
Artificial htelligence Department
oneywelll Corporate Systems Development Divisiola

1000 Boome Avenue North
Golden Valley, Minanessta 5542 7

A system for continuously providing advice about
the operation of some other device or process,
rather than just problem diagnoses, must not only
function in real time, but also cope with dynamic
problem courses. The reasoning technique
underlying such a system must not assume that
faults have single causes, that queries to the user
will be answered and advice to the user will be
followed, nor that aspects of a problem, once
resolved, will not reoccur. This paper presents a
reasoning technique that can be used in
conjunction with an inference engine to model the
state of a problem situation throughout the entire
problem-handling process, from discovery to final
resolution. The technique has been implemented
and installed on-line in a factory control room, as
part of a real time expert system for advising the
operators of a manufacturing process.

There are many potential practical applications for a
reasoning technique enabling a knowledge-based system to
provide continuous “coaching” to the operators of a
complex device or process. For example, manufacturing
operations might benefit from advisory systems providing
operators with continuous assistance in monitoring and
troubleshooting process behavior; similarly, computer
installations might provide better service by using expert
systems to assist operators in managing the systems’
performance. However, the goal of continuously providing
a user with operational advice, as well as problem
diagnoses, makes unique demands on the reasoning
technique to be employed. Such an advisory system must
not only function in real time, but also cope with dynamic
situations, and unpredictable interactions with the user.

The goal of a real time expert advisory system is not
only to monitor the target system to detect, diagnose, and
suggest a remedy for problems, but also to continue to
advise the operator on further actions to take as the
problem resolves. Functioning in a dynamic situation
requires the ability to revoke or update remedial advice if
the corresponding problem resolves of its own accord, or if
the remedy is no longer appropriate to the situation. The
advisory system also should not rely on assumptions that
problems have single causes, or that individual aspects of a
problem situation, once resolved, will not reoccur.

The ability for an expert advisory system to function
interactively with an operator is required, even if the
system matures to the point people are willing to “close the
loop” and allow it to exert control over the target system.

This is because, in most applications, there will always be
some actions that cannot be performed without human
intervention (e.g.? replacing broken parts, operating manual
valves, etc.) Thus, the reasoning technique used by such
systems must be able to cope with the unpredictability of
operator behavior. The system cannot be based on
assumptions that the operator will always approve and
comply with recommended actions, respond to queries for
information not obtainable through instrumentation, or
even be available at the time advice is issued. In many
application environments, it is also important that the
advisory system l-lot interact with the operator
unnecessarily.

This paper presents a reasoning technique we have
found suitable for providing the problem-monitoring and
the advice-giving functions of a real time, interactive
expert advisory system meeting the above requirements.

In related research, Griesmer and others [Griesmer et
al., 1984; Kastner et al., 19861 discuss a real time expert
system for assisting in the management of a computer
installation using the MVS operating system. They
describe features added to a forward-chaining inference
engine to handle the initiation of actions at the
appropriate times, to manage communications among
system components, and to exert controls that prevent
sequences of remedial actions from being interrupted.
However, they do not present methods for interrupting,
retracting, or revising advice when it is appropriate to do
so, nor for coordinating the treatment of multiple faults
arising in the same episode.

A method for reasoning about multiple faults is
presented by [deKleer and Williams, 19861. Their research
addresses the problems of coping with very large search
spaces comprised of combinations of failed components,
and performing diagnostic reasoning from a model of the
structure and function of the target system, in a static
data environment. Our work focuses on managing
diagnostic and remedial efforts over time, in a dynamic
environment.

Nelson [Nelson, 19821 has utilized a “response tree”
technique as part of an expert system to dynamically select
among the possible responses that operators of a nuclear
reactor might take in a failure situation. However, the
main goal of this approach is to efficiently encode and
utilize “precompiled” knowledge about responses that will
lead to a safe system shutdown. Our work has been in less
critical application domains, and is directed toward
methods to help operators keep a system functioning.
The technique we present serves as an adjunct to the
inference engine of an expert advisory system, in a similar
manner as various Truth Maintenance Systems (TM!&
ATMS, etc.) can serve as an adjunct to a deductive
reasoner. The latter systems (e.g, [deKleer, 19841) are used
for problems in which the assertions given to the system

aemmerer and AQlard 809

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

are relatively unchanging; the elements of the problem
space are inferences based on the givens plus additional
assumptions which may later be found incorrect. Thus,
dependencies of inferences on assumptions are recorded, so
that when a contradiction is discovered, the inferences
based on the contradictory set of assumptions are readily
identified, and may be explicitly or implicitly “undone.”
Our technique is appropriate for problems in which the
assertions (data) given to the system change frequently; the
elements of t% problem space are states of affairs that are
causally related, but which m&y or may not hold given the
next round of data. Thus, dependencies of the current
problem state on the state of antecedent causes are
recorded, so that when the status of a cause changes, the
effect. on the overall course o.f the problem episode is
readily identified.

IL Paoble naiysis

Consideration of the type of behavior desired from an
expert advisory system leads to several conclusions about
the required features of the reasoning technique and
knowledge representation to be used. Because the
reasoning is to be performed in real time, and is to be
about the status of a dynamic target system, the reasoning
approach must utilize some form of multi-valued logic. At
a minimum, logic predicates in the system must be
permitted to take on an “unknown” value, as well as
true/false, whenever the data involved is too obsolete to be
considered a valid descriptor of the corresponding aspect
of the target system. Likewise, the advisory system cannot
halt and await a response from the user when the value of
non-instrumented variable is required; hence the reasoning
approach must be able to proceed while some data values
are unknown.

The reasoning technique must also be nonmonotonic,
both in what Ginsberg terms the “truth value” (t-
nonmonotonic) and “knowledge” (k-nonmonotonic) sense
[Ginsberg, 19861. The world in which an expert advisory
system functions is t-nonmonotonic, in that the truth value
of conclusions changes over time. For example, problem
situations can spontaneously resolve (eg., if a stuck valve
frees itself), default assumptions can prove incorrect (eg., a
manual valve normally open may have been closed), or the
operator of the system can resolve a problem
independently of the advisory system. As a result, the
reasoning technique must be able to correctly “back up” in
the state of affairs concluded.

The advisory system’s world is also k-nonmonotonic,
because the amount of information known for certain to
the system decays over time, as the data on which it is
based ages. As a result, reasoning by an expert advisory
system must be interruptable. The system cannot afford to
suspend data scanning for an indefinite period of time
until its inference engine reaches conclusions; data
scanning and updates must occur regularly. Although data
collection and inferencing can proceed in parallel machine
processes, the inference engine must operate on a stable
“snapshot” of data, in order to ensure that the data it is
using, and hence its conclusions, are internally consistent.
Thus, it must be possible to interrupt the reasoning process
periodically to allow data updates to occur, then resume.
Upon resumption, the reasoning process should not
necessarily proceed to follow its prior reasoning paths,
which may no longer be productive given the new data,
nor can it “start over” each time it receives new data, lest
it never reach useful conclusions at all, given the time
slice it has available.

These considerations suggest that an effective
reasoning approach for an advisory system is one based on
a representation of the states a problem can attain during
the problem-solving process. Transitions among these
states should permit the system to proceed despite
incomplete data whenever possible, and enable the system
to handle “nonmonotonic progress” through the problem-
solving states. (By nonmonotonic progress, we mean
transitioning that returns to a previously visited state in
the path from the start state to the final state in a problem
episode.)

Use of a representation of intermediate states in the
problem-solving process makes the inference engine
interruptable. The reasoning process can be suspended any
time the representational structures are in an internally
consistent condition. The problem-solving process will be
responsive to data changes that occur during the problem-
solving, since upon resumption, the next state transitions
will be a function of the newly updated data. In contrast,
for example, if a backward-chaining inference engine is
interrupted for a data update, and its state (goal stack)
saved and restored, the “line of reasoning” that the
inferencing will initially pursue is still a function of the
goal stack alone.

By defining the state transitions in a way that allows
transitioning to occur in some parts of the problem despite
unknown data values in other parts, the advisory system
can proceed to offer some advice to the operator, even
though it must await more data to draw conclusions about
other aspects of the problem. As a practical matter, we
have found that if the application domain involves
problems in which the various potential contributors to a
problem are weakly connected, (that is, the cause-effect
connections from problems to their potential, underlying
causes form more of a tree structure than a lattice), the
advisory system can use a strict, three-valued logic, and
still generate useful advice while some desired data are
unknown. Otherwise, it may be necessary to resort to a
more complex logic approach, involving guesses and
default values that are subject to later belief revision.

Finally, by defining a state transition network that
allows cyclic paths to be followed during a problem
episode, the t-nonmonotonic nature of problem-solving in
dynamic situations (e.g., the possibility that a subproblem
will reoccur within a given overall problem episode) is
represented.

111. Technique Used

The “problem status monitoring system” (PSMS) we have
developed is for use in conjunction with an inference
engine capable of detecting problem conditions and
incrementally generating the search space of possible
antecedent causes. These antecedent causes are the nodes
of the search space; each node has associated with it a
single -state label from the set defined in PSMS (see
below). We assume that the descendants of any given node
in the search space, if found to be an actual cause of the
current problem, must be remedied or otherwise rendered
harmless before their ancestors can be remedied.

The PSMS approach is based on an augmented
transition network, consisting of a set of state labels
applied to each node of the search space as the problem-
solving progresses, and lists attached as properties of each
node. The lists are used to record the status of the
problem-solving (and remedying) with respect to that
node’s descendants. Problem nodes transition from state to
state depending upon data, the knowledge base of the

810 Expert Systems

advisory system, and the status of these property lists. In
turn, state transitions are augmented by actions that
update the properties of a node’s ancestors in the search
space.

A node can be in one and only one state at any given
time. The states, and their corresponding labels, are as
follows:

nil:

pending:

diagnosed:

ready:

no-remedy:

resolved:

uncle:

No problem-solving from this node has
yet begun.
The descendants of this node are under
investigation, to be ruled in or out as
actual causes of the current problem
situation.
At least one of the descendants of this
node has been confirmed as a cause of
the current problem situation.
All the descendants of this node that
were confirmed as causes have been
“fixed,” hence, the cause represented by
this node is ready to be remedied.
One or more descendants of this node
has been confirmed as a cause, but no
remedy has been effective, and/or no
remedy for the cause represented by this
node is known.
The cause represented by this node has
been remedied, or ruled out as a
contributor to the current problem
situation.
The cause represented by this node has
been confirmed as a cause, but no
remedy has been found; the advisory
system cannot help the user with this
aspect of the problem.

Four lists are attached as properties to each node of
the problem space. These lists are the list of “confirmed,”
“rejected, ” “fixed,” and “can’t-be-fixed” descendants of the
node. If a node is confirmed as a contributing cause of
the problem situation, it is entered on its parents’
“confirmed” lists. (Note that a node may have more than
one immediate parent in the problem space.) Conversely,
if the node is rejected as a contributing cause, it is entered
on its parents’ “rejected” list. Likewise, once a node is
confirmed, if the cause it represents in the application
domain is remedied, the node is entered on its parents’
“fixed” lists. Alternatively, if the advisory system exhausts
its supply of recommendations to the user, and the cause
remains problematic, the corresponding node is entered on
its parents’ “can’t-be-fixed” lists. The management of these
lists obeys the following four constraints:

(1) Set-Union (Confirmed,Rejected) E (descendants}

(2) Set-Intersection (Confirmed,Rejected) = null

(3) Set-Union(Fixed,Cant-be-fixed) E {confirmed}

(4) Set-Intersection (Fixed,Cant-be-fixed) = null

The test used to determine the state transition to be
undergone by a node in the problem space involves both
the advisory system’s knowledge base, and the status of
these property lists. This transition test consists of a
maximum of seven steps, as follows. (The letters in
brackets [‘J correspond to the rows of the state transition
table found in Table 1.)

1.

2.

3.

4.

5.

6.

7.

The inference engine is called upon to
determine whether the problem (cause)
represented by node has been remedied; if so
[A], the node transitions to Resolved.
Otherwise, if new direct descendants of the
node can be generated [B], they are added, and
the node transitions to Pending.
Otherwise, if some of the nodes’ descendants
are not on either its Confirmed or Rejected
lists [Cl, no transition is made; (the jury is still
out on some antecedent causes.)
Otherwise, if the nodes’ Confirmed list is
empty, then if the knowledge base contains
some remedial advice associated with this node
[D], transition to Ready; else [E] transition to
No-Remedy.
Otherwise, if not all members of the nodes’
Confirmed list are on either its Fixed or Can’t-
be-fixed lists [F], the node is labeled Diagnosed;
(we’ve confirmed at least one cause, but we’re
still waiting for some antecedent cause to be
remedied).
Otherwise, if the nodes’ Can’t-be-fixed list is
not empty [G], and the node is not already
labeled No-Remedy, transition to No-Remedy;
else, transition to Uncle.
Otherwise, if the knowledge base contains some
remedial advice associated with this node,
transition to Ready [H]; else [I] if the node is
not already labeled No-Remedy, transition to
No-Remedy, otherwise, transition to Uncle.

By defining the state transition network to include a
No-Remedy state as a “way-station” on the way to the
Uncle state, a “hook” is provided allowing the advisory
system to have a second chance at problem-solving before
“giving up.” This is useful if an initial attempt at problem
solving without involving querying of the user is desirable,
to avoid unnecessary interactions with the user. (Specific
ways of implementing this approach, and integrating PSM[s
with the rest of an expert advisory system, are beyond the
scope of this paper.)

Table 1 summarizes the PSlvlS state-transition table.
Entries in this table indicate the resulting state that a
node assumes, based on its current state (column), and the
result of the above test (row). The state transitions are
augmented by actions to update the property lists of the
nodes’ parents. Whenever a node transitions from Pending
to Resolved, it is entered on its parents’ Rejected lists, as
this corresponds to “ruling out” the associated cause as a
culprit in the current problem. Whenever a node makes a
transition from Pending to any other state except
Resolved, it is entered on its parents’ Confirmed lists, as it
is now known to be a contributor to the problem situation.
Similarly, a transition of a node to Resolved from any
state (other than Pending) causes it to be entered on its
parents’ Fixed lists. Any transition to the No-Remedy
state causes the node to be entered on its parents’ Cant-be-
fixed lists. The effect of these actions is to propagate
findings about all causes of the problem situation, and
readiness for remedial action, from the fringe to the root
of the problem search space lattice. To the extent that this
lattice is weakly interconnected, progress in problem-
solving and advice-giving can proceed along one path from
fringe to root, even while other paths are awaiting the
results of further data collection and inferencing.

The transition from the Ready state back to itself
(row H) is notable. It is here that the advisory system can
issue additional advice to the operator regarding how to

Kaemmerer and Allard $11

remedy the corresponding problem, since presumably any
previously issued advice has been ineffective (else the
transition in row A, to Resolved, would have occurred).

The ability of PSMS to support nonmonotonic progress
in problem-resolution is based on row B of the state
transition table. This row indicates that at any point in a
problem episode, a node may transition “back” to the
pending state. This transition is augmented as follows:
When returning to the Pending state, the node is removed
from its pareqts’ property lists. If as a result, a parent’s
Confirmed list becomes empt?, that parent transitions to
the Pending state, and the updating of property lists
proceeds recursively toward the root of the problem
lattice. Otherwise, the parent transitions to the Diagnosed
state. Unlike the other state transitions in PSMS, this
series of propagated transitions must be uninterrupted in
order for the representation to be internally consistent.

(Otherwise, for example, the parent might remain in a
Diagnosed state even though none of its direct descendents
are now Confirmed.) However, the propagation may be
accomplished in Order(n log n) time, where n is the
number of nodes in the problem lattice. Thus, this poses
little difficulty for practical real time applications. Of
course, if an upper bound for n in the application domain
is known, an upper bound for an invocation of PSMS can
be determined.

The reasoning technique of PSMS has a type of
completeness property that is useful in advisory systems.
Assuming that the inference engine it is used with employs
a logically complete method for generating the search
space and diagnosing individual causes, the PSMS approach
assures that if advice to the user is needed and available
in the knowledge base, the advice will be issued.
Likewise, if no advice for the problem situation exists in

Table 1
PSMS State Transitions Prom Current State to New State

Results of
Transition
Test* Nil Pend.

Current State

Diag. Ready NoRem. Resol Uncle

Problem
Remedied
[Al

New Direct
Descendent
U-4

Some Desc. not
Conf. or Rej.
[Cl

Confirmed=nil
remedy exists
PI

Confirmed=nil
no remedy known
[El

A confirmed desc.
not yet fixed
Fl

Some conf. cause
can’t be fixed
PI

Conf. desc. fixed
remedy exists
WI

Conf. desc. fixed
no remedy exists
VI

Nil Resol.

Pend. Pend.

**

**

**

**

**

**

**

Pend.

Ready

NoRem.

Diag.

**

**

**

Resol.

Pend.

Diag.

+*

**

Diag.

NoRem.

Ready

NoRem.

Resol.

Pend.

**

Ready

NoRem.

**

ss;

Ready

NoRem.

Resol.

Pend.

**

**

Uncle

**

Uncle

**

Uncle

Nil

Pend.

**

**

**

**

**

**

**

Resol.

Nil

**

*+

*+

**

**

**

**

+ For an interpretation of the row labels, see the text.
** Empty cells are unreachable state/condition combinations.

812 Expert Systems

the knowledge base, the user will be informed of that fact.
Justification for these claims follows from inspection of
the state-transition network: PSMS will cause the advisory
system to generate pertinent advice when it exists, so long
as there is no path to the Uncle state for nodes that have
advice associated with them except through the Ready
state. Table 1 shows there is no path to Uncle except
through No-Remedy, and while there are paths into the
No-Remedy state from Pending, Diagnosed, and Ready,
rows D and H of the table show that there is no path from
nodes with advice associated with them to the No-Remedy
state except through the Ready state. Similarly, as long as
advice to the user is needed (i.e., a problem node hasn’t
entered the Resolved state), the node will not enter the
Uncle state except through the No-Remedy state, at which
point the user can be notified that the knowledge base
contains no further pertinent advice for the problem.

A PSMS component has been included in a real time expert
advisory system we have implemented and installed in the
control room of a factory of a major manufacturer of
consumer products. The expert system is interfaced to the
plant’s process control computer, and obtains on-line sensor
data from the manufacturing process on a continuous
basis. The expert system monitors these data, detects
emerging problems with the manufacturing process, and
advises the operator regarding actions to take to avoid or
recover from them. It then continues to monitor the
process, updating and/or retracting advice as the problem
situation evolves. The expert system monitors and
provides advice on four parallel manufacturing lines,
simultaneously.

The system is currently implemented in Zetalisp on a
Symbolics computer. The operator interface, data
collection component, and inference engine (with
embedded PSMS component) run as separate processes,
passing messages and data among them. The amount of
process data being scanned by the system varies with the
state of the manufacturing process; typically, 60-70 data
points are being monitored at any given time. Within the
inference engine process, the main tasks are emptying the
input data buffer from the data collection component,
monitoring the manufacturing process for emerging
problems, and advancing the problem-solving process
(including advancing each problem node through a state
transition). On the average, these tasks require 900, 477
and 530 milliseconds, respectively, for a total top-level
inference engine cycle of about 2 seconds.

In the manufacturer5 application domain, a typical
problem search space (lattice) is 2 to 5 plies deep from
detected problem to “ultimate” cause. Generating one ply
per inference engine cycle, and allowing for the 2 to 3
transitions required for a node to reach the Ready state,
the typical amount of processing from problem detection
to the first advice to the operator is 4 to 8 inference
engine cycles. Thus, if the inference -engine had exclusive
use of the machine, its “reaction time” to problems would
be 8 to 16 seconds. In practice, a multiple second delay
was deliberately built into the inference engine cycle to
guarantee other processes (operator interface, incremental
garbage collection, etc.) ample time to run, yielding a
reaction time of about 30 to 60 seconds. This speed is
sufficient for the manufacturing application involved.

We have presented a Problem-State Monitoring System,
consisting of, an augmented transition network of problem
states, useful as an adjunct to inference engines for real
time expert advisory systems. The defined transitions
allow the system to model a real time problem resolution
process, even if it follows a nonmonotonic course with
subproblems reoccurring in the same episode. Also, the
PSM!3 approach supports the requirement that an advisory
system be capable of updating its recommendations in real
time, retracting advice that has become unnecessary.

Coupled with the ability interrupt and resume the
problem-solving process, the existence of cyclic paths in
the transition network allows PSMS to model reoccurring
problems. However, this situation also could lead to
undesirable cycles in advisory system behavior, with the
advisory system repeatedly recommending remedial actions
that only temporarily manage a persistent problem. This
behavior has not been observed in our application.
However, an interesting direction for further research
might be to extend the PSMS approach with a meta-level
reasoning component to detect cycles and produce advice
for resolving the problem on a more permanent basis.
Such a system could be one more step toward to goal of a
genuinely “expert” assistant to process operators.

effaces

[deKleer, 19841 J. deKleer. Choices without backtracking.
Proceedings AAAI-84, pages 79-85, Austin, Texas,
American Association for Artificial Intelligence,
August, 1984.

[deKleer and Williams, 19861 J. deKleer and B.C. Williams.
Reasoning about multiple faults. Proceedings AAAZ-86,
pages 132-l 39, Philadelphia, Pennsylvania, American
Association for Artificial Intelligence, August, 1986.

[Ginsberg, 19861 ML. Ginsberg. Multi-valued logics.
Proceedings AAAZ-86, pages 243-247, Philadelphia,
Pennsylvania, American Association for Artificial
Intelligence, August, 1986.

[Griesmer et al., 19841 J.H. Griesmer, S.J. Hong, M.
Karnaugh, J.K. Kastner, M.I. Schor, R.L. Ennis, D.A.
Klein, K.R. Milliken, and H.M. VanWoerkom.
YES/MvS: A continuous real time expert system.
Proceedings AAAI-84, pages 130-l 36, Austin, Texas,
American Association for Artificial Intelligence,
August, 1984.

[Kastner et al., 19861 J.K. Kastner, R.L. Ennis, J.H.
Griesmer, S.J. Hong, M. Karnaugh, D.A. Klein, K.R.
Milliken, MI. Schor, and H.M. VanWoerkom. A
continuous real-time expert system for computer
operations. Proceedings of the International Conference
on Knowledge-Based Systems (KBS-86), pages 89- 114,
London, England, July, 1986.

[Nelson, 19821 W.R. Nelson. Reactor: An expert system
for diagnosis and treatment of nuclear reactor
accidents. Proceedings AAAI-82, Pages 296-301,
Pittsburgh, Pennsylvania, American Association for
Artificial Intelligence, August, 1982.

Kaemmerer and Allard

