of tran-
sition tuples and prior information about the environment
e.g. target location. Our proposed algorithm is based on
the QMDP (Littman, Cassandra, and Kaelbling 1995) algo-
rithm, which combines the standard Q-learning with belief
states in partially observable domains. We extend this algo-
rithm with Bayesian inference update using prior informa-
tion about the environment.
We describe our work in terms of a taxonomy proposed

in (Hernandez-Leal et al. 2017), where the authors discuss
a classification in terms of environment observability, op-
ponent adaptation capabilities and how the agent deals with
non-stationarity. We assume observability of the agent’s lo-
cal reward and partial observability of opponent’s actions.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The opponent is assumed to adapt his strategy within some
bounds, thus we restrict his behaviour from abrupt/drastic
changes. This is explained by the concept of bounded ra-
tionality, which is often used in security games (Pita et al.
2010). Such a concept allows us to learn a model of oppo-
nent behaviour and use it to form the defender strategy.
This paper is motivated by the domain of Green Secu-

rity Games (Fang, Stone, and Tambe 2015), with a focus
on the problem of Illegal Rhino Poaching (Montesh 2013)
and on ways how to learn effective ranger strategies in or-
der to mitigate rhinos killings. Nevertheless, our proposed
method is applicable to other spatial security game scenarios
which can be modelled on a grid (graph). The problem be-
longs to a domain of pursuit-evasion games. There has been
a lot of work on computing exact solutions and describing
their theoretical properties in security games, mostly using
the equilibria concepts e.g. Nash equilibria or Stackelberg
equilibria (Korzhyk et al. 2011). This line of research has
been important as a theoretical underpinning of the field,
however, these methods are often difficult to deploy in real
world settings due to some strict assumptions or severe sim-
plifications. A different approach from computing exact so-
lution strategy is to learn the strategy from interacting with
the environment. This approach helps to overcome some of
the assumptions of the theoretical approaches.
The domain of security games can be modelled as a

reward-based system, where the agents obtain rewards and
thus can learn strategies. The problem can be approached
by Multi-agent Reinforcement Learning (MARL) using the
Markov Decision Process (MDP) framework. In MARL it
is very difficult to learn optimal strategies because of the
moving target problem (Tuyls and Weiss 2012), where all
agents are assumed to be adapting to each others behaviour.
In security games we face an additional complexity caused
by the uncertainty about the attacker, who can be intelligent
and strategic. One of the possible uncertainties about the at-
tacker is his location, which might not be observable or only
partially observable. We focus on a special case of partial
(limited) observability which is inspired by the board game
Scotland Yard where the player gets to observe the opponent
location only periodically e.g. every 3 time steps. We claim
that this type of observability is quite common in security
domains where the defender gets to observe an opponent
location by obtaining some extra information. For instance

The 2018 AAAI Spring Symposium Series
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in the green security game scenarios like Rhino Poaching
problem, the rangers can be informed by the villagers living
nearby about the current location of the poachers, or this in-
formation can also come from surveillance by drones (Mon-
tesh 2013). In our model we assume an adversarial adap-
tive opponent who might be able to observe the defender
behaviour. Our main goal is to make use of the extra infor-
mation about the attacker location in reinforcement learning,
obtaining an adaptive strategy to apprehend the attacker.

Related Work

This paper is situated in the field of Multi-agent Reinforce-
ment Learning (MARL), which is a very active field of re-
search since there has been substantially less work done in
MARL compared to single-agent RL due to the increased
complexity. For more information on MARL we refer the
reader to surveys (Bloembergen et al. 2015) or (Hernandez-
Leal et al. 2017). We divide this section into several fields
of research, which are closely related to this paper. These
consist of Partially Observable Markov Decision Processes
(POMDP), Bayesian Reinforcement Learning and Security
Games (SG). We state the related work respectively.
Partially observable problems are often modelled

as Partially Observable Markov Decision Processes
(POMDP) (Kaelbling, Littman, and Cassandra 1998).
Related to our work is algorithm BA-POMDP proposed
in (Ross et al. 2007), where the authors combine Bayesian
approach with POMDP model or the learning version
BA-POMCP (Katt, Oliehoek, and Amato 2017). We also
mention Bayesian Q-learning proposed in (Dearden, Fried-
man, and Russell 1998), which uses Bayesian inference
combined with Q-learning to model the value function. The
domain of Bayesian learning can be divided into probabilis-
tic modelling of transition function, value function, reward
function or policy. In this paper we focus on probabilistic
modelling of transition function. We also propose a com-
bination of Bayesian approach and Q-learning, however
in substantially different way. Our method uses Bayesian
approach to model transition function to derive belief states,
modelling the partially observable attacker behaviour.
Security games have gained a lot of attention in recent

years due to their successful application on real-world se-
curity threats. Examples include the ARMOR system for
airport security (Pita et al. 2008) or the PROTECT sys-
tem for scheduling Coast Guard (Shieh et al. 2012). Addi-
tionally some work has focused on Green Security Games
for poaching problems (Fang, Stone, and Tambe 2015) or
Border Patrol (Klima, Lisy, and Kiekintveld 2015). Some
of these security games however, do not consider space or
time, i.e. the time it takes the defender to travel to the target
node, as part of the model. Recently, reinforcement learning
has been applied to spatial security games (Klima, Tuyls,
and Oliehoek 2016) to tackle the spatial component. Spatial
security games are also often modelled as extensive form
games (Korzhyk et al. 2011). There has been lot of work
in computing the optimal strategies online or offline, espe-
cially for zero-sum games (Bosansky et al. 2016), (Jain et
al. 2011). We also mention the work of (An et al. 2012),

which computes the optimal defender strategy to a learn-
ing attacker who can only partially observe the defender and
updates his beliefs using Dirichlet distribution. In this pa-
per we assume the attacker can fully observe the defender
past moves and plays fictitious play (Fudenberg and Levine
1996). We address this by learning the defender strategy.
Fictitious play is well-defined in 1D space, but it is more
complicated in 2D space. Recently, (Heinrich, Lanctot, and
Silver 2015) showed the extension of fictitious play into ex-
tensive form games implemented in behavioural strategies
with similar properties as the original fictitious play.

Model

We study the problem of effective decision making in spatial
security games. Our focus is a spatial security game played
on a graph with two non-cooperative players with opposing
(not strictly, assuming general-sum game) goals. We define
these two players as the defender and the attacker. In this
work we use the terms defender/agent and attacker/opponent
interchangeably. The model is inspired by the Green Secu-
rity Game framework where we are interested in the prob-
lem of Illegal Rhino Poaching. In such a problem the rangers
(the defender) tries to apprehend illegal rhino poachers (the
attacker) and thus protect the rhinos (targets) from being
poached. The environment is a wildlife reservation, which
can be modelled as a graph (grid).
We define this framework in terms of Stochastic

game (Shapley 1953) using Markov Decision Process
(MDP) model. A state is defined as a combination of lo-
cations of the defender and the attacker in the grid, an ac-
tion is defined for the defender as moving from one place
in the grid to another and a reward is defined as a positive
signal for apprehending the attacker. A Stochastic (Markov)
game as described in (Wiering and van Otterlo 2013) chapter
14.3.1. is defined as a tuple (n, S,A1 . . . An, R1 . . . Rn, T )
where n is number of agents in the system, S is a finite
set of system states, Ak is the action set of agent k, Rk :
S × A1 × ... × An → R is the reward function of agent k
and T : S × A1 × ... × An × S → [0, 1] is the transition
function.

Observability in spatial security game

In our security game we assume that the defender can always
observe his own location but sometimes cannot observe the
attacker location, thus cannot fully observe the underlying
state. Agent’s observations consist of either full observation
of the state or an observation of only own location. There-
fore, the defender needs to maintain beliefs b(s) over states
which give him the probability of being in a state s. In every
time step we restrict the set of possible states by (i) physical
structure of the map (gridworld) and (ii) by observations of
attacker location in previous time steps. We use the notion
of information set from extensive-form game theory to de-
note such restricted set of possible states. We define such a
restricted state space as a subset of the original state space
denoted S̄ ⊆ S.

In Figure 1 we show an example of a small grid world and
corresponding extensive-form tree with information set. The
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Figure 1: Example of states in information sets for the case
where neither the current state nor the succeeding state is
observed. We need to reason over two information sets at
time t and t + 1. The defender is in location 1 and chooses
action down (D), the attacker is in location 5 or 7.

defender is unsure about the state, it is either s1,5 or s1,7, be-
cause the defender can always observe his own location (tile
1) but might be unsure about the attacker location (either
tile 5 or tile 7). The figure captures a decision point, where
the defender decides to go down (D). The defender reasons
about the possible attacker actions and about the resulting
attacker location in order to form the information set. We
update the beliefs only over the states in given information
set.
We study a scenario with a periodical observability i.e.

the defender gets to observe the attacker location every k
steps. This type of observability is inspired by the board
game Scotland Yard. We compare this type of observability
with a full observability of the attacker location and partial
observability i.e. knowing only agent’s own position.

Attacker behaviour model

In security domains we often face an adversarial oppo-
nent who is potentially intelligent and can observe the de-
fender behaviour to some extent and plan his strategy ac-
cordingly. In our model the attacker plays a version of ficti-
tious play (Fudenberg and Levine 1996), considering an in-
telligent and adaptive opponent. We assume that the attacker
can observe all the past moves of the defender. This assump-
tion is rather strong but describes the worst-case scenario in
security games. We also choose the fictitious play because
of its properties. It is a best response to defender past moves
and is guaranteed to converge to Nash equilibrium in some
games (e.g. zero-sum games (Robinson 1951)).

Statistical approach to uncertainty

We assume that both players know the environmental model
i.e. state space, action space and reward function. However
the defender is uncertain about the location of the opponent
and his strategy. Our main goal is to act efficiently under this
uncertainty. In security games the defender has often access
to some extra information about the attacker whereabouts,
which we use to deal with this uncertainty.

We define a discrete random variable X in the restricted
space S̄′ of the succeeding states given by the information
set. Thus, we have a discrete probability distribution of the
succeeding states P (X = s′) : ∀s′ ∈ S̄′ parametrized by
a vector θ, where

∑k
i θi = 1 and P (X = s′|θ) = θi. We

assume that the defender can observe some of the transi-
tions defined by a transition tuple (s, a, s′). The defender
stores these transitions and form a vector Φ = (φ1, . . . , φk)
of transition occurrences; for example φsa

s′ is a number of
past observations of a transition from state s taking action a
to state s′.1 The defender in our model forms beliefs about
the possible states defined by the information set. The infor-
mation set is build based either on a direct observation or on
reasoning about previous attacker locations (see Figure 1).
These beliefs are probabilities defined by the vector θ, e.g.
θs is the probability of being in state s. The goal is to derive
these probabilities given the past observed transitions, thus
we need to compute the probability distribution P (θ|Φ).
Note that the total number of observations (of the succeed-
ing states for given state and action) is n =

∑
S̄′ φ

sa
i , note

that |S̄′| is the size of the information set.
Firstly, we assume that probability distribution P (Φ|θ)

follows a multinomial distribution with parameters n and θ.
Thus, we can write the probability mass function of multi-
nomial distribution as:

P (Φ|θ) ∼ f(Φ|n, θ) = n!∏
S̄′ φ

sa
i !

∏

S̄′

θ
φsai
i (1)

Note that n!∏
S̄′ φ

sa
i ! is the total number of possible observa-

tion sequences giving the vector Φ.
The defender assumably has prior knowledge about the

environment e.g. target location, which we use as a prior
for Bayesian inference. We define the prior probability as
a Dirichlet distribution Dir(α), which is defined for hyper-
parameters α. Dir(α) is a probability distribution over pa-
rameters θ of multinomial distribution and is also its conju-
gate prior. The hyperparameters α can be seen as pseudo-
observations to complement the actual observed transitions
i.e. the transition counts Φ. Dir(α) is defined using Γ func-
tion as:

Dir(θ|α) = Γ(
∑k

i αi)∏k
i Γ(αi)

k∏
i=1

θαi−1
i (2)

We already defined the likelihood as multinomial distribu-
tion using the transition counts Φ (see Equation 1) and thus,
we can write the posterior using Bayes’ rule as:

Dir(θ|Φ) ∝Multi(Φ|n, θ)Dir(α) (3)

We can then write P (θ|Φ) = Dir(Φ + α). In this work
we are not interested in the full posterior P (θ|Φ), because
we want only a point estimate to determine a belief about
states of the model. We focus on the expected value of the
distribution to obtain the belief given past observations of
the transitions and prior information. The expected value of

1For transition counts we use notation φ following the previous
work e.g. (Ross et al. 2007).
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the posterior distribution is defined for multinomial likeli-
hood and Dirichlet prior in Bayes rule as EDir(Φ+α)[θi] =

φsai +αi
n+

∑k
j=1 αj

. Note that when deriving point estimates of pos-

terior distribution we do not need marginal distribution of
data (normalizing constant) P (Φ).
We can now obtain the belief boa(s′) about the succeeding

state s′ given the observation o and action a. The observation
gives us belief b(s) about the state s, transition counts φsa

s′
and priors α as:

boa(s′) =
∑

s∈S̄

b(s)EDir(Φ+α)[θs′ ] =

∑

s∈S̄

b(s)
φsa
s′ + αs′

na
s· +

∑
j∈S̄′ αj

(4)

where na
s· is the sum of all the observations for given state s

and action a.
We now discuss the setting of the hyperparameters

α. We believe that the attacker behaviour is steered
by the location of the targets which is known infor-
mation to both of the players at the beginning of the
game. Therefore, prior for each node (location) is defined
as αnode =

1
SP (node,target)+1 ∗ priorConfidence, where

SP (node, target) is the shortest path to the nearest target
from the given node, priorConfidence depends on number
of observations and potentially other influences determining
the confidence in comparison to actual observations. Note
that the prior is defined for a location of the attacker ignor-
ing the location of the defender. This simplification comes
from the assumption that the attacker cannot fully observe
the defender location in given game episode (but knows the
past moves) and is mainly steered by location of the targets.

Saving transition counts in partial observability

The defender uses a model-based learning approach. In each
time step he saves a transition tuple observed in the current
transition. In the case he cannot fully observe the current
or/and the succeeding state he updates the transition counts
φsa
s′ proportionally to the beliefs φsa

s′ += b(s)b(s′). There-
fore, the stronger the belief about a particular state is the
more he updates the corresponding value in the vector Φ.
Note that for fully observed states s and s′ the update is
equal to 1.

Q-learning with Bayesian Inference

We combine the inference of probabilities of different
states in given information set with standard temporal dif-
ference learning algorithm TD(0) i.e. Q-learning, where
we use QMDP algorithm (Littman, Cassandra, and Kael-
bling 1995). We present BayesQMDP in Algorithm 1. The
action-selection on line 4 is ε-greedy proportional to the be-
lief, meaning that the action a from state s is more likely to
be chosen with increasing probability of being in the state s
and increasing Q-value for that state and action. On line 5 we
update Q-values using the belief about states b(s). The learn-
ing rate λ is linked to the belief we have about the state; the
less certainty (lower probability) about being in the state the

less we update the Q-value and vice-versa (smaller learning
rate).2 The value function on line 6 is a sum over maximal
Q-values of the succeeding states weighted by the probabil-
ity (belief) of going to those states. The belief update on line
7 uses the expected value of the posterior probability dis-
tribution as explained in Equation 4. Finally, on line 8 we
update the transition count vector φsa

s′ .

Algorithm 1 BayesQMDP

1: Input: priors α, parameters λ, γ
2: Init: s0, Q(s, a) = 0, φsa

s′ = 0∀s, s′ ∈ S ∀a ∈ A
3: for t in game do
4: ε-greedy: a = argmaxa

∑
S̄ b(s) ∗Q(s, a)

5: ∀s: Q(s, a) = (1 − b(s)λ)Q(s, a) + b(s)λ(r +
γV (s′))

6: where V (s′) =
∑

S̄′ b(s
′)maxa Q(s′, a)

7: boa(s′) =
∑

S̄ b(s)
φsa
s′ +αs′

nas·+
∑
S̄′ αj

8: φsa
s′ += b(s) ∗ b(s′)

Experiments

In this section we compare the proposed BayesQMDP with
two baseline algorithms based on standard Q-learning. We
show two different gridworlds.

Security game gridworld

We perform the experiments on a grid of size 10x10, thus the
state space has size 1002 i.e. 100 possible locations for each
player (as explained before a state is defined by the location
of the defender and the attacker). The defender starts on top
in the middle and the attacker starts in the right bottom cor-
ner. In our model the attacker chooses a best response to de-
fender past locations in the grid world, which is the shortest
path from start node to target location weighted by defender
visits in each node over all the targets. The attacker chooses
his path at the beginning of every episode. Every target has
some probability p of success; for example once the poacher
(attacker) reaches the target, he has p probability of poach-
ing a rhino in which case the game ends. If the attacker gets
to a target (e.g. area with a rhino) and is not successful, he
makes a random move from the target node and tries again
in the next time step.
We present experiments with two and three targets, each

with probability p = 0.3 of successful attack. If the defender
is in the same location as the attacker, the attacker is appre-
hended and the defender receives a positive reward. If the
defender apprehends the attacker or the attacker successfully
attacks a target, the game (episode) ends. As a performance
metric we use the percentage of defender wins i.e. the per-
centage of attacker apprehensions.
In our experiments we compare the proposed algorithm

BayesQMDP with two baselines. The first baseline is a stan-
dard Q-learning with full observability of the attacker. The
second baseline is also a standard Q-learning but this time

2For learning rate we use λ instead of the common notation α
to distinguish from the hyperparameter.
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(a) Gridworld 1: three targets (b) Gridworld 2: two targets with obstacles

Figure 2: 10x10 gridworlds, targets depicted by red crosses, defender starts at position [0,5] (green square), attacker starts at
position [9,9] (red square). The heatmap shows defender visits in each tile and the black dots show attacker visits in each tile
(size of the black dots represents the number of visits).

Figure 3: Defender wins for BayesQMDP - Gridworld 1 Figure 4: Defender wins for BayesQMDP - Gridworld 2

with no observability of the attacker. In this method the state
is defined as the defender location only i.e. ignoring the at-
tacker. All the algorithms use standard settings of learning
rate λ = 0.05, discount factor γ = 0.99 and fading explo-
ration rate ε = 0.01 + 0.99

e0.001t . We experiment with different
number of periodical observability steps. We use two differ-
ent gridworlds; Gridworld 1, which has three targets and no
obstacles and Gridworld 2, which has two targets and some
obstacles. See Figure 2a showing Gridworld 1, the green and
red hollow rectangles show the players starting nodes - de-
fender and attacker respectively. The red crosses represent
the targets. The heatmap shows defender visits in every node

and the black dots show attacker visits (the bigger the dot the
more often the attacker was in that node). The gridworlds are
shown for one of the baselines - Q-learning with full observ-
ability.

In Figure 3 we show the performance of BayesQMDP
against the baseline algorithms in GridWorld 1 (Figure 2a)
with 95% confidence intervals. The black solid curve is for
the case where the defender gets to observe the attacker loca-
tion every 3rd time step and the red dashed curve is observ-
ing every 4th time step. The full observability Q-learning
(the green dotted curve) performs the best which is expected,
however the no observability Q-learning (the dash-dot blue
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Grid Q-L full obs Q-L no obs BayesQMDP

1 58.0%,±6.82% 0%,±0% 26.7%,±6.12%
2 45.8%,±6.89% 11.6%,±4.43% 32.2%,±6.47%

Table 1: Average wins over last 100 episodes with 95% con-
fidence intervals

curve) gets exploited by the attacker’s fictitious play. The
BayesQMDP algorithm gives us a good performance in the
partial observability. Note that observing the attacker every
4th time step can lead to information set size of 25 states in
the worst case (4 actions in every state - without repeating
the same states).
In Figure 4 there is BayesQMDP compared to the two

baselines for Gridworld 2 (Figure 2b). In this experiment we
do not assume fixed number of steps to observe the attacker
location, instead we sample uniform at random between ob-
serving the attacker every 3rd and every 4th time steps to
account for any potential synchronisation. One can observe
that BayesQMDP gives superior performance compared to
no observability case and is close to full observability case.
This result shows the effective behaviour of BayesQMDP in
partial observability.
Every experiment is run 200 times with 5000 episodes

each and averaged over to get significant results. In Table 1
we show the defender wins in the last 100 episodes for all
the compared algorithms, we also state 95% confidence in-
tervals. Note that for BayesQMDP we state the results for
observability every 3rd time step for Gridworld 1 and ran-
dom observability between 3rd and 4th step for Gridworld 2.

Conclusion

We have proposed a new algorithm combining QMDP and
Bayesian inference called BayesQMDP, which can effec-
tively use partial information about attacker location. We
compared this algorithm with two very simple baseline algo-
rithms to demonstrate the initial performance and promising
behaviour. The algorithm is experimentally shown to con-
verge against our version of fictitious play. This is a prelim-
inary experimental evaluation of BayesQMDP and we leave
further analysis of the proposed algorithm for future work.
The next step is comparing BayesQMDP to stronger base-
line algorithms such as BA-POMCP (Katt, Oliehoek, and
Amato 2017) or DRQN (Hausknecht and Stone 2015).
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Abstract

Many scenarios involve a tension between individual interest
and the interests of others. Such situations are called social
dilemmas. Because of their ubiquity in economic and social
interactions constructing agents that can solve social dilemmas
is of prime importance to researchers interested in multi-agent
systems. We discuss why social dilemmas are particularly
difficult, propose a way to measure the ‘success’ of a strategy,
and review recent work on using deep reinforcement learn-
ing to construct agents that can do well in both perfect and
imperfect information bilateral social dilemmas.

Introduction

How can an agent construct a good strategies for an envi-
ronment which involves another agent? An early answer to
this question was given by (Brown 1951) who considered
the idea of ‘fictitious play’ - an agent is going to play some
game once with another agent, if they have access to the
game beforehand and they can iterate the game repeatedly
in their own mind (ie. during the training phase) and use
the strategies they discovered when faced with a real partner
(ie. during the test phase). This idea, also called ‘self-play’,
has become an important part of the artificial intelligence
toolkit. Self-play where agents try to maximize their own
rewards can lead to superhuman performance in zero-sum
games like Backgammon (Tesauro 1995), poker (Brown,
Ganzfried, and Sandholm 2015), or Go (Silver et al. 2016;
2017) but can lead to bad outcomes in general-sum environ-
ments (Sandholm and Crites 1996; Fudenberg and Levine
1998; Lerer and Peysakhovich 2017; Foerster et al. 2017c;
Leibo et al. 2017). Recent work has begun to study modi-
fied self-play methods to construct good strategies for social
dilemmas. In this short note we will review some recent
results in this field.
First, we need to determine what it means to do well in a

social dilemma. The repeated Prisoner’s Dilemma (rPD) is
perhaps the most studied social dilemma and gives us a good
starting point. In the rPD conditionally cooperative strate-
gies such as Tit-for-Tat (Axelrod 2006) or Win-Stay-Lose-
Shift (Nowak and Sigmund 1993) perform well because they

∗Equal contribution. Author order was determined via ran-
dom.org.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reward cooperation today with cooperation tomorrow and
so stabilize cooperation while avoiding exploitation. These
strategies are studied so heavily because they have intuitively
appealing properties. They are nice (begin by cooperating),
are simple to explain to a partner, cooperate with cooperators,
do not get exploited by defectors, are forgiving (eventually
return to cooperation if it breaks down). Importantly, if one
can commit to them, they create incentives for a partner to
behave cooperatively. A natural desiderata then is to ask for
agents in complex social dilemmas that maintain the good
properties of these well known PD strategies.
There are several issues in extending these ideas to more

complex settings. First, in Markov games ‘cooperation’ and
‘defection’ are no longer single acts, but rather sequences of
choices (Leibo et al. 2017; Peysakhovich and Lerer 2017a;
Lerer and Peysakhovich 2017; Foerster et al. 2017c; Littman
2001). Here agents that want to maintain cooperation within
the confines of a single game have to 1) infer whether their
partner is cooperating or not, and 2) know how to respond
to both of these contingencies. The work we survey here
tries to bring ideas from repeated game theory (Fudenberg
and Maskin 1986; Dutta 1995; Littman and Stone 2005;
De Cote and Littman 2012) to the one-shot setup. There
are several issues to overcome: first, rather than maintaining
good outcomes by threats of different behavior in the next
iteration of the game, agents must behave intelligently within
a single game; second, multiple strategies may be outcome
equivalent (e.g. going left then up or up and then left in a
grid world); third, function approximation may lead to noise
in implementation. We would like to adapt the ideas from
repeated game theory to construct strategies that are robust
to these issues.

The first set of results we focus on construct conditional co-
operators for fully observed games (Lerer and Peysakhovich
2017). The paper in question introduces approximate Markov
Tit-for-Tat (amTFT) which applies modified self-play to learn
two policies at training time: a fully cooperative policy and a
‘safe’ policy (we refer to this as defection)1 which forms an
equilibrium with lower payoffs than cooperation.
At test time, the amTFT agent is matched with a partner

1In the PD this action is ‘defect’. However, in social dilemmas
that occur naturally in economic situations, such a safe policy is the
outside option of ‘stop transacting with this agent.’
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whose policy is unknown. At each time step the amTFT
agent computes the gain from the action their partner actually
chose compared to the one prescribed by the cooperative pol-
icy. This can be done either using a learnedQ function or via
policy rollouts. We refer to this as a per period debit. If the
total debit is below a threshold the agent behaves according
to the cooperative policy. If the debit at some time period is
above the threshold, the agent switches to the defecting policy
for k turns and then returns to cooperation. This k is com-
puted such that the partner’s gains (debit) are smaller than the
losses they incur (k lost turns of cooperation). The threshold
trades off robustness to noise and function approximation
with allowing the amTFT agent to be slightly exploitable. It
is shown both analytically and experimentally that amTFT
can maintain cooperation and avoid being exploited in so-
cial dilemmas, including ones where agents learn from raw
pixels.
Recent work has argued that TFT-like properties need

not be hardwired and strategies can be trained from scratch.
Foerster et al. modifies policy gradient to take into account
that one’s partner is a reactive (rather than static) agent. This
method can construct cooperation maintaining strategies in
several Markov games. This approach is computationally
challenging and has no known theoretical guarantees, and
it may construct strategies that are hard to explain (e.g. to
a human partner). Despite these drawbacks we believe end-
to-end training is a fruitful direction for future research and
that explicit constructions like the ones we discuss here are a
complement to, not a substitute for, end-to-end approaches.
An advantage of amTFT is that it requires no additional

machinery beyond what is required by standard self-play,
thus if deep RL can construct competitive agents in an envi-
ronment such as Atari (Mnih et al. 2015) then we can also
construct agents that solve social dilemmas in that environ-
ment. A disadvantage is that it requires full observability
of a partner’s action as well as a good model of the future
consequences of a partner’s action. Thus, it will not work in
many POMDPs. amTFT’s focus on future expected rewards
as the result of an action can be replaced by consequen-
tialism (Peysakhovich and Lerer 2017a): focusing on the
reward stream that one actually obtains. Consequentialist
conditionally cooperative (CCC) use self play to compute
cooperate and defect strategies like amTFT. CCC uses roll-
outs of these strategies to compute a time-dependent payoff
threshold, if the CCC agent’s payoff at a period is below this
threshold they defect, otherwise they cooperate. As long as a
POMDP satisfies a technical conditions (reward ergodicity)
CCC agents can maintain cooperation in the long-run.
CCC is much simpler to compute than amTFT and can

perform just as well in some perfect information games. How-
ever, this is not always the case. Consider a situation where a
partner tries to cheat (very obviously) but due to stochasticity
in the environment fails to do so. amTFT would correctly
mark this as a deviation from cooperation (because it focuses
on the ‘intention’ behind an action) while CCC would not
(because it only looks at consequences). In reality intention
is usually somewhat observed (but not perfectly) while conse-
quences are also noisy. This suggests that an important future
direction towards constructing agents that solve social dilem-

mas is finding ways to combine intention and consequences
efficiently.
We now describe in more technical detail the results we

have surveyed here. Note that the experiments described here
are not new, rather they are taken from the papers in question
and presented in a summarized way to convey our main
points. We point the interested reader back to the original
papers for the full details.

Cooperation With Perfect Information

We begin with a generalization of Markov decision problems:

Definition 1 ((Shapley 1953)) A (finite, 2-player) Markov
game consists of

• A set of states S = {s1, . . . , sn}
• A set of actions for each playerA1 = {a11, . . . , a1k},A2 =
{a21, . . . , a2k}

• A transition function τ : S × A1 × A2 → Δ(S) which
tells us the probability distribution on the next state as a
function of current state and actions

• A reward function for each player Ri : S×A1×A2 → R

which tells us the utility that player gains from a state,
action tuple

We assume rewards are bounded above and below. Players
can choose between policies which are maps from states to
probability distributions on actions πi : S → Δ(Ai). We
denote by Πi the set of all policies for a player.

Definition 2 A value function for a player i inputs a state
and a pair of policies V i(s, π1, π2) and gives the expected
discounted reward to that player from starting in state s.
We assume agents discount the future with rate δ which we
subsume into the value function.

We will be talking about strategic agents so we often refer
to the concept of a best response:

Definition 3 A policy for agent j denoted πj is a best re-
sponse starting at state s to a policy πi if for any π′

j and any
s′ along the trajectory generated by these policies we have

V j(s′, πi, πj) ≥ V j(s′, πi, π′j).

We denote the set of such best responses as BRj(πi, s). If πj

obeys the inequality above for any choice of state s we call it
a perfect best response.

The set of stable states in a game is the set of equilibria.
We call a policy for player 1 and a policy for player 2 a Nash
equilibrium if they are best responses to each other. We call
them a Markov perfect equilibrium if they are perfect best
responses.

We are interested in a special set of policies:

Definition 4 Cooperative Markov policies starting from
state s (π1

C , π
2
C) are those which, starting from state s, maxi-

mize
V 1(s, π1, π2) + V 2(s, π1, π2).

We let the set of cooperative policies be denoted by ΠC
i (c).

Let the set of policies which are cooperative from any state
be the set of perfectly cooperative policies.
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A social dilemma is a game where there are no cooperative
policies which form equilibria. In other words, if one player
commits to play a cooperative policy at every state, there is
a way for the other to exploit them and earn higher rewards.
Note that in a social dilemma there may be policies which
achieve the payoffs of cooperative policies because they co-
operate on the trajectory of play and prevent exploitation
by threatening non-cooperation on states which are never
reached by the trajectory.
For the same situation the choice of state representation

can affect whether a social dilemma is solvable or unsolv-
able. To make this more clear, let us consider the repeated
Prisoner’s Dilemma. In the simplest version rPD individuals
are matched to play infinitely many rounds of a stage game
in which each player chooses in each round either to give
the other player a benefit b at a cost c to themselves (coop-
erate) or not (defect). When b > c the highest total payoff
is achieved when both individuals cooperate, however, each
can do better in the short-run by defecting.
The rPD as described in words above can be written as

a Markov game in many ways. For example, we can say
that there is a single state and two actions per period. In
this case, the rPD is an unsolvable social dilemma. This is
because the only way to deter defection today is to affect
the future payoffs of the defecting agent. With single state,
this is impossible. On the other hand, if we model the rPD
as a Markov game where the state is the outcome from last
period, there are now policies which maintain cooperation
and are an equilibrium. For any state representation can
never be equilibria which cooperate at every state in the rPD
because deterring defection today depends on being willing
to withhold cooperation from defectors tomorrow and so
policies that maintain cooperation at some states must defect
at others.

The distinction made above is important because in many
examples of interest the simplest choice of representation
may not be one that makes the dilemma solvable. In particu-
lar, this implies that to play from raw pixels some memory
is required, either in the form of an RNN (or similar) or
a hardcoded summary statistic. Note that adding memory
can create equilibrium policies which maintain cooperation.
However, it does not remove equilibria in which both players
which always defect. Thus, even with memory applying the
self-play paradigm of ‘learn a Nash equilibrium at training
time and then play your half at test time’ may still lead to
defecting agents. It has been demonstrated several times that
such defecting equilibria can be more robust attractors than
cooperative equilibria.
amTFT bypasses this problem by doing the following.

When paired with an actual partner the amTFT agent starts in
a C phase. While in a C phase the agent behaves according
to πC . However, at each time step while in the C phase the
amTFT agent looks at the actions a partner (called j) takes
and computes

d = Qj
CC(s, π

C
i (s), aj)−Qj

CC(s, π
C
i (s), π

j
C(s)).

If d > 0 the amTFT agent switches to a D phase for k
periods which is computed such that the loss to the partner
from k periods of πD followed by mutual πC is relative to

both behaving according to πC the whole time is greater than
d. In other words, if a partner deviates today, they lose k
periods of cooperation tomorrow.

In Lerer and Peysakhovich, the following analytical result
is shown:

Theorem (Intuitive Version) 1 If the game satisfies some
technical conditions which generalize the notion of a Pris-
oner’s Dilemma then if agent j’s partner is an amTFT agent,
the best response for agent j to play according to πC

j during
the C phase and πD

j during the D phase. This means that if
agents start in a C phase they cooperate forever. If agents
start in a D phase they eventually return to cooperation and
cooperate forever.

amTFT is implemented using deep reinforcement learning.
Importantly, during training time the amTFT agent has to
find cooperative policy πC and a defect policy πD. These are
found using a modified self-play procedure where the agent
either controls both agents and reinforces at each time step
on the agents’ individual rewards (this is standard self-play
and is used to find πD) or on the joint reward (this finds the
joint payoff maximizing policies πC). In addition, d and k
are computed by rollouts and to deal with issues of function
approximation d is aggregated over multiple time steps of the
game and the D phase begins only if the sum of d passes a
threshold.

Cooperation Without Perfect Information

With imperfect information we can use the generalization of
a POMDP to the multi-agent case. Here, we take the Markov
game definition above and append the notion of observational
states. Each player has a set of possible observations Oi and
a function Ωi which maps the state and actions at a given
time period to an observation. When Ωi is the identity for
all players we get back a Markov game. Policies, instead of
being able to condition on the state, must condition only on
observations.
Note that here amTFT is not implementable since the ac-

tion of a partner may not be perfectly observed. An ideal
solution may be to construct a full posterior belief on actions
using Bayesian methods. However, often such solutions are
intractable. It is possible to construct a simple strategy for
any game which satisfies a reward-ergodicity condition: for
any pair of policies, there exists a limiting average rate of
rewards which is independent of initial starting state. Let
ρCC be the asymptotic rate under joint cooperation and ρCD

be the asymptotic rate under the CCC agent cooperating and
the other defecting. We can construct a consequentialist con-
ditionally cooperative (CCC) agent who looks at their current
average per period payoff and cooperates if this is above
αρCC + (1 − α)ρCD and defects otherwise. This gives a
theoretical result:

Theorem (Intuitive Version) 2 If the game satisfies some
technical conditions on the strategies then if a CCC agent
is paired with a cooperator they are both guaranteed their
cooperative payoffs and if a CCC agent is paired with a
defector the defector is guaranteed at most the joint defect
payoffs.
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In practice we can construct CCC agents using the same
modified self-play as amTFT during training to compute πC

and πD. Rollouts are used to compute per-period thresholds
(Peysakhovich and Lerer 2017a). Note that the analytic re-
sults are asymptotic in nature and use the ergodicity condition
heavily. To make the CCC strategy work well in finite time
we need to use batches of rollouts and suggest using statistics
other than the mean (e.g. quantiles) from these batches to
construct thresholds. This allows the strategy to trade off flex-
ibly between finite time false positives (assuming a partner
is defecting when they are not) and false negatives (missing
a defector). Note that this is a purely finite-time tradeoff -
asymptotically the theoretical guarantees continue to hold.
See the original paper for more details.

Experiments
We show the results of applying CCC and amTFT to several
games. Here all results are trained using deep RL using
standard methods. We refer the readers to the original papers
for the full training details.
We also follow the metrics introduced in the original pa-

pers. We focus on the key desiderata: a good strategy should
be safe from a defector partner, should incentivize coopera-
tion from its partner, and, when matched with a conditional
cooperator, should achieve good payoffs.
We define Si(X,Y ) as the expected reward to policy πX

1
matched with πY

2 . Safety(X) = S1(X,D)−S1(D,D)mea-
sures how a strategy is safe from exploitation by a defector;
and IncentC(X) = S2(X,C)−S2(X,D)measures whether
a strategy incentivizes cooperation from its partner. While
we cannot enumerate all possible conditionally cooperative
strategy, we can use a proxy in the case of CCC/amTFT.
SelfMatch(X) = S1(X,X) measures whether a strategy
achieves good outcomes with itself. We can compare this
payoff to S1(C,C) and see how much cooperation these
policies can achieve.
We begin with the results from using CCC in a POMDP:

Fishery. Fishery is a grid-world partially observed Markov
game where two agents live on 5× 5 grids on opposite sides
of a lake. Agents cannot observe the other side of the lake.
Fish spawn in each agent’s grid and start as young, if they are
not caught when they are young they swim to the other side
of the lake and become mature. Moving over a fish catches it.
Catching a young fish is worth 1 point and catching a mature
fish is worth 3 points. Thus, cooperative strategies are those
which one catch mature fish but selfish agents are tempted
to increase their payoff at a cost to their partner by catching
young fish as well. Because this is a partially observed game,
we can only use CCC as a cooperation maintaining strategy.
We see that in this game agents that play the cooperative
strategy (found by modified self-play with both agents re-
ceiving the joint reward at training time) can be exploited
by defectors (this strategy is found by standard self-play).
However CCC achieve cooperation with other CCC agents,
is safe, and can incentivize its partner to cooperate.

We now show the results of applying amTFT and CCC to
a social dilemma where agents are trained directly from raw
pixels. We can change the payoffs of Atari Pong to make it a
social dilemma - the Pong Player’s Dilemma or PPD (Tampuu

Strategy SelfMatch Safety IncentC

πC 141 -36 -31
πD 64 0 -34
CCC 125 -3 64

Figure 1: Fishery is a partially observed Markov social
dilemma. Mutual cooperation leads to high payoffs but co-
operators can be exploited by defectors. CCC cooperates
with cooperators, is not exploited by defectors, and makes
cooperation a high payoff strategy for its partner.

et al. 2017). In the PPD when a player scores they receive a
reward of 1 while their partner receives a reward of−2. Thus,
cooperative strategies are those which gently hit the ball back
and forth until the end of the game (and are exploitable by
defectors who try hard to score). We see in Figure 2 that both
amTFT and CCC perform well in the PPD - cooperating with
cooperators, not being exploited by defectors, earning high
payoffs when matched with other conditionally cooperative
strategies, and incentivizing cooperation from a partner who
can choose a strategy.

Because CCC is computationally simpler, one may believe
the last result implies it is strictly better than amTFT. This
is not always the case. We can change the payoff structure
of the PPD to make it stochastic – when a player scores a
point their partner gets a reward of − 2

p with probability p.
We call this the risky PPD. Thus, the expected reward is the
same as in the PPD but if p is low then most of the time the
cooperative and defect trajectories look identical from the
point of view of the payoffs. Here, CCC can be exploited by
a defector while amTFT (which uses expected future payoffs)
behaves the same as in the standard PPD.

Future Directions

Humans are remarkably adapted to solving bilateral social
dilemmas. We have focused on recent work that tries to use
deep reinforcement learning to give artificial agents this ca-
pability. We have shown that amTFT and CCC can maintain
cooperation and avoid exploitation in Markov games. In ad-
dition we have discussed the training of these strategies and
shown that it requires no more than modified self-play. We
now highlight important future directions.

The first is game theoretic. We have discussed a condition-
ally cooperative strategy that uses the intentions behind an
action (amTFT) and one purely uses the consequences (CCC).
In the real world intentions are generally only partially ob-
served (either because actions are only partially observed
or because modeling their future consequences is difficult)
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PPD
Strategy SelfMatch Safety IncentC

πC 0 -18.4 -12.3
πD -5.9 0 -18.4
CCC 0 -4.6 3.3
amTFT -1.6 -5.2 2.6

Risky PPD
Strategy SelfMatch Safety IncentC

πC -0.7 -23.6 -12.8
πD -5.8 0 -22.6
CCC -0.2 -12.2 -5.7
amTFT -3.6 -3.1 2.5

Figure 2: In the PPD both amTFT and CCC agents can be
trained from raw pixels. Cooperators can again be exploited
by defectors and conditionally cooperative strategies can be
both safe and incentivize cooperation. In the non-stochastic
version CCC does as well as amTFT but in the stochastic
version CCC can be exploited in finite time games while
amTFT cannot.

while consequences can sometimes be poor diagnostics for
intentions (because of stochasticity). Thus, an important fu-
ture direction is to construct strategies that combine these
two signals.

The second has to do with non-degeneracy of cooperative
strategies. The technical conditions for amTFT and CCC
to work require the cooperative strategies satisfy a form of
exchangeability - that is, given two sets of cooperative poli-
cies any re-combination of them leads to the same outcomes.
If cooperative policies are not exchangeable we will have
both a social dilemma (‘should we cooperate?’) and a co-
ordination (‘in which way should we cooperate?’) problem.
This is strongly related to work on focal points as well as
choosing equilibria in coordination games (Schelling 1980;
Peysakhovich and Lerer 2017b). Solving this problem, e.g.
via introducing communication, is an important avenue for
future work. See Kleiman-Weiner et al. for a more in depth
discussion.
The third is algorithmic. Any conditionally coopera-

tive strategy needs access to the cooperative strategy and
a ‘threat’ strategy. In the surveyed papers we used mod-
ified self-play to find these strategies. However, to the
best of our knowledge there are no guarantees that even
if such strategies exist that standard self-play will find them.

In addition, self-play can have stability issues in multi-
agent systems as the environment from the perspective of
a single agent becomes non-stationary due to the fact that
other agents are learning (Foerster et al. 2017b; 2017a;
Lowe et al. 2017). Finally, in some situations it can be diffi-
cult to find the joint payoff maximizing cooperative policy.
Dealing with each of these issues is an important step in
scaling these ideas to new environments.
The final issue has to do with human psychology. Here

we have focused on implementing strategies that achieve
socially optimal payoffs (that is, maximizing the sum of pay-
offs). However, if we are interested in agents that interact
with humans this may not be enough. Human social prefer-
ences are more complex than this and the kinds of allocations
that humans find fair vary greatly among cultures and con-
texts – sometimes it is fair for one person to get a lot more
than the other and other times it is not (Roth et al. 1991;
Henrich et al. 2001; Herrmann, Thöni, and Gächter 2008;
List 2007). Perceptions of fairness greatly influence behavior
and in particular humans are often willing to pay costs to
retaliate against an unfair partner (Camerer and Thaler 1995;
Fehr and Gächter 2002; Ouss and Peysakhovich 2015). Thus,
if an artificial agent tries to behave according to an efficient
but unfair policy, it may find itself stuck in πD even though
a better outcome was possible. Understanding social prefer-
ences in context is thus an important question to answer
if we seek to construct systems which lead to good out-
comes (Crandall et al. 2017; Shirado and Christakis 2017;
Hauser et al. 2014).

References

Axelrod, R. M. 2006. The evolution of cooperation: revised
edition. Basic books.
Brown, N.; Ganzfried, S.; and Sandholm, T. 2015. Hi-
erarchical abstraction, distributed equilibrium computation,
and post-processing, with application to a champion no-limit
texas hold’em agent. In Proceedings of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, 7–15. International Foundation for Autonomous
Agents and Multiagent Systems.
Brown, G. W. 1951. Iterative solution of games by ficti-
tious play. Activity analysis of production and allocation
13(1):374–376.
Camerer, C., and Thaler, R. H. 1995. Anomalies: Ulti-
matums, dictators and manners. The Journal of Economic
Perspectives 9(2):209–219.
Crandall, J. W.; Oudah, M.; Ishowo-Oloko, F.; Abdallah, S.;
Bonnefon, J.-F.; Cebrian, M.; Shariff, A.; Goodrich, M. A.;
Rahwan, I.; et al. 2017. Cooperating with machines. arXiv
preprint arXiv:1703.06207.
De Cote, E. M., and Littman, M. L. 2012. A polynomial-time
nash equilibrium algorithm for repeated stochastic games.
arXiv preprint arXiv:1206.3277.
Dutta, P. K. 1995. A folk theorem for stochastic games.
Journal of Economic Theory 66(1):1–32.
Fehr, E., and Gächter, S. 2002. Altruistic punishment in
humans. Nature 415(6868):137–140.

653



Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2017a. Counterfactual multi-agent policy gra-
dients. arXiv preprint arXiv:1705.08926.
Foerster, J.; Nardelli, N.; Farquhar, G.; Torr, P.; Kohli, P.;
Whiteson, S.; et al. 2017b. Stabilising experience replay
for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1702.08887.
Foerster, J. N.; Chen, R. Y.; Al-Shedivat, M.; Whiteson, S.;
Abbeel, P.; and Mordatch, I. 2017c. Learning with opponent-
learning awareness. arXiv preprint arXiv:1709.04326.
Fudenberg, D., and Levine, D. K. 1998. The theory of
learning in games, volume 2. MIT press.
Fudenberg, D., and Maskin, E. 1986. The folk theorem in
repeated games with discounting or with incomplete infor-
mation. Econometrica: Journal of the Econometric Society
533–554.
Hauser, O. P.; Rand, D. G.; Peysakhovich, A.; and Nowak,
M. A. 2014. Cooperating with the future. Nature
511(7508):220–223.
Henrich, J.; Boyd, R.; Bowles, S.; Camerer, C.; Fehr, E.;
Gintis, H.; and McElreath, R. 2001. In search of homo eco-
nomicus: behavioral experiments in 15 small-scale societies.
The American Economic Review 91(2):73–78.
Herrmann, B.; Thöni, C.; and Gächter, S. 2008. Antisocial
punishment across societies. Science 319(5868):1362–1367.
Kleiman-Weiner, M.; Ho, M. K.; Austerweil, J. L.; Michael L,
L.; and Tenenbaum, J. B. 2016. Coordinate to cooperate or
compete: abstract goals and joint intentions in social interac-
tion. In Proceedings of the 38th Annual Conference of the
Cognitive Science Society.
Leibo, J. Z.; Zambaldi, V.; Lanctot, M.; Marecki, J.; and
Graepel, T. 2017. Multi-agent reinforcement learning in
sequential social dilemmas. In Proceedings of the 16th Con-
ference on Autonomous Agents and MultiAgent Systems, 464–
473. International Foundation for Autonomous Agents and
Multiagent Systems.
Lerer, A., and Peysakhovich, A. 2017. Maintaining coopera-
tion in complex social dilemmas using deep reinforcement
learning. arXiv preprint arXiv:1707.01068.
List, J. A. 2007. On the interpretation of giving in dictator
games. Journal of Political economy 115(3):482–493.
Littman, M. L., and Stone, P. 2005. A polynomial-time nash
equilibrium algorithm for repeated games. Decision Support
Systems 39(1):55–66.
Littman, M. L. 2001. Friend-or-foe q-learning in general-sum
games. In ICML, volume 1, 322–328.
Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; and Mor-
datch, I. 2017. Multi-agent actor-critic for mixed cooperative-
competitive environments. arXiv preprint arXiv:1706.02275.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature 518(7540):529–
533.

Nowak, M., and Sigmund, K. 1993. A strategy of win-
stay, lose-shift that outperforms tit-for-tat in the prisoner’s
dilemma game. Nature 364(6432):56.
Ouss, A., and Peysakhovich, A. 2015. When punishment
doesn’t pay: ’cold glow’ and decisions to punish. Journal of
Law and Economics 58(3).
Peysakhovich, A., and Lerer, A. 2017a. Consequentialist
conditional cooperation in social dilemmas with imperfect
information. arXiv preprint arXiv:1710.06975.
Peysakhovich, A., and Lerer, A. 2017b. Prosocial learning
agents solve generalized stag hunts better than selfish ones.
arXiv preprint arXiv:1709.02865.
Roth, A. E.; Prasnikar, V.; Okuno-Fujiwara, M.; and Zamir, S.
1991. Bargaining and market behavior in jerusalem, ljubljana,
pittsburgh, and tokyo: An experimental study. The American
Economic Review 1068–1095.
Sandholm, T. W., and Crites, R. H. 1996. Multiagent rein-
forcement learning in the iterated prisoner’s dilemma. Biosys-
tems 37(1-2):147–166.
Schelling, T. C. 1980. The strategy of conflict. Harvard
university press.
Shapley, L. S. 1953. Stochastic games. Proceedings of the
national academy of sciences 39(10):1095–1100.
Shirado, H., and Christakis, N. A. 2017. Locally noisy
autonomous agents improve global human coordination in
network experiments. Nature 545(7654):370–374.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354–359.
Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus,
K.; Aru, J.; Aru, J.; and Vicente, R. 2017. Multiagent co-
operation and competition with deep reinforcement learning.
PloS one 12(4):e0172395.
Tesauro, G. 1995. Temporal difference learning and td-
gammon. Communications of the ACM 38(3):58–68.

654



LfD Training of Heterogeneous Formation Behaviors

William Squires, Sean Luke
Department of Computer Science

George Mason University
4400 University Dr

Fairfax, Virginia 22030

Abstract

Problem domains such as disaster relief, search and rescue,
and games can benefit from having a human quickly train
coordinated behaviors for a diverse set of agents. Hierarchi-
cal Training of Agent Behaviors (HiTAB) is a Learning from
Demonstration (LfD) approach that addresses some inherent
complexities in multiagent learning, making it possible to train
complex heterogeneous behaviors from a small set of train-
ing samples. In this paper, we successfully demonstrate LfD
training of formation behaviors using a small set of agents
that, without retraining, continue to operate correctly when
additional agents are available. We selected training of forma-
tions for the experiments because formations: require a great
deal of coordination between agents, are heterogenous due to
the differing roles of participating agents, and can scale as the
number of agents grows. We also introduce some extensions
to HiTAB that facilitate this type of training.

Introduction

Multiagent Learning from Demonstration (LfD) promises
to allow a human to quickly train coordinated behaviors for
a diverse set of agents in an online manner with the goal
of producing combined behaviors that are more beneficial
than agents acting concurrently but without coordination. To
do this, Multiagent LfD typically draws on knowledge of
each agent’s sensors, behaviors, and of the problem domain.
This research applies to problem domains in which agents
or robots must be rapidly put to use, such as disaster re-
lief, search and rescue, and games where players control a
large and diverse set of agents. However, multiagent LfD
is very sparsely researched, in large part due to the inherent
complexities of multiagent learning due to the Curse of Di-
mensionality and what we refer to as the Multiagent Inverse
Problem.

The Curse of Dimensionality states that the number of
training samples required for effective machine learning in-
creases exponentially with the dimensionality of the feature
vector, which is likely exacerbated by heterogeneity due to in-
creased variety in sensors. The Multiagent Inverse Problem is
encountered when trying to learn the appropriate combination
of individual agent behaviors to achieve the desired macro-
level behavior: while we might have a function available that

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

maps the individual behaviors to the macro-level behavior
(namely, a simulator), we do not have the needed function
that maps in the other direction. Such inverse problems are
normally overcome using offline optimization methods, such
as multiagent reinforcement learning or stochastic optimiza-
tion, but the high cost of generating training samples by a
human trainer makes these challenges much more daunting
problem for LfD.
The Hierarchical Training of Agent Behaviors (HiTAB)

LfD approach (Luke and Ziparo 2010) has addresses these
learning challenges. The Curse of Dimensionality is dealt
with through iterative behavior decomposition and manual
feature selection. The trainer first decomposes the problem
into a hierarchy of subproblems, such as breaking “play kid-
die soccer” into “play offense” and “play defense”, with
(for example) “play offense” further broken down to “ac-
quire ball”, “manipulate ball”, and “kick to goal”, and so
on. Training is done on the lowest-level behaviors, then the
next level, and so on. This allows HiTAB to project the full
joint space of features (sensor information) and actions of the
top-level behavior into many smaller behaviors, each with its
own much smaller subset of sensor features and actions, and
consequently fewer training samples.
HiTAB addresses the inverse problem similarly with the

introduction of a virtual controller agent hierarchy that allows
the trainer to manually decompose the coordination of behav-
iors among subordinate agent groups. That is, we manually
break the swarm into a hierarchy sub-swarms and sub-sub-
swarms etc., each headed by a virtual controller agent (a
boss). Then we can train small groups to do simple collec-
tive behaviors, then assign each a virtual controller (a boss),
then train small groups of bosses to do collective behaviors
involving directing their subordinates, and so on. Because
we are only training small groups of agents at a time, the gulf
between individual micro-level behaviors and the desired
emergent macro-level phenomenon is mitigated.

Our research goal is to extend HiTAB to train swarm-like
heterogeneous behaviors where the resulting behavior can
scale to very large numbers of agents. Further, the training
should be accomplished without knowing the precise number
of agents available for each heterogenous agent types in oper-
ation. Training complexity is reduced by including a minimal
number of agents to train the coordinated behaviors, with the
end result being a minimal controller hierarchy. However, in
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Figure 1: Line Formations

operation the controller hierarchy may need to be grown to ef-
fectively utilize large numbers of agents. For example, a grid
formation might have a grid controller with some number of
subordinate line controllers that are determined by number
of available agents.

This paper presents work in progress toward this research
goal by training line formations of agents. Line formations
are heterogeneous due to differing roles of agents and require
considerable coordination to achieve the desired behavior.
Formations are also a well studied problem domain in multia-
gent learning where the effectiveness of the learned behaviors
can be visually confirmed. The formations we will learn are
shown in Figure 1, each one has a Head agent facing the goal
with all other agents forming the line of at some angle to the
goal.

Related Work

Heterogeneous Swarms and Hierarchies

Swarm research primarily focuses on the creation of behav-
iors in which the individual agents only interact with neigh-
boring agents or the environment. Because the interaction is
limited in this way, adding agents to the swarm scales with
regard to communication. However, this scaling comes at
the expense of global information which limits the level of
cooperation that can be achieved. Introducing heterogeneity
to swarms complicates the problem of having agents perform
cooperative behaviors using only local interaction and often
introduces a need for structured team organization not present
in homogeneous swarms.
In (Elston and Frew 2008) and (Pinciroli et al. 2010), het-

erogeneous swarms use a hierarchical structure to create
coordinated behaviors between an aerial agent and homo-
geneous sub-swarms. The hierarchy extends the capability
of the sub-swarm by leveraging global information relayed
to the sub-swarm by the aerial controller. In this case, the
sub-swarms still scale because the only additional commu-
nication is between the sub-swarm agents and the controller.
In (Soule and Heckendorn 2010), an evolutionary approach
was presented to learn a controller hierarchy that scales to
the available swarm agents with the introduction of force
functions that balance agents in the hierarchy or create a new
sub-swarms when needed.

Learning from Demonstration

Learning from Demonstration (LfD) is a supervised learning
method where training samples are generated through human

demonstration (Atkeson and Schaal 1997). LfD literature
may be broken into two the categories. In the first category,
learning plans or behaviors (Argall et al. 2009), the number
of training samples generated by the human demonstrator is
generally small since they are only generated when changing
behavior or operation. The second category, learning motions
or paths (Pastor et al. 2009), often have a large number of
samples available as they are generated each time the tra-
jectory changes. HiTAB falls into the first category and so
it is focused on effectively learning behaviors from a small
number of training samples.
Multiagent LfD produces additional very difficult chal-

lenges as previously discussed, and as a result is only lightly
researched. In (Chernova and Veloso 2010), robots were
trained to cooperatively sort colored balls into the appropri-
ate bin where the robots requested additional demonstration
when uncertain of correct action. Additional LfD multi-agent
learning involves learning from the joint demonstration of
multiple trainers. For example, in (Martins and Demiris
2010) an approach was developed where the individual se-
quence of actions for each robot are captured and then the
sequence of group behaviors is determined through analysis
of the individual action sequences over space and time. In
(Blokzijl-Zanker and Demiris 2012), robots learn to collabo-
ratively open a door by extracting a template for the behavior
and adapting it to doors in other settings. These methods
work well for small teams, but become dramatically more
complex as more robots are added.

Learning Formation Behaviors

Formations are a well studied problem in learning coor-
dinated multi-agent behaviors, many of them using motor
schema (Balch and Arkin 1998) or other potential field based
approaches. In (Das et al. 2002), formation control leverages
multiple controllers based on vision sensors on all agents.
More recent literature has focused on new potential field
methods of formation control for swarms (Barnes, Fields,
and Valavanis 2009). The formations is this paper, trained
as leader-referenced formations, are not intended as a better
method of formation control, but as an interesting test prob-
lem for heterogeneous multiagent LfD that can be extend to
swarm-like behaviors.

Background on HiTAB
HiTAB was introduced in (Luke and Ziparo 2010) originally
as a single-agent LfD method for training individual agent
behaviors that addresses domain space complexity. HiTAB
learns behaviors in the form of hierarchical finite-state au-
tomata (HFA), where the states are either atomic agent behav-
iors or lower level HFA learned earlier. The HFA are defined
through manual decomposition of the desired top-level be-
havior, and the lowest level in the HFA only have atomic
agent behaviors as states. For each HFA, the trainer manually
selects the required states (subbehaviors) and features, or
agent sensors, needed to determine the transition between
states. Because the states and features are manually selected
by the trainer, HiTAB is only learning the transition function
for the HFA. By default the learning is in the form of a C4.5
decision tree.
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Behaviors and features may be parameterized and be
bound to a target, which is some object in the environment.
An example for a feature is DistanceTo(A), which is bound
the target ClosestAgent by the trainer to get the distance to
the closest agent. An example for a behavior is a trained
behavior Goto(A), which is bound to the target Home Base
resulting in a go to home base behavior. Parameters may also
be bound to a variable of the HFA so that the learned HFA is
parameterized, such as SpreadBetween(A,B) defined later in
this paper.
HiTAB also has a special atomic behavior called Done.

Done sets a Done flag, which is accessible through the Done
feature, and immediately transitions to Start and the flag
remains set unless it is specifically clear or the top-level agent
behavior is changed. This is useful when some behavior has
to be completed before another begins. Done is also special
in that it is also an atomic behavior for training controller
agents.

Individual Agent Training

When decomposition of the HFA is complete, features have
been selected, and parameters bound, the demonstrator can
then begin training. While in training mode the trainer tele-
operates the agent, changing behaviors at the appropriate
time. Whenever a behavior is changed, a training sample is
created containing the current behavior, the current feature
values when the behavior was changed, and the new behavior.
Behaviors that are meant to continue until the next behavior
change by the trainer will add an additional continuation
sample with the new behavior, the feature values, and the
new behavior again.
The trainer switches to testing mode when all training

samples have been created, causing the transition function of
the HFA to be learned. The trainer then observer the trained
behavior in operation and saves it to the behavior library if it
is working correctly. Otherwise, the trainer switches back to
training mode and provides additional samples and repeats
the test mode step.

Homogeneous Multiagent Training

In (Sullivan and Luke 2012), HiTAB was extended to homo-
geneous multiagent training with the introduction of virtual
controller agents responsible for coordinating a subordinate
group of agents. HiTAB again models the controller’s behav-
ior as an HFA, which is decomposed so that at the lowest
level the HFA only contain only the atomic behaviors of the
controller.
These atomic behaviors correspond to the top-level be-

haviors of each of the agents in the controller’s subordinate
group. As such, atomic controller behaviors manipulate the
subordinate agents rather than the controller itself, with a
transition in the controller HFA directing all subordinates to
change their behavior. Controller features are programmed
by the trainer to provide statistical information from the fea-
tures or states of the subordinate agents. As with individual
agents, behaviors and features may be parameterized.

To increase cooperation among the homogeneous individ-
ual agents, a hierarchy of controllers may be trained. For a
higher level controller the training method is the same, with

Controller

Agent 
Group 0

Agent 
Group 1

Agent 
Group N

Figure 2: Heterogeneous Controller

its the atomic behaviors being the trained behaviors of the
virtual controller agents in its subordinate group.

Heterogeneous Multiagent Training

In (Sullivan et al. 2015), HiTAB was further extended to
heterogeneous multiagent training, where virtual controllers
may have more than one subordinate agent group as shown
in Figure 2. The subordinate groups of a heterogeneous
controller each contain a different agent type. Again the
coordinating behavior is represented as an HFA, which is
decomposed so that the lowest level HFA has only the atomic
behaviors of the controller.

Each atomic behavior for heterogeneous controllers is now
a joint behavior, which is some permutation of trained behav-
iors of the subordinate agent groups. A continuation behavior
may be defined for one or more of the agent groups in the
joint behavior, meaning that all agents in that group should
continue the previously directed behavior. As in the homo-
geneous case, all agents within a single subordinate group
are running the same behavior. Depending on the number of
agent groups and the number of trained behaviors within sub-
ordinate agents, the number of joint behavior permutations
can be quite lengthy. Additionally, a given permutation of
behaviors may not be meaningful to the trainer in the con-
text of the training problem. For this reason it is left to the
trainer to define the joint behaviors for the controller, and
consequently presented with a meaningful and minimal set
of atomic behaviors during training.

Joint behaviors take the form Name(Behavior 0, Behavior
1, ..., Behavior N), where Behavior i is a trained behavior of
subordinate agent group i . For example, Init(Face(X), Sur-
round(X), MoveBetween(X, Y)) is a joint behavior named
Init that tells agents in group 0 to Face some target X, agents
in group 1 to Surround some target X, and agents in group
2 to MoveBetween two targets X and Y. If a continuation
is specified for an agent group, the subordinate behavior is
left blank (�), for example SpreadAgents(�, AdjustSepara-
tion(X, Y), SpreadBetween(X, Y)) has no behavior defined
for agents in group 0.
While the work in (Sullivan et al. 2015) provided a suc-

cessful demonstration of training heterogeneous controller
agents it falls short of the research under way in this work.
The controller hierarchy, shown in Figure 3, is two levels
deep where each agent group has a single agent. While this is
heterogeneous and mutliagent by definition, it did not demon-
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strate training of heterogenous behaviors that scale to some
unknown number of agents in operation. Also, because each
group contained a single agent there was no need for feature
aggregation, which is necessary in many heterogeneous LfD
training problems.

Our Extensions to HiTAB

Group Features

Introduced in this work, a group feature applies an aggrega-
tor function to a feature value for all agents within an agent
group, or from agents in all subordinate groups if a group
isn’t specified. An aggregator function is a simple statistical
function such as Max, Min, Average, and Range. Group
features have the form Name(group, aggregator, feature).
For example, MostDistant(0, Max, DistanceTo(X)) defines a
group feature named MostDistant whose value is the maxi-
mum value of the DistanceTo(X) feature for agents in group
0. For basic agent groups, a group feature can be defined for
any feature of the basic agent or a feature common to all sub-
ordinate groups when a group is not specified. For controller
agent groups, a group feature can be defined for any group
feature of the subordinate controller. Because feature values
are passed up the hierarchy, this means that group features
may need to be defined in a lower level of the hierarchy even
though they aren’t needed for training coordinated behaviors
at that level.

Targets with Context

Targets referencing other agents in the heterogeneous setting
may require additional context that wasn’t necessary in homo-
geneous training. For example, the SpreadBetween behavior,
which moves an agent between one or more targets X and Y,
may require targets X and Y to actually be bound to agents
in groups 0 and 1 respectively. For the purposes of this work,
the following targets have been defined:

• Closest Agent - My Group is the closest agent within the
agent’s own group.

• Closest Agent - Group n is the closest agent in subgroup
n of the agent’s controller.

• Closest Agent - My Parent is the closest agent in all
subgroups of the agent’s controller.

• Second Closest Agent - My Parent is the second closest
agent in all subgroups of the agent’s controller.
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H = Head
T = Tail
M = Mid

Figure 4: Column Formation

Joint Behaviors with Parameter Conflicts

Joint behaviors specify one behavior per subordinate group;
these behaviors may also be parameterized. When multiple
behaviors in a joint behavior are parameterized it is possible
that parameters with the same name are not to be bound to
the same target. In such cases the trainer can select one of the
conflicting behaviors and trivially train a new behavior bind-
ing the parameters in the heterogeneous setting. Such con-
flicts are described in the InitHT, MoveMids, and SpreadMids
joint behaviors in the Heterogeneous Controller Behavior
Training section.

For example, in MoveMids the MoveAwaySome(X,Y)
behavior has parameters that conflict with MoveBe-
tweenAvoid(X,Y), so it is trained for a Mid agent in the het-
erogenous setting by binding parameter A to Closest Agent -
My Group and parameter B to Closest Agent - Group 0. The
trainer then: starts training, selects the MoveAwaySome be-
havior, ends training, saves the behavior as CreateSpace,
and replaces MoveAwaySome(X,Y) in the joint behavior with
CreateSpace.

Training Column Formation Behaviors

In this work, training has focused on creating four line for-
mations: column, row, echelon right, and echelon left with
respect to some Goal in the environment. The controller
agent for these problems has three subordinate agent groups
to train according to the different agent roles in the forma-
tion: Head, Tail, and Mid agents whose agent groups are
indexed 0–2 respectively. Individual agents are initially dis-
tributed randomly in the environment as shown on the left in
Figure 4, and each line formation behavior coordinates the
agents through a series of steps to position and orient them
with respect to the Goal. The general steps to creating a line
formation are shown below.

1. Initialize by orienting the Head agent at the Goal and
positioning the Tail agent such that the angle between the
Goal and Tail from the perspective of the Head agent is
some value, depending on the formation.

2. Move Mid Agents between the Tail and Head agents

3. Spread Mid Agents between Tail and Head and adjust the
distance from the Tail to the Head to achieve the desired
agent spacing.

4. Orient Mid and Tail Agents like the Head agent.
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Using this approach, the only difference in training be-
tween the four line formations is the Initialize step. The
desired result of the column behavior is show on the right of
Figure 4.

Individual Behavior Training

While the training of the individual behaviors is not the focus
of this paper, there are some important points to make about
training individual behaviors in light of the overall training
problem. First, training complexity in individual behaviors
is much preferred over training complexity in controller be-
haviors because we wish to maximize agent autonomy and
consequently minimize communication with the controller.
Second, training individual behaviors should should be pa-
rameterized to promote reuse. For example, the MoveBe-
tween behavior for Mid agents is trained to move the agent
between points A and B. The parameters A and B are bound
later to targets in the heterogeneous setting as described in
the next section. In total, we trained 26 individual behaviors
to support the line formation behaviors. The behaviors listed
below are the individual behaviors used in the definition of
joint behaviors for the controller.

• AlignFront(X): Orient the agent so that it is facing the
target X.

• GotoAvoid(X): Move the agent toward the target X while
avoiding objects or agents in its path.

• CircleAvoid(X): Move the agent in a circle around the
target X, with avoidance, in a clockwise direction. The
radius of the circle is set as the distance to X at the time
the behavior starts.

• CircleNegAvoid(X): Move the agent in a circle around the
target X, with avoidance, in a counter-clockwise direction.
The radius of the circle is set as the distance to X at the
time the behavior starts.

• MoveAwaySome(X, Y): When the distance to the target
X is below a threshold, move the agent a short distance
from the opposite direction of target Y, with avoidance.

• MoveCloserTo(X, Y): Move the agent in the direction of
target Y when the distance to target X is greater than some
threshold.

• MoveBetweenAvoid(X, Y): Move the agent onto the line
between two targets X and Y, with avoidance.

• SpreadBetween(X, Y): Move the agent equidistant be-
tween any agent in its group or one of the endpoints X and
Y if the agent has no other agent between itself and X or Y.

• AlignLike(X): Orient the agent in the same direction as
the target X.

The state machines used in training two of the more com-
plex individual behaviors are shown in Figure 5 with the
associated features defined below the corresponding state
HFA. The LineAssoc behavior is intended to run after an
agent has moved onto the line between two points (X, Y) and
it is assumed that there is at least one other agent on the line
and in the same agent group as the training agent. This behav-
ior ensures that the agent is associated with an endpoint if it
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Figure 5: The LineAssociate and SpreadBetween HFA

is directly adjacent, meaning there is no other agent between
the agent and the endpoint, and otherwise associated with the
closest agent in its agent group. Once the association is made
the agent will remain in the Done state until the behavior is
changed. The DirectionSimilarity(A,B) feature returns the
cosine similarity between the vectors from the agent to A and
the agent to B. With all agents being on the line, DS returns
a value close to 1 when the closest agent and X are in the
same direction and close 0 otherwise. Training LineAssoc
was completed using 29 training samples.

The SpreadBetween behavior repositions an agent so that
it is equidistant between the associated object and the closest
agent in the same agent group. Because it is utilizing the
LineAssoc behavior, the associated object is either one of
the endpoints or another agent on the line between them.
The Between(X, Y) feature returns a value between -1 and 1
with the zero value occurring at the point equidistant from X
and Y. If X and Y are the same object, then zero is returned.
Training SpreadBetween was completed using 15 training
samples.
It is important to note that the Done behavior sets the

Done flag and immediately transitions to Start, which is why
additional transitions from Start to Done were trained. Also,
since a behavior can only be bound to one target a behavior
sometimes has to be trivially trained (with no transitions)
and saved under a different name. Thus the Goto/Goto2 and
Associate/Assoc2/Assoc3 behaviors.

Heterogeneous Controller Behavior Training

Heterogeneous controller agent behaviors use the same be-
havior decomposition, feature selection, and training method
as individual behaviors and homogeneous controllers. How-
ever, there are a few additional steps required by the trainer
for heterogeneous controllers.

1. Define joint behaviors from the trained individual behav-
iors of subordinate agents.

2. Perform trivial training of individual behaviors to eliminate
parameter conflicts and update joint behaviors to reference
the new behaviors.

3. Define group features

4. Bind joint behaviors to targets
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5. Bind group features to targets
6. Train controller behavior FSA based on joint behaviors

and group features.
Before describing the joint behaviors and group features, it

is helpful to define a shorter and more descriptive notation for
the common targets for group features and joint behaviors.
• Goal (A): The goal is bound to the parameter A.
• Head (H): The Head agent is Closest Agent - Group 0.
• Tail (T): The Tail agent is Closest Agent - Group 1.
• Closest Mid (CM): The closest Mid agent is Closest Agent -

Group 2.
• Closest in Formation (CF): The closest agent in the forma-

tion is Closest Agent - My Parent.
• Second Closest in Formation (SCF): The second closest

agent in the formation is Second Closest Agent - My Parent.

Joint Behaviors Seven joint behaviors are defined as
atomic behaviors for the training of line formations.
• InitHT(AlignFront(X), GotoAvoid(X), �): To eliminate
a parameter conflict, Goto(X) is trained as Goto(H) for
the Tail agent and saved as GotoHead. The updated joint
behavior is InitHT(AlignFront(X), GotoHead, �).

• AlignTail(�, CircleAvoid(X), �).
• AlignTailNeg(�, CircleNegAvoid(X), �).
• TailDone(�, Done, �): Note that Done is a special non-
trained behavior that can referenced in a joint behavior.

• MoveMids(�, MoveAwaySome(X, Y), MoveBe-
tweenAvoid(X, Y)): To eliminate a parameter conflict,
MoveAwaySome(X, Y) is trained as MoveAwaySome(CM,
H) for the Tail agent and saved as CreateSpace. The
updated joint behavior is MoveMids(�, CreateSpace,
MoveBetweenAvoid(X, Y)).

• SpreadMids(�, MoveCloserTo(X, Y), SpreadBe-
tween(X, Y)): To eliminate a parameter conflict,
MoveCloserTo(X, Y) is trained as MoveCloserTo(CM,H)
for the Tail agent and saved as AdjustSeparation. The up-
dated joint behavior is SpreadMids(�, AdjustSeparation,
SpreadBetween(X, Y))

• AlignLikeHead(�, AlignLike(X), AlignLike(X)): There
is no parameter conflict in this case.

Group Features Five group features are defined for the
training and operation of the heterogeneous controller FSAs.
• TailAligned(0, Average, RelativeDirection(X, Y,Z)): Re-
turns the angle between vectors XY and XZ as measured
by the Head agent.

• MidsBetween(2, Max, DistanceBetween(X, Y)): Returns
the maximum distance from Mid agents to nearest point
on the line between X and Y.

• MidsDistributed(2, Max, DistanceTo(X)): DistanceTo re-
turns the distance from the Mid agents to X.

• TailProximal(1, Max, DistanceTo(X): Returns the dis-
tance from the Tail agent to X.

• MidsDone(�, Min, Done): Returns 1 if the Done flag is
set for all agents in the formation.
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Figure 6: Column Formation HFA

Training and Results

Training was successfully performed for each of the four line
formation behaviors. Training of the column formation be-
havior, FormCol, was completed by training the HFA shown
in Figure 6 from the bottom up as pictured. Joint behaviors
are represented by a hexagonal shape while trained behaviors
(and Done) are elliptical shapes. The targets of the behaviors
and features are noted in parentheses. The results of a run
of the behavior in the HiTAB simulator with 3 Mid agents
are shown in Figure 7 where the Home Base marker is se-
lected as the goal. Training of the entire controller HFA was
accomplished with a total of 36 training examples, the bulk
of which were used to train AlignTailCol (18) and FinishCol
(12).

Training the other formations is very similar by following
these steps steps below. The column formation only differs
in that the last two steps are not required.

1. Position Head near target and orient so that angle with
respect to the goal is that of the desired line formation.

2. Form the other agents in a line behind the head.

3. Orient the Head to face the goal.

4. Orient the other agents like the head.

Because there was some reuse of trained behaviors in col-
umn training the additional line formations only required 33
training samples each even with the two additional steps. The
goal of this work wasn’t to minimize the number of training
samples, but the totals indicate the efficacy of the manual
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Home Base

Figure 7: Column Formation in HiTAB

behavior decomposition to address the inverse problem for
heterogeneous controller training.

After we trained the behaviors, we ran the learned behavior
with different numbers of middle agents. As expected, the
formation behavior with additional agents formed a longer
line. The Line formation behaviors have the limitation that
the controller hierarchy is fixed in size. So while this work
accomplished the goal of training heterogeneous line forma-
tions that scale as the number of Mid agents grows, it does
not (and cannot) grow the number of virtual controllers to
effectively use additional Head or Tail agents.
Training the behaviors is complicated a problem related

to behavior decomposition and feature selection. When we
decompose the behaviors, features are selected based on the
state transitions in the HFA and the way those features are
used in the learned transition function sometimes differ from
the expectation of the trainer because of the underlying ma-
chine learning method. As decision trees are the default
method to learn the transition function, the small number
of training samples often introduces some randomness in
choosing which feature is determined to have the most infor-
mation gain. This becomes more problematic when floating
point features are used since they will often have a different
value for all training samples. This can be overcome by de-
composing behaviors so that they have at most one floating
point feature. Using the Done behavior allows a higher level
HFA to use the Done feature in training rather than a floating
point feature. The decomposed HFA in Figure 6 and Figure 5
reflect this approach.

Conclusions and Future Work

This work demonstrates the training of complex heteroge-
neous multiagent behaviors using HiTAB. Specifically, we
trained heterogeneous virtual controllers which coordinated
subordinate agents to produce four different line formations.
Without retraining, the behaviors continue to operate cor-
rectly when the number of agents is increased. This training
required substantial effort on the part of the trainer to manu-

ally decompose the controller behavior, define joint behaviors
and group features, and finally to train the controller behav-
ior. However, the training required a very small number of
samples and no special purpose code.
For future work, we will focus on training heterogeneous

behaviors where controller agent groups may grow in size
based on the number of agents available in operation. This
is a complex problem since the hierarchy may be deep and
unbalanced with a decision to be made at each level to expand
the controller agent group. The basic agents then have to be
effectively distributed in the expanded controller hierarchy.
Two types of test problem have been identified to further

this research, N-deep formations and heterogeneous game
scenarios. First, N-deep formations require a greater degree
of coordination and will most likely present new challenges
in terms of contextual agent targets and group features for
controllers at level 2 and above in a controller hierarchy. As
previously described, a grid formation my require growth
of a controller agent group to expand the grid to effectively
include the available agents. This problem can be extended
to a line of grids, a wedge of grids, and so on.
Second, we will concentrate on heterogeneous game sce-

narios. While formations are an easily understood set of
challenge problems for heterogeneous behavior training and
have behaviors that can scale to the agents available, it is dif-
ficult to measure the effectiveness of growing the controller
hierarchy. We will create a game scenario where resulting
heterogeneous controller hierarchy can be grown to utilize
additional agents and there is also some goal that can be
measured. This will allow us to compare the effectiveness of
our hierarchy growing algorithm to other methods.
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