Abstract
Genetic information, as expressed in the four-letter code of the DNA of living organisms, represents a complex and richly expressive natural knowledge representation system, capturing procedural information that describes how to create and maintain life. The study of its semantics (i.e., the field of molecular biology) has yielded a wealth of information, but its syntax has been elaborated primarily at the lowest lexical levels, without benefit of formal computational approaches that might help to organize its description and analysis. This paper discusses such an approach, using generative grammars to express the information in DNA sequences in a declarative, hierarchical manner. A prototype implemented in a Prolog-based Definite Clause Grammar system is presented, which allows such declarative descriptions to be used directly for analysis of genetic information by parsing DNA. Examples are given of the utility of this method in the domain, and speed-ups and extensions are also proposed.

1. Introduction
Beginning with the understanding of the "genetic code" in the 1950's and '60's, the essential lexical elements of the language based in DNA have been understood, and a great deal about its higher-level features has also been discovered, but not formalized in the sense of computational linguistics. More recently, the advent of techniques for efficiently isolating genes and determining their DNA sequence has led to an explosive accumulation of data. DNA sequence databases now contain thousands of entries, each consisting of hundreds or even thousands of nucleotide bases (the elements of the genetic code, abbreviated g, a, t, and c), and the rate at which new data is accumulating is accelerating rapidly. In the face of this mass of data, computerized DNA sequence analysis is becoming an increasingly important tool for molecular biologists in such realms as the identification of evolutionarily related sequences using homology (similarity) algorithms, the detection of specific sequences in large DNA sequence databases by pattern-matching techniques, more sophisticated algorithmic investigations of the relation of primary sequence to higher-order structure and function, and in the planning of recombinant DNA experiments.

Despite the proliferation of such tools and the explosive growth of sequence databases, methods for the specification and analysis of such genetic information tend to approach the underlying DNA sequence as a linear data set, as opposed to a highly structured language specifying biological information. Yet, it has been observed that an abstracted, hierarchical view is desirable in dealing with applications such as the prediction of 3-dimensional structure of biomolecules based on their primary sequence [Lathrop87]. We propose here an approach to DNA and protein sequence description and analysis, founded in computational linguistics, that provides a unifying conceptual framework for all the diverse activities described above, and which may also itself lead to new insights into the organization of DNA. This paper will first introduce the notion of applying general grammars to some simple DNA features, then discuss the linguistic power required for DNA, and then further elaborate a biological example along with an actual implementation and sample run.

2. A Genetic Grammar
Consider the partial grammar given below as an example. It consists of a collection of rules or productions denoted by arrows, each with a non-terminal (NT) symbol on its left-hand side (LHS), and a string of NTs and/or terminals (Ts) on its right-hand side (RHS) separated by commas and ending with a period. Ts correspond to the alphabet of the language being described, in this case double quoted strings of lowercase nucleotide bases (e.g. "gate"); a vertical bar (|) signifies disjunction on RHSs. These conventions are familiar from BNF descriptions of computer languages.

\[
\begin{align*}
catBox & \rightarrow \text{pyrimidine}, \text{"caac"}. \\
tataBox & \rightarrow \text{"tata"}, \text{base}, \text{"a"}. \\
capSite & \rightarrow \text{"ac"}. \\
\text{base} & \rightarrow \text{purine} | \text{pyrimidine}. \\
\text{purine} & \rightarrow \text{"g"} | \text{"a"}. \\
\text{pyrimidine} & \rightarrow \text{"t"} | \text{"c"}.
\end{align*}
\]

What is captured here, in terms of the four DNA bases and some prelexical elements describing base classes...
(i.e. purine and pyrimidine), are highly simplified descriptions of a few fairly low-level features of biological interest (catBox, etc.) that occur near the beginnings of many genes and act as signals delineating those genes and regulating their expression. This grammar fragment could also be described by regular expressions, and thus falls into the class of regular languages (RLs). In fact, many current pattern-matching algorithms used for DNA sequences are based on regular expression search. However, the advantages of a grammar-based representation begin to emerge as higher-level features are expressed, as shown below.

```
gene --> upstream, xscript, downstream.
upstream -->
catBox, 40...50, tataBox, 19...27.
xscript -->
capSite, ..., xlate, ..., termination.
```

The top-level rule for the NT gene in this grammar is an abstract declarative statement that a gene is composed of (1) an upstream region, containing the control regions defined above, followed by (2) a central region (xscript, so named because it undergoes transcription in the cell to an intermediate form, called messenger RNA, when the gene is expressed), followed by (3) a downstream region, not further described here. It also shows that the transcribed region xscript has within it a sequence xlate which we will see reflects a further translation of the messenger RNA into protein, the final product of gene expression. Note the introduction of a “gap” symbol (‘...’), which simply specifies some otherwise undistinguished span of bases; a gap may be indefinite, as in the rule for xscript, or bounded by a minimum and a maximum span, as in upstream. In terms of parsing, a gap is just an indiscriminant consumer of bases.

These rules taken together show how the grammar can be “broken out” into its components in a perspicuous hierarchical fashion, with detail always presented at its appropriate level. Besides encouraging a higher-level description than the flat, left-to-right representation of regular expressions, grammars afford potentially greater expressive power than simple RLs; in the genetic domain, situations are encountered which seem to require the power of context-free (CF) languages, or greater. For example, the structure illustrated in Figure 1 represents a recurring theme in molecular biology. At the top are shown the two strands of DNA which bind to each other to form the double helix; the strands have directionality, indicated by the double arrows, and they bind in opposite orientations. Nucleotide bases positioned opposite each other are complementary, in that they fit each other, or pair, in a lock-and-key arrangement: the base "g" is complementary to "c", and "a" to "t". Because one strand thus determines the other's sequence, only one strand is described in any of these grammars. We denote substrings of bases by Greek letters, and their reversed complementary substrings by primes ('); base pairing is represented by dots.

![Figure 1. A Biological "Palindrome"](image)

Alternative pairing of complementary substrings can give rise to biologically significant secondary structure in the DNA strands. In Figure 1, what is loosely referred to as a palindrome (i.e. α and α') in the top sequence produces a cruciform structure with unpaired loop-outs (γ and γ'), shown at the bottom. Sequences with potential to form such structures could formally be expressed as \(\{ u \circ w \mid u, v, w \in \{g, a, t, c\}^*, \mid u \mid = \mid w \mid = j \} \), and for \(1 \leq i \leq j \), \(u_i \) is the complementary base to \(w_{j-i+1} \), which can be shown to be a CF language (see Section 5) and not regular. In fact, tandem repeats, which are also common biological features, are formally copy languages (e.g. \(\{ u \circ w \mid w \in \{g, a, t, c\}^* \} \)), which require even greater than CF power. There are many more complex examples of such features of secondary structure, particularly in RNA, and protein sequences offer an even richer variety.

Many ad hoc programs have been written, and variations on regular expression search implemented, that would address various shortcomings of current systems [Saurin87, Staden80], but these are neither formal nor general. Blattner has formally described a DNA-oriented language, which however does not treat the sequence itself as a formal language [Schröeder82]. Brendel has proposed a somewhat more formal linguistic approach for DNA sequences [Brendel84], but does not carry it much beyond a prelexical level; in any case, it has been argued persuasively that the formalism he offers (Augmented Transition Networks) is less clear, concise, efficient, and flexible than the formalism we will propose, that of Definite Clause Grammars (DCGs) [Pereira80].

3. A DCG-Based Implementation

DCGs are grammar systems that can be translated to rules in a Prolog program, which then constitutes a parser for the grammar. The translation involves the attachment of two parameters to each NT; one represents an input string of Ts passed into the NT, and the other a remainder list to be passed back out, should an initial substring of the first list parse as that NT. DCGs have three features that extend their power beyond CF: parameter passing, procedural attachments, and terminal replacement. This section
introduces each of these features in turn, and in doing
so continues a running biological example.

The grammar below picks up from that of Section 2,
concentrating on translation products, i.e. the results
of translating messenger RNA (previously transcribed
from the DNA) to protein in the cell. The prelexical
elements for the protein coding regions of the DNA are
codons, or triplets of bases, each of which sequentially
specifies corresponding amino acids in the resulting
protein chain. That is, codon translation could be
represented as a function $f: B^3 \rightarrow A \cup \{\tau\}$, where
$B = \{g, a, t, c\}$, $A = \{m, p, h, e, l, u, s, \ldots\}$ (a set of 20
amino acids), and τ represents a termination signal,
which always ends a protein chain. The function is
onto but not one-to-one, since there are 64 available
triplets; this degeneracy in the genetic code lies pri-
marily in variability in the third base of the codons.
This is captured in the following rules.

\[
\begin{align*}
\text{stopCodon} & \rightarrow "tga" | "ta", \text{purine}. \\
\text{codon(met)} & \rightarrow "atg". \\
\text{codon(phe)} & \rightarrow "tt", \text{pyrimidine}. \\
\text{codon(leu)} & \rightarrow "tt", \text{purine}. \\
\text{codon(ser)} & \rightarrow "tc", \text{base}. \% \text{etc}... \\
\end{align*}
\]

This introduces the use of parameters on NTs,
although in this case they are simply used to tag each
codon rule with its amino acid identity. We now wish
to write the rule for xlate that will concatenate
these codons into translation products, using param-
eters to return the resulting protein sequence. First,
though, we must introduce one last biological complica-
tion, which however is handled well by the grammar
paradigm. This is the fact that in genes of higher
organisms, sequences of bases that are ultimately
translated, called exons, are interleaved with untrans-
lated regions, called introns. Introns are excised af-
after the messenger RNA is transcribed, but be-
fore it is translated into protein, in a process called
splicing, illustrated in Figure 2. The grammar frag-
ment below uses recursion to express the fact that an
exon consists of a sequence of codons, while an actual
translation region is a series of exons interrupted by
introns. Also depicted is the fact that translated
regions always begin with a methionine (met) codon.

\[
\begin{align*}
\text{xlate}([\text{met}|\text{RestAAs}]) & \rightarrow \text{codon(met)}. \\
\text{xlate}(\text{RestAAs}) & \rightarrow \text{stopCodon}. \\
\text{xlate}(\text{AAs}) & \rightarrow \text{exon(AAs)}.
\end{align*}
\]

\[
\begin{align*}
\text{xlate}(\text{AAs}) & \rightarrow \text{exon(AAs1)}, \text{intron}, \\
\text{xlate}(\text{AAAs2}), \{\text{append(AAs1, AAs2, AAs)}\}. \\
\text{exon([])} & \rightarrow [1]. \\
\text{exon([AA][AAs])} & \rightarrow \text{codon(AA), exon(AAs)}. \\
\end{align*}
\]

The NT xlate and its auxiliary relation
xlate1 combine sublists of amino acids from multiple exons,
using a call to a Prolog predicate, append, enclosed in
curly braces. This demonstrates a simple use of
the procedural attachment feature of DCGs, whereby any
arbitrary Prolog code (or even code from other
languages) can be invoked. This can range from simple
utilities, to more complex search heuristics, to entire
expert systems.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Intron Splicing}
\end{figure}

Note that message splicing may occur in such a way
that a new codon is created when the "reading frame"
(by which the DNA sequence is divided into triplets,
partitioning it into three possible lists of codons)
straddles the splice site. In order to account for this,
we require an intron rule that deals with each possible
reading frame, and furthermore can preserve the
"spanning codon" that it may interrupt. This is
elegantly handled by the terminal replacement feature
of DCGs, a limited form of context-sensitivity by which
Ts may be specified on the left hand side of a rule,
trailing the NT. This has the effect of adding those Ts
onto the front of the input string after such a rule
parses. This feature is used in the rules for intron
shown below; bases which contribute to the spanning
codon are simply replaced after the intron is spliced
out, in effect attaching them to the next exon, as far as
the parser is concerned.\footnote{Note that Ts are shown here in
conventional Prolog list structure ([...]), rather than
by use of the double-quote convention, as above. This is
necessary because we must show the individual bases as
variables – in Prolog, atoms beginning with upper-case
letters or underscores – while the double quotes are
actually a shorthand for lists of ASCII character codes.}

\[
\begin{align*}
\text{intron} & \rightarrow \text{splice}. \\
\text{intron}, \{\text{B1}\} & \rightarrow \{\text{B1}, \text{splice}\}. \\
\text{intron}, \{\text{B1, B2}\} & \rightarrow \{\text{B1, B2}, \text{splice}\}. \\
\text{splice} & \rightarrow \text{donor,}, \ldots, \text{acceptor}. \\
\end{align*}
\]

The region to be excised is determined by the NT
splicing, and in turn by so-called splice donor
and acceptor sites, to be described below in Section 6.

4. Example: Alternative Splicing

Given the DCG of Section 3, the following Prolog query
tests to parse complete translation products any-
where within a test string of bases.

\[
\begin{align*}
?- \text{[...].xlate(AAs)}]. \text{Parse} \mapsto \\
"aatgaatagtatctgttctactgtagccaggtgaa".
\end{align*}
\]

Our parsing operator, "$\mapsto"$, has a number of special
syntactic features. The LHS of the operator may be
specified as a serial list of grammar elements, rather
than a single NT. A parse tree may be returned,
bound to a variable following the LHS and separated
from it by a colon; this parse is carried by an addi-
tional hidden parameter augmenting the DCG mech-
anism. The RHS of the operator may be a list of bases,
or a tag that references a database entry or external
file. The query given above first succeeds in producing the following result.

\(AAs = [\text{met, asn, ser, ile, leu, phe, tyr, ser}] \)

Parse =

\[
\ldots
xlate([\text{met, asn, ser, ile, leu, phe, tyr, ser}]):
\]

\[
\text{codon(met)}:
3/"atg"
\]

\[
xlate1([\text{asn, ser, ile, leu, phe, tyr, ser}]):
\]

\[
\text{exon([asn, ser, ile, leu, phe, tyr, ser])}:
\ldots
\]

\[
\text{stopCodon}:
7/"ta"
\]

\[
\text{purine}:
23/"g"
\]

This parse returns a list of amino acids bound to the variable \(AAs \), with no splicing. The parse tree returned to the variable \(Parse \) is printed so that the indentation shows the depth of the call, ellipses signify recursive calls whose outputs are omitted (due to a feature, not shown, that allows the user to "cut off" the parse tree at rules below which it becomes tiresome or unnecessary to store the entire parse), and Ts (bases) are always preceded with positional references set off by fore-slashes. For example, the last four lines indicate that a stop codon ("tag") was found at positions 27-29. The positional references are also carried through the parse by an added hidden parameter. The semicolon at the end is input by the user, and causes the query to fail, in effect asking for another answer by initiating backtracking.

\(AAs = [\text{met, asn, thr, arg}] \)

Parse =

\[
\ldots
xlate([\text{met, asn, thr, arg}]):
\]

\[
\text{codon(met)}:
3/"atg"
\]

\[
xlate1([\text{asn, thr, arg}]):
\]

\[
\text{exon([asn])}:
\ldots
\]

\[
\text{intron}: 9/"a"
\text{splice}:
\text{donor}:
10/"gtatct"
\ldots
\text{acceptor}:
24/"tcgtag"
\]

\[
xlate1([\text{thr, arg}]):
\]

\[
\text{exon([thr, arg])}:
\ldots
\]

\[
\text{stopCodon}:
35/"tga"
\]

Upon backtracking, an additional parse is discovered, by introducing a splice; no other parses exist. Prolog-style backtracking is ideally suited to investigating real biological situations (e.g. certain viruses) that involve alternative splicing such as this, and also alternative start sites. This is in addition to the potential use of grammars for searching sequence databases for possible genes, described declaratively at this abstract level.

5. Efficiency

While the performance of this prototype system has been quite satisfactory in small test systems, for much larger search applications we must be concerned with efficiency, especially since we are giving up extremely fast linear-time string-matching algorithms.²

Because of the large amount of backtracking that may be expected in this application over huge input strings, chart parsing (i.e., saving intermediate results in a table that may be consulted dynamically) is an appropriate strategy to avoid the penalties of re-parsing complex features. A form of chart parser is easily implemented in a DCG by simply adding at the end of a rule an assertion of its LHS NT (with its associated position) as a ground clause into the database ahead of the rule itself (using the Prolog asserta). Thus, whenever the rule succeeds in parsing that NT, the clause entered will intercept any later attempts to parse the NT at that position in the input string, and succeed before the rule is invoked. Using a small test grammar, we find that the efficiency of the chart parser would begin to exceed that of the standard DCG parse after an average of only 1.9 backtracks over a distance of 40 bases — small on the scale of DNA sequences. Furthermore, this implementation of chart parsing can be greatly improved, because it is inefficient to index the NT chart entries by their list parameters, and because in fact the chart is much more effective if it also stores the points where parses fail (a far more frequent occurrence than success); such a volume of information in the chart would use excessive memory if stored as Prolog data structures. One answer is to use DCGs indexed by numerical position rather than by lists. This has the immediate benefit of allowing the input string to be stored as an external array (written in 'C'), rather than Prolog linked lists, with their time and space overhead. Also, numerical indexing allows a far more effective data structure for the chart, again using an external array. We have now implemented a chart which stores both success and failure information, the latter made feasible by storage in external bit arrays.

Related to efficiency concerns are potential problems with pure declarative logic-based expressions of grammar rules. Certain phenomena in genetic grammars might result in parses that are inefficient because of excessive backtracking, or even fail to terminate in the general case, or are under-specified in other regards. For example, a straightforward rule for the inverted

² However, note that regularizable sub-trees of genetic grammars could be detected and automatically converted to those fast string-matching algorithms. In fact, there are highly-optimized dynamic programming algorithms used for DNA similarity searches and other purposes which will probably be better left as external subroutines called from the DCGs as procedural attachments. The DCGs will then constitute organizing frameworks containing pure declarative grammars and, where appropriate, specialized algorithms, heuristics, etc. to maintain the tractability of the system.
3% Knowledge Representation

complementary repeat or "palindrome" described in
Section 2 is given by the following DCG rule:

\[
\text{invertedRepeat} \rightarrow \ldots \ % \ loop-out \\
\text{invertedRepeat} \rightarrow \{X\} \\
\text{invertedRepeat}, \{X::Y\}, \{Y\}.
\]

The second clause collects complementary bases (with
complementarity denoted by an infix operator ': : '),
and calls itself recursively between them, while the first
clause is a "gap" that corresponds to the loop-out.
This rule is mathematically correct, and in fact is a
direct encoding of the formula given in Section 2, but
in practice it would not terminate, since the DCG
implementation of the unbounded gap operator simply
consumes any number of bases from the input string,
and changing the clause order does not help. While a
number of meta-level features and program transforma-
tion techniques have been proposed to handle such
problems in logic programming, our current approach
is to provide a library of built-ins which are individu-
ally optimized, or constrained, or which make use of
external subroutines. For instance, a workable rule for
inverted repeats is:

\[
\text{invertedRepeat}(O, \text{Loop}) \rightarrow O \ldots \text{Loop}.
\]

\[
\text{invertedRepeat} = \{\text{Next is Length - 1}, \{X\}, \text{invertedRepeat}(\text{Next, Loop}), \{X::Y\}, \{Y\}.
\]

By parameterizing the Length of match required and
the maximum Loop, the rule can be properly con-
strained and forced to terminate. In practice, though,
even more general rules should permit wider latitude in
specification and deal with imperfect matching (see
Section 6), while addressing efficiency concerns.

6. Imperfect Matching

Biologically speaking, the rules for catBox and other
signal sequences given above were naive in portraying
exact sequences, when in fact there is a great deal
of variability observed. Usually such a signal would
be expressed as a consensus sequence, a canonical
representation of the most common bases in each posi-
tion. This need to allow imperfect matching is recog-
nized in the rules for splice donor and acceptor sites:

\[
\text{donor} \rightarrow \text{"gt"}, \{B3, B4, B5, B6\}, \{2 \text{ of } \text{purine} \rightarrow \{B3\}, \{B4\} = \text{"a"}, \{B5\} = \text{"g"}, \{B6\} = \text{"t"} \}.
\]

\[
\text{acceptor} \rightarrow \{B6, B5, _ , B3\}, \text{"ag"}, \{3 \text{ of } \text{pyrimidine} \rightarrow \{B3\}, \text{pyrimidine} \rightarrow \{B5\}, \text{pyrimidine} \rightarrow \{B6\} \}.
\]

Here, the infix operator 'of' takes as arguments an
integer and a list of goals, and succeeds when at least
that number of goals in the list is satisfiable. This

\[
\text{Note also the recursive application of the parsing operator;}
\text{while its use here is trivial, and could be replaced by base}
\text{class predicates of arity one (e.g. purine(B3)), it is}
\text{nevertheless a potentially powerful technique for such pur-
\text{pose as managing "multi-layered" parsing [Woods80].}
\]

provides a simple probabilistic element. While the "gt"
and "ag" signals are invariant, matches on only a por-
tion of the surrounding consensus bases (B3-B6) are
required, sometimes only to the level of base classes.
Some positions may even be unknown, as indicated by
the Prolog anonymous variable (_) in acceptor. A
more sophisticated mechanism, however, is required.

<table>
<thead>
<tr>
<th>base</th>
<th>/%</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. A Hypothetical Consensus Sequence

Consider the consensus sequence depicted in Figure 3,
showing the relative base frequency over a hypothetical
five-position sequence. These involve fractional match
operators that require some score, measured in terms of
a distance metric, to exceed a threshold parameter. For
example, a trivial scheme might simply examine the
additive percentages across the sequence, which would
be a maximum of 265 for a "perfect" fit (e.g. "ggcga").
One might then define a 60% match as 0.6×265=159,
for a threshold of 159 defining success. Such metrics
have been well-studied [Kruska183], but an implementa-
tion in logic permits a natural incorporation of
mechanisms for "eager" success and failure, so that
only as many comparisons are done, reading left to
right, as are necessary to prove that the predicate can-
not fail, given the minimum remaining score (\(\text{min}\rightarrow\)),
or cannot succeed, given the maximum remaining score
(\(\text{max}\rightarrow\)). For example, at a 60% threshold an initial
string of "ca" would be destined to fail, whereas "gt"
could not fail, regardless of the remaining sequence.

Furthermore, clause reordering can enhance the
efficiency of logical proof based on such probabilistic
elements. For example, in the example above, it would
be better to test position 5 before position 4, because 5
would be more likely to fail on inappropriate input
than 4. In other words, the distribution in position 5
has more information content, and in fact we can
reorder our examination of base positions according to
the inverse rank order of their informational entropy,

\[
- \sum_{p \in (B \cup A)} p_i \log_2 p_i
\]

where \(p_i\) is the probability that base \(e \in \text{C}(B \cup A)\)
appears in that position [Shannon64].

Thus, the order in which these positions would be
examined is 1, 5, 2, 4, and 3, again using eager success
and failure. The use of a numerically indexed gram-
mar structure allows compile-time reordering of the
examination of positions within a term, and we hope to
generalize this to clause reordering for eager decision
through entire rule bodies, though this will be
significantly complicated by variable gaps within rules.
7. Extensions

The utility of grammars may extend beyond structural descriptions of DNA, to encompass functional aspects of genetic and biochemical systems. For instance, there is a fundamental similarity between biochemical reactions and the notion of terminal replacement in DCGs. In the latter case, input is consumed and replaced with another terminal string, just as in a reaction substrate is "consumed" and replaced by product. For example, the rule

oxidativeDeamination, "u" --> "c"

would replace a "c" residue with a "u" (a process used experimentally to create "directed" mutations). In other words, there is a sense in which the biochemical notation

substrate reaction product

corresponds to the grammatical notation

reaction, product --> substrate.

Thus, DCGs are able to conceptually capture the idea of performing reactions on the DNA sequence, and thereby altering it. This should make it possible to extend the language to deal with phenomena like gene rearrangement, and experimental manipulation of DNA fragments. We are examining methods by which this formalism (though perhaps with improved syntactic representation) may be applied to populations of molecules, rather than single input strings, so that, for example, grammars could be used as scripts in complex experiment-planning systems.

By a further extension, grammars can be used to combine high-level descriptions of sequence with simulations acting on that sequence. The following grammar deals with regulatory sequences called promoters, which in simple systems may be feedback-inhibited by the protein product of the gene they regulate.

transcribedGene(Time) --> activePromoter(Time). xscript. {assert(product(Time))}.

activePromoter(Time) --> {concentration(Time,C), threshold(T). C<T), promoter}.

lifetime(10). % average 10 seconds

threshold(7.5). % concentration (mM)

This grammar deals not only with the sequence data but with the environment. The rule transcribedGene, having parsed an active promoter and a transcribed region, asserts into the database a discrete amount of time-stamped gene product. The rule activePromoter postulates a product inhibition, succeeding in recognizing its sequence (lexically encoded elsewhere in the NT promoter) only if the current concentration C of product is below some regulatory threshold T (set by the predicate threshold). The predicate concentration (not shown) maintains the Prolog database of product according to the expected lifetime of that product. Repeatedly parsing for transcribedGene, at a rate of one parse per second, produces the behavior shown in Figure 4.