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Introduction
There is a trend in the field of Machine Discovery that
has undertaken the task of approaching Scientific Dis-
covery from a computational viewpoint. Such an ap-
proach is a very promising, and in some way fasci-
nating, field of research in Artificial Intelligence. Its
ultimate goal is to recognize and learn patterns of
previous discovery, which can improve one’s chances
for future discovery significantly (Oliver 1991). Most
studies have dealt with empirical laws of physics and
chemistry but, so far, almost no theory driven discov-
ery has been contemplated. The present paper deals
with a computational approach to the real history of
the genesis of a mathematical discovery: an abstract-
algebraic method called "the method of separation of
symbols", and its role in the creation of George Boole’s
logic. We have studied the different historical factors
that influenced this creation. The real history of the
discovery under consideration has suggested a compu-
tational model that provides the basis for a theory of
this kind of discovery.

The paper presents a sketch of the history of Boole’s
discovery as well as the influence of Duncan F. Gre-
gory on it, and describes the system BOOLE2. This
program embodies Boole’s method of discovering, dis-
covers Logic and Geometry as parts of Algebra, and is
also ready to be used on a variety of sciences.

The actual historic discovery

Preliminaries
Gregory and Boole were able interpreters and devel-
opers of a mathematical methodological tradition be-
gun in France in the second half of the 18th century
and continued in Britain during the first half of the
19th century. This tradition involved the methodolog-
ical idea of separating symbols of operations from their
subjects of application, and operating with the former
as with algebraic entities. The method was called the
method of separation of symbols and it was at the heart
of Boole’s discovery and development of Logic as an al-
gebraic discipline.

Even though Gregory’s contribution to the method
itself is usually recognized as most substantial, it

should be emphasized that only Boole had the clear-
ness and boldness needed to try it on an extra math-
ematical discipline: Logic. The historical and detailed
explanation of this process has been a substantial part
of our research, and it will be briefly summarized in
this first part in order to introduce a computer system
that works according to the way we conceive Boole’s
discovery processes.

The historical development of the method has been
studied in (Koppelman 1971; Knobloeh 1981; Panteki
1991) as part of the history of Symbolic Calculi. More
detailed accounts on Boole can be found in (Laita 1977;
1979; 1980; de Ledesma ~ Laita 1989).

Gregory’s contribution to the method of
separation of symbols

Gregory applies the method of separation of symbols
to Geometry (Gregory 1839), giving in this way an in-
direct description of how the method works. In Ge-
ometry, the operations to be symbolized are related to
the ideas of magnitude and direction, and the opera-
tion from which magnitude can be defined is, according
to Gregory, transference in one direction. Gregory as-
sumes the symbols a, b,c,..., to represent transference
in one direction. The result of applying a to a point
(.) is a segment, applying b to a(.), written b(a), is a
parallelogram obtained by transference of all points of
the first segment; similarly c(b(a)) will result in a par-
allelepiped. He says that there is no interpretation for
more than three applications of the symbol of trans-
ference, the result of which may be considered as an
"impossible" geometrical operation, in the same sense
that "v/L-] - is an impossible arithmetical one".

In (Gregory 1839, p.3) Gregory proceeds to show
that the combination of transferences is commutative,
a(b) = b(a), and distributive with respect to a sum
operation a + b which represents the translation of a
point in the same direction through distances a and
b, c(a + b) = e(a) + c(b). Geometrical concepts are
then represented by arithmetical symbols. In the eye of
Symbolic Algebra, as arithmetical symbols of the sum
and product and geometrical concepts of iteration of
transferences follow the same laws of combination, they
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are identical (that is, belong to the same family). So,
whatever can be proved in arithmetic in dependence
of only those laws alone, is valid for the geometry of
transference.

Boole and the method of separation of
symbols
Boole’s awareness of the advantages of facing mathe-
matics as a calculus of symbols began very early in his
life. In 1835, when he was twenty years old, he gave an
address on Newton which seemed to refer to Boole’s
own philosophy of mathematics as much as to New-
ton’s. The ideas on the necessity of a systematic use of
symbolism as well as the possibility of separating the
use of symbols from their interpretation were already
there.

In 1839, Boole went for a trip to Cambridge and
met the mathematician Duncan F. Gregory, who re-
cently had founded the Cambridge Mathematical Jour-
11al. Boole submitted several papers for publication
and the latter saw with astonishment that Boole had
developed by himself-influenced only by his readings
of Lagrange and other French mathematicians- an ap-
proach to mathematics very similar to the one devel-
oped at Cambridge. Reading, for instance, the paper
(Boole 1841), is a fascinating experience on the appli-
cation of an abstraction of the analytical change-of-
variables technique to the symbolic transformation of
a curve’s equation.

The examination of some of Boole’s subsequent pa-
pers shows that it was by this time when Gregory in-
formed Boole of the particular traits of the method
of separation of symbols. Boole recognizes that Gre-
gory was his inspirer, but he went much further than
Gregory. He applied the method to some truly diffi-
cult problems in the differential calculus and the cal-
culus of finite differences. And, what is most impor-
t.ant, Boole made this bold guess: symbolic calculus,
and the method of separation of symbols in partic-
ular, could be applied outside mathematics, particu-
larly to Logic. The reason that made Boole return
his attention to Logic was a controversy about a logi-
cal subject between the philosopher William Hamilton
and the mathematician Augustus De Morgan. He had
been interested in Logic much longer before: "... I was
induced by the interest which it (the controversy) in-
spired, to resume the almost forgotten thread of former
inquires", (Boole 1847, p.1). And it is of utmost im-
portance to see how, this second time, Boole founded
Logic on the method of separation of symbols. As a
matter of fact, the first principles of Logic as they ap-
pear at the beginning of the book The Mathematical
A~alysis of Logic (Boole 1847) are an almost direct
transcription of laws suggested by Gregory in his ver-
sion of the method of separation of symbols. Boole
writes at the beginning of the mentioned book:

Further, let us conceive a class of symbols x, y, z,
possessed of the following character. The symbol

z, operating upon any subject comprehending in-
dividuals or classes, shall be supposed to select
from it all individuals of the class X which it con-
tains... When no subject is expressed, we shall
suppose 1 (The Universe) to be the subject un-
derstood, so that we shall have z = x(1). The
result of an act of election is independent of the
grouping or classification of the subject... We may
express this law mathematically by the equation
z(u + v) = zu + zv. It is indifferent in what or-
der two successive acts of election are performed.
The symbolic expression of this law is xy = yx.
The result of an act of election performed twice
or any number of times in succession is the result
of the same act performed once.., supposing the
same operation to be n times performed, we have
x~ = z. (These) laws are sufficient for the basis
of a calculus... The third law zn = x we shall de-
nominate the index law. It is peculiar to elective
symbols and will be found of great importance ..
(Boole 1847, pp.15-18).

The last sentence in this quotation states how Logic
turns out to be a calculus governed by the same laws as
some of those in the method of separation of symbols.
This is not just a fancy abstract statement. Actually,
the whole book (Boole 1847) is a complete development
of an Algebraic Logic on the basis of precisely those
three laws.

Boole’s discovery consisted of finding that Logic
was among the sciences worth of symbolization. This
means that its basic operations follow the same laws
of combination of symbols as some of the families in
Symbolic Algebra. From this point of view, Gregory’s
finding on Geometry can be considered as just another
instance of the same process.

Description of BOOLE2

According to the extensive research that we have done
about the life and work ofG. Boole, we built first a pro-
gram, BOOLE1, that, following Boole’s reasoning pro-
cess to the Mathematical Analysis of Logic, reached the
same conclusions as he did (de Ledesma et al. 1993).
This reasoning process tried, and succeeded, in apply-
ing the Method of Separation of Symbols to Logic. Since
it was our firm belief that -in Boole’s view- the pro-
cess of finding whether a science is symbolizable or not
(whether the method of separation of symbols is appli-
cable to it or not), is always the same, we undertook
the task of generalizing BOOLEI’s heuristics to make it
applicable to other sciences as well. Duncan F. Gre-
gory’s Geometry was chosen as a first instance. Gre-
gory was not selected as the active agent of a discovery
process to be formalized by a computer program (our
purpose was to reach the conclusion of his Geometry
being symbolizable by an emulation of G. Boole’s rea-
soning), but as the author of a branch of Geometry
particularly apt for our intention.
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The formalization of the just mentioned ideas and
aims resulted, then, in a program, BOOLE2, that using
a uniform way of representing and reasoning is able to
discover that both Logic and Geometry are symboliz-
able (de Ledesma et al. 1994). In fact, its represen-
tat.ion and reasoning tools are intended to handle any
science ms a candidate for symbolization, provided its
basic contents can be turned accessible to the system.
In this way, the so called generic part of the system may
be viewed as a module that has information about the
method of separation of symbols, explicitly including
the knowledge that is common to all sciences, i.e., a
scheme designed to receive each specific science as an
input: operations, combinations and the possible laws
thereof. This enlarges the applicability of the system to
different environments, besides Logic. So far, BOOLE2
has been provided with understanding on the way Gre-
gory conceived Geometry. In this manner, it considers
Geometry as a candidate for symbolization and reaches
the laws of combination of the basic operation, trans-
ference, as stated by Gregory in (Gregory 1839), plus
the conclusion of such Geometry being symbolizable.

The main difference between BOOLE2 and other sys-
tems dealing with the process of scientific discovery
such as BACON, GLAUBER, STAHL and DALTON, (Lang-
ley et al. 1987), AM and EURISKO (Lenat 1982) or 
(Shen 1990), is that the former is exclusively guided
l)y the theory, instead of experimentation, i.e., it is
not a data driven discovery system. First, and having
ill mind that "data driven" refers to the experimental
character of the input, BOOLE2’s input is an abstract
representation of the science to be considered. On the
other hand, a substantial part of its heuristics stems
from theory and it should be emphasized that, in this
case, theory means the very precise symbolic way by
which Boole handled the method of separation of sym-
bols. The method is a part of Mathematics and, there-
fore, demands an abstract way of reasoning. BOOLE2’s

starting point is the knowledge and goals previous to
the discovery of a science being symbolizable or not,
and it ends stating whether the method of separation
of symbols is applicable to it or not. More specifically,
it starts from the state of mind of G. Boole before
"The Mathematical Analysis of Logic" and it reaches
the conclusions about either Logic or Geometry by an
emulation of Boole’s own reasoning process.

The above paragraph makes clear which are the in-
put and output for the system: the input is a descrip-
tion of the science we want BOOLE2 to consider (its
operations, combinations and so on); the output is 
record of its algebraic properties plus the conclusion
of such science being symbolizable or not. Let us ex-
amine a first sketch of the process that leads to such
an output. G. Boole always seemed to perfectly know
his objectives and to have the ability to separate, in
ahuost every instance, the right path to them from the
infinity of all other conceivable wrong, useless or un-
duly long paths. This is the spirit that has been given

to the BOOLE systems. Their heuristics are just the
insightful reasoning method of Boole.

The process of execution of BOOLE2 may be de-
scribed as follows. The initial goal is to incorporate
a science to the set of symbolizable ones. Since this
goal is not true yet, the system tries to achieve it by
checking first whether the science deserves to be sym-
bolized (a new goal: "worth of symbolization"). 
this way, the top level goal needs a number of subgoals
to be true, that, in turn, will need other subgoals and
so on. This backward process is based on the above
remarks on George Boole’s reasoning. The execution
ends when the top level goal is attained. The achieve-
ment of each goal simulates one step of the discovery
process. Figure 1 shows the top level part of the sub-
goaling structure of BOOLE2’s reasoning.

~ corporate Scienceto~

Symbolization /

~ ributi~ve

Figure 1: Top level part of the subgoaling structure
generated by BOOLE2 when reasoning

The program has been formalized as a production
system, with its three classical components: working
memory, set of rules, and control. Its knowledge is di-
vided in two: a generic part, and a specific one. The
generic part is a set of rules and frame descriptions,
common to any science, while the specific part is com-
posed of a set of rules and frame descriptions for each
particular science. This is precisely one of the strong
points of the system, since it allows to create a discov-
erer for each science given a set of instantiated opera-
tions on that science. Figure 2 shows the architecture
of the system.

The set of initial facts of the working memory com-
prises the set of all facts in Logic and Geometry prior to
their consideration as symbolic disciplines. The inter-
mediate and final sets of facts represent the different
states of mind of the human scientist on his or her
reasoning process. The set of rules describes the indi-
vidual steps of the general process of finding whether a
particular science can be symbolized or not, and how to
perform simple operations on the respective sciences.
The control mechanism guides BOOLE2 towards the
same kind of reasoning that G. Boole used.
Remark on vocabulary.

The term operation is used in this context in a differ-
ent sense than the usual one. This is due to historical
reasons and reflects G. Boole’s conception of sciences.
An operation means something close to the modern
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BOOLE2

Genetic Fram~ Specific Frames

Logic Working

Memory

Comm(m W(a-king Geome~’y Working

MemL~/ Memory

Other Sciences

Working Memory

Specific Rul~ C, enenc Rul~s

Logic Rule Set

Geomel~ Rule Set

Other Sciences Rule Set

Frulekit

Common

Rule Set

Figure 2: Architecture of BOOLE2

idea of operator. For instance, differentiation, is an op-
eration of Calculus; taking the trace of a point moving
through a segment is an operation of Geometry ("trans-
ference"); and selecting a class of individuals from 
universe is an operation of Logic ("class"). Notice that
the effect of the operations in the three previous exam-
ples are the well known concepts of derivative, segment
and predicate (identified with a set of individuals).

On the other hand, we use the term combination (of
operations) nmch in the sense of today’s algebraic op-
eration. For instance, two successive acts of selecting
individuals from class x, first, and, then, from class
y ("class succession") yield the class of the individu-
als which are both x and y; and two translations of a
point through different directions ("transference and-
in-other") yield a parallelogram.

The Working Memory

Tile state of the working memory at a given moment
of the execution of the production system represents a
corresponding mental state of the discoverer in his/her
reasoning process. In 8OOLE2, the working memory is
composed of a set of frame descriptions, together with
a set of instances of those frames. Figures 3 and 4 show
the hierarchy of frames.

The working memory is divided in three parts: static
science-independent, static science-dependent, and dy-
namic. The static science-independent part is com-
posed of the hierarchy of frames that is common to all
sciences just before the process starts, i.e., the generic
frames. This is shown in figures 3 and 4 by the set
of frames that are on section a. The static science-
dependent part is the set of specific frames and in-
stances, created for each science in the initial state.
This is shown on the figures by the set of frames and
instances that are on section b. Finally, the dynamic
part is composed of the specific instances that are cre-
ated at run time, represented on section c.

As an example of frame and instance descriptions,
figure 5 shows a science-independent frame and a
science-dependent instance. Namely, the frame sci-
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LAW ~ D[STIIIBUTIVE-~=:--::’..’-’-[DEMPOTENCE -~l==:.~:::
INDEX ~ .~..~_: _: _ ~_~_

CONTROL ..........
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a b
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Figure 3: Hierarchy of frames on BOOLE2 for Logic
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Figure 4: Hierarchy of frames on BOOLE2 for Geometry

ence, which has the description of the science, and
the instance succession, which has the information
on a combination of simple operations of the science
Logic. The frame slots are self-explanatory. Never-
theless, some of the instance slots require a better un-
derstanding of how BOOLE2 handles the combinations
of simple-operations. When BOOLE2 decides, through
the rules, that a combination should be applied on
two simple-operations, it creates a notation for each
simple-operation. The notation is computed using the
function value of the slot notation-generator-1 of the
corresponding combination.

A comment should be made on how Logic has been
represented as an input to BOOLE2 (similar comments
can obviously be given for Geomeiry, but we are refer-
ring to just an example). Any science representation
must first state which is the operation, or operations,
to be considered as simple. The simple operation for
Logic is the class. According to Boole’s ideas, each
class, named x, represents both the act of selection
of all individuals X included in that class, as well as
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;;; Frame that describes a general science
(literalize science (:cache :*ALL*)

:name nil
:simple-operations nil
:combinations nil
:laws nil
:worth-symbolization-p nil)

;;; Instance of the frame prototype-combination
;;; named succession. It describes how to perform
;;; a succession on two simple-operations on the
;;; science Logic.
($make ’prototype-combination

:name ’succession
:meaning ’succession
:science ’logic
:notation-generator-1 #’succession-ng
:result-generator #’succession-rg)

Figure 5: A frame and an instance in BOOLE2

tile result of that act (the set formed by, exactly, all
individuals X). One of the notations used for, both,
representing and handling x is the list (ALL THAT
ARE X). Why such an "essentialist" representation?
It. is intended also to reflect Boole’s abstract way of
reasoning. It is possible to represent aggregation of
classes as set union and infer by a short induction the
same results obtained by BOOLE2, but that would be
unloyal to the sort of linguistic way in which G. Boole
handled this combination of operations (the aggrega-
tion of two classes). On the other hand, this notation,
as well as the others that have been chosen, has shown
to be particularly apt for a transparent representation,
and also for performing the different combinations.

Rule set
The rule set is divided in two subsets: discovery rules,
and recording rules. The discovery rule set is composed
of rules that reason along the set of processes that can
be applied to the elements of a science, and can be
divided into the following sets:

¯ General rules. They control the abstract reasoning
for considering a science worth symbolizable.

¯ Law rules. They represent the common laws for
the sciences, such as commutative, distributive and
idempotence.

¯ Combination rules. These rules perform the de-
fault combinations over the operations of the sci-
ences. In particular, for the science Logic, the com-
binations are succession, and aggregation, and for
the science geometry are and-in-lhe-same-dimension
and and-in-other-dimension.

¯ Forced combination rules. These rules act as
heuristics of discovery in the sense that they provide
a way of combining operations when certain condi-
tions hold. As an example, the forced-succession rule

is a heuristic that says that the system should per-
form the combination of two operations 02 and ol,
if it has already performed the combination of ol
and 02; this will help to fire the rule relative to the
commutative law if the results of both combinations
are the same.

¯ Continuation rules. These are rules that control
the way in which rules are matched. They provide a
control above the one supplied by the agenda mech-
anism. In particular, they do not allow the same
type of combination to be applied twice in a row
whenever another rule can be fired.

The second kind of rules, the recording rules, are
rules that collect all laws that are satisfied in a certain
science.

Control mechanism
The control of the execution is done through an agenda
mechanism. Rules are organized in priority levels, usu-
ally with more abstract rules on higher levels of prior-
ity, and more detailed rules in lower levels of priority.
Figure 6 shows the different levels with the type of
rules on each level.

Recording rules
General rules
Law rules
Forced combinations rules
Combination rules
Continuation rules

Figure 6: High level description of BOOLE2’s agenda.

The agenda follows a priority policy, by which the
rules on each level are matched to see if anyone can
fire. 1 If no rule of a certain level fires, the control goes
to the next level. As soon as a rule of a certain level
fires, the control goes to the highest level, in order to
see if any of the high level rules can fire.

In order to suplement the agenda with more com-
plex ways of control, BOOLE2 has the forced combina-
tion rules and the continuation rules. The first type
of rules plays the role of heuristics based on the state
of the search. They allow to control how to apply the
discovery rules in a similar way to the one used by G.
Boole. The second type of auxiliary control rules allow
to explore the search space uniformely, not repeating
the same basic step (combination) twice without trying
out different combinations. These two types of heuris-
tics are useful for guiding the process, and relating it
to the real discoveries.

Conclusions
The main contributions of the research, are:

1Frulekit uses a Rete net for efficiently matching the
rules.
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¯ We have carried out an accurate and detailed study
of the work of a human scientist, George Boole, in
his particular view of the Method of Separation of
Symbols, its scope and actual applicability to a sci-
ence, Logic, which was not considered, by that time,
as a mathematical discipline.

¯ The study gave us the guidelines to build a com-
putational model that behaves like the scientist G.
Boole in a given reasoning process, such as consider-
ing a science symbolizable. The resulting program,
BOOLE2, behaves like a re-discoverer, in the sense
that it reproduces real scientific discoveries. The ex-
ecution of BOOLE2 with Logic as an input proves that
the system is able to go all the way from the start-
ing point to the conclusions of Boole himself. This
shows that the knowledge given to the program by
the authors of this paper is sufficient for explain-
ing the way George Boole got to his discovery and,
therefore, that BOOLE2 itself is an approximation to
a theory of this scientific discovery.

¯ The results showed us that the process is general
enough to be translated to other sciences, by just
entering the initial description of the science to be
considered. This has been the case for Gregory’s
Geometry.

We would like to emphasize that, even though the
system does not mimic a large number of case stud-
ies, it captures an interesting level of detail for those
that are actually studied. Just because this sound
ground of detailed conceptualization, it can be consid-
ered as potentially able to handle other cases as well.
The separation-of-symbols heuristic has been consis-
tenly used from 19th century on with the label of "for-
realization" or "abstraction". Whenever a portion of
knowledge is symbolically represented and its symbols
("separated" from the particular meaning they have in
their domain) are found to behave in the same way
as those of, say, Logic, Algebra, Graph theory, etc., a
separation-of-symbols process has been carried out. It
is in this sense that any science can be considered as a
candidate-input for BOOLE2. Due to their low level of
formalization, Boole’s contemporary sciences are more
fitted than others to the spirit of the present study. De
Morgan’s Logic is an excellent candidate for both its
proximity in terms of personal relationship to George
Boole and, at the same time, its almost null algebraic
character. But any other discipline might be consid-
ered as well. There would always be an output, "it is,
or it is not, symbolizable", provided we had devised an
appropiate representation of such discipline, which is
by no means a trivial task.
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