Mixed-Integer Programming Methods for Finding Nash Equilibria *

Tuomas Sandholm and Andrew Gilpin and Vincent Conitzer
Carnegie Mellon University
Computer Science Department
{sandholm,gilpin,conitzé@cs.cmu.edu

Abstract Yoses, Psi 2osi,es,, Psi_iwi(si;s1-). At least one
We present, to our knowledge, the first mixed integer pro- €quilibrium exists in any such game (Nash 1950).
gram (MIP) formulations for finding Nash equilibria in games The question of how complex it is to construct a Nash
(specifically, two-player normal form games). We study dif- equilibrium has been dubbed “a most fundamental com-
ferent design dimensions of search algorithms that are based putational problem whose complexity is wide open” and
on those formulations. OMIP Nashalgorithm outperforms “together with factoring, [...] the most important coneret
Lemke-Howsomut notPorter-Nudelman-Shoham (PN&) open question on the boundary of P today” (Papadimitriou

GAMUT data. We argue why experiments should also be 2001). Until recently, thé emke-Howsoalgorithm (Lemke
conducted on games with equilibria with medium-sized sup- - ¢ H3\y50n 1964) was the most efficient method for finding
ports only, and present a methodology for generating such an equilibrium in a 2-agent gan%e.lt is a path-following

games. On such gamdslP Nashdrastically outperforms . - T
PNSbut notLemke-HowsanCertainMIP Nashformulations method that finds an equilibrium by pivoting through com-

also yield anytime algorithms far-equilibrium, with prov- plementary feasible bases for the corresponding linear com
able bounds. Another advantageMi® Nashis that it can be plementarity problem. It takes exponentially many steps in
used to find amptimalequilibrium (according to various ob- the worst case (Savani & von Stengel 2004).
jectives). The prior algorithms can be extended to that setting, A recent paper describes a simple search method, which
but they are orders of magnitude slower. we refer to asPNS for finding Nash equilibria (Porter,
. Nudelman, & Shoham 2004). It enumerates strategy sup-
Introduction ports and determines whether the support yields a feasible

Nash equilibrium(Nash 1950) is the most central solution solution to the equilibrium problem. Although that idea has
concept for games. It defines how rational agents should been previously described (e.g. (Dickhaut & Kaplan 1991),
act in settings where an agent’s best strategy may depend on(Myerson 1991, Section 3.3)), the paper improved on the ba-
what another agent does, and vice versa. For the concept tosic idea by adding dominance checks and a well-motivated
be operational, it needs to be accompanied by an algorithm search bias, and reported the first computational experienc
for finding an equilibrium. While the concept was invented with that approach. In the experimen®NSwas signifi-
in 1950, it remains unknown whether an equilibrium can be cantly faster thahemke-Howsaon
found in polynomial time, even in 2-agent games. We present search algorithms basedrored integer pro-

In a 2-agent normal form game, the focus of this pa- gram formulations of the Nash equilibrium finding prob-
per, each agent has a finite setS; of pure strategies to lem. (A mixed integer program is a linear program in which

choose from, and the agent's utility ig(s;, s1—;), where some of the variables are constrained to be integers.) We de-
s; € S; is the agent's chosen pure strategy, and; is the velop algorithms for finding a Nash equilibrium, anytime al-
other agent’s chosen pure strategy. Each agemain also gorithms for finding an approximate equilibrium, and algo-
use amixed strategyi.e., randomize over the pure strate- rithms for finding an optimal Nash equilibrium—according
gies inS; (according to probabilitieps, which sum to 1). to a variety of criteria. We also provide experimental val-
The pure strategies that an agent plays with nonzero prob- idation of this approach using a modern MIP solver. For
ability are called that agentsupport The (mixed) strate- many (but not all) problems the new algorithms outperform

giesp,, are inNash equilibriumf neither agent has an in- the prior state of the art.
centive to alter his probabilities given that the other does

not alter hers: for both agenisc {0,1}, for any mixed Mixed-integer program (MIP) formulations

strategyp’, , : (8, 81-4) >) : .
OYPho Dsiesi Poi Lssosesios PormatilSiss1-0) 2 Theregretof pure strategy; is the difference in utility for

*This material is based upon work supported by the Na- player: between playing an optimal strategy (given the other
tional Science Foundation under ITR grants 11S-0121678 and 1IS-

0427858, and a Sloan Fellowship. tUnder various convexity assumptions, Nash equilibria can be
Copyright © 2005, American Association for Artificial Intelli- found using continuous optimization (Antipin 2003; Khamisov
gence (www.aaai.org). All rights reserved. 2003).

AAAI-05 / 495

player's mixed strategy) and playing. Our mixed inte-

bs, = 1, in which case the constraint is vacuous because

ger programs are based on the following simple observation the regret can never exce&gl. (Technically, Constraint 3 is

(which could be said to underlie the PNS algorithm as well):
In any equilibrium, every pure strategy is either playedwit
probability 0, or has0 regret. Also, any vector of mixed
strategies for the players where every pure strategy iseith
played with probability), or has0 regret, is an equilibrium.
Based on this observation, we introduce four MIP formu-
lations for finding an equilibrium. In the first, the equilib-
ria are the only feasible solutions. Therefore, this fomnaul
tion allows us to specify an objective to be optimized over
the space of equmbrla For instance, we can find a social-
welfare maximizing equilibrium. The other three formula-
tions have feasible solutions other than the equilibriaelt w
the equilibria are exactly the solutions that minimize the o
jective. The benefit of this latter approach is that even when
the solver has not yet found an equilibrium, it may have al-
ready found something that is close (in a precise sense, dis-
cussed later). This also yields a measure of progress teward
finding an equilibrium. On the other hand, using the MIP ob-
jective in defining equilibrium makes it more difficult to use
these formulations to optimize an objective over the spéce o
equilibria. (We discuss how this can nevertheless be done.)

Formulation 1: Only equilibria are feasible

In our first formulation, the feasible solutions are exattly
equilibria of the game. For every pure strategythere is
a binary variable,,. If this variable is set td, the proba-
bility placed on the strategy must e If it is set to0, the
strategy is allowed to be in the support, but the regret of the
strategy must b8. The formulation has the following vari-
ables other than thie,,. For each player, there is a variable
u; indicating the highest possible expected utility that that
player can obtain given the other player's mixed strategy.
For every pure strategy;, there is a variablg,, indicating
the probability placed on that strategy, a variable indi-
cating the expected utility of playing that strategy (gitee
other player's mixed strategy), and a variable indicat-
ing the regret of playing;. The constant/; indicates the
maximum difference between two utilities in the game for
playeri: Ui = maXsf’,séEsi,s?il,siiiesl,l ui(85 78}11 7) -
u;i(st, s} ;). The formulation follows below.

find ps,, wi, us,, 7s,, bs; such that

(Vi) Z Ps;

5,E€S;

-1 1)

(Vi)(Vsi €8) ws, = D pe_uilsisi) (2)
S1-4€S81—4

(Vi) (Vsi € Si) wi > g, (3)

(VZ)(VSZ € SZ) Ts; = Ui — Us; (4)

(Vi)(Vs: € Si) ps; < 1—bg (5)

(Vi) (Vs € Ss) 15, < Usbs, (6)

domains: ps, > 0,u; > 0,us, > 0,75, > 0,bs, € {0,1}.

The first four constraints ensure that the values consti-
tute a valid probability distribution and define the regret o
a strategy. Constraint 5 ensures thatcan be set ta only
when no probability is placed on. On the other hand, Con-
straint 6 ensures that the regret of a strategy edyalsless

redundant as it follows from Constraint 4 and > 0.)

Formulation 2: Penalize regret on strategies that

are played with positive probability

The formulation in this subsection allows for feasible so-
lutions in which pure strategies that are played with posi-
tive probability have positive regret. However, this regse
counted as a penalty in the objective. Strategies that have
no probability placed on them are exempt from having this
penalty counted, which is done using binary varialigs
that can be set to if and only if no probability is placed on
the corresponding strategy. The variables in the formula-
tion are the same as in the first formulation, with the additio
of avarlablefs for everys; € S;. The formulation is:

minimize Z > fs; — Usbs, subject to

1=0s;ES;
Constraints 1, 2, 3, 4, 5, the domains from Formulation 1, and
(Vz) (V57, S Sz) fsi 2 Ts; (7)
(‘v’z)(VsZ S SZ) fsi > Uibsi (8)

Whenb,, is set tol in this formulation (which can be done
only when the probability on that strategy (s by Con-
straint 5),f,, must be set t@/;, which then cancels out with
the—U,b,, term in the objective. However, whéy, is set to

0, fs, must be setto,, (and the-U,b,, term in the objective
will equal 0). Thus the objective is indeed to minimize the
sum of the regrets of strategies that have positive proibabil

Formulation 3: Penalize probability placed on
strategies with positive regret

The formulation in this subsection is similar to the previ-
ous one; the difference is that instead of counting the tegre
on strategies that are played with positive probability as a
penalty, we count the probability that is placed on stra&tegi
that have positive regret as a penalty. Again, this is done
through the use of binary variablés, that can be set t0
if and only if the corresponding strategy has no regret.
Again, the variables in the formulation are the same as in
Formulation 1, with the addition af;, for everys; € 5.
1
minimize > > gs,
i=0s;E€5;
Constraints 1, 2, 3, 4, 6, the domains from Formulation 1, and
(Vi)(VSi € Si) 9s; = Ds; (9)
(VZ)(\V/SZ S Sz) Js; > 1- bsi (10)

When b, is set to0 (which can be done only when that
strategy’s regret i, by Constraint 6)g,, must be set to

1, which then cancels out with the(1 — bs,) term in the
objective. However, wheh, is set tol, g,, must be set
to p,, (and the—(1 — b,,) term in the objective will equal
0). Thus the objective is indeed to minimize the sum of the
probabilities of strategies that have positive regrets.

— (1 —bs,) subject to

Formulation 4: Penalize either the regret of or the
probability placed on a strategy

In our final formulation, we let the solver choose to count as
the penalty for a pure strategy either the strategy’s (nbrma

AAAI-05 / 496

ized) regret, or probability placed on the strategy. Exaictl
equilibria, every strategy has either a regret @fr a proba-
bility of 0. Thus these are the only solutions of the program
with a total penalty of). The objective is the penalty plus
|Sol + [S1]-)

minimize > Y fs, + gs, Subjectto
i=0s;E€S;
Constraints 1, 2, 3, 4, the domains from Formulation 1, and

(Vz)(Vsl S Sl) fsi > Tsi/Ui (11)
(Vi)(VSi € Si) fSi > bSi (12)
(Vi)(Vsi € Si) gs; = Ps; (13)
(VZ) (\V/Sz S SL) Js; > 1- bsL (14)

If bs, = 0, then f;, must equat,, /U; (which is at mostl)
andgs, must equall. On the other hand, b5, = 1, then

fs; must equall andgs, must equab,,. Thus, fs, + gs,

is at leastl for everys;, and an additional penalty must be
paid either for the normalized regret of the strategy, or the
probability of the strategy. Thug, + g, can equal if and
only if the strategy has either no probability or no regret;
otherwise fs, + g5, > 1.

Example

To illustrate the differences between the formulations-co
sider the following game in which > 0 is small.

L R
U [1e[1,0
D [0,0]0,1

U strictly dominatesD, and L is a strictly better response
to U thanR. Thus(U, L) is the unique equilibrium. Hence
it is the unique feasible solution for Formulation 1, and the
only optimal solution for Formulations 2—4.

Now consider the pair of strategié§, R). The regret for
playing R is only e. It follows that this is a near-optimal so-
lution for Formulation 2. For Formulation 3, however, this
is not a good solution because all of the column player’s
probability is on a strategy with positive regret. For Formu
lation 4, we can choose to count the regret for playihgs
the penalty, and hend@/, R) is near-optimal.

Finally, consider the pair of mixed strategies where the
row player playd/ with probability 1 — e and D with proba-
bility ¢, and the column player play?. The regret for play-
ing R is now 0 (it yields an expected utility o, whereas
L yields an expected utility ofl — ¢)e < €). However, the
regret for playingD is 1, and therefore this is not a good
solution for Formulation 2. For Formulation 3 this is near-
optimal because only probability is placed on a strategy
with regret. For Formulation 4, we can choose to count the
regret for playingD as the penalty; thus it is near-optimal.

Variations on the formulations

Numerous variations on the above formulations are possi-
ble. For example, in the formulations with an objective,
it is possible to place different weights on the strategmes i
the objective. Moreover, it is in fact possible to mix up the
formulations to obtain a new formulation, using one of the
original formulations for some pure strategies and another
one for others. We leave investigating the performance of
weighted and mixed formulations for future research.

Design dimensions oMIP Nash

There are several design dimensions to MIP search algo-
rithms, and in this section we study how a MIP-based
equilibrium-finding algorithm should be designed along
those dimensions. We implemented the variants in CPLEX
9.0, a commercial MIP software package (ILOG Inc 2003).
The solving method in CPLEX is a branch-and-bound al-
gorithm with several sophisticated techniques incormatat
which we evaluate below. We tested the algorithms on the
leading test suite of game generators, GAMUT (Nudelman
et al. 2004). That library of 24 game generators was con-
structed from the descriptions of many different kinds of
games in the literature. Also, GAMUT is the data that was
used in the prioPNSexperiments (Porter, Nudelman, &
Shoham 2004). All the experiments referred to in this sec-
tion, and the next, concern the problem of finding one (any)
Nash equilibrium. Therefore in those experiments we stop
the search algorithm when the first equilibrium is found.

Objective function to help bias the search

Although Formulation 1 need not have an objective function,
we found that adding an objective function—to guide the
search—drastically speeds up the algorithm. We tried sev-
eral objectives: minimizing support size, maximizing sup-
port size, minimizing welfare, maximizing welfare, mini-
mizing the difference in the players’ support sizes, and-min
imizing a hybrid objective consisting of the size of the sup-
ports and the difference in the players’ support sizes. Our
experiments showed that usiagyof the objective functions

led to an order of magnitude speed improvement (over not
using an objective function). The objectives of minimizing
support sizes and maximizing welfare led to the best perfor-
mance. Therefore, in the experiments in the rest of this pa-
per (except where noted), we use the welfare-maximization
objective.

Search (node selection) strategy

For any branch-and-bound algorithm there is a choice of
which node to expand next. CPLEX provides several
options includingdepth-first search(in which the algo-
rithm chooses the “most recently created node€st-bound
search(in which the algorithm chooses the “node with the
best objective function for the associated linear program
(LP) relaxation”)? and best-estimate seardfin which the
algorithm chooses the node with the “best estimate of the
integer objective value that would be obtained from a node
once all integer infeasibilities are removed”) (ILOG Inc
2003). The latter is designed specifically for problems wher
finding a feasible solution is difficult. As thus suspected, w
observed that it had the best performance on the problem
of finding an equilibrium, and we thus use that strategy for
that problem. (On the problem of finding aptimal equi-
librium, discussed later, we use best-bound search because
it is designed for finding a provably optimal solution using
the smallest possible search tree.)

2This is like A* except that a node’s-value is only approxi-
mately computed when inserting the node onto the open list; the
exact computation is postponed until popping the node off the list.

AAAI-05 / 497

Primal heuristics at nodes

At each node in the search tregaimal heuristicscan be
used to try to obtain a feasible solution or a better feasible
solution. Its value will allow more pruning in that subtree.
CPLEX does this by attempting to generate an integer fea-
sible solution using information about the node’s LP relax-
ation. We discovered that completely disabling this heigris

resulted in a 6% average speed improvement. We therefore

disabled it for the rest of the experiments.

Problem formulation

Table 1 shows that Formulation 1 performed significantly
better than the other three formulations (Formulation 3 was

second best). Although the best formulation depends on the

distribution, we use Formulation 1 for the rest of our ex-
periments in order to conduct a fair comparison (where the
algorithm is not changed across distributions) againstroth
algorithms.

BertrandOligopoly
BidirectionaLEGCG
BidirectionaLEGRG
BidirectionalLEGSG
CovariantGaméPos
CovariantGamérand
CovariantGameZero
DispersionGame
GraphicalGame&RG
GraphicalGameRoad
GraphicalGameSG
GraphicalGame&sW
LocationGame
MinimumEffortGame
PolymatrixGameCG
PolymatrixGameRG
PolymatrixGameRoad
PolymatrixGameSW
RandomGame
TravelersDilemma
UniformLEG.CG
UniformLEG_.RG
UniformLEG_SG
WarOfAttrition
OVERALL:

1696.29 | 4448.71 | 1956.51 | 4088.82

Table 1:Average time (in seconds) to find an equilibrium using the
different MIP formulations, in50 x 150 games from the GAMUT
distributions (10 instances of each). If an instance reached the 600
second limit, that time was counted toward the average.

Branching strategy

We also developed several strategies for choosing the next

variable to branch on that are motivated by game-theoretic
considerations (beyond CPLEX'’s default strategy which is

close to the standard approach of branching on a variable

with the most fractional LP value):

1. Look at the number of strategies currently selected for
each player. Branch on a most fractional strategy for the
player with the smallest support. If the supports are of
equal size, let CPLEX choose.

3. Same as 2, except choose the strategy from the two that
gives the opponent the biggest gain.

Suppose the opponent plays randomly among his strate-
gies that have not been branched out. Choose a best re-
sponse (pure) strategy. Do this for both players. Branch
on the strategy of the two that has greatest utility improve-
ment for the agent compared to the agent’s mixed strategy
at that node.

4.

5. Same as 4, except choose the strategy that gives the oppo-
nent the biggest gain.
6. Maken + 1 CPLEX calls. Calli € {1,...n} has the

constraint that the support size for each player equals
(i.e., |supporty| = |support;| = i). The last call has
|supporto| < |supporty| vs. |supporto| > |support;| as
the first branch, and the MIP objective is to minimize the
sum of the support sizes.
Same as 6, except the objective is to maximize welfare
now also in the last call. (Of course, we still stop with the
first solution found.)
. Make two CPLEX calls. In the firstjsupporty| =
|supporty|. The second call hgsupporty| < |support|
VS. |supporty| > |support:| as the first branch, and the
MIP objective is to minimize the sum of the support sizes.
. Like 8, but the objective in both calls maximizes welfare.

Strategies 1 and 6-9 direct the search towards finding
equilibrium with balanced supports. Strategies 2-5 aré-mot
vated by the fact that strategies are mutual best respomses i
equilibrium. Strategies 6 and 7 are geared towards finding
equilibrium with small supports.

Table 2 Left shows the performance of these branching
strategies. While each of them helped significantly on some
of the distributions, each of them was slower than CPLEX’s
default when averaged over all GAMUT distributions (strat-
egy 1 did not hurt that much). Therefore, in the rest of the
experiments we use CPLEX’s default branching strategy.

7.

Cutting planes

Branch-and-cutis a modern, widely applied algorithm for
solving MIPs (Padberg & Rinaldi 1987). It is like branch-
and-bound, except that in addition, the algorithm may gen-
eratecutting planes(Nemhauser & Wolsey 1999). These
are constraints that, when added to the problem at a search
node, result in a tighter LP polytope (while not cutting off
the optimal integer solution) and thus a tighter LP bound.
The tighter bound in turn can cause earlier termination of
the search path, yielding smaller search trees. On the other
hand, more effort is invested per node to generate cuts and
solve the larger LP.

It is well known that on a given problem type, differ-
ent cuts can help or hurt speed. CPLEX supports nine cut
families (ILOG Inc 2003): clique cuts, cover cuts, disjunc-

2. Suppose player 1 is playing the strategy that corresponds tive cuts, flow cover cuts, flow path cuts, generalized upper

to the LP relaxation at this node. Find a pure strategy for

player 0 that is a best response to that. Swapping roles,

do the same to find a pure strategy for player 1. Branch
on the strategy of the two that has greatest utility improve-

bounding cover cuts, implied bound cuts, Gomory fractional
cuts, and mixed integer rounding cuts. We experimented
with them by enabling only one at a time. We compared
the performance to default CPLEX, which has them all on.

ment for the corresponding agent compared to that agent's CPLEX always determines heuristically which cuts to use

mixed strategy at that node.

from the families that are enabled.

AAAI-05 / 498

Default 1 2 3 4 5 6 7 8 9 Lemke-Howson PNS
BertrandOligopoly 286.54 24211 249.28 69.99 65.57 24.97 1.50 10.12 40.90 284.50 0.04 0.01
BidirectionalLEGCG 22.52 36.69 91.10 53.34 103.73 103.81 12.22 19.32 75.05 27.40 0.06 0.01
BidirectionaLEGRG 2.35 2.08 15.04 4.55 62.16 3.92 0.86 5.36 25.06 1.89 0.05 0.01
BidirectionalLEGSG 0.13 51.03 3.81 5.87 51.68 51.92 0.24 0.63 1.02 0.02 0.06 0.01
CovariantGaméPos 0.47 1.04 1.60 1.33 1.98 1.89 5.36 0.57 75.45 1.44 0.06 0.01
CovariantGameRand 203.87 233.63 240.50 242.79 245.62 248.50 213.01 195.32 326.24 239.66 376.92 | 267.81
CovariantGameZero 99.91 135.80 251.57 252.19 360.94 290.64 365.00 149.31 449.82 355.01 263.48 0.13
DispersionGame 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.05 0.01
GraphicalGam&RG 127.96 215.47 269.70 298.82 282.38 229.96 247.29 216.85 277.82 287.30 96.02 0.05
GraphicalGameéRoad 151.18 195.18 272.72 244.48 287.83 271.30 381.20 266.26 378.58 454.29 277.80 0.13
GraphicalGameSG 181.98 247.61 313.96 311.61 365.76 343.50 464.54 322.48 464.54 458.68 133.07 0.10
GraphicalGams&SW 234.56 331.60 342.45 316.74 446.92 420.09 413.59 275.85 453.39 464.54 168.49 0.09
LocationGame 0.45 0.45 0.01 0.01 0.01 0.01 0.05 0.84 0.27 3.81 0.05 0.01
MinimumEffortGame 0.04 0.04 0.02 0.02 0.02 0.02 0.55 0.05 0.36 0.26 0.05 0.01
PolymatrixGameCG 76.80 107.17 95.61 85.03 146.25 101.95 139.16 100.14 147.04 100.77 72.82 65.13
PolymatrixGameRG 42.70 28.63 99.09 87.02 99.09 61.50 56.00 68.13 99.11 60.23 76.26 0.01
PolymatrixGameRoad 7.03 50.95 50.95 50.95 50.95 50.95 51.29 51.12 71.83 53.65 1.26 0.05
PolymatrixGameSW 85.83 79.76 114.19 91.72 103.37 119.23 146.34 42.06 70.03 109.83 145.38 0.13
RandomGame 168.32 304.03 322.18 333.13 343.77 364.30 366.90 291.92 464.54 464.54 162.08 0.16
TravelersDilemma 0.05 0.06 0.05 0.04 0.04 0.04 3.63 18.35 36.94 17.60 0.02 0.01
UniformLEG.CG 0.81 0.39 0.39 0.49 0.50 0.27 0.16 1.04 0.83 0.84 0.05 0.01
UniformLEG.RG 2.60 1.37 10.80 2.60 8.88 2.82 1.24 3.62 13.02 3.52 0.05 0.01
UniformLEG_SG 0.16 1.04 7.70 2.80 7.31 3.11 1.04 2.29 5.12 0.81 0.05 0.01
WarOfAttrition 0.03 0.15 1.37 0.02 0.50 0.02 0.04 5.83 0.04 0.05 4.29 0.01
OVERALL: 1696.29 | 2266.29 | 2754.13 | 2455.56 | 3035.26 | 2694.73 | 2871.21 | 2047.48 | 3477.03 | 3390.67 1778.50 | 333.94

Table 2: Average time to find an equilibrium 50 x 150 games (10

instances). Left: branching strategies. Right: Lemke-Hoarst

PNS. The percentage of time-outs (10 minute limit) for MIP Nash, Lemlestig and PNS was 7.5%, 8.3%, and 2.0%, respectively.

There was significant variability as to which cuts hurt or
helped on different GAMUT distributions (we omit the com-
plete results table due to lack of space). Interestingipgus
no cuts, or using any one cut family alone, was 16% faster
on average than CPLEX'’s defaults. The exceptions were the
last two families, which were within 3% of the default speed.

Experiments on finding a Nash equilibrium

In this section we compare the performanceMiP Nash
against the prior state-of-the-art algorithrhemke-Howson
and PNS We used the implementation aemke-Howson
available in the Gambit software library (McKelvey, McLen-
nan, & Turocy 2004). FOPNS we used code given to us by
its authors® Table 2 shows the performance on the GAMUT
distributions.MIP Nashwas faster thahemke-Howsarbut
not nearly as fast B8NS

Most of the games generated by the GAMUT distributions
have equilibria with small (and balanced) supports. This
is supported theoretically as it is known that masplayer
games with payoffs generated uniformly at random from the
n-dimensional unit sphere have at least one equilibrium with
small supports (McLennan & Berg 2005). The speeBNS
on these distributions is largely due to its bias of seaghin
through (balanced) supports in smallest-first order. How-
ever, there is no guarantee that real-world games are gen-
erated by such distributions. For example, (astrategy
generalization of) the rock-paper-scissors game only has a
equilibrium where all pure strategies are played with equal
probability. On that type of gam&NSwould have to search
through all smaller supports before finding an equilibrium,
thus making it prohibitively slow. Of course, one could use
an algorithm with the reverse bias (searching through large
supports first), or even an algorithm that interleaves $esrc
with these two biases, thus performing well on games that
have equilibria with small or large supports. Still the algo

3We are aware of at least one instance Bf&2 game (matching
pennies) in which this code returns an incorrect result. We do not
know of any larger games where the code is incorrect.

AAAI-05 /

rithm would do poorly on games with medium-sized sup-
ports. In fact, there are too many medium-sized supports to
exhaustively search through (even just considering suppor

of size|S;|/2, there are(lgfli)Q) > 215i1/2 of them for each

agent:). Therefore, we argue that in order to evaluate how
well an algorithm can really capitalize on the structurerof a
equilibrium-finding problem (rather than testing whethex t
distribution is amenable to a particular rigid search hias)
periments should also be conducted on games that only have
equilibria of medium-sized supports.

Furthermore, those test games should not allow for many
of the game’s strategies to be eliminated using dominance or
iterated dominance. Moreover, this should remain the case
even after branching some strategies out of the support.

To conduct such experiments, we introduce a family of
games that satisfy both of these properties. For any pesitiv
integerk, the game=y, has actiong, ..., asx_1,b1,...bok
for the row player and actions, ..., cox_1,d1, .. . doy for
the column player. The utilities are:

(2,4), (4,2)

® u(ai, Ciy1(mod 2k—1)) = (@i, Ci—1(mod 2k—1)) =

ou(a) (3,3) forj ¢ {i + 1(mod 2k — 1)}
u(ai, d;) = (2,0), u(bi, ¢j) = (0,2), u(bi, di) = (3,0)
u(bs, dl+1) (0, 3) for oddi, u(b;, di—1) = (0, 3) for eveni
. u(bz,d) = (0, 0) otherwise.
Example : G2 c1 co c3 d1 da ds dy
a1 3,3 2,4 4,2 20 20 20 20
as 4,2 3,3 2,4 2,0 20 20 20
as 2,4 4,2 3,3 2,0 20 20 20
by 0,2 0,2 0,2 3,0 0,3 0,0 0,0
ba 0,2 0,2 0,2 0,3 3,0 0,0 0,0
bs 0,2 0,2 0,2 0,0 0,0 3,0 0,3
by 0,2 0,2 0,2 0,0 0,0 0,3 3,0

Proposition 1 G, has a unique equilibrium. Every; and
c; is played w.p1/(2k —1). Theb; andd; are never played.

Proof: First, suppose that some stratégywith i odd) were
sometimes played in equilibrium. In order figrto perform
at least as well ag;, it must be the case thdt is played

499

with probability at leas2/3. In order ford; to perform at Proposition 3 In a feasible solution to Formulation 3 with

least as well as;, it must be the case that, ; is played with objective value:/U, the sum of the players’ regrets is at
probability at leasg/3. In order forb;;, to perform at least moste, whereU = max{Uy, U, }.
as well asay, it must be the case thadi, ; is played with Proof: The sum of the regrets i5.;_ >, (g Ps.7s; <
probability at leas2/3. But, it is impossible for each af; 1 TF wihinh ic T fimac the i
B+ o be played wih probabilit/3. It follows that 2=i=4 2.8, PO (s, U which is U times the Formula
no strategy; (with < odd) is ever played in equilibrium, and , J ' i i i ,
similarly it can be shown that no stratebyy(with i even),d; Proposition 4 In a feasible solution to Formulation 4 with
(with i odd), ord; (with i even) is ever played in equilibrium. ~ objective valuge/U) + S| +[S1], the sum of the players
The remainder of the game (the strategigandc;) con- regrets is at most, whereU' = max{Uo, U1 }.
stitute a symmetric zero-sum game. Thus, each player is Proof: The sum of the regrets i§:1.1:0 Z%Si Ds;Ts; <
able to guarantee herself an expected payoff.oNow, if Zil:o Ssies, min{p,,, s, /U }U, which is at most times
the row player plays strategy with positive probabilityp, the value obtained by subtracting,| + |51 | from the For-
she should play strategy | »moa 21—1) With probability at mulation 4 objective. -

leastp (otherwise the column player could get expected util-

ity greater tharB by playingc;1(mod 2x—1)). BY repeated P : il
application of this (and the fact that: — 1 is odd), it fol- Finding an optimal Nash equilibrium

lows that eachi; must be played with the same probability ~ Finding an equilibrium may not be satisfactory: we may

in equilibrium. Symmetrically, the same holds for the = want to optimize somebjectiveover the space of equilib-

))) ria. Perhaps the most natural objectivedgial welfarei.e.,
Figure 1 shows that on this gamBIIP Nash drastically the sum of the agents’ utilities. (Note that any social wel-
outperformsPNS The reason is tha#lIP Nashhas a flex- fare maximizing equilibrium is also Pareto optimal within

ible search bias and the techniques of MIP guiding it (such the space of Nash equilibria.) Other objectives are alse pos
as preprocessing, LP-guided branch selection, LP-basedsijple: we may wish to maximize one of the players’ utilities,
bounding, cutting planes, and objective-based guidance). maximize the minimum utility between the agents, minimize

MIP Nashis not as fast asemke-Howsoon this game. the support sizes of the equilibrium strategies, etc. (Each
e of those problems i3/ P-complete (Gilboa & Zemel 1989;
ooy s Lemke-Howson - | Conitzer & Sandholm 2003).) In this section we show how
wof MIP Nash -] MIP Nashcan be used to find an optimal Nash equilibrium.

o Optimizing using Formulation 1
Formulation 1 is especially well-suited to optimizing abje
tives because it does not have an objective of its own. Thus,
for social welfare, we can simply add the objectivaxi-
mize ug + u;. Other linear objectives are similarly easy to
optimize.

Some nonlinear objectives, such as the minimum of two
expressions or the absolute value of an expression, can be
used. For example, the minimum utility between the agents

Anytime algorithms for e-equilibrium can be maximized by adding the constraints uy andr <
A pair of mixed strategies is anequilibriumif the regret of u1, and maximizing. As another example, the difference
each player's mixed strategy is at mestn this subsection, between the players’ utilities can be minimized (to minieniz

we show that feasible solutions to Formulations 2, 3, and gz\éyr)n%%?gwg.the constraints> uo—uy andr = u —uo,
4 with low objective values constituteequilibria. Thus, gr.

applying a MIP solver to any one of these three formulations It g—;rf :IZJC??:]'\\//SISS(:Z noé:]ta;/iiég berggg(t:)ﬁir{i]ees (\;\;'grﬁt'es'
constitutes aranytime algorithnfor finding e-equilibrium, PP P 9

which will eventually return an equilibriume & 0).4 being played, etc., and nonlinear objectives involvingsehe
' variables (analogous to those just discussed involvirlg uti

Proposition 2 In a feasible solution to Formulation 2 with tjes). Formulation 1 can be used to optimize these as well.
objective value, the sum of the players’ regrets is at mest
Proof: Let§(0) = 0, (z) = 1for z > 0. The sum ofthe ~ Optimizing using Formulations 2, 3, and 4

regrets isS" r, < L 5(ps)7 Formulations 2, 3, and 4 are not as well suited to optimiz-
wr?ich eqt%llg ?h%:gbejzic%[)ii;e '\;alﬁe%:]‘llégr%ﬁleﬁforl(%f) él- ing an objective because they already use the MIP objective
in the specification of equilibrium. One solution is to add

“e-equilibria have also been studied before. There always ex- the desired objective to the existing objective with a small
ists ane-equilibrium where both players randomize over at most coefficient. For example, we may change the objective of
1261# strategies (where is the number of an agent's pure strate- Formulation 2 to
gies). Thus one can find anequilibrium (by searching over all

minimize

1f i

CPU time (s)

01t

0.01

0.001 fi;

Number of actions
1e-04 MR

7 19 31 43 55 67 79 91 103115127 139

Figure 1:Finding the Nash equilibrium in the gandé.

such small supports) in®™ ™ time—for agiven fixede (Lipton,
Markakis, & Mehta 2003).

Z Z fss Uibs,;) —w(uo + u1),

i=0 s; €S;

AAAI-05 / 500

for some constant, in an attempt to maximize social wel-
fare over the space of equilibria. Howeveryiis not chosen
small enough, the solver may choose to sacrifice the equilib-
rium property (shifting to am-equilibrium instead) to obtain
higher social welfare. One technique for dealing with this i
to repeatedly decrease (say, halve) the value aintil an
equilibrium is produced by the solver. Once an equilibrium
is obtained by this method, it must indeed optimize the de-
sired objective (because all equilibria have the same value
for the formulation’s original objective). However:

Proposition 5 To optimize social welfare in Formulations
2, 3, or 4 using the technique described above, arbitrarily
small settings ofv can be required (even i& x 2 games).

Experiment on finding an optimal equilibrium

This section studies howlIP Nash (Formulation 1) per-
forms compared to the prior algorithms on finding an opti-
mal equilibrium. Neithet.emke-Howsomor PNSwere de-
signed to optimize an objective. There are, however, meth-
ods of using these algorithms to find all equilibria, from
which the optimal one can be selected. We configirisib

to search all supports (which results in an algorithm simila
to Dickhaut-Kaplan (Dickhaut & Kaplan 19919)To evalu-
ateLemke-Howsaonwe use a variant, by Mangasarian, that
enumerates all equilibria (Mangasarian 1964) (we refer to i
as M-Enum). Table 3 shows thistiP Nashoutperforms the
other algorithms by 2-3 orders of magnitude.

[actions]| M-Enum | PNS | MIP Nash |
10 2.21(0%) | 26.45 (3.7%)| 0.001 (0%)
25 || 429.14 (66.7%) 600 (100%) | 3.01 (0%)
50 || 425.07 (66.7%)| 600 (100%) | 30.44 (4.2%)

Table 3:Average time (in seconds), over all GAMUT distributions
(6 instances of each), for finding a welfare-maximizing equilibrium.
The percentage of timeouts (limit here was 600s) is in parentheses.

Conclusions and future research

We presented MIP formulations for finding Nash equilibria
in two-player games. We studied different design dimen-
sions of search algorithms that are based on those formula-
tions. On the problem of finding one (any) equilibriukhlP
Nashoutperformd_emke-Howsobut notPNSon GAMUT

data. We argued that experiments should also be conducted

on games with equilibria with medium-sized supports only,

and presented a methodology for generating such games. On

such game#lIP Nashdrastically outperform®NSbut not
Lemke-Howson MIP NashFormulations 2, 3, and 4 also
yield anytime algorithms foe-equilibrium, with provable
bounds. Another advantage bfIP Nashis that it can be
used to find aroptimal equilibrium (according to various
objectives). The prior algorithms can be extended to that
setting, but they are orders of magnitude slower.

Future research includes developing MIP-based search al-
gorithms for restricted games and for structured reprasent

tions of games. Future research also includes extending the

SActually, when a pair of supports has multiple equilibria asso-
ciated with it, PNS will only find one. Correcting for this would
increase the search time even further.

AAAI-05 /

MIP approach to games with more than two players. This
is not straightforward even for Nash equilibrium, and fur-
thermore, solution concepts that take coalitional devrei
into account (Aumann 1959; Bernheim, Peleg, & Whinston
1987) may be more appropriate in that context.

References

Antipin, A. 2003. Extragradient approach to the solution of two
person non-zero sum game3ptimization and Optimal Contrpl
World Scientific. 1-28.

Aumann, R. 1959. Acceptable points in general cooperative
n-person games. volume IV @ontributions to the Theory of
GamesPrinceton University Press.

Bernheim, B. D.; Peleg, B.; and Whinston, M. D. 1987.
Coalition-proof Nash equilibria: | conceptdournal of Economic
Theory42(1):1-12.

Conitzer, V., and Sandholm, T. 2003. Complexity results about
Nash equilibria. INJCAI-03 765—-771.

Dickhaut, J., and Kaplan, T. 1991. A program for finding Nash
equilibria. The Mathematica Journ&7-93.

Gilboa, I., and Zemel, E. 1989. Nash and correlated equilibria:
Some complexity considerationSames and Economic Behavior
1(1):80-93.

ILOG Inc. 2003. CPLEX 9.0 User’s Manual.

Khamisov, O. 2003. A global optimization approach to solving
equilibrium programming problemsOptimization and Optimal
Control. World Scientific. 155-164.

Lemke, C., and Howson, J. 1964. Equilibrium points of bimatrix
games.Journal of the Society of Industrial and Applied Mathe-
matics12:413-423.

Lipton, R.; Markakis, E.; and Mehta, A. 2003. Playing large
games using simple strategies. AGM-EC 36-41.

Mangasarian, O. 1964. Equilibrium points in bimatrix games.
Journal of the Society for Industrial and Applied Mathematics
12(4):778-780.

McKelvey, R. D.; McLennan, A. M.; and Turocy, T. L. 2004.
Gambit: Software tools for game theory, version 0.97.1.5.
McLennan, A., and Berg, J. 2005. The asymptotic expected hum-
ber of Nash equilibria of two player normal form gamé&ames

and Economic BehaviotForthcoming.

Myerson, R. 1991Game Theory: Analysis of Confliddarvard
University Press, Cambridge.

Nash, J. 1950. Equilibrium points in n-person gamesoc. of

the National Academy of Scienc&’:48—49.

Nembhauser, G., and Wolsey, L. 1996teger and Combinatorial
Optimization John Wiley & Sons.

Nudelman, E.; Wortman, J.; Leyton-Brown, K.; and Shoham, Y.
2004. Run the GAMUT: A comprehensive approach to evaluating
game-theoretic algorithms. WAMAS-04

Padberg, M., and Rinaldi, G. 1987. Optimization of a 532-city
symmetric traveling salesman problem by branch and ©pter-
ations Research Lettefs1-7.

Papadimitriou, C. 2001. Algorithms, games and the Internet. In
STOG 749-753.

Porter, R.; Nudelman, E.; and Shoham, Y. 2004. Simple search
methods for finding a Nash equilibrium. AAAI-04 664-669.
Savani, R., and von Stengel, B. 2004. Exponentially many steps
for finding a Nash equilibrium in a bimatrix game. FOCS

501

