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Abstract 

Apprenticeship is a powerful method of 
learning among humans whereby a student 
refines his knowledge simply by observing 
and analyzing the problem-solving steps 
taken by an expert. This paper focuses on 
knowledge base (KB) refinement for clas- 
sification problems and examines how the 
ordering of the problem-solving steps taken 
by an observed expert can be used to yield 
leverage in KB refinement. Questions ex- 
amined include: What added information 
can be extracted from attribute ordering? 
How can this added information be utilized 
to identify and repair KB shortcomings? 
What assumptions must be made about 
the observed expert, and how important 
of a role do these assumptions play? The 
principles explored have been implemented 
in the SKIPPER apprentice, and empirical 
results are given for the audiology domain. 

1 Introduction 
Apprenticeship is a powerful method of learning 
among humans in which a student refines his knowl- 
edge by observing and analyzing the problem- 
solving steps of an expert. Many previous works 
in apprenticeship [Dent et al., 1992; Mahadevan 
et al., 1993; Mitchell et al., 1985; Redmond, 1992; 
Tecuci and Kodratoff, 1990; Wilkins, 19881 have 
taken steps toward harnessing the information pro- 
vided by observing problem-solving steps. In this 
paper we focus on knowledge base (KB) refinement 
for classification problems and examine how the or- 
dering of the intermediate steps of an observed ex- 
pert can be used to yield leverage in KB refinement. 

In the classical classification problem, the 
problem-solver is given an example consisting of a 
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set of attributes and their corresponding values, and 
it must put the example in one of a pre-enumerated 
set of classes. For example, the problem-solver may 
be given a batch of attribute/value pairs describ- 
ing a soybean plant and must classify that plant as 
having one of a pre-enumerated set of soybean plant 
diseases. 

Consider a slightly different situation, 
though, in which the problem-solver is not given 
all the attribute/value pairs from the outset but 
rather must request attributes one at a time and 
make his classification decision once sufficient evi- 
dence is gathered. This situation would arise when 
it is too costly or otherwise unreasonable to simply 
be given all the attribute values. This situation ap- 
plies to domains such as medical diagnosis in which 
all the patient’s symptoms are not given at once but 
rather must be requested individually based on what 
the doctor knows about the patient so far. When 
a mechanic is troubleshooting a malfunctioning car, 
he does not run every test possible and then stop to 
examine his data and make his decision. Rather he 
checks one thing, and based on the result of that, 
he decides what to check next. 

Thus the order in which attributes are re- 
quested reflects the internal problem-solving pro- 
cess going on in the mind of the observed expert. 
By watching the order in which a superior problem- 
solver requests attributes, we should be able to re- 
fine the KB of a weaker problem-solver. We will 
refer to the superior problem-solver which is being 
watched as the observed expert and the weaker 
problem-solver which is being refined as the cri- 
tiqued problem-solver. While refining the cri- 
tiqued problem-solver, we have full access to its KB, 
but our only interface with the observed expert is 
the visible actions he takes so as to require nothing 
more from the expert than to perform his normal 
work. 

The approach we take to KB refinement is 
knowledge acquisition within the context of a short- 
coming in the knowledge base. TEIRESIAS [Davis, 
19791 introduced this approach whereby an expert 
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would point out an expert system’s failure, the ex- 
pert would then guide TEIRESIAS in localizing the 
cause of the failure, and the expert would suggest a 
repair. A natural next step is to move toward au- 
tomating the three tasks for which the expert was 
indispensable in TEIRESIAS. These tasks are as fol- 
lows: detecting a KB shortcoming, localizing the 
shortcoming, and constructing a repair. TEIRE- 
SIAS solved these three subtasks by consulting with 
the expert. In this paper we attempt to push-these 
three subtasks toward autom ation relying not on the 
expert’s intervention but rather on simply observing 
his problem-solving steps and their ordering. 

A comparison of our approach to some re- 
lated work in apprenticeship is given in section 2. 
Section 3 introduces how a KB shortcoming can 
be detected by analyzing the order in which at- 
tributes are requested. Section 4 explains how a 
KB shortcoming, once detected, can be localized us- 
ing the context in which it was detected, and sec- 
tion 5 presents a method of generating KB repairs 
once the shortcoming is localized. The SKIPPER 
apprentice is an implementation which puts these 
three tasks together, and section 6 discusses an ex- 
periment showing how SKIPPER improves classifi- 
cation accuracy by refining a KB produced by the 
C4.5 machine learning program [Quinlan, 19931. 

The ODYSSEUS project [Wilkins, 19881 
holds many similarities to our work. The goal of 
both is to refine a classification KB by watching the 
actions of another problem-solver. The expert be- 
ing observed in ODYSSEUS was required at each 
step to state what class he was focusing on. This 
forced the expert to articulate his strategies rather 
than just solve problems unhindered. Our method 
uses the context of the attributes requested so far to 
hypothesize what the observed expert is focusing on 
at any given point so as to avoid having to request 
it explicitly. 

A closely related work in case-based reason- 
ing is the CELIA system [Redmond, 19921. CELIA 
detects KB shortcomings by predicting an expert’s 
actions given the current problem-solving state and 
adds a new case when its predictions fail. Red- 
mond explored repairing by taking hints from or 
asking questions of a competant instructor whereas 
our work uses attribute ordering as a means of guid- 
ing induction. 

3 etecting a 
Shortcoming 

Detecting a KB shortcoming is synonymous with 
answering the question, “When does an action taken 
by the observed expert indicate that there is some- 
thing missing from the critiqued problem-solver’s 
knowledge base ?” In short, the answer is that an ac- 
tion indicates something is missing from a KB when 
that action cannot be justified using that KB. Con- 
sider the following example. When a doctor is diag- 
nosing a patient, the doctor asks the patient a series 
of questions to determine what disease the patient 
has. A medical student watching the doctor could 
probably give an explanation of why each question 
was asked because the student himself has a good 
body of medical knowledge. If the doctor asks a 
question, and the student cannot explain why the 
doctor asked it, then the student realizes that the 
doctor knows something that he does not know. He 
has detected a shortcoming in his knowledge. Like- 
wise, the failure to explain an observed expert’s ac- 
tion using a critiqued problem-solver’s KB indicates 
a shortcoming in that KB. 

2 Related Work 
The LEAP system [Mahadevan et al., 19931 works 
in the domain of digital circuit design giving an ex- 
pert suggestions for how to decompose a high-level 
circuit specification into submodules. When the ex- 
pert disagrees with a suggestion made by LEAP, 
LEAP learns from the alternative proposed by the 
expert. LEAP fits the definition of apprentice be- 
cause rather than just examining a completed cir- 
cuit as a whole, it analyzes the individual, fine- 
grained decomposition taken by the expert. But 
the order in which the expert takes these problem- 
solving steps is not used as a source of information. 

The CAP program [Dent et al., 19921 assists 
in managing an individual’s meeting calendar by 
predicting certain meeting details such as time, lo- 
cation, and duration from what it knows about the 
meeting such as the nature of the meeting and its at- 
tendees. The individual problem-solving steps taken 
by the expert (the calendar user) are often invisible. 
The expert examines in his head the meeting type, 
the department of the attendees, job title of the at- 
tendees, etc. and decides the details of the meeting; 
thus neither the fine-grained problem-solving steps 
nor their ordering are available as a source of infor- 
mation. 

In order to explain an observed action, 
though, we have to make some a priori assumptions 
about the observed expert. If we make no assump- 
tions, the observed expert is totally unconstrained 
and could be requesting attributes randomly in 
which case all actions have the potential explana- 
tion, “the observed expert is acting randomly,” and 
no shortcomings in the critiqued problem-solver’s 
KB can be detected. One reasonable assumption to 

570 Machine Learning 



make is that the observed expert always acts ratio- 
nally, i.e. that he always has some reason or motive 
for requesting an attribute and therefore never takes 
an irrelevant action. This assumption is simple yet 
actually provides a great deal of leverage. 

As an example of the information that at- 
tribute ordering gives, consider the example shown 
in Figure l(a) taken from the audiology domain. 
The observed expert first requests the attribute 
age-gt-60 and receives the answer true. Knowing 
this he requests the attribute history-nausea and 
receives the answer false. He requests three more 
attributes and then halts and makes his decision 
classifying the patient as cochleur-age without re- 
questing any more attributes. This tells us many 
things: 

Given that nothing at all is known, age-gt-60 
is a relevant attribute to request. 

The value of history-nausea is relevant to solv- 
ing the problem even given that age-gt-60 is 
known to be true. Otherwise, the observed ex- 
pert would not have requested history-nausea 
since age-gt-60 was already known to be true. 

The value of history-noise is relevant given 
that age-gt-60 is true and history-nausea is 
f ulse. 

The value of air is relevant given that 
age-gt-60 is true, history-nausea is false, and 
history-noise is false. 

The value of tymp is relevant given that 
age-gt-60 is true, history-nausea is false, 
history-noise is false, and air is normal. 

So the ordering of attributes gives us information 
about “conditional relevancy” - the values of cer- 
tain attributes are necessarily relevant given the val- 
ues of certain other attributes. 

As an example of how this information can be 
used to detect KB shortcomings, consider the sim- 
ple set of rules to be critiqued in Figure l(b). Using 
the problem-solving steps from Figure l(a), when 
the attribute age-gt-60 is requested, this action is 
explainable because the observed expert could be 
requesting that attribute to satisfy the premise of 
any of the four rules. When the value true is given, 
though, the premise of Rule2 becomes false; there- 
fore, Rule2 is no longer relevant to solving this prob- 
lem. Likewise, history-nausea is explainable be- 
cause it is in the premise of Rule3 which is still 
relevant. Following that, history-noise is explain- 
able because it is in the premise of Rule1 which 
is still relevant (but finding that history-noise is 
false causes Rule1 to become irrelevant). But when 
the attribute air is requested, a KB shortcoming is 

Requested Attribute 
age-gt-60 
history-nausea 
history-noise 
air 

W-v 

Classified as cochlear-age 

Value Given 
true 
false 
false 
normal 
a 

(a) A sequence of attributes requested by an observed 
expert. 

Rulel: age-&60 = true A 
history-noise = true A 
tYmP =a+ 

cochlear-age-and-noise 

Rule2: age-gt-60 = false A 
air = mild ---f 

cochlear-unknown 

Rule3: age-gt-60 = true A 
speech = very-poor A 
history-nausea = false + 

cochlear-age-plus-pass-menieres 

Rule4: age-gt-60 = true A 
history-dizziness = false A 
tymp = a + 

cochlear-age 

(b) The rule set to be critiqued. 

Figure 1: The attribute request air in (a) is irrel- 
evant using the KB in (b) because the premises of 
all rules which contain air are false by the time air 
is requested. 

detected. The attribute air is found only in the 
premise of Rule2 which is no longer applicable since 
age-gt-60 is known to be true; therefore, the at- 
tribute request air is unexplained. According to 
the critiqued KB, the attribute air is not relevant 
at this point in the problem yet the observed expert 
requested it, and the observed expert is assumed to 
only request relevant attributes! There must there- 
fore be some knowledge which the observed expert 
possesses which is not in the critiqued KB. Thus 
the ordering of the attributes - specifically the fact 
that air was requested after age-gt-60 was known to 
be true - has enabled the detection of a KB short- 
coming. The ordering allows the analysis of 
the relevancy of an attribute at a given time 
with respect to the critiqued KB, and this 
may be at odds with the relevancy indicated 
by the observed expert’s actions. 

Assuming that the observed expert is ratio- 
nal is a weak yet generally applicable constraint. 
Stronger constraints can yield even more leverage. 
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detection of nonexistent shortcomings. 
So the ordering of attribute requests has 

proven valuable in the detection of KB shortcom- 
ings. Next we show how the detection process has 
already provided much of the information needed to 
localize the shortcoming. 

4 Localizing the K 

A slightly more constraining assumption is that the 
observed expert uses a “test-hypothesis” strategy, 
i.e. he hypothesizes a class which he thinks the ex- 
ample at hand might belong to, and he requests 
attribute values which will either verify or disprove 
the his hypothesis. If there is sufficient evidence 
that the example does belong to the hypothesized 
class, the expert stops and reports his decision. If 
the evidence disproves his hypothesis, then the ex- 
pert hypothesizes a new class and proceeds to ver- 
ify or disprove it. The test-hypothesis assumption 
embodies the basic idea that the expert sticks with 
one train of thought rather than spuriously jumping 
from one line of reasoning to another. 

Referring again to Figure 1, we give an ex- 
ample of shortcoming detection assuming that the 
observed expert is using a test-hypothesis strat- 
egy. Again, age_gt...60 can be explained because 
the problem-solver could be testing any of the 
four classes. When the attribute history-nausea 
is requested and the value false is received, 
we tentatively explain this by assuming that 
the observed expert is focusing upon the class 
cochlear-age-plus-pass-menieres and that the next 
attribute he will request is speech to complete the 
premise of Rule3. When this does not happen - 
when history-noise is requested next instead - we 
are forced to admit that the observed expert was not 
applying Rule3 when it requested history-nausea 
and furthermore that our tentative explanation for 
history-nausea no longer holds! The attribute re- 
quest history-nausea is unexplained. When the ob- 
served expert requested history-nausea, he must 
have been using some knowledge which is absent 
from the critiqued KB. Thus imposing stronger as- 
sumptions on our observed expert allowed us to de- 
tect a KB shortcoming which was missed when the 

Short coming 
In the previous section we explained a method of 
detecting KB shortcomings, but this method also 
takes us a long way toward localizing a shortcoming. 
The detection process gives us an unexplained at- 
tribute, the attribute request which could not be 
explained, and focus facts, the facts which were 
known at the time the unexplained attribute was re- 
quested. These focus facts deserve special attention 
because knowledge of them gave rise to the request 
of the unexplained attribute; therefore, they may 
be related to the unexplained attribute and to the 
shortcoming. 

Furthermore, the focus facts can be used to 
identify a handful of focus classes, classes relevant 
to the shortcoming, because the known facts often 
rule out some classes leaving a subset of classes to 
focus upon. This is done using a set of labeled exam- 
ples from a representative case library. All examples 
in the set which disagree with any of the focus facts 
are eliminated leaving a subset of examples which 
agree with all the facts known so far. The classes 
which these remaining examples belong to are the 
focus classes. So the shortcoming can be localized 
to a central attribute, a handful of focus facts, and 
a handful of focus classes. 

assumptions were weaker. 
The assumptions made about the observed 

expert are not insignificant and should be given 
close examination. As mentioned above, when no 
assumptions are made, no shortcomings can be de- 
tected. As demonstrated in the two examples, the 
stronger the assumptions, the more leverage is avail- 
able for detecting shortcomings. Yet these assump- 
tions are not based on anything the problem-solver 
is observed to do but rather are a priori and pro- 
vide a bias of sorts. Imposing stronger assumptions 
is not always better, though. If assumptions are too 
constraining, the observed expert will be expected 
to behave more rigidly than he actually does in re- 
ality. This leads to false positive shortcoming de- 
tection - KB shortcomings being detected when in 
fact there are none. Therefore, a tradeoff exists be- 
tween detecting true shortcomings and avoiding the 

5 epairing the 
Shortcoming 

Once the shortcoming has been localized, an at- 
tempt is made to repair it. Taking a rule-based ap- 
proach, we try to repair the shortcoming by adding 
a rule of the form: condition1 A condition2 A . . . A 
conditionlv - classi where each condition is an 
attribute/value pair such as history-dizziness = 
true or temperature > 102. Since the shortcom- 
ing has been localized to an unexplained attribute, 
a handful of focus facts, and a handful of focus 
classes, repairing the shortcoming consists of gen- 
erating and empirically evaluating the rules formed 
from different combinations of these attributes and 
classes. While the localization process has narrowed 
down the number of attributes and classes, an ex- 
ponential number of potential combinations still re- 
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main. The following paragraph describes 
approach to finding a good repair. 

a greedy 

A repair can be generated by starting with 
a “seed repair” - a single-condition rule - and 
greedily adding other conditions to the rule. The 
single condition in the seed repair contains the un- 
explained attribute. For example if the unexplained 
attribute is air, then air = mild, qir = normal, 
air = severe, etc. are each used in separate seed 
repairs. The class of a seed repair is any of the focus 
classes’. Each seed repair is empirically tested with 
respect to a set of labeled examples to see which 
examples satisfy the premise and for what percent- 
age of those examples the repair gives the correct 
class. For example, of 150 training examples, 76 
may satisfy the premise of the rule, and 28 of these 
76 may match the class of the rule yielding a score 
of 28/76 = 36.8%. A set of new temporary repairs 
are then created by adding a condition to the seed 
repair. These conditions are derived from the focus 
facts2. If none of these new temporary repairs yield 
a higher score than the seed repair, then the seed 
repair is taken as the actual repair. If any of the 
temporary repairs are better, the best one becomes 
the new seed repair and the process is repeated. 

Figure 2 gives an example of the repair pro- 
cess. The localization information in Figure 2(a) 
gives air = mild e cochdear-age as one of the 
possible seed repairs (other seed repairs would also 
exist, but for this example we will only examine 
this one). Its accuracy on the training examples 
for which the premise is true is 36.8%. In Cycle 1 
three temporary repairs are created each by adding 
a new condition derived from a focus fact. Adding 
the new condition reduces the number of examples 
for which the premise is true, and a higher percent- 
age of these examples may match the specified class. 
The best of the temporary repairs in Cycle 1 has a 
higher percent accuracy than the seed repair and 
therefore is chosen to become the new seed repair. 
Similarly, in Cycle 2 another conjunct is added, but 
in Cycle 3 the added conjunct does not improve ac- 
curacy; therefore, the current seed repair is selected 
as the final repair and is added to the KB. 

While apprenticeship techniques provide 
good guidance for finding one attribute related 
to the shortcoming (the unexplained attribute), a 
weakness which becomes apparent in the repair 
stage is that these techniques give little guidance 
as to which of the previous attribute requests may 

‘There are #-of -unexplained-attribute-values * 
#-of-f ecus-classes seed repairs. 

2For nominal attributes the focus fact can be used 
exactly. For numeric attributes, the condition is a range 
including the specified value. 

Unexplained attribute: air 
Focus facts: age-gt-60 = true, history-nausea = false, 

history-noise = false 
Focus classes: cochlear-age-plus-possmenieres, 

cochlear-age 

(a) The shortcoming localization information 

Seed repair: air = mild - cochlear-age 36.8% 

Cycle 1 
Temp repair 1: air = mild A 

age-gt-60 = true 
- cochlear-age 

Temp repair 2: air = mild A 
history-nausea = fake 

---+ cochlear-age 
Temp repair 3: air = mild A 

history-noise = false 
+ cochlear-age 

65.9% 

37.5% 

45.4% 

Temp repair 1 becomes the new seed repair. 

Cycle 2 
Temp repair 1: air = mild A 

age-gt-60 = true A 
history-nausea = false 

- cochlear-age 
Temp repair 2: air = mild A 

age-gt-60 = true A 
history-noise = false 

- cochlear-age 

70.3% 

92.6% 

Temp repair 2 becomes the new seed repair. 

Cycle 3 
Temp repair 1: air = mild A 

age-gt-60 = true A 
history-noise = false A 
history-nausea = false 

- cochlear-age 92.3% 

No repairs better than seed repair. 

Final repair: air = mild A 

age-gt-60 = true A 
history-noise = false 

- cochlear-age 92.6% 

(b) Three cycles of the repair generation process. 

Figure 2: The shortcoming localization information 
in (a) guides the greedy repair construction in (b). 
New conditions are added to the seed repair, and 
the best one becomes the new seed repair. 

be related to the shortcoming. An attribute cho- 
sen for the final repair may have been requested in 
close proximity to the unexplained attribute or it 
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may have been the very first attribute requested. 
Position in the ordered sequence seems to give lit- 
tle help in the repair stage forcing the use of weak 
search techniques. 

6 Experiments 
The SKIPPER program puts together the three 
tasks of apprenticeship: shortcoming detection, lo- 
calization, and repair. The assumptions that SKIP- 
PER makes about the observed expert are that it 
is rational and is using a test-hypothesis strategy as 
discussed in section 3. First, the order of attributes 
in an observed problem-solving session are exam- 
ined, and all the unexplained attributes are found. 
Next, the dust unexplained attribute in the step se- 
quence is selected as the focus of shortcoming local- 
ization. Why the last unexplained attribute? Any 
unexplained attribute could have been chosen, but 
the last one has the most specific context since more 
attributes were requested before it and therefore 
provides the most localization information. Next, 
the best repairs are generated and are added to the 
KB, and then the whole process is repeated. When 
no more shortcomings can be repaired using the set 
of training examples, SKIPPER goes through a KB 
pruning stage in which unhelpful rules (rules whose 
removal does not decrease the overall accuracy on 
the training set) are removed from the KB. 

Experiments were run using the standardized 
audiology dataset [Jergen, 19871 which has 69 at- 
tributes, 24 classes, and contains 226 examples. For 
each experiment N examples were used as a training 
set and the 226 - N remaining examples were used 
as a validation set. First, the C4.5 program used the 
training examples to create an initial KB of rules, 
and the accuracy of this initial KB was tested on the 
validation set. Next, SKIPPER refined this initial 
KB using the same training examples, and the ac- 
curacy of the final refined KB was checked using the 
validation set. Training sets were selected randomly 
from the pool of 226 examples. 

The observed expert used in the experiments 
was a set of rules generated by C4.5 using all 226 
audiology examples available. Because this master 
rule set was generated using all 226 examples, the 
knowledge contained in it can be viewed as the gold 
standard as far as classifying these 226 examples is 
concerned, and it thus serves as an “synthetic ex- 
pert.” An ordered sequence of requested attributes 
can be generated for a given example by observing 
the order in which the master rule set would request 
attributes in solving that example. During each run 
of the apprentice, such an ordered sequence was cre- 
ated for each example in the training set and was 

used in refining the KB. 

Training 
Set 
Size 

5 
10 
25 
50 
75 
100 
125 
150 

21.3rt4.8 
25.6f12.1 
55.2f7.2 
59.6f8.1 1 67.3f5.0 

~ 67.9f6.6 
72.3f4.4 
75.0f5.3 

Improve- 
ment 

1 accuracy) 
38.9k7.8 1 
44.1f9.8 
62.9f6.0 
71.7f7.6 
77.2k4.4 
82.1f3.9 
82.3f5.0 
85.4f5.0 

17.6f9.2 
18.5f15.6 

7.7f8.4 
12.1f8.3 
9.9f2.6 

’ 14.2f8.4 
lO.Of4.8 
10.4f5.5 

Table 1: Accuracies and improvements for experi- 
ments with the standardized audiology set. 

Experiments were run using training sets 
ranging in size from 5 up to 150, and the results 
are summarized in Table 1 and Figure 3. Percent 
accuracies are given along with their 99% confidence 
ranges. The “Improvement” column simply reflects 
the net percent accuracy gained. Each result is an 
average taken over 10 independent runs. 

100 

% 
A 75 
C 
C 
u 
r 
a 50 
C 
Y 

25 

Size of training set 

Figure 3: Accuracy of the initial KB and refined KB 
as a function of the training set size. 

7 iscussion 
An apprenticeship system refines its knowledge 
base by observing and analyzing the intermediate 
problem-solving steps taken by an expert (a gen- 
eralization of the definition suggested in [Mitchell 
et al., 19851). This paper has focused upon classifi- 
cation and specifically has sought what leverage can 
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be attained from attribute ordering - knowing the 
order in which an expert requested attribute values 
while classifying an example. This ordering yields 
leverage because it presents each action within the 
context in which that action was taken. An at- 
tribute request can be analyzed from the critiqued 
problem-solver’s point of view with respect to what 
was and wasn’t known at the time of the request. 
Since the apprentice attempts to explain why the 
expert takes certain actions, a priori assumptions 
must be made about the expert and his problem- 
solving strategy. These assumptions provide a cru- 
cial bias for KB shortcoming detection. The power 
of attribute ordering is that it does not rely on em- 
pirical calculations to discover attribute/class rela- 
tionships. Rather, attribute/class relationships are 
suggested by attribute ordering and are only verified 
empirically thus requiring less empirical evidence. 

This work has focused only on repairing a 
KB by adding new rules. Often, though, it may be 
desirable to mend a slightly imperfect rule [Ourston 
and Mooney, 19901. SKIPPER inelegantly handles 
this situation by adding new rules and then pruning 
away useless rules as a final stage. The information 
contained in problem-solving step ordering could be 
used to point out imperfect rules. For example, if 
an attribute request is unexplainable, but that at- 
tribute is in the premise of a rule previously deemed 
irrelevant, then perhaps the false condition in that 
rule should be deleted or altered. Attribute order- 
ing appears to provide little information, though, for 
the decision of which type of repair should be made: 
adding a new rule or altering an existing rule. 
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