From: IAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Success in Spades: Using Al Planning Techniques to Win the World
Championship of Computer Bridge

Stephen J. J. Smith Dana S. Nau Thomas A. Throop
Department of Mathematics Department of Computer Science, Great Game Products
and Computer Science and Institute for Systems Research 8804 Chalon Drive
Hood College University of Maryland Bethesda, MD, USA
Frederick, MD, USA College Park, MD, USA brbaron@erols.com
sjsmith@nimue.hood.edu nau@cs.umd.edu
Abstract tree search technigques used in computer programs for

The latest world-championship competition for computer 9@mes such as chess and checkers, the game tree would
bridge programs was tfaron Barclay World Bridge Computer ~ N€€d to include all of the moves a playeight be able to
Challenge hosted in July 1997 by the American Contract Bridge Make. The size of this tree would vary depending on the
League. As reported immfhe New York Timesand The particular b“dge deal—but |t WOUId inCIUde about
Washington Posthe competition's winner was a new version of 5.6x10* leaf nodes in the worst case (Smith 1997, p. 226),
Great Game ProductBridge Baronprogram. This version, ~ and about 2.3x0leaf nodes in the average case (Lopatin
Bridge Baron 8, has since gone on the market; and during the 1992, p. 8). Since a bridge hand is normally played in just
last three months of 1997 it was purchased by more than 1000a few minutes, there is not enough time for a game-tree
customers. search to search enough of this tree to make good

The Bridge Baron’s success also represents a significant decisions.
success for research on Al planning systems, because Bridge Until recently, the approach that was most successful in
Baron 8 uses Hierarchical Task-Network (HTN) planning computer programs for the game of bridge was to use
techniques to plan its declarer play. This paper gives an domain-dependent pattern-matching techniques that do
overview of those techniques and how they are used. not involve a lot of look-ahead. Most commercially
available bridge programs use this approach, including the
previous version of Great Game Produdsidge Baron
(Throop 1983, Great Game Products 1997). The Bridge
To be successful both in bridge competitions and as aBaron is generally acknowledged to be the best available
commercial product, a computer program for the game of commercial program for the game of contract bridge.
bridge must perform as well as possible in all aspects of Before the incorporation of Al techniques (described later
the game. Customers want as challenging an opponent a§ this paper), it had won four international computer
possible, and of course the strongest program has the bedgridge championships. In their review of seven
chance of winning a competition. However, although commercially available bridge-playing programs (Manley
researchers have had great success in developing high1993), the American Contract Bridge League rated the
performance programs for games such as chess andBridge Baron to be the best of the seven, and rated the
checkers, they have not had as much success in the gaméki” of the Bridge Baron to be the best of the five that do
of contract bridge. Even the best bridge programs can bedeclarer play without "peeking” at the opponents' cards.
beaten by the best players at many local bridge clubs. Despite the success of the Bridge Baron, improving its

One important reason why it is difficult to develop good performance became more and more difficult as its
computer programs for bridge is that bridge is an relatively simple pattern-matching techniques revealed
imperfect information game. Bridge players don’t know their limitations. Without more sophisticated techniques,
what cards are in the other players’ hands (except for, the Bridge Baron would risk becoming less competitive
after the opening lead, what cards are in the dummy’s with other bridge programs. Thus, we needed to develop
hand); thus each player has only partial knowledge of the more sophisticated Al techniques to improve the
state of the world, the possible actions, and their effects. If performance of the Bridge Baron.
we were to use a naive adaptation of the classical game-

Problem Description

Copyright © 1998, American Association for Artificial Ifitgence
(www.aaai.org). All rights reserved.

North play, declarer plays both declarer’'s cards and dummy’s

cards.
Fl F F The basic unit of card play is theck, in which each
P . w player in turnplaysa card by placing it face-up on the
table as shown in Figure 1. The first card played is that

*3 card that wased; and whenever possible, the players must
- follow suit that is, play cards in the suit of the card that
was led. The trick is taken by whoever played the highest
East card in the suit led, unless some player plays a card in the
trump suit, in which case whoever played the highest
trump card wins the trick.
The card play proceeds, one trick atirae, until no
player has any cards left. At that point, the bridge hand is
South scored according to how many tricks each team took, and
‘ ’ whether declarer’'s team took as many tricks as they

promised to take during the bidding.

Figure 1. An example of a bridge hand during The Bridge Baron

the play of the first trick. Here, South is declarer, The Bridge Baron consists of tens of thousands of lines of
North is dummy, and West and East are C code. Separate Bridge Baron executables run as a
defenders. Windows application, an M®OS appliation, and a

Macintosh application; the Windows application accounts
for the overwhelming majority of sales.

In the Bridge Baron, over fifty thousand lines of code
are devoted solely to theridge engine which calculates
Overview of Bridge wha_t bids to make and _V\(hat (_:ards to play. The bridge
Bridae is a game olaved by four plavers. using a standardenglr-]e can be roughly divided into three parts, bgse_d on

9 game piay y four players, using functionality: declarer play, defensive play, and bidding.
deck of 52 playing cards, divided into fauits (spadess, The bridge engine represents knowledge largely through
heartsw, diamondse, and clubs), each containing 13 a4-hoc pieces of code developed to address particular
cards. The players (who are normally referred to as North, bridge situations.

South, East, and West), play as two opposing teams, With other tens of thousands of lines of code handle the user
North and South playing as partners against East andinterface. The user interface allows customers to play

Application Description

West. A bridge deal consists of two phaggsiding and matches against the computer, to generate deals that
play: conform to particular specifications, to see how the Bridge

Bidding. The cards are dealt equally among the four Baron determines its bids, and the like.

players. The players makbids for the privilege of The user interface interacts with the bridge engine by

determining which suit is trump and what tlegel of the calling C functions that recommend a particular bid or

contract is. Nominally, each bid consists of two parts: play in the current situation. The user interface also
some number dficks (see below) that the bidder promises updates the data structures that provide the bridge engine
to take, and which suit the bidder is proposing as the with the details of the current situation.
trump suit. However, various bidding conventions have Most commonly, a customer sits down with the Bridge
been developed in which these bids are also used to convearon to play some number of deals. The customer takes
information to the bidder’'s partner about how strong the the role of one of the four players, and the Bridge Baron
bidder’'s hand is. takes the role of the customer’'s partner. The Bridge
The bidding proceeds tihno player wishes to make a Baron also takes the roles of the customer's two
higher bid. At that point, the highest bid becomes the opponents. Each role is separate: for example, one
contractfor the hand. In the highest bidder's team, the opponent does not know what cards the other opponent

player who bid this suit first becomesgeclare; and has, nor what cards the customer’s partner has. (The
declarer’s partner becomdammy The other two players customer can allow all of the Bridge Baron players to have
become thelefenders complete knowledge of all of the cards by changing an

Play. The first time that it is dummy’s turn to play a card ©Ption.) , _ _
(see below), dummy lays her or his cards on the table, For declarer play, previous versions of the Bridge Baron

face-up so that everyone can see them; and during the cargSéd ad-hoc pattern-maiching techniques. ~ However,
Bridge Baron 8 (the latest version) makes use of the new

Al planning techniques described later in this paper. Table 1. Game-tree size produced in bridge by a full
Users may select whether they want to use the new Al game-tree search and by our HTN planning approach.

planning techniques or the old ad-hoc techniques, which Brute-force search Our approach
we did not remove from the Bridge Baron. We added Worstcase =~ 5.6x10*leaves ~ 305,000 leaves
options to limit the time that the new Al planning Avg.case =~ 2.3x13*leaves ~ 26,000 leaves

techniques spend on a particular play to 30 seconds, 60
seconds, or 120 seconds. This new version of the Bridgeq,arview of HTN Planning

Baron became commercially available in October 1997. , .
HTN planning was originally developed more than 20

years ago (Sacerdoti 1974; Tate 1977), and has long been
Uses of Al Technology thought to have good potential for use in real-world
) . planning problems (Currie and Tate 1985; Wilkins 1988),
To improve the play of the Bridge Baron, we pyut it has only been recently that researchers have
supplemented its previously existing routines for declarer developed a coherent theoretical basis for HTN planning.
play with routines based on HTN (Hierarchical Task- Recent mathematical analyses of HTN planning have
Network) planning techniques. Our approach (Smith et shown that it is strictly more expressive than planning
al. 1996a; Smith et al. 1996c; Smith et al. 1996e; Smith yjth STRIPS-style operators (Eret al 1994b), and have
1997) grew out of the observation that bridge is a game of gstaplished a number of properties such as soundness and
planning. In playing the cards, there are a number of completeness of planning algorithms (Eetlal. 1994a),
standard tactical ploys that may be used by the variouscomplexity (Erolet al. 1996), and the relative efficiency of
players to try to win tricks. These have standard namesyarious control strategies (Tsunabal 1996; Tsunetet
(such as ruffing, cross-ruffing, finessing, cashing out, and 4. 1997). A domain-independent HTN planner is
discovery plays); and the ability of a bridge player depends gyailable at
partly on how skillfully that player can plan and execute <http:/mww.cs.umd.edu/projects/plus/umc@nual> for
these ploys. This is especially true for declarer, who is ;se in experimental studies, and domain-specific HTN
responsible for playing both declarer’s cards and dummy’s planners are being developed for several industrial
cards. In most bridge hands, declarer will spend some timeproplems (Aarupet at 1994;Hebbaret al. 1996; Smithet

at the beginning of the game formulating a rough plan fc_Jr al. 1996b: Smithet al. 1996d: Wilkins & Desimone
how to play declarer's cards and dummy's cards. This 1994,

plan will normally be some combination of various tactical To create plans, HTN planning usesask

pon;. Because of declarer’s uncertainty about what Cardsdecompositionin which the planning system decomposes
are in the opponents’ hands and how the opponents mayasks into smaller and smaller subtasks until primitive
choose to play those cards, the plan will usually need t0t55ks are found that can be performed directly. HTN
contain contingencies for various possible card plays by planning systems have knowledge bases containing
the opponents. _ methods Each method includes a prescription for how to
We have taken advantage of the planning nature of gecompose some task into a set of subtasks, with various
bridge, by adapting and extending some ideas from HTN yestrictions that must be satisfied in order for the method
planning. We use planning techniques to develop gameg pe applicable, and various constraints on the subtasks
trees in which the number of branches at each nodegng the relationships among them. Given a task to
correspond to the differerstrategiesthat a player might accomplish, the planner chooses an applicable method,
pursue rather than the different cards the player might bejnstantiates it to decompose the task into subtasks, and
able to play. Since the number of sensible strategies isthen chooses and instantiates other methods to decompose
usually much less than the number of possible card plays,ihe subtasks even further. If the constraints on the subtasks
this lets us develop game trees that are small enough to bgy the interactions among them prevent the plan from

searched completely, as shown in Table 1. Below we give peing feasible, the planning system will backtrack and try
an overview of HTN planning, and describe how we siner methods.

adapted it for use in the Bridge Baron.

As a very simple example, Figure 2 shows two our methods, the subtasks are totally ordered; that is, the
methods for seeing a movie: seeing it in a theater, andorder in which the subtasks are listed for a method is the
seeing it at home on videotape. Seeing it in a theaterorder in which these subtasks must be completed.
involves going to the theater, getting a ticket to the movie, For example, Figure 3 shows how our algorithm
watching the movie, and going home. Seeing it at homewould instantiate some of its methods on a specific bridge
involves going to the store, buying the videotape, going hand. Here, South (declarer) is tryindiresse a tactical
home, and watching the movie. Figure 2 also shows oneploy in which a player tries to win a trick with a high card,
method for going places: riding a bicycle. by playing it after an opponent who has a higher card. If

Now, consider the task of seeing the moviganic. West (a defender) has thwK, but does not play it when
Figure 2 shows how a planner might instantiate the “see in hearts are led, then North (dummy) will be able to win a
theater” method for this task, and how it might instantiate trick with the Q, because North plays after West. (West
the “ride bicycle” method twice to handle the subtasks of yoyldn't play thewK if she or he had any alternative,

gettirlng. to the treatgr and gtitting home. anning. | because then North would win the trick with twé& and
Solving a planning problem using HTN planning is i 5 |ater trick with thewQ.) However, if East (the other

generally much more complicated than in this simplg defender) has theK, East will play it after North plays
example. For example, the planner may need to recognize he »Q, and North \;viII ot win the trick. Note that the
and resolve interactions among the subtasks (such as thé ! ;

necessity of getting to the theater before the movie begins)..met:]hOdS refer to actions performed by each of the players
If such interactions cannot be worked out, then the planner In the game.

may need to backtrack and try another method instead. To generate game trees, our plann_lr)g algonthm uses a
procedure similar to task decomposition to build up a

. game tree whose branches represent moves generated by
HTN Planning for Declarer Play these methods. It applies all methods applicable to a given
The Tignum 2 portion of Bridge Baron 8 uses an state of the world to produce new states of the world, and
adaptation of HTN planning techniques to plan declarer continues recursively until there are no applicable methods
play in contract bridge. To represent the various tactical that have not already been applied to the appropriate state
schemes of card-playing in bridge, Tignum 2 uses of the world. For example, Figure 4 illustrates the
structures similar to HTN methods, but modified to evaluation of the game tree resulting from the instantiation
represent multi-agency and uncertainty. Tignum 2 usesof the finessing method. This game tree is produced by
state information setto represent the locations of cards taking the plays shown in Figure 3 and listing them in the

about which declarer is certain, aielief functionsto order in which they will occur. In Figure 4, declarer has a
represent the probabilities associated with the locations of choice between the finessing method andcshing-out
cards about which declarer is not certain. method, in which declarer simply plays all of the high

Some methods refer to actions performed by the cards that are guaranteed to win tricks.
opponents. In Tignum 2, we allow these methods to make For a game tree generated in this manner, the number
assumptions about the cards in the opponents’ hands, an@f branches from each state is not the number of moves
design our methods so that most of the likely states of thethat an agent can make (as in conventional game-tree
world are each covered by at least one method. In any of

— SEe-MOVIq ys: South declarer, North dum ovie (Titanic) |
Opponents: defenders, West & East go (home, theater) |

. . . Contract: South —#¢
see in theatg Finesse(P:S)— 51ead;” South at trick
> O

S , I
go(home theater)| getiq LeadLow(P;S)) || gothe] FinesseTwo(RS)

il <>y’

unlock bicycle
ride (home, theater)
lock bicycle
icket (Titanic)
watch (Titanic)

an (theater, home)

pSouth¥2
North:®$AQ765
Out: YKJT984

one possible | PlayCard(P;S,R || EasyFinesse(fS) || StandardFinesse{FS) || BustedFinessefS) unlock bicycle
;netho_d \ 3 I ride (theater, home)
‘or going Ne A3) lock bicycle
somewhere s

FinesseFour(ES)
I —~0 d
unlock bicycle” rideFMAJJJanléﬁaimm |
| PlayCard(:S,R) 1 PlayCard(R;S,R,) || PlayCard(R;S,R) || PlayCard(R;S,R;) |

Figure 2. A very WasheY8xample iN@strattfd how HTR3skr¥ing might B2stis® to plan to see a movie.
Figure 3: An instantiation of the “finesse” method for a specific bridge hand.

["FINESSE" E_w) Tignum 2 code. The contenders included five computer

W—w3 N—%Q 0.5 | _o00 programs; the final place of each program in the
0.9844 H E_WK competition is shown in Table 2.
' +210 210/ ...
+620
S—v2 AL W—¥K -N—VA @ E—¥3
+210| 0-0078 =54 +g;0 +620 Table 2: The contenders in ttBaron Barclay World
W—a3 -N—VA ~ E—¥3 Bridge Computer Challengand their final places.
)
_ 0.0078_50 200 J -200 Pr_ogram Country Performance
Bridge Baron USA 1st place
+21 "CASH OUT" \ Q-Plus Germany 2nd place
MicroBridge 8 Japan 3rd place
S—#A ()W_*3 -N_*4 o E—#5 .. Meadowlark USA 4th place
100 100 ~100 _J/ —100 GIB USA 5th place
Figure 4: Evaluating the game tree produced from the The official release of Bridge Baron 8 went on sale in
instantiated “finesse” method of Figure 3. October 1997; and during the last three months of 1997,

more than 1000 customers purchased it. In his review of

search procedures), but instead is the number of differentbridge programs, Jir‘r‘] Loy (1997) sqid of .this new version
of the Bridge Baron: “The card play is noticeably stronger,

tactical schemes the agent can employ. As shown in Table g)
1, this game tree is small enough that it can be searchedﬂa'('ng it the strongest program on the market.
all the way to the end, to predict the likely results of the
various sequences of cards that the players might play.

To evaluate the game tree at nodes where it is declarer’s
turn to play a card, our algorithm chooses the play that
results in the highest expected score. For example, inChronoIogy

Figure 4, South chooses to play %2 that resulted from A gingle graduate student did all of the programming of
the “finesse” method, which results in an expected score of 5, TN planning techniques for bridge, reusing a few
+210, rather than theA that resulted from the “cash out” pyundred lines of code from the Bridge Baron. Other

method, which results in a score of -100. __ people—primarily two of them, with occasional assistance
To evaluate the game tree at nodes where it is anfrom at least two others—helped by discussing what
opponent's turn to play a card, our algorithm takes a knowledge to incorporate and how to perform the
weighted average of the node's children, based onimplementation. We did not use any formal development
probabilities generated by our belief function. For methods.
example, because the probability is 0.9844 that North \ve pegan our work on adapting HTN planning
holds at least one “low” heart—that is, at least one heart techniques to bridge with a program callBgnum We
other than thewK—and because North is sure to play a began working on some routines for reasoning about the
low heart if North has one, our belief function generates probable locations of cards in 1989, most of which were
the probability of 0.9844 for North’s play of a low heart. eventually abandoned because they required too much
North’s other two possible plays are much less likely and execution time. We began work in earnest on Tignum in
receive much lower probabilities. 1991, and after writing nine thousand lines of code,
abandoned almost all of it in 1993.
L We abandoned Tignum because it was poorly
Application Use and Payoff implemented. It did not allow us to consider alternative

We brought a pre-release version of Bridge Baron 8 to the Plays; it required every piece of bridge knowledge to be
most recent world-championship cortiien for computer coded by hand with very little possibility of code reuse; it
bridge programs: theBaron Barclay World Bridge ran slowly; and it was difficult to maintain.

Computer Challengewhich was hosted by the American ~ After abandoning Tignum in 1993, we began work
Contract Bridge League (ACBL). The five-day immediately on Tignum 2, a much better implementation
competition was held in Albuguerque, New Mexico, from ©f the ideas used in Tignum. Tignum 2 allowed us to
28 July 1997 to 1 August 1997. As reportedTire New consider alternative plays. While bridge knowledge still
York Times(Truscott 1997) andThe Washington Post had to be coded by hand, judiciously chosen macros and
(Chandrasekaran 1997), the winner of the competition wasWell-designed components made code reuse easy. Tignum
the Bridge Baron—more specifically, the winner was the 2 ran more quickly and was much easier to maintain.
pre-release version of Bridge Baron 8, incorporating our

Application Development and Deployment

Tignum 2 became ultimately stessful in February using the stylized logical expressions found in most Al
1997. To test our implementation of it, we played it planning systems. For example, by knowing the current
against an older version of the Bridge Baron. In (Smith state, Tignum 2 can decide which of 26 finesse situations
1997) we reported the results of our comparison of are applicable: with partial-order planning, it would be
Tignum 2 against this version of the Bridge Baron on much harder to decide which of theoan be made
1,000 randomly generated bridge deals (including both applicable. The arbitrary computer code also enables us to
suit and no-trump contracts). Each deal was played twice,encode the complex numeric computations needed for
once with Tignum 2 as declarer and once with Bridge reasoning about the probable locations of the opponents'
Baron as declarer; the winner of the deal was defined to becards.
whichever declarer did better. On declarer play, Tignum 2
defeated Bridge Baron by 250 to 191, with 559 ties. These Maintenance
results are statistically significant at the a = 0.025 level.
We had never run Tignum 2 on any of these deals before
this test, so these results are free from any training-set
biases.

These results allowed us to move forward with the
incorporation of Tignum 2 into a new version of the
Bridge Baron,Bridge Baron 8 In Bridge Baron 8, we
added an option to allow customers to select whether they
wanted to use the new Al planning techniques or the old
ad-hoc techniques, which we did not remove from the
Bridge Baron. We added options to limit the length of
Tignum 2's planning time on a particular play to 30
seconds, 60 seconds, or 120 seconds. This new version o
the Bridge Baron became commercially available in f
October 1997.

To date, only the original programmer has maintained the
HTN planning routines in Bridge Baron 8, though we
hope to have another programmer begin modifying these
routines soon. In the past, the Bridge Baron has been
improved on a daily basis, to make its performance of
bidding and play better; in the future, we expect this to
continue. Domain knowledge about bridge changes
relatively infrequently, but plenty of domain knowledge
about bridge has simply not been implemented yet in our
HTN planning techniques.

The HTN planning routines in Bridge Baron 8
xplicitly handle many bridge techniques: cashing out,
uffing out, crossing, finesses, free finesses, automatic
nesses, marked finesses, proven finesses, sequence
winners, length winners, winners that depend on splits,
opponents on lead, opponents finessing against declarer
Lessons Learned and dummy, dangerous opponents, ducking, hold-up

We learned several lessons from the development of thisplays, discarding worthless cards, drawing trumps,
product. We wish we had thought out the implementation ruffing, and setting up ruffs. Somebvious donain
more carefully before beginning to write code for it. knowledge missing from these routines include endplays
Having Tignum as an unintended prototype before the full and squeezes; we have not handled these techniques
implementation in Tignum 2 worked out surprisingly well; because they are relatively rare. As well, the existing
in the future, we intend to plan our development to include techniques certainly need to be improved.
both a prototype and a full implementation. HTN planning techniques are based on tasks. The HTN

To develop Tignum 2, we needed to extend HTN planning routines in Bridge Baron 8 have a separate C
planning to include ways to represent and reason aboutfunction for each task that it can perform in declarer play
possible actions by other agents (such as the opponents imluring a bridge deal. These separate functions are very
a bridge game), as well as uncertainty about the important for ease of maintenance; if Bridge Baron 8 is
capabilities of those agents (for example, lack of not performing well in particular types of situations, we
knowledge about what cards they have). However, to can often rapidly improve its performance in many similar
accomplish this, we needed to restrict how Tignum 2 goes situations by changing the way it performs a single task,
about constructing its plans. Most HTN planners develop and these changes are often restricted to a single C
plans in which the actions are partially ordered, function.
postponing some of the decisions about the order in which
the actions will be performed. In contrast, Tignum 2 is a .
total-order planner that expands tasks in left-to-right Conclusions
order.

Tignum 2 expands tasks in the same order that they will
be performed when the plan executes, and so when it plan
for each task, Tignum 2 already knows the state of the ¢
world (or as much as can be known about it in an
imperfect-information game) at the time that the task will
be performed. Consequently, we can write each method's
preconditions as arbitrary computer code, rather than

For games such as chess and checkers, the best computer
rograms are based on the use of game-tree search
echniques that “think” about the game quite differently
rom how human players do (Biermann 1978, IBM 1997).
For bridge, our new version of the Bridge Baron bases its
declarer play on the use of HTN planning techniques that
more closely approximate how a human might plan the
play of a bridge hand.

Since computer programs still have far to go before they Washington PostSept. 15, 1997. Washington Business
can compete at the level of expert human bridge players, itsection, pp. 1, 15, 19.

is difficult to say what approach will ultimately prove best
for computer bridge. However, the Bridge Baron’s
championship performance in tligaron Barclay World
Bridge Computer Challengguggests that bridge may be a
game in which HTN planning techniques can be very
successful.

Furthermore, we believe that our work illustrates how
Al planning is finally “coming of age” as a tool for
practical planning problems. Other Al planning

Currie, K. and Tate, A. 1985. O-Plan—control in the
open planner architecture. BCS Expert Systems
Conference, Cambridge University Press, UK.

Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: a sound
and complete procedure for Hierarchical Task-Network
planning,” Proc. 2nd Int'l Conf. on Al Planning Systems
249-254.

Erol, K.; Nau, D.; Hendler, J. 1994. HTN planning:

researchers have begun to develop practical applications ofomplexity and expressivityProc. AAAI-94
Al planning techniques in several other domains, such asErol, K.; Hendler, J.; and Nau, D. Complexity results for

marine oil spills (Agosta 1996), smcraft assembly
(Aarup et al. 1994), and military air campaigns (Wilkins

and Desimone 1994). Furthermore, the same adaptationg gt
of HTN planning that we used for computer bridge is also <http:/Avww.bridgebaron.com>.

proving useful for the generation and evaluation of
manufacturing plans for microwave transn@teive

modules, as part of a project that some of us have with

Northrop Grumman Corporation (Hebbar et al. 1996;
Smith et al. 1996b; Smith et al. 1996d; Smith 1997).

hierarchical task-network planning. Annals of
Mathematics and Avrtificial IntelligencB8:69-93, 1996.

Game Products. 1997. Bridge Baron

Hebbar, K.; Smith, S. J. J.; Minis, I.; and Nau, D. S.
1996. Plan-based evaluation of design for microwave
modules. In ASME Design for Manufacturing
Conferencep. 262 (abstract; full paper on CD-ROM).

Since the same approach works well in domains that arelBM. 1997. How Deep Blue works. <httpufw.chess.

as different as these, we are optimistic that it will be useful
for a wide range of practical planning problems.

Acknowledgments
This work was supported in part by an AT&T PhD

ibm.com/meet/html/d.3.2.html>.

Korf, R. 1994. Presentation of “Best-First Minimax
Search: Othello results” afwelfth National Conference
on Artificial Intelligence
Lopatin, A. 1992,

programming bridge game. Computer

Two combinatorial problems in
Olympiad

scholarship to Stephen J. J. Smith, by Maryland Industrial unpublished.

Partnerships (MIPS) Grant 501.15, by ARPA grant DABT
63-95-C-0037, and by National Science Foundation
Grants NSF EEC 94-02384 and IRI-9306580. Any

Loy, J. 1997. Review of bridge programs for PC
compatibles. Usenet newsgrouwgc.games.bridge 9
October 1997, Message-ld: <343CABOB.C6E7D2B1@

opinions, findings, and conclusions or recommendations pop.mcn.net>

expressed in this material are those of the authors and d

not necessarily reflect the view of the funders.

References

Aarup, M.; Arentoft, M. M.; Parrod, Y.; Stader, J.; and
Stokes, I. 1994. OPTIMUM-AIV: A knowledge-based
planning and scheduling system for spacecraft AlV. In
Fox, M. and Zweben, M., editorintelligent Scheduling
451-469. Morgan Kaufmann, San Mateo, California.

Agosta, J. M. 1996. Constraining influence diagram

structure by generative planning: an application to the

optimization of oil spill responseProceedings of the 12
Conference on Uncertainty in Artificial Intelligencél—
19. AAAI Press, Menlo Park, California.

Biermann, A. 1978. Theoretical issues related to
computer game playing prograniersonal Computing
Sept. 1978, 86-88.

anley, B. 1993. Software “judges” rate bridge-playing
products. The Bulletin (published monthly by the

American Contract Bridge Leaguep9:11, November

1993, 51—54.

Sacerdoti, E. D. 1974. Planning in a hierarchy of
abstraction spacedrtificial Intelligence5:115-135.

Schaeffer, J. 1993. Presentation at plenary segsfof|
Fall Symposium

Smith, S. J. J.; Nau, D. S.; and Throop, T. 1996a. A
planning approach to declarer play in contract bridge.
Computational Intelligencel2:1, February 1996, 106—
130. An earlier version is at <httpudw.cs.umd.edu/TR/
UMCP-CSD:CS-TR-3513>.

Smith, S. J. J.; Nau, D. S.; Hebbar, K.; and Minis, I.
1996b. Hierarchical task-network planning for process
planning for manufacturing of microwave modules.
Proceedings: Artificial Intelligence and Manufacturing
Research Planning Workshof89—194. AAAI Press,

Chandrasekaran, R. 1997. Program for a better bridgenjenio Park, CA.

game: A college partnership aids industry researthe

Smith, S. J. J.; Nau, D. S.; and Throop, T. 1996¢. Total-
order multi-agent task-network planning for contract
bridge. AAAI-96 108-113.

Smith, S. J. J.; Hebbar, K.; Nau, D. S.; and Minis, I.
1996d. Integrated electrical and mechanical design and
process planning. IFIP Knowledge Intensive CAD
Workshop CMU, 16-18 September 1996.

Smith, S. J. J.; Nau, D. S.; and Throop, T. 1996e. Al
planning's strong suitlEEE Expert 11:6, December
1996, 4-5.

Smith, S. J. J. 1997.Task-Network Planning Using
Total-Order Forward Search, and Applications to Bridge
and to Microwave Module Manufacture. Ph.D.
Dissertation, University of Maryland at College Park.
<http:/Avwww.cs.umd.edu/users/sjsmith/phd>.

Tate, A. 1977. Generating project network¥CAI-77.

Throop, T. 1983. Computer Bridge Hayden Book
Company, Rochelle Park, NJ.

Truscott, A. 1997. BridgeNew York Timesl6 August
1997, p. A19.

Tsuneto, R.; Erol, K.; Hendler, J.; and Nau, D. 1996.
Commitment strategies in hierarchical task network
planning. In Proc. Thirteenth National Conference on
Artificial Intelligence pp. 536-542.

Tsuneto, R.; Nau, D.; and Hendler, J. 1997. Plan-
refinement strategies and search-space sizePrbr.
European Conference on Al Planning

Wilkins, D. E. 1988. Practical Planning Morgan
Kaufmann, San Mateo, California.

Wilkins, D. E. and Desimone, R. V. 1994. Applying an
Al planner to military operations planning. In Fox, M.
and Zweben, M., editordntelligent Scheduling 685—
709. Morgan Kaufmann, San Mateo, California.

