
Genetic Programming as a Means of Assessing and
Reflecting Chaos

E Howard N Oakley

EHN & DIJ Oakley
Wroxall, Ventnor, Isle of Wight
PO38 3EQ, UK.

Introduction

The central theme of experimental science can
be viewed as discovering the functions which
best describe a set of observations. When these
functions are simple, either because of the real
simplicity of the system being studied, or
because of ingenious experimental design,
traditional tools usually suffice. However, as
the systems being studied are known to be
more complex (for example, with the benefit of
more accurate measurement techniques), so
progressively more time and effort has to be
devoted to the analysis rather than the winning
of the data. As a consequence, the traditional
fields of statistics and data analysis have
developed in new ways, reflected by a new
vocabulary. Laboratories echo less to terms
such as ’linear regression’ and ’analysis of
variance’, and more to the new genres of ’data
visualisation’ and ’data mining’.

Among the systems which are most resistant to
analysis are those which are manifestly non-
linear and possibly complex and dynamic
(chaotic), which can only be measured in short
series or are non-stationary, and which are
believed to contain significant amounts of
noise. In biological sciences, these are the
norm. Consequently, there are many assertions
that biological systems are chaotic in nature
(Glass & Kaplan 1994), but remarkably little
conventional evidence (Ruelle 1990).

contaminated with substantial amounts of
noise. The information yielded from such
predictive studies can be used to gain structural
information about the underlying system, and
to a limited degree, can confirm its chaotic
characteristics.

The purpose of this study was to extend the
application of GP to real experimental data, and
to see whether it could be coupled with the
examination of surrogate data, an increasingly
popular technique in the study of chaotic
systems (Theiler et al. 1992), and thus to test
for chaos in even brief, noisy datasets.

Surrogate data series are synthetic datasets
which are assembled by reordering original
series, or from random values, in such a way
that they share some properties with the
original series, but that other properties are
quite different. Typically, a surrogate series
will be generated from an original possibly
chaotic series by reordering the individual
values so that the Fourier power spectrum and
statistical properties are preserved, but the
chaotic relationship between individual values
is broken. Comparing the results of tests, such
as fitting by GP, on the original and surrogate
data series can then yield invaluable
information as to whether there was underlying
chaos which was destroyed during the creation
of the surrogate series.

Methods

Koza’s (1992, 1994) two tracts which define
and explore the technique of genetic
programming (GP) include glimpses of the
value of this new approach in the fitting of
functions to various datasets, including one
which is known to be chaotic. In two previous
studies (Oakley 1994a, 1994b), I have shown
how GP can be used to predict future values
for a known chaotic data series, even when it is

Original data for this study were derived from
two sources: first from the Mackey-Glass flow
(Mackey & Glass 1977), both as a flow
approximation via Runge-Kutta techniques and
discretised to a map (Oakley 19994a); second
from physiological experiments involving the
measurement of skin blood flow using a laser
Doppler rheometer. Surrogates generated

68

From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



Data series number mean variance

Mackey-Glass flow no 516 0.8767 0.0839

- surrogate no 512 0.8838 0.0585
Mackey-Glass map no various approx 0.8 approx 0.08

Blood flow 1 yes 513 163.7 4884.6

- surrogate yes 512 166.1 3324.5
Blood flow 2 yes 102 49.5 488.1
Blood flow 3 76 222.3 2723.0

Table 1: Characteristics of the

according to the first method of Theiler et al.
(1992), which possess the same Fourier power
spectrum and statistics, were used of each
series as well. The main characteristics of the
different series are given in Table 1.

For each data series, GP was performed using
Koza’s Simple Lisp code (Koza 1992) under
Macintosh Common Lisp 2.0.1 running on an
Apple Macintosh IIci with a Radius Rocket
68040 accelerator. Settings were those used in
previous studies in this series (Oakley 1994b),
in brief using a ramped half-and-half generation
method to create initial populations of size 100
to 1000. Following this, a fitness proportionate
selection method was used with fitness-
proportionate reproduction fraction 0.1,
crossover at any point fraction 0.2, and
crossover at function points fraction 0.7. The
maximum depth of new individuals was 6,
maximum depth of new subtrees for mutants 4,
and maximum depth of individuals after
crossover 17.

The terminal set was the effectively time-
embedded data series, in most cases using
values at time steps 1, 2, 3, 4, 5, 6, 11, 16,
21, and 31 prior to the value being predicted,
together with random real numeric constants.
The aim of S-expressions in the population of
each run was to predict future values of the
series, up to 60 steps into the future. Whenever
the length of a data series permitted, this was
performed in multiple non-overlapping
windows. The function set consisted of the
four basic arithmetic operators (with divide

data series used in this study.

protected from zero divide errors), together
with error-protected sine, cosine and
exponentiation to the power of 10 (a necessary
component for sufficiency for series involving
the Mackey-Glass map).

Raw and standardised fitness were taken as the
average over the fitness cases of the squared
error between predicted and actual points.
However, for the purposes of comparisons, the
normalised mean squared error (Gershenfeld 
Weigend 1994) was derived from this, as the
standardised fitness divided by the sample
variance of the actual points in the prediction
window.

Runs were performed over several days,
including a range of different population sizes
from 100 to 1000, over 51 and 101 generations
without termination criteria. The fittest S-
expression in each individual run was
recorded, together with details of it fitness and
generation.

Results

Prediction error, as gauged by the normalised
mean squared error, for the Mackey-Glass flow
was similar to that reported earlier (Oakley
1994a) for its discretised map, and increased
with increasing duration of prediction.
However, whilst errors for the flow and its
surrogate were similar for brief predictions (30
steps into the future), they rose
disproportionately in the case of the surrogate
series, to reach three times the error at 30 when

69



4°°t
35O

300

250

200

150

100 I I I
0 10 20 70

i

V
I I I

40 50 60

Figure 1 An experimental data series (dotted) with the forecast series (solid)
superimposed. The vertical line marks the point at which predicted values begin for
the latter.

prediction length had only doubled to 60.
Errors from the experimental data series were
of similar magnitude as those from the Mackey-
Glass flow. Figure 1 shows one of the better
examples of’a fit S-expression predicting blood
flow data.

In both the Mackey-Glass flow and
experimental data series, increasing the number
of individuals used in each GP run (by
increasing the population size and/or the
number of generations) generally led to reduced
prediction errors. Typically, in the case of the
Mackey-Glass flow, an increase in the number
of individuals used from 5100 to 50500
(approximately tenfold) resulted in a halving 
the prediction error;, the magnitude of this effect
in experimental data series was reduced.

Study of the complexity of the fittest S-
expressions, estimated using the simple metric
of counting left parentheses, and the number of
individuals required to arrive at the fittest
demonstrated the expected interrelationships.
Fitter S-expressions tended to be more
complicated and to require more individuals
(i.e. higher numbers of generations as well as
greater population sizes) for them to be
generated. Two metrics which give a good feel
for this effect are the change in the number of

S-expressions evaluated before the fittest
emerged in that run, and for a given group of
runs (with the same population size and
number of generations) the average number of
S-expressions evaluated for the fittest to
emerge in that group of runs. Both of these
increased with increasing number of S-
expressions evaluated, and with reducing
prediction error.

The behaviour of surrogate data series was
quite distinct. In the case of the Mackey-Glass
flow surrogate, a few very simple S-
expressions recurred time after time and
dominated runs. They were typically found in
the initial population or after relatively few
generations, so that complex S-expressions
rarely appeared among the fittest (indeed, they
failed to evolve within populations). There was
thus no reduction in prediction error with
increasing number of S-expressions evaluated,
and the average S-expression complexity and
number of generations required to find the
fittest S-expression remained fLxed and low as
population sizes and numbers of generations
increased. Indeed, the average generation of the
fittest S-expression actually reduced as the
population size increased.

70



Discussion

The efficacy of genetic programming as a
means of predicting data from short, noisy,
possibly chaotic series has been demonstrated
again. This has important consequences for
those searching for a technique which can be
used to examine a wide range of experimental
data: GP is a prime candidate which has a
number of significant advantages over other
techniques.

First, GP as a technique does not need to make
any underlyi’ng assumptions about the nature of
the data with which it is presented. Particularly
when used in its original Common Lisp
implementation, it is remarkably easy to
provide for almost any data input and operator
type in GP. This contrasts with other popular
alternatives such as neural networks and other
evolutionary computing approaches, in which
structural considerations dominate the outcome.

Second, GP requires a minimal programming
effort, although this does in consequence make
it more computationally intensive. In scientific
computing, this spares the most expensive,
human resource. Third, as has been remarked
before (Oakley 1994b), GP avoids the trap 
overfitting data in the face of noise. It also
yields structural information, and is an effective
means of system identification (Iba et al. 1993,
Oakley 1994a).

Coupling GP with the use of surrogate data
series opens’up a rich range of possibilities
beyond these. Studying the progress of
multiple GP runs on actual and surrogate
datasets appears to discriminate between the
two. This suggests that the rich ever-improving
populations of S-expressions found in some
real data reflect non-linearity, even chaos,
within those data. Here, the fitness landscape is
varied and continuing evolutionary search
yields higher peaks of fitness.

In contrast, the surrogate datasets appear
dominated by the shallow and featureless
landscapes typical of stochastic processes. A
few prominent peaks of fitness are found
quickly, and further evolutionary search fails to
improve on them.

It is interesting to speculate that populations of
S-expressions in genetic programming come to
reflect the nature of the fitness landscape, and
thus the complexity of the data which they are
trying to fit. This is best seen in the simple and
artificial case here of the Mackey-Glass flow.
Using real chaotic data, the S-expressions in
the evolving populations tended to become
complicated and rich in their composition, in
response to their varied fitness landscape. In
contrast, those of the surrogate series generated
from the Mackey-Glass flow quickly came to
reflect their less varied landscape.

Conclusion

This series of studies (Oakley 1994a, Oakley
1994b) has shown how genetic programming
can be used to perform a number of vital
functions in the analysis of experimental data.
These include system identification, prediction,
and the distinction between chaotic and
stochastic systems. It only remains to package
the technique into a form which makes it
accessible to the practitioner.

References

Gershenfeid N A Weigend A S 1994 The
future of time series: learning and
understanding Time Series Prediction:
Forecasting the Future and Understanding the
Past ed A S Weigend N A Gershenfeld
(Reading, Mass: Addison-Wesley) 1-70

Glass L Kaplan D 1994 Complex dynamics in
physiology and medicine Time Series
Prediction: Forecasting the Future and
Understanding the Past ed A S Weigend N A
Gershenfeld (Reading, Mass: Addison-Wesley)
513-528

Iba H Kurita T de Garis H Sato T 1993
System identification using structured genetic
algorithms Proceedings of the Fifth
International Conference on Genetic
Algorithms ed S Forrest (San Mateo,
Cal: Morgan Kaufmann)

71



Koza J R 1992 Genetic Programming. On the
Programming of Computers by Means of
Natural Selection (Cambridge, Mass: MIT
Press)

Koza J R 1994 Genetic Programming H:
Automatic Discovery of Reusable Programs
(Cambridge, Mass: MIT Press)

Mackey M C Glass L 1977 Oscillation and
chaos in ph3/siological control systems Science
197 287-289

Oakley E H N 1994a Two scientific
applications of genetic programming: stack
filter and non-linear equation fitting to chaotic
data Advances in Genetic Programming ed K
E Kinnear (Cambridge, Mass: MIT Press)
369-389

Oakley E H N 1994b The application of
genetic programming to the investigation of
short, noisy, chaotic data series Lecture Notes
in Computer Science: Evolutionary Computing
ed T C Fogarty (New York, NY: Springer
Verlag)

Ruelle D 1990 Deterministic chaos: the science
and the fiction Proc. Roy. Soc. Lond. A 427
241-248

Theiler J Galdrikian B Longtin A Eubank S
Farmer J D 1992 Using surrogate data to detect
nonlinearity in time series Nonlinear Modelling
and Forecasting ed M Casdagli S Eubank
(Redwood City, Cal: Addison-Wesley)
163-188

72




