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A system for continuously providing advice about 
the operation of some other device or process, 
rather than just problem diagnoses, must not only 
function in real time, but also cope with dynamic 
problem courses. The reasoning technique 
underlying such a system must not assume that 
faults have single causes, that queries to the user 
will be answered and advice to the user will be 
followed, nor that aspects of a problem, once 
resolved, will not reoccur. This paper presents a 
reasoning technique that can be used in 
conjunction with an inference engine to model the 
state of a problem situation throughout the entire 
problem-handling process, from discovery to final 
resolution. The technique has been implemented 
and installed on-line in a factory control room, as 
part of a real time expert system for advising the 
operators of a manufacturing process. 

There are many potential practical applications for a 
reasoning technique enabling a knowledge-based system to 
provide continuous “coaching” to the operators of a 
complex device or process. For example, manufacturing 
operations might benefit from advisory systems providing 
operators with continuous assistance in monitoring and 
troubleshooting process behavior; similarly, computer 
installations might provide better service by using expert 
systems to assist operators in managing the systems’ 
performance. However, the goal of continuously providing 
a user with operational advice, as well as problem 
diagnoses, makes unique demands on the reasoning 
technique to be employed. Such an advisory system must 
not only function in real time, but also cope with dynamic 
situations, and unpredictable interactions with the user. 

The goal of a real time expert advisory system is not 
only to monitor the target system to detect, diagnose, and 
suggest a remedy for problems, but also to continue to 
advise the operator on further actions to take as the 
problem resolves. Functioning in a dynamic situation 
requires the ability to revoke or update remedial advice if 
the corresponding problem resolves of its own accord, or if 
the remedy is no longer appropriate to the situation. The 
advisory system also should not rely on assumptions that 
problems have single causes, or that individual aspects of a 
problem situation, once resolved, will not reoccur. 

The ability for an expert advisory system to function 
interactively with an operator is required, even if the 
system matures to the point people are willing to “close the 
loop” and allow it to exert control over the target system. 

This is because, in most applications, there will always be 
some actions that cannot be performed without human 
intervention (e.g.? replacing broken parts, operating manual 
valves, etc.) Thus, the reasoning technique used by such 
systems must be able to cope with the unpredictability of 
operator behavior. The system cannot be based on 
assumptions that the operator will always approve and 
comply with recommended actions, respond to queries for 
information not obtainable through instrumentation, or 
even be available at the time advice is issued. In many 
application environments, it is also important that the 
advisory system l-lot interact with the operator 
unnecessarily. 

This paper presents a reasoning technique we have 
found suitable for providing the problem-monitoring and 
the advice-giving functions of a real time, interactive 
expert advisory system meeting the above requirements. 

In related research, Griesmer and others [Griesmer et 
al., 1984; Kastner et al., 19861 discuss a real time expert 
system for assisting in the management of a computer 
installation using the MVS operating system. They 
describe features added to a forward-chaining inference 
engine to handle the initiation of actions at the 
appropriate times, to manage communications among 
system components, and to exert controls that prevent 
sequences of remedial actions from being interrupted. 
However, they do not present methods for interrupting, 
retracting, or revising advice when it is appropriate to do 
so, nor for coordinating the treatment of multiple faults 
arising in the same episode. 

A method for reasoning about multiple faults is 
presented by [deKleer and Williams, 19861. Their research 
addresses the problems of coping with very large search 
spaces comprised of combinations of failed components, 
and performing diagnostic reasoning from a model of the 
structure and function of the target system, in a static 
data environment. Our work focuses on managing 
diagnostic and remedial efforts over time, in a dynamic 
environment. 

Nelson [Nelson, 19821 has utilized a “response tree” 
technique as part of an expert system to dynamically select 
among the possible responses that operators of a nuclear 
reactor might take in a failure situation. However, the 
main goal of this approach is to efficiently encode and 
utilize “precompiled” knowledge about responses that will 
lead to a safe system shutdown. Our work has been in less 
critical application domains, and is directed toward 
methods to help operators keep a system functioning. 
The technique we present serves as an adjunct to the 
inference engine of an expert advisory system, in a similar 
manner as various Truth Maintenance Systems (TM!& 
ATMS, etc.) can serve as an adjunct to a deductive 
reasoner. The latter systems (e.g, [deKleer, 19841) are used 
for problems in which the assertions given to the system 
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are relatively unchanging; the elements of the problem 
space are inferences based on the givens plus additional 
assumptions which may later be found incorrect. Thus, 
dependencies of inferences on assumptions are recorded, so 
that when a contradiction is discovered, the inferences 
based on the contradictory set of assumptions are readily 
identified, and may be explicitly or implicitly “undone.” 
Our technique is appropriate for problems in which the 
assertions (data) given to the system change frequently; the 
elements of t% problem space are states of affairs that are 
causally related, but which m&y or may not hold given the 
next round of data. Thus, dependencies of the current 
problem state on the state of antecedent causes are 
recorded, so that when the status of a cause changes, the 
effect. on the overall course o.f the problem episode is 
readily identified. 

IL Paoble naiysis 

Consideration of the type of behavior desired from an 
expert advisory system leads to several conclusions about 
the required features of the reasoning technique and 
knowledge representation to be used. Because the 
reasoning is to be performed in real time, and is to be 
about the status of a dynamic target system, the reasoning 
approach must utilize some form of multi-valued logic. At 
a minimum, logic predicates in the system must be 
permitted to take on an “unknown” value, as well as 
true/false, whenever the data involved is too obsolete to be 
considered a valid descriptor of the corresponding aspect 
of the target system. Likewise, the advisory system cannot 
halt and await a response from the user when the value of 
non-instrumented variable is required; hence the reasoning 
approach must be able to proceed while some data values 
are unknown. 

The reasoning technique must also be nonmonotonic, 
both in what Ginsberg terms the “truth value” (t- 
nonmonotonic) and “knowledge” (k-nonmonotonic) sense 
[Ginsberg, 19861. The world in which an expert advisory 
system functions is t-nonmonotonic, in that the truth value 
of conclusions changes over time. For example, problem 
situations can spontaneously resolve (eg., if a stuck valve 
frees itself), default assumptions can prove incorrect (eg., a 
manual valve normally open may have been closed), or the 
operator of the system can resolve a problem 
independently of the advisory system. As a result, the 
reasoning technique must be able to correctly “back up” in 
the state of affairs concluded. 

The advisory system’s world is also k-nonmonotonic, 
because the amount of information known for certain to 
the system decays over time, as the data on which it is 
based ages. As a result, reasoning by an expert advisory 
system must be interruptable. The system cannot afford to 
suspend data scanning for an indefinite period of time 
until its inference engine reaches conclusions; data 
scanning and updates must occur regularly. Although data 
collection and inferencing can proceed in parallel machine 
processes, the inference engine must operate on a stable 
“snapshot” of data, in order to ensure that the data it is 
using, and hence its conclusions, are internally consistent. 
Thus, it must be possible to interrupt the reasoning process 
periodically to allow data updates to occur, then resume. 
Upon resumption, the reasoning process should not 
necessarily proceed to follow its prior reasoning paths, 
which may no longer be productive given the new data, 
nor can it “start over” each time it receives new data, lest 
it never reach useful conclusions at all, given the time 
slice it has available. 

These considerations suggest that an effective 
reasoning approach for an advisory system is one based on 
a representation of the states a problem can attain during 
the problem-solving process. Transitions among these 
states should permit the system to proceed despite 
incomplete data whenever possible, and enable the system 
to handle “nonmonotonic progress” through the problem- 
solving states. (By nonmonotonic progress, we mean 
transitioning that returns to a previously visited state in 
the path from the start state to the final state in a problem 
episode.) 

Use of a representation of intermediate states in the 
problem-solving process makes the inference engine 
interruptable. The reasoning process can be suspended any 
time the representational structures are in an internally 
consistent condition. The problem-solving process will be 
responsive to data changes that occur during the problem- 
solving, since upon resumption, the next state transitions 
will be a function of the newly updated data. In contrast, 
for example, if a backward-chaining inference engine is 
interrupted for a data update, and its state (goal stack) 
saved and restored, the “line of reasoning” that the 
inferencing will initially pursue is still a function of the 
goal stack alone. 

By defining the state transitions in a way that allows 
transitioning to occur in some parts of the problem despite 
unknown data values in other parts, the advisory system 
can proceed to offer some advice to the operator, even 
though it must await more data to draw conclusions about 
other aspects of the problem. As a practical matter, we 
have found that if the application domain involves 
problems in which the various potential contributors to a 
problem are weakly connected, (that is, the cause-effect 
connections from problems to their potential, underlying 
causes form more of a tree structure than a lattice), the 
advisory system can use a strict, three-valued logic, and 
still generate useful advice while some desired data are 
unknown. Otherwise, it may be necessary to resort to a 
more complex logic approach, involving guesses and 
default values that are subject to later belief revision. 

Finally, by defining a state transition network that 
allows cyclic paths to be followed during a problem 
episode, the t-nonmonotonic nature of problem-solving in 
dynamic situations (e.g., the possibility that a subproblem 
will reoccur within a given overall problem episode) is 
represented. 

111. Technique Used 

The “problem status monitoring system” (PSMS) we have 
developed is for use in conjunction with an inference 
engine capable of detecting problem conditions and 
incrementally generating the search space of possible 
antecedent causes. These antecedent causes are the nodes 
of the search space; each node has associated with it a 
single -state label from the set defined in PSMS (see 
below). We assume that the descendants of any given node 
in the search space, if found to be an actual cause of the 
current problem, must be remedied or otherwise rendered 
harmless before their ancestors can be remedied. 

The PSMS approach is based on an augmented 
transition network, consisting of a set of state labels 
applied to each node of the search space as the problem- 
solving progresses, and lists attached as properties of each 
node. The lists are used to record the status of the 
problem-solving (and remedying) with respect to that 
node’s descendants. Problem nodes transition from state to 
state depending upon data, the knowledge base of the 
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advisory system, and the status of these property lists. In 
turn, state transitions are augmented by actions that 
update the properties of a node’s ancestors in the search 
space. 

A node can be in one and only one state at any given 
time. The states, and their corresponding labels, are as 
follows: 

nil: 

pending: 

diagnosed: 

ready: 

no-remedy: 

resolved: 

uncle: 

No problem-solving from this node has 
yet begun. 
The descendants of this node are under 
investigation, to be ruled in or out as 
actual causes of the current problem 
situation. 
At least one of the descendants of this 
node has been confirmed as a cause of 
the current problem situation. 
All the descendants of this node that 
were confirmed as causes have been 
“fixed,” hence, the cause represented by 
this node is ready to be remedied. 
One or more descendants of this node 
has been confirmed as a cause, but no 
remedy has been effective, and/or no 
remedy for the cause represented by this 
node is known. 
The cause represented by this node has 
been remedied, or ruled out as a 
contributor to the current problem 
situation. 
The cause represented by this node has 
been confirmed as a cause, but no 
remedy has been found; the advisory 
system cannot help the user with this 
aspect of the problem. 

Four lists are attached as properties to each node of 
the problem space. These lists are the list of “confirmed,” 
“rejected, ” “fixed,” and “can’t-be-fixed” descendants of the 
node. If a node is confirmed as a contributing cause of 
the problem situation, it is entered on its parents’ 
“confirmed” lists. (Note that a node may have more than 
one immediate parent in the problem space.) Conversely, 
if the node is rejected as a contributing cause, it is entered 
on its parents’ “rejected” list. Likewise, once a node is 
confirmed, if the cause it represents in the application 
domain is remedied, the node is entered on its parents’ 
“fixed” lists. Alternatively, if the advisory system exhausts 
its supply of recommendations to the user, and the cause 
remains problematic, the corresponding node is entered on 
its parents’ “can’t-be-fixed” lists. The management of these 
lists obeys the following four constraints: 

(1) Set-Union (Confirmed,Rejected) E (descendants} 

(2) Set-Intersection (Confirmed,Rejected) = null 

(3) Set-Union(Fixed,Cant-be-fixed) E {confirmed} 

(4) Set-Intersection (Fixed,Cant-be-fixed) = null 

The test used to determine the state transition to be 
undergone by a node in the problem space involves both 
the advisory system’s knowledge base, and the status of 
these property lists. This transition test consists of a 
maximum of seven steps, as follows. (The letters in 
brackets [‘J correspond to the rows of the state transition 
table found in Table 1.) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

The inference engine is called upon to 
determine whether the problem (cause) 
represented by node has been remedied; if so 
[A], the node transitions to Resolved. 
Otherwise, if new direct descendants of the 
node can be generated [B], they are added, and 
the node transitions to Pending. 
Otherwise, if some of the nodes’ descendants 
are not on either its Confirmed or Rejected 
lists [Cl, no transition is made; (the jury is still 
out on some antecedent causes.) 
Otherwise, if the nodes’ Confirmed list is 
empty, then if the knowledge base contains 
some remedial advice associated with this node 
[D], transition to Ready; else [E] transition to 
No-Remedy. 
Otherwise, if not all members of the nodes’ 
Confirmed list are on either its Fixed or Can’t- 
be-fixed lists [F], the node is labeled Diagnosed; 
(we’ve confirmed at least one cause, but we’re 
still waiting for some antecedent cause to be 
remedied). 
Otherwise, if the nodes’ Can’t-be-fixed list is 
not empty [G], and the node is not already 
labeled No-Remedy, transition to No-Remedy; 
else, transition to Uncle. 
Otherwise, if the knowledge base contains some 
remedial advice associated with this node, 
transition to Ready [H]; else [I] if the node is 
not already labeled No-Remedy, transition to 
No-Remedy, otherwise, transition to Uncle. 

By defining the state transition network to include a 
No-Remedy state as a “way-station” on the way to the 
Uncle state, a “hook” is provided allowing the advisory 
system to have a second chance at problem-solving before 
“giving up.” This is useful if an initial attempt at problem 
solving without involving querying of the user is desirable, 
to avoid unnecessary interactions with the user. (Specific 
ways of implementing this approach, and integrating PSM[s 
with the rest of an expert advisory system, are beyond the 
scope of this paper.) 

Table 1 summarizes the PSlvlS state-transition table. 
Entries in this table indicate the resulting state that a 
node assumes, based on its current state (column), and the 
result of the above test (row). The state transitions are 
augmented by actions to update the property lists of the 
nodes’ parents. Whenever a node transitions from Pending 
to Resolved, it is entered on its parents’ Rejected lists, as 
this corresponds to “ruling out” the associated cause as a 
culprit in the current problem. Whenever a node makes a 
transition from Pending to any other state except 
Resolved, it is entered on its parents’ Confirmed lists, as it 
is now known to be a contributor to the problem situation. 
Similarly, a transition of a node to Resolved from any 
state (other than Pending) causes it to be entered on its 
parents’ Fixed lists. Any transition to the No-Remedy 
state causes the node to be entered on its parents’ Cant-be- 
fixed lists. The effect of these actions is to propagate 
findings about all causes of the problem situation, and 
readiness for remedial action, from the fringe to the root 
of the problem search space lattice. To the extent that this 
lattice is weakly interconnected, progress in problem- 
solving and advice-giving can proceed along one path from 
fringe to root, even while other paths are awaiting the 
results of further data collection and inferencing. 

The transition from the Ready state back to itself 
(row H) is notable. It is here that the advisory system can 
issue additional advice to the operator regarding how to 
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remedy the corresponding problem, since presumably any 
previously issued advice has been ineffective (else the 
transition in row A, to Resolved, would have occurred). 

The ability of PSMS to support nonmonotonic progress 
in problem-resolution is based on row B of the state 
transition table. This row indicates that at any point in a 
problem episode, a node may transition “back” to the 
pending state. This transition is augmented as follows: 
When returning to the Pending state, the node is removed 
from its pareqts’ property lists. If as a result, a parent’s 
Confirmed list becomes empt?, that parent transitions to 
the Pending state, and the updating of property lists 
proceeds recursively toward the root of the problem 
lattice. Otherwise, the parent transitions to the Diagnosed 
state. Unlike the other state transitions in PSMS, this 
series of propagated transitions must be uninterrupted in 
order for the representation to be internally consistent. 

(Otherwise, for example, the parent might remain in a 
Diagnosed state even though none of its direct descendents 
are now Confirmed.) However, the propagation may be 
accomplished in Order(n log n) time, where n is the 
number of nodes in the problem lattice. Thus, this poses 
little difficulty for practical real time applications. Of 
course, if an upper bound for n in the application domain 
is known, an upper bound for an invocation of PSMS can 
be determined. 

The reasoning technique of PSMS has a type of 
completeness property that is useful in advisory systems. 
Assuming that the inference engine it is used with employs 
a logically complete method for generating the search 
space and diagnosing individual causes, the PSMS approach 
assures that if advice to the user is needed and available 
in the knowledge base, the advice will be issued. 
Likewise, if no advice for the problem situation exists in 

Table 1 
PSMS State Transitions Prom Current State to New State 

Results of 
Transition 
Test* Nil Pend. 

Current State 

Diag. Ready NoRem. Resol Uncle 

Problem 
Remedied 
[Al 

New Direct 
Descendent 
U-4 

Some Desc. not 
Conf. or Rej. 
[Cl 

Confirmed=nil 
remedy exists 
PI 

Confirmed=nil 
no remedy known 
[El 

A confirmed desc. 
not yet fixed 
Fl 

Some conf. cause 
can’t be fixed 
PI 

Conf. desc. fixed 
remedy exists 
WI 

Conf. desc. fixed 
no remedy exists 
VI 

Nil Resol. 

Pend. Pend. 

** 

** 

** 

** 

** 

** 

** 

Pend. 

Ready 

NoRem. 

Diag. 

** 

** 

** 

Resol. 

Pend. 

Diag. 

+* 

** 

Diag. 

NoRem. 

Ready 

NoRem. 

Resol. 

Pend. 

** 

Ready 

NoRem. 

** 

ss; 

Ready 

NoRem. 

Resol. 

Pend. 

** 

** 

Uncle 

** 

Uncle 

** 

Uncle 

Nil 

Pend. 

** 

** 

** 

** 

** 

** 

** 

Resol. 

Nil 

** 

*+ 

*+ 

** 

** 

** 

** 

+ For an interpretation of the row labels, see the text. 
** Empty cells are unreachable state/condition combinations. 
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the knowledge base, the user will be informed of that fact. 
Justification for these claims follows from inspection of 
the state-transition network: PSMS will cause the advisory 
system to generate pertinent advice when it exists, so long 
as there is no path to the Uncle state for nodes that have 
advice associated with them except through the Ready 
state. Table 1 shows there is no path to Uncle except 
through No-Remedy, and while there are paths into the 
No-Remedy state from Pending, Diagnosed, and Ready, 
rows D and H of the table show that there is no path from 
nodes with advice associated with them to the No-Remedy 
state except through the Ready state. Similarly, as long as 
advice to the user is needed (i.e., a problem node hasn’t 
entered the Resolved state), the node will not enter the 
Uncle state except through the No-Remedy state, at which 
point the user can be notified that the knowledge base 
contains no further pertinent advice for the problem. 

A PSMS component has been included in a real time expert 
advisory system we have implemented and installed in the 
control room of a factory of a major manufacturer of 
consumer products. The expert system is interfaced to the 
plant’s process control computer, and obtains on-line sensor 
data from the manufacturing process on a continuous 
basis. The expert system monitors these data, detects 
emerging problems with the manufacturing process, and 
advises the operator regarding actions to take to avoid or 
recover from them. It then continues to monitor the 
process, updating and/or retracting advice as the problem 
situation evolves. The expert system monitors and 
provides advice on four parallel manufacturing lines, 
simultaneously. 

The system is currently implemented in Zetalisp on a 
Symbolics computer. The operator interface, data 
collection component, and inference engine (with 
embedded PSMS component) run as separate processes, 
passing messages and data among them. The amount of 
process data being scanned by the system varies with the 
state of the manufacturing process; typically, 60-70 data 
points are being monitored at any given time. Within the 
inference engine process, the main tasks are emptying the 
input data buffer from the data collection component, 
monitoring the manufacturing process for emerging 
problems, and advancing the problem-solving process 
(including advancing each problem node through a state 
transition). On the average, these tasks require 900, 477 
and 530 milliseconds, respectively, for a total top-level 
inference engine cycle of about 2 seconds. 

In the manufacturer5 application domain, a typical 
problem search space (lattice) is 2 to 5 plies deep from 
detected problem to “ultimate” cause. Generating one ply 
per inference engine cycle, and allowing for the 2 to 3 
transitions required for a node to reach the Ready state, 
the typical amount of processing from problem detection 
to the first advice to the operator is 4 to 8 inference 
engine cycles. Thus, if the inference -engine had exclusive 
use of the machine, its “reaction time” to problems would 
be 8 to 16 seconds. In practice, a multiple second delay 
was deliberately built into the inference engine cycle to 
guarantee other processes (operator interface, incremental 
garbage collection, etc.) ample time to run, yielding a 
reaction time of about 30 to 60 seconds. This speed is 
sufficient for the manufacturing application involved. 

We have presented a Problem-State Monitoring System, 
consisting of, an augmented transition network of problem 
states, useful as an adjunct to inference engines for real 
time expert advisory systems. The defined transitions 
allow the system to model a real time problem resolution 
process, even if it follows a nonmonotonic course with 
subproblems reoccurring in the same episode. Also, the 
PSM!3 approach supports the requirement that an advisory 
system be capable of updating its recommendations in real 
time, retracting advice that has become unnecessary. 

Coupled with the ability interrupt and resume the 
problem-solving process, the existence of cyclic paths in 
the transition network allows PSMS to model reoccurring 
problems. However, this situation also could lead to 
undesirable cycles in advisory system behavior, with the 
advisory system repeatedly recommending remedial actions 
that only temporarily manage a persistent problem. This 
behavior has not been observed in our application. 
However, an interesting direction for further research 
might be to extend the PSMS approach with a meta-level 
reasoning component to detect cycles and produce advice 
for resolving the problem on a more permanent basis. 
Such a system could be one more step toward to goal of a 
genuinely “expert” assistant to process operators. 
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