
Relational Instance Based Regression for
Relational Reinforcement Learning

Kurt Driessens kurt.driessens@cs.kuleuven.ac.be
Jan Ramon jan.ramon@cs.kuleuven.ac.be

Department of Computer Science, K.U.Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium

Abstract

Relational reinforcement learning (RRL) is
a Q-learning technique which uses first or-
der regression techniques to generalize the Q-
function. Both the relational setting and the
Q-learning context introduce a number of dif-
ficulties which must be dealt with. In this
paper we investigate a few different meth-
ods that do incremental relational instance
based regression and can be used for RRL.
This leads us to different approaches which
limit both memory consumption and pro-
cessing times. We implemented a number of
these approaches and experimentally evalu-
ated and compared them to each other and an
existing RRL algorithm. These experiments
show relational instance based regression to
work well and to add robustness to RRL.

1. Introduction

Q-learning (Watkins, 1989) is a model free approach
to tackle reinforcement learning problems which calcu-
lates a Quality- or Q-function to represent the learned
policy. The Q-function takes a state-action pair as
input and outputs a real number which indicates the
quality of that action in that state. The optimal action
in a given state is the action with the highest Q-value.

The application possibilities of Q-learning is limited by
the number of different state-action pairs that can oc-
cur. The number of these pairs grows exponentially in
the number of attributes of the world and the possible
actions and thus in the number of objects that exist
in the world. This problem is usually solved by in-
tegrating some form of inductive regression technique
into the Q-learning algorithm, which is able to gener-
alize over state-action pairs. This generalized function
is then able to make predictions about the Q-value of
state-action pairs which it has never encountered.

One possible inductive algorithm that can be used for
Q-learning is instance based regression. Instance based
regression or nearest neighbor regression generalizes

over seen examples by storing all or some of the seen
examples and uses a similarity measure or distance
between examples to make predictions about unseen
examples. Instance based regression for Q-learning has
been used by (Smart & Kaelbling, 2000) and (Forbes
& Andre, 2002) with promising results.

Relational reinforcement learning (Džeroski et al.,
1998; Driessens et al., 2001) is a Q-learning approach
which incorporates a first order regression learner to
generalize the Q-function. This makes Q-learning feas-
ible in structured domains by enabling the use of ob-
jects, properties of objects and relations among ob-
jects in the description of the Q-function. Structural
domains typically come with a very large state space,
making it infeasible for regular Q-learning approaches
to be used in them. Relational reinforcement learning
(RRL) can handle relatively complex problems such
as planning problems in a blocks world and learning
to play computer games such as Digger and Tetris.
However, we would like to include the robustness of
instance based generalizations into RRL.

To apply instance based regression in the relational
reinforcement learning context, a few problems have
to be overcome. One of the most important problems
deals with the number of examples that can be stored
and used to make predictions. In the relational setting
both the amount of memory to store examples and the
computation time for the similarity measure between
examples will be relatively large, so the amount of ex-
amples stored should be kept relatively small.

The rest of the paper is structured as follows. In Sec-
tion 2 we give a small overview about related work
on instance based regression and its use in Q-learning.
Section 3 describes the relational Q-learning setting in
which we will be using instance based regression. The
considered approaches are then explained and tested in
Section 4 and 5 respectively where we show that rela-
tional instance based regression works well as a gener-
alization engine for RRL and that it leads to smoother
learning curves as compared with the original decision
tree approach to RRL. We conclude in Section 6.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

2. Instance Based Regression

In this section we will discuss previous work on in-
stance based regression and relate it to our setting.

Aha et al. introduced the concept of instance based
learning for classification (Aha et al., 1991) through
the use of stored examples and nearest neighbor tech-
niques. They suggested two techniques to filter out
unwanted examples to both limit the number of ex-
amples that are stored in memory and improve the
behavior of instance based learning when confronted
with noisy data. To limit the inflow of new examples
into the database, the IB2 system only stores examples
that are classified wrong by the examples in memory
so far. To be able to deal with noise, the IB3 system
removes examples from the database who’s classifica-
tion record (i.e. the ratio of correct and incorrect clas-
sification attempts) is significantly worse than that of
other examples in the database. Although these filter-
ing techniques are simple and effective for classifica-
tion, they do not translate easily to regression.

The idea of instance based prediction of real-valued at-
tributes was introduced by Kibler et.al. (Kibler et al.,
1989). They describe an approach in which they use a
form of local linear regression and although they refer
to instance based classification methods for reducing
the amount of storage space needed by the instance
based techniques, they do not translate these tech-
niques for real-value prediction tasks.

This idea of local linear regression is to greater de-
tail explored in Atkeson et.al. (Atkeson et al., 1997),
but again, no effort is made to limit the growth of the
stored database. In follow-up work however (Schaal
et al., 2000), they do describe a locally weighted learn-
ing algorithm that does not need to remember any data
explicitly. Instead, the algorithm builds “locally linear
models” which are updated with each new learning ex-
ample. Each of these models is accompanied by a “re-
ceptive field” which represents the area in which this
linear model can be used to make predictions. The al-
gorithm also determines when to create a new recept-
ive field and the associated linear model. Although
we like this idea, building local linear models in our
setting (where data can not be represented as a finite
length vector) does not seem feasible.

An example where instance based regression is used
in Q-learning is in the work of Smart and Kael-
bling (Smart & Kaelbling, 2000) where they use loc-
ally weighted regression as a Q-function generalization
technique for learning to control a real robot moving
through a corridor. In this work, the authors do not
look toward limiting the size of the example-set that is

clear(d).
clear(c).
on(d,a).
on(a,b).

move(d,c).

on(c,floor).
on(b,floor).

b c

d

a

Figure 1. Notation example for state and action in the
blocks world.

stored in memory. They focus on making safe predic-
tions and accomplish this by constructing a convex hull
around their data. Before making a prediction, they
check whether the new example is inside this convex
hull. The calculation of the convex hull again relies on
the fact that the data can be represented as a vector,
which is not the case in our setting.

Another instance of Q-learning with the use of instance
based learning is given by Forbes and Andre (Forbes
& Andre, 2002) where Q-learning is used in the con-
text of automated driving. In this work the authors
do address the problem of large example-sets. They
use two parameters that limit the inflow of examples
into the database. First, a limit is placed on the dens-
ity of stored examples. They overcome the necessity
of forgetting old data in the Q-learning setting by up-
dating the Q-value of stored examples according to the
Q-value of similar new examples. Secondly, a limit is
given on how accurately Q-values have to be predicted.
If the Q-value of a new example is predicted within a
given boundary, the new example is not stored. When
the number of examples in the database reaches a spe-
cified number, the example contributing the least to
the correct prediction of values is removed. We will
adopt and expand on these ideas in this paper.

3. Relational Reinforcement Learning

Relational reinforcement learning or RRL (Džeroski
et al., 1998) is a learning technique that combines Q-
learning with relational representations for the states,
actions and the resulting Q-function. The RRL-system
learns through exploration of the state-space in a way
that is very similar to normal Q-learning algorithms.
It starts with running a normal episode but uses the
encountered states, chosen actions and the received
awards to generate a set of examples that can then be
used to build a Q-function generalization.

RRL differs from other generalizing Q-learning tech-
niques because it uses datalog as a representation for
encountered states and chosen actions. See Figure 1
for an example of this notation in the blocks world.

To build the generalized Q-function, RRL applies a
first order logic incremental regression engine to the
constructed example set. The resulting Q-function is
then used to generate further episodes and updated by
the new experiences that result from these episodes.

Regression algorithms for RRL need to cope with the
Q-learning setting. Generalizing over examples to pre-
dict a real (and continuous) value is already much
harder then doing regular classification, but the prop-
erties of Q-learning present the generalization engine
with its own difficulties. For example, the regression
algorithm needs to be incremental to deal with the
almost continuous inflow of new (and probably more
correct) examples that are presented to the general-
ization engine. Also, the algorithm needs to be able
to do “moving target regression”, i.e. deal with learn-
ing a function through examples which, at least in the
beginning of learning, have a high probability of sup-
plying the wrong function-value.

The relational setting we work in imposes its own con-
straints on the available instance based techniques.
First of all, the time needed for the calculation of
a true first-order distance between examples is not
neglect-able. This, together with the larger memory
requirements of datalog compared to less expressive
data formats, force us to limit the number of examples
that are stored in memory.

Also, a lot of existing instance based methods, espe-
cially for regression, rely on the fact that the examples
are represented as a vector of numerical values, i.e.
that the problem space can be represented as a vector
space. Since we do not want to limit the applicability
of our methods to that kind of problems, we will not be
able to rely on techniques such as local linear models,
instance averaging or convex hull building. Our use of
datalog or herbrand interpretations to represent the
state-space and actions allows us — in theory — to
deal with worlds with infinite dimensions. In practice,
it allows us to exploit relational properties of states
and actions when describing both the Q-function and
the related policies at the cost of having little more
than a (relational) distance for calculation purposes.

4. Relational Instance Based Regression

In this section we will describe a number of differ-
ent techniques which can be used with relational in-
stance based regression to limit the number of ex-
amples stored in memory. As stated before, none of
these techniques will require the use of vector repres-
entations. Some of these techniques are designed spe-
cifically to work well with Q-learning.

We will use c-nearest-neighbor prediction as a regres-
sion technique, i.e. the predicted Q-value q̂i will be
calculated as follows:

q̂i =

∑
j

qj

distij∑
j

1
distij

(1)

where distij is the distance between example i and
example j and the sum is calulated over all examples
stored in memory. To prevent division by 0, a small
amount δ can be added to this distance.

4.1. Limiting the inflow

In IB2 (Aha et al., 1991) the inflow of new examples
into the database is limited by only storing examples
that are classified wrong by the examples already
stored in the database. However, when predicting a
continuous value, one can not expect to predict a value
correctly very often. A certain margin for error in the
predicted value will have to be tolerated. Comparable
techniques used in regression context (Forbes & Andre,
2002) allow an absolute error when making predictions
as well as limit the density of the examples stored in
the database.

We try to translate the idea of IB2 towards regres-
sion in a more adaptive manor. Instead of adopting
an absolute error-margin we propose to use an error-
margin which is proportional to the standard deviation
of the values of the examples closest to the new ex-
ample. This will make the regression engine more ro-
bust against large variations in the values that need to
be predicted. So, examples will be stored if

|q − q̂| > σlocal · Fl (2)

with q the real Q-value of the new example, q̂ the pre-
diction of the Q-value by the stored examples, σlocal

the standard deviation of the Q-value of a represent-
ative set of the closest examples (we will use the 30
closest examples) and Fl a suitable parameter.

We also like the idea of limiting the number of ex-
amples which occupy the same region of the example
space, but dislike the rigidity that a global maximum
density imposes. Equation 2 will limit the number of
examples stored in a certain area. However, when try-
ing to approximate a function such as the one shown
in Figure 2, it seems natural to store more examples
of region A than region B in the database. Unfortu-
nately, region A will yield a large σlocal in Equation
2 and will not cause the algorithm to store as many
examples as we would like.

We will therefore adopt an extra strategy that stores
examples in the database until the local standard-
deviation (i.e. of the 30 closest examples) is only a

A B

Figure 2. To predict the shown function correctly, an in-
stance based learner should store more examples form area
A than area B.

fraction of the standard deviation of the entire data-
base, i.e. an example will be stored if

σlocal >
σglobal

Fg
(3)

with σlocal the standard deviation of the Q-value of
the 30 closest examples, σglobal the standard deviation
of the Q-value of all stored examples and Fg a suitable
parameter.

This will result in more stored examples in areas with
large variance of the function value and less in areas
with small variance. An example will be stored by the
RRL-system if it meats one of the two criteria.

Both Equation 2 and Equation 3 can be tuned by vary-
ing the parameters Fl and Fg.

4.2. Throwing away stored examples

The techniques described in the previous section might
not be enough to limit the growth of the database suf-
ficiently. When memory limitations are reached, or
when calculation times grow too large, one might have
to place a hard limit on the number of examples that
can be stored. The algorithm then has to decide which
examples it can remove from the database.

IB3 uses a classification record for each stored example
and removes the examples that perform worse than
others. In IB3, this removal of examples is added to
allow the instance based learner to deal with noise in
the training data. Because Q-learning has to deal with
moving target regression and therefore inevitably with
noisy data, we will probably benefit from a similar
strategy in our regression techniques. However, be-
cause we are dealing with continuous values, keeping a
classification record which lists the number of correct
and incorrect classifications is not feasible.

We suggest two separate scores that can be calculated
for each example that will indicate which example we
will remove from the database.

4.2.1. Error Contribution

Since we are in fact trying to minimize the predic-
tion error, we can calculate for each example what the
cumulative prediction error is with and without the
example. The resulting score for example i looks as
follows:

Scorei = (qi−q̂i)2+
1
N

∑

j

[(qj−q̂−i
j)2−(qj−q̂j)2] (4)

with N the number of examples in the database, q̂j the
prediction of the Q-value of example j by the database
and q̂−i

j the prediction of the Q-value of example j by
the database without example i. The lowest scoring
example is the example that should be removed.

4.2.2. Error Proximity

A more simple score to calculate is based on the prox-
imity of examples in the database that are predicted
with large errors. Since the influence of stored ex-
amples is inversely proportional to the distance, it
makes sense to presume that examples which are close
to the examples with large prediction errors are also
causing these errors. The score for example i can be
calculated as:

Scorei =
∑

j

|qj − q̂j |
distij

(5)

where q̂j is the prediction of the Q-value of example
j by the database and distij the distance between ex-
ample i and example j. In this case, the example with
the highest score is the one that should be removed.

Another scoring function is used by (Forbes & Andre,
2002). In this work, the authors also suggest not just
throwing out examples, but use instance-averaging in-
stead. This is not possible using datalog representa-
tions and therefore is not used in our system.

4.3. Q-learning specific strategies: Maximum
Variance

The major problem we encounter while using instance
based learning for regression is that it is impossible to
distinguish high function variation from actual noise.
It seems impossible to do this without prior knowledge
about the behavior of the function that we are trying
to approximate. If one could pose a limit on the vari-
ation of the function to be learned, this limit might
allow us to distinguish at least part of the noise from
function variation. For example in Q-learning, one
could know that

|qi − qj |
distij

< M (6)

or one could have some other bound that limits the dif-
ference in Q-value in function of the distance between
the examples.

Since we are using our instance based regression al-
gorithm in a Q-learning setting, we can try to exploit
some properties of this setting to our advantage. In
a deterministic application and with the correct ini-
tialization of the Q-values (i.e. to values that are un-
derestimations of the correct Q-value), the Q-values
of tabled Q-learning follow a monotonically increasing
path during calculation. This means that the values in
the Q-table will always be an underestimation of the
real Q-values.

When Q-learning is performed with the help of a gen-
eralization technique, this behavior will normally dis-
appear. The Q-value of a new example is normally
given by

Q(s, a) = R + maxa′Q̂(s′, a′) (7)

where s′ is the state that is reached from performing
action a in state s and Q̂(s′, a′) is the estimation of the
Q-value of the state-action pair (s′, a′). This estima-
tion however, when done by Equation 1 might not be
an underestimation.

By using the following formula for Q-value prediction

q̂i =

∑
j

(qj−(M ·distij))
distij∑

j
1

distij

(8)

where M is the same constant as the M in Equation 6.
we ensure a generalization which is an underestimate.

With all the Q-value predictions being underestima-
tions, we can use Equation 6 to eliminate examples
from our database. Figure 3 shows the forbidden re-
gions that result from the combination of the domain
knowledge represented by the maximum derivative and
the Q-learning property of having underestimations of
the values to be predicted. We use these forbidden
regions to eliminate examples from our database. In
the example of Figure 3 this would mean that we can
remove examples b and f . Example d will stay in the
database.

The applicability of this approach is not limited to
deterministic environments only. Since the algorithm

a

b

c

d

e

f

g

Forbidden Territory

Figure 3. Using Maximum Variance to select Examples.

will calculate the highest possible Q-value for each ex-
ample it can also be used in stochastic environments
where actions have a chance of failing. If accidental
results of actions are of lesser quality than the nor-
mal results, the algorithm will still find the optimal
strategy. If actions can have better than normal res-
ults, this approach can not be used.

5. Experiments

In this section we describe the tests we ran to com-
pare the database management approaches and also
compare instance-based RRL to tree-induction-based
RRL in a blocks world learning task.

5.1. A simple task

To test the different database management ap-
proaches we suggested, we devised a very simple (non-
relational) Q-learning task. We let an agent walk
through the corridor shown in Figure 4. The agents
starts on one end of the corridor and receives a reward
of 1.0 when he reaches the other end. The distance
between two state-action-pairs that was used, is re-
lated to the number of steps it takes to get from one
state to the other, slightly increased if the chosen ac-
tions differ.

St
ar

t

G
oa

l

Figure 4. The corridor application.

The Q-function related to this problem is a very
simple, monotonically increasing function, so that it
only takes two (well chosen) examples for the Q-learner
to learn the optimal policy. This being the case,
we chose to compare the average prediction-error on
all state-action-pairs for the different suggested ap-
proaches.

5.1.1. Inflow Behavior

To test the two inflow-filters of section 4.1 we ran sev-
eral experiments varying the Fl and Fg values separ-
ately. Figure 5 shows the average prediction errors
over 50 test trials. Figure 6 shows the corresponding
database sizes.

The influence of Fg is exactly what one would expect.
A larger value for Fg forces the algorithm to store more
examples but lowers the average prediction error. It
is worth noticing that in this application the influence
on the size of the database and therefore on the calcu-
lation time is quite large with respect to the relatively

 0.016

 0.018

 0.02

 0.022

 0.024

 0 50 100 150 200

A
ve

ra
ge

 P
re

di
ct

io
n

E
rr

or

Number of Episodes

Effect of Filter Parameters on Prediction Error

’Fl=3 Fg=5 error’
’Fl=5 Fg=3 error’
’Fl=5 Fg=5 error’

’Fl=10 Fg=5 error’
’Fl=5 Fg=8 error’

Figure 5. Prediction errors for varying inflow limitations.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200

A
ve

ra
ge

 N
um

be
r

of
 S

to
re

d
E

xa
m

pl
es

Number of Episodes

Effect of Filter Parameters on Data-set Size

’Fl=3 Fg=5 size’
’Fl=5 Fg=3 size’
’Fl=5 Fg=5 size’

’Fl=10 Fg=5 size’
’Fl=5 Fg=8 size’

Figure 6. Database sizes for varying inflow limitations.

small effect this has on the prediction errors.

The influence of Fl is not so predictable. First of
all, the influence of this parameter on the size of the
database seems limited to say the least. Second, one
would expect that an increase of the value of Fl would
cause an increase in the prediction error as well. Al-
though the differences we measured were not signific-
ant enough to make any claims, this does not seem to
be the case.

5.1.2. Adding an upper limit

We now test the two scoring functions from section
4.2 by adding an upper limit to the database size that
RRL is allowed to use. We set the two parameters Fl

and Fg to 5.0 — values that gave both average pre-
diction errors and average database size — and varied
the number of examples that RRL could store to make
predictions.

Figure 7 shows the average prediction-error as a func-
tion of the number of learning episodes when using
the error-contribution-score (ec-score) of Equation 4
for different maximum database sizes. The ’no limit’
curve in the graph shows the prediction error when no
examples are removed.

In Figure 8 we show the average prediction-error when
managing the database size with the error-proximity-
score (ep-score) of Equation 5. Although differences
with the ec-score are small, ep-score management per-

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200

A
ve

ra
ge

 P
re

di
ct

io
n

E
rr

or

Number of Episodes

Select by Error Contribution

’no limit’
’50 examples’

’100 examples’
’200 examples’

Figure 7. The effect of selection by Error Contribution.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200

A
ve

ra
ge

 P
re

di
ct

io
n

E
rr

or

Number of Episodes

Select by Error Proximity

’no limit’
’50 examples’

’100 examples’
’200 examples’

Figure 8. The effect of selection by Error Proximity.

forms at least as well and is easier to calculate.

5.1.3. The effects of Maximum Variance

Figure 9 shows the prediction-error when the max-
imum variance (or mv) strategy is used to manage
the database. The prediction errors are a lot larger
than with the other strategies, but RRL is still able
to find the optimal strategy. The advantage of the
mv-strategy lies in the number of examples stored in
the database. With this particular application, only
20 examples are stored, one for each possible Q-value.

5.2. The Blocks World

To compare the new instance-based RRL with tree-
induction-based RRL (RRL-Tg) we ran experiments
in the blocks world with a variable number of blocks.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200

A
ve

ra
ge

 P
re

di
ct

io
n

E
rr

or

Number of Episodes

Prediction Error for Maximum Variance

’no limit’
’100 ec-score’
’100 ep-score’
’Max Variance’

Figure 9. The effect of selection by Maximum Variance.

RRL-Tg (Driessens et al., 2001) uses an incremental
first-order regression tree algorithm as the Q-function
approximation technique. We compared its perform-
ance to the algorithm that uses the error-proximity-
score to remove examples and to the approach that
uses the maximum variance to limit the examples
stored in the database.

To train RRL we let it experiment in worlds which
contain 3 to 5 blocks and allow it to ask for guidance
as described in earlier work (Driessens & Džeroski,
2002a; Driessens & Džeroski, 2002b) in a world with
10 blocks. This guidance is provided in 10% of the
training-episodes.

We test RRL on three different goals in the blocks
world: stacking, unstacking and putting one specific
block on top of another. In the stack-goal RRL receives
a reward of 1.0 if it puts all the blocks in one stack
in the minimum number of steps and 0.0 otherwise.
In the unstack-goal, similar rewards are given when
RRL succeeds in putting all the blocks on the floor
in the minimum number of steps. The rewards for
the on(A,B)-goal also behave similarly, but the specific
blocks to be stacked can be changed in each learning
episode.

To be able to use instance-based learning in the blocks
world we need a distance defined on our representation
of the blocks world. (See Figure 1). We define our
distance as follows:

1. Try to rename the blocks so that block-names that
appear in the action (and possibly in the goal)
match between the two state-action pairs. If this
is not possible, add a penalty to your distance for
each mismatch. Rename each block that does not
appear in the goal or the action to the same name.

2. To calculate the distance between the two states,
regard each state (with renamed blocks) as a set
of stacks and calculate the distance between these
two sets using the matching-distance between sets
based on the distance between the stacks of blocks
(Ramon & Bruynooghe, 2001).

3. To compute the distance between two stacks of
blocks, transform each stack into a string by read-
ing the names of the blocks from the top of the
stack to the bottom, and compute the edit dis-
tance (Wagner & Fischer, 1974) between the res-
ulting strings.

While this procedure defines a generic distance, it will
adopt itself to deal with different goals as well as dif-
ferent numbers of blocks in the world. The renaming

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 R
ew

ar
d

Number of Episodes

Comparison for the stack-goal

’RRL-TG’
’RIB-MV’
’RIB-EP’

Figure 10. Comparison between RRL-TG and RRL-RIB
for the stack-goal in the blocks world.

step (Step 1) even allows instance-based RRL to train
on similar goals which refer to different specific blocks.
This is comparable to RRL-Tg which uses variables to
represent blocks which appear in the action and goal
description. Blocks which do not appear in the action
or goal description are all regarded as generic blocks,
i.e. without paying attention to the specific identity
of these blocks.

In the graphs we will refer to the algorithm that
uses the error-proximity-score as RIB-EP and to the
approach that uses the maximum variance as RIB-
MV. Figure 10 shows the results for the stack-goal.
We allowed the error-proximity approach to store 500
examples, a number it reaches after approximately
300 episodes. The graph shows that both instance-
based policies outperform RRL-Tg. It also shows that
the learning progression is smoother than for RRL-
Tg. RRL-Tg relies on finding the correct split for
each node in the regression tree. When this node is
found, this results in large improvements in the learned
policy. Instance-based RRL does not rely on such key-
decisions and therefore can be expected to be more
robust than RRL-Tg.

Figure 11 and 12 show the results for the unstack-goal
and on(A,B)-goal respectively. It should be noted that
for both tasks, the error-proximity based algorithm
did not reach the 3000 examples we allowed it to
store in its database and therefore did not remove
any examples. Both graphs show that instance-based
RRL clearly outperforms RRL-Tg. RRL with instance
based predictions is able to learn almost perfect beha-
vior in worlds which are related to its training envir-
onment. RRL-Tg never succeeded in this without the
use of explicit policy learning (P-learning) (Džeroski
et al., 1998; Driessens et al., 2001).

6. Conclusions

In this work, we introduced relational instance based
regression, a new regression technique that can be used

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

A
ve

ra
ge

 R
ew

ar
d

Number of Episodes

Comparison for the unstack-goal

’RRL-TG’
’RIB-MV’
’RIB-EP’

Figure 11. Comparison between RRL-TG and RRL-RIB
for the unstack-goal in the blocks world.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000

A
ve

ra
ge

 R
ew

ar
d

Number of Episodes

Comparison for the on(A,B)-goal

’RRL-TG’
’RIB-MV’
’RIB-EP’

Figure 12. Comparison between RRL-TG and RRL-RIB
for the on(A,B)-goal in the blocks world.

when instances can not be represented as vectors. We
integrated this regression technique into relational re-
inforcement learning and thereby added the robustness
of instance based generalizations to RRL.

Several database management approaches were de-
veloped to limit the memory requirements and compu-
tation times by limiting the number of examples that
need to be stored in the database. We showed and
compared the behavior of these different approaches
in a simple example application and compared the
behavior of instance-based RRL with another RRL-
algorithm (RRL-Tg) which uses a regression tree for
Q-function generalization. Empirical results clearly
show that instance-based RRL outperforms RRL-Tg.

Acknowledgments

Jan Ramon is a post-doctoral fellow of the Katholieke
Universiteit Leuven.

References

Aha, D. W., Kibler, D., & Albert, M. K. (1991).
Instance-based learning algorithms. Machine Learn-
ing, 6, 37–66.

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997).

Locally weighted learning. Artificial Intelligence Re-
view, 11, 11–73.

Driessens, K., & Džeroski, S. (2002a). Integrating ex-
perimentation and guidance in relational reinforce-
ment learning. Proceedings of the Nineteenth Inter-
national Conference on Machine Learning (pp. 115–
122). Morgan Kaufmann Publishers, Inc.

Driessens, K., & Džeroski, S. (2002b). On using guid-
ance in relational reinforcement learning. Proceed-
ings of Twelfth Belgian-Dutch Conference on Ma-
chine Learning (pp. 31–38). Technical report UU-
CS-2002-046.

Driessens, K., Ramon, J., & Blockeel, H. (2001).
Speeding up relational reinforcement learning
through the use of an incremental first order de-
cision tree learner. Proceedings of the 13th European
Conference on Machine Learning (pp. 97–108).
Springer-Verlag.

Džeroski, S., De Raedt, L., & Blockeel, H. (1998). Re-
lational reinforcement learning. Proceedings of the
15th International Conference on Machine Learning
(pp. 136–143). Morgan Kaufmann.

Forbes, J., & Andre, D. (2002). Representations for
learning control policies. Proceedings of the ICML-
2002 Workshop on Development of Representations
(pp. 7–14). The University of New South Wales,
Sydney.

Kibler, D., Aha, D. W., & Albert, M. (1989). Instance-
based prediction of real-valued attributes. Compu-
tational Intelligence, 5, 51–57.

Ramon, J., & Bruynooghe, M. (2001). A polynomial
time computable metric between point sets. Acta
Informatica, 37, 765–780.

Schaal, S., Atkeson, C. G., & Vijayakumar, S. (2000).
Real-time robot learning with locally weighted stat-
istical learning. Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (pp.
288–293). IEEE Press, Piscataway, N.J.

Smart, W. D., & Kaelbling, L. P. (2000). Practical re-
inforcement learning in continuous spaces. Proceed-
ings of the 17th International Conference on Ma-
chine Learning (pp. 903–910). Morgan Kaufmann.

Wagner, R., & Fischer, M. (1974). The string to string
correction problem. Journal of the ACM, 21, 168–
173.

Watkins, C. (1989). Learning from delayed rewards.
Doctoral dissertation, King’s College, Cambridge.

