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ABSTRACT 

We present a method for using decision theory to evaluate 
the merit of individual situation -> action heuristics. The 
design of a decision-theoretic approach to the analysis of 
heuristics is illustrated in the context of a rule from the 
MYCIN system. Using calculations and plots generated by an 
automated decision making tool, decision-theoretic insights are 
shown that are of practical use to the knowledge engineer. 
The relevance of this approach to previous discussions of 
heuristics is dlscussed. We suggest that a synthesis of 
artificial intelligence and decision theory will enhance the 
ability of expert systems to provide justifications for their 
decisions, and may increase the problem solving domains in 
which expert systems can be used. 

I INTRODUCTION 

The rule-based expert system [l], [2] is an established and 
widely used artificial intelligence paradigm. The rules in such 
expert systems are often described as heuristics, which encode 
the experiential knowledge of experts for use in decision 
support systems. The capability of some expert systems has 
been shown to be comparable to experts (see for example [3], 
[4], [S]). However, the task of building expert systems, or 

knowledge engineering, has yet to be characterized in terms 
that allow the assessment of the merits of individual 
heuristics. 

Nevertheless, previous attempts to characterize heuristic rules 
have led to insights intended to help knowledge engineers 
craft heuristics that lead to high performance. For example, 
Clancey [6] asked the question: What kinds of arguments 
justify rules and what is their relation to a mechanistic model 
of the domain? By analyzing a rule used in MYCIN [7], he 
demonstrated that a heuristic can be broken into smaller and 
smaller inference steps that support it. Lenat [S] also 
investigated the nature of heuristics, and asked: What is the 
source of the power of heuristics? He hypothesized that 
heuristics derive some of their power from regularity and 
continuity in the world. To illustrate this point, he provided 
qualitative plots of the power or utility of a heuristic against 
characteristics of the task dotnain. Smith [9] describes an 
expert system that explicitly represents justifications for 
heuristic rules and uses those justifications to guide knowledge 
base refinement. However, this system makes its decisions 
about the causes of system errors based on rule type (e.g., 
definitional, theoretical, statistical, or default), not based on 
the measures of certainty associated with individual rules. 
Gaschnig [lo] quantitatively assessed the performance of 
heuristics used in search, but only by observing repeated trial 
executions of a search program with different heuristics. 

*Suppurl for this work was provided b) the hatlurial I,lbrary of Medlc~ne 
under Grants l-M-04136 and I,M-04316, lhe Kat~onal Science Foundation 
under Grant IST83-12148 and the Dlvislon of Research Resources under 
Grant RR-01636. Computing facllilles were provided by the SUMFX-AIM 
resource under lilH Graul RR-00785, by Ihe Xerox Corporallon, and bj 
Corning Medical. Dr. Shcrrtliffr is a Henry J. Kaiser Fam~l) Foundation 
Fxult> Scholar III General Internal Mcd~c~ne. 

When a rule is placed in the knowledge base, often no 
formal analysis is made to ascertain the power of the rule and 
the magnitude of its effect on system performance. Until a 
blinded evaluation study is completed, the system builder must 
assume that the heuristic suggested by the domain expert is 
appropriate for most or all cases the system will encounter. 
But heuristics almost always represent significant tradeoffs 
between possible costs and benefits, and the appropriateness 
of a heuristic may therefore often be argued. 

In order to make a reasoned decision about a heuristic that 
recommends an action, it is important to explicitly consider 
both the likelihood and the desirability of the consequences of 
the action. Consequently, we argue for an analysis of 
heuristics based on the synthesis of artificial intelligence and 
decision theory. Decision theory can be used to combine 
explicitly expressed probabilities (likelihoods) and utilities 
(desirabilities) to decide between competing plans of action. 
It is an axiomatized method for making decisions which 
recommends the course of action that maximizes expected 
utility. The expected utility of a given plan is expressed as 
follows: 

Expected Utility = Li ~(0,) x U(Oi) 
where ~(0,) is the probability of the ith outcome of 
executing thl plan, and U(Oi) is the utility of the ith 
outcome. This concept has been promoted by Savage [ll], 
who defends subjective probabilities to represent uncertainty, 
and a utility function to represent preferences. Raiffa [ 121 
and Howard [13] both provide a thorough introduction to 
decision theory. 

Decision theory has been suggested as an adjunct to 
planning systems. Jacobs [14] and Coles [ 151 described robot 
planning systems that used Al techniques to generate plans, 
coupled with decision-theoretic techniques to compare plans 
based on costs and risks associated with planning operators. 
Feldman [16] described a similar framework that was used to 
solve a more realistic version of the “monkey and bananas” 
problem. Slagle [17] describes an interactive planning system 
that uses a predictive model of military damages to rank 
competing plans for allocation of military resources. We have 
also described a medical problem that could not be solved 
without explicit quantification of the uncertainties and 
tradeoffs involved [18]. 

We believe that precise definitions of both the application 
area and the notion of heuristic power or utility can provide 
important information to the knowledge engineer. For 
example: 

1. How often will a heuristic be incorrect? 
2. HOW does system performance change when a 

heuristic is added? 
3. What serves as appropriate support or justification 

for a heuristic? 

In an attempt to answer these questions, we first define our 
notion of a heuristic. Then we show how information 
generated by a decision analysis tool developed on a Xerox 
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1100-series LISP machine can be used to analyze a particular . What if the infecting organism were resistant to 
heuristic. Next, we show how our analysis relates to earlier ail drugs except tetracycline? 
analyses of heuristics. Finally, we discuss the implications of 
our analysis for expert systems. 

II THE FORMAL ANALYSIS OF A HEURISTIC 

. What if the only undesirable bodily change that 
tetracycline caused was minor intestinal distress? 

. What if the probability of staining due to 
tetracycline was only 1 in lOO? 1 in lOOO? 

We will adopt the definition of a heuristic proposed by 
Lenat [8]. He defines a heuristic as “a piece of knowledge 

111 PROBLEM FORMULATION 

capable of suggesting plausible actions to follow or 
implausible ones to avoid.” We have chosen to concentrate 
our discussion on a frequently cited heuristic rule from the 
MYCIN system [7], shown in Fig. 1. 

This section describes a decision-theoretic method for 
representing the tradeoffs that underlq the rule in Fig. 1. 
When formulating a problem in decision-theoretic terms, 
three questions must be answered: 

If: 1) The therapy under consideration is 
tetracycline 

2) The age (in years) of the patient is 
less than 8 

Then: There is strongly suggestive evidence 
(.8) that tetracycline is not an 
appropriate therapy for use against 
the organism 

Figure I: The MYCIN tetracycline heuristic, slightly 
simplified for illustration purposes. 

Fig. 2 shows one possible collection of support know/edge 
that Clanceq proposed as justification for this heuristic. Let’s 
analyze this chain of four support rules in more detail. The 
first three inferences indicate how each event influences the 
occurrence of the next. But the final inference suggests a 
decision for action that is based on the previous inferences. 
No matter how fine the granularity of the reasoning, one rule 
in the chain will always recommend action based on the 
situation. That rule represents a compiled plan for action 
that will have wide ranging consequences. For example, 
avoiding the administration of tetracycline has the advantage 
of essentially eliminating the possibility of stained teeth, but 
it has the disadvantage of creating the need for another drug 
which may have a weaker therapeutic effect and other 
undesirable side effects. In fact, a widely used physician’s 
reference book [19] states that tetracycline should not be used 
in children under age 8 unless other drugs are not likely to 
be effective or are contraindicated. In other words, there is 
a tradeoff between the undesirability of possible 
the desirability of increased effectiveness. 

staining and 

tetracycline in youngster 
=> chelation of the drug in growing bones 

=> teeth discoloration 
=> undesirable body change 

=> don’t administer tetracycline 

Figure 2: A justification for the tetracycline heuristic 
in MYCIN from [6]. 

While these tradeoffs are important when deciding whether 
or not to recommend tetracycline, they have relevance in 
other settings. For example, they are essential to an intuitive 
justification of the conclusion not to recommend tetracycline. 
A justification for such a decision might be: “Although 
tetracycline is more likely to cure this infection, that is 
outweighed by the fact that tetracycline is likely to cause 
substantial dental staining.” 

These tradeoffs are important when deciding whether or not 
to include the tetracycline rule in an expert system. Although 
the addition of a certainty factor (in this case 0.8) is designed 
to allow other heuristics to override the recommendations of 
this one, it does not explicitly represent the circumstances 
under which the heuristic should be invalidated. Because the 
tradeoffs are not represented explicitly, the rule cannot 
recognize the characteristics of an -unusual decision situation 
and sometimes select tetracycline in spite of possible cosmetic 
problems, just as an expert would. For example consider the 
following cases, for which the value of the tetracycline 
heuristic might be questioned: 

1. What alternative plans are available? 
2. What might occur if each of those actions were 

carried out? 
3. What is the utility of each possible outcome? 

We will examine a specific case in which the tetracycline rule 
might apply, and show how the results of the analysis can be 
generalized for use in building expert systems. Our problem 
will be constrained by considering only two alternative plans, 
and only a few possible outcomes of those plans. Al though 
not shown here, the process of finding a small number of 
candidate plans can be automated [ZO]. 

The case concerns an 8 year old male who has a urethral 
discharge (an indication of possible urethral infection) but in 
whom cultures have shown no evidence of bacterial infection. 
In such cases the urethritis may be caused by organisms that 
cannot be cultured easily (non-specific urethritis, or NSU) or 
it might be related to a non-infectious process causing 
urethral inflammation. In adults with such symptoms, it is 
common to treat with tetracycline since it is usually effective 
in NSU and can help assure relief from discomfort. In a 
child, however, the risk of tetracycline, as summarized above, 
cannot be totally ignored. The specific question that must be 
decided is: Should this young patient be treated with 
tetracycline, or with the second choice drug, erqthromycin? 
Erythromycin, unlike tetracycline, has no significant side 
effects except occasional nausea, but has the disadvantage that 
it is slightly less likely to cure the NSU. 

To formulate a decision-theoretic representation of the 
problem, first the available actions must be enumerated: in 
this case to administer tetracycline or to administer 
erythromycin. Then the consequences of each action must be 
explored. In this case, if either action is performed, there are 
two possible scenarios to consider: The patient either has 
NSU or has a non-infectious urethritis. If the urethritis is 
infectious, then the tetracycline will be more likely to cure 
the infection than erythronlycin. If it is non-infectious, then 
the drugs will have no therapeutic effect (except for a small 
placebo effect that is the same for both drugs). Finally, the 
undesirable side effects of tetracycline must be considered. 
Regardless of the outcome of tetracycline therapy, there is a 
definite chance that dental staining will occur. In summary, 
there are four pertinent outcomes that should be considered in 
delineating treatment options: CURF/NO STAlK!hG, NO 

C’URF/STAII\IIKG, CURF,/STAlNlh’G, KO CURF/KO STAlKlhG. 

Once the decision options and their possible consequences 
have been enumerated, decision analysts conventionally 
represent the problem as a decision tree*. In Fig. 3 we see 
the tree that represents the decision problem described above. 
Each path through the decision tree represents one possible 
combination of actions and consequences that might occur. 
For example, the top branch represents the following chain of 
events: ‘The patient had an infectious urethritis, was given 

*Although decision trees are still the prrdom~nant represcntatlon 
convention, some members of the decision analqtlc conimun~ty are 
increasingly attracted to an alternative representation called III~~IIPWC 
diugrar?lJ [21]. The intuitive, modular, characteristics of influence dlagrxms 
are similar to the Al rrpresentatlon 
derived [ 221. 

techniques from which they are 
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NSU 
0.25 

Staining 
Cure 0.3 
0.9 No staining 

> Slainins 
No cure 0.3 

No slaining 

Staining 

NSU 
0.25 

Cure 
0.6 

(1.0) 

No cure (o.75J 

(0.23) 

(1.0) 

(0.0) 

(0.75) 

(0.23) 

(1.0) 

(0.0) 

(0.75) 

Figure 3: A decision tree that represents the decision 
between tetracycline and erythromycin for treatment of 
possible NSU. Square nodes are decision nodes. 
Branches emanating from decision nodes represent 
actions among which a choice must be made. The 
remaining nodes are chance nodes, whose branches 
represent all of the possible outcomes that might occur. 
The tree is labeled with the probabilities and utilities as 
assessed from a physician. TCN q  tetracycline, 
ERYTHRO = erythromycin, NSU q  non-specific 
urethritis. 

tetracycline, which cured the disease, but dental stalnlng 
resulted. 

IV PROBABILITY AND UTILITY ASSESSMEN’I 

For many tradeoffs, there is a point at which a small chance 
of a highly undesirable outcome will be equally preferred to a 
high likelihood of a mildly undesi’rable outcome. The point 
where this equivalence occurs may be dependent on precise 
expert assessments of probability and utility. 

Although these assessments may be subject to some 
inaccuracies and biases [23], we will see in the next section 
that we need not utilize the precise values of these numbers to 
justify a decision. We need only show that large variations 
from the assessed value will not affect the decision. To assess 
the relevant probabilities, the following questions wtll be 
asked in the context of the particular patient: 

1. What is the probability that tetracycline will cure 
non-specific urethritis (NSU)? 

2. What is the probability that erythromycin will cure 
NSU? 

3. What is the probability that dental staining will 
occur if tetracycline is administered to this 
patient? 

4. What is the probability that this patient has an 
infectious NSU‘? 

5. What is the probability that either drug will cure a 
non-infectious urethritis (through a placebo 
effect)? 

To assess the utility of each of the four outcomes, explicit 

quantitative comparisons must be made among them*. The 
standard gamble is used to assess the utility of outcomes by 
converting a utility question into a probability question. 
Since utilities are relative quantities, it is conventional to 
assign the worst outcome a utility of 0.0 and the best outcome 
a utility of 1.0. Outcomes whose utilities are intermediate are 
assessed by asking the expert what gamble between a bad 
outcome and a good one would be equally preferable to the 
certainty of the intermediate outcome. The response to this 
question uniquely determines the relative desirability of the 
intermediate outcome. For example, if the expert were 
indifferent between guaranteed KO CURFIKO STAINIKG and a 
gamble with 1 chance in 4 of NO CURFISTAIKING (utility = 
0.0) and 3 chances in 4 of CURFI~O STAIKING (utility q  l.O), 
then h’0 CURFPKO STAINriG can be assigned a utility of 0.75. 
An analogous standard gamble question can be devised to find 
the utility of the CURFXTA~NIKG outcome. 

Fig. 3 shows the values of the parameters of the model as 
assessed from a physician. For this decision tree, the expected 
utility of administering tetracycline is 0.63, and the expected 
utility of administering erythromycin is 0.83**. Therefore, it 
would seem that in this case erythromycin is “better” than 
tetracycline, consistent with the original heuristic statement 
shown in Fig. 1. But how certain should we be of this 
conclusion? What does a difference of 0.2 utility units mean? 

Since there is uncertainty about the values of the probability 
and utility parameters even when considering an individual 
patient, many object that probability assessments require of 
the expert a level certainty that cannot, in reality, be obtained. 
Additional uncertainty is introduced when generalizing to an 
entire set of cases to which an expert system will be exposed. 
To address these concerns, decision-theoretic techniques have 
been devised to answer the following question: If the value 
were different than the one provided by the expert, how likely 
would it be to affect the decision? The principal tool for 
this purpose, sensirivity analysis, is described in the next 
section. 

V SENSITIVITY AN4LYSlS 

identifying the variables to which a heuristic is sensitive can 
help determine the merit of the heuristic, can help provide an 
adequate justification for the heuristic, and can help direct 
ongoing knowledge acquisition efforts to those areas where 
further investigation is needed. To quantitatively assess the 
effect of changes in a variable, one-way sensitivity analysis is 
frequently employed. It determines how much one parameter 
in the decision model must vary before the optimal decision 
changes. Consider, for example, how the utility of 
administering each drug might change with changes in the 
probability of dental staining. A plot generated by such an 
analysis is shown in Fig. 4. The point at which the utilities 
of the plans are the same is called the threshold value. In 
this case, the threshold occurs when the probability of dental 
staining is equal to 0.025, quite a distance from the original 
assessed value of 0.3. If the threshold value were nearlq equal 
to the assessed value, further analysis or data collectIon may 
be necessary to reach a decision. 

The frequency with which a particular decision will be 
optimal depends in part on the chance that such a parameter 
will vary bebond the threshold. If the parameter was not 
known with great certainty, or if it varied considerabl> from 

*There are two exceptton lo th1.s stalem~nls. First. 111 sme simple 
problenls such as the one he consider here, the dominance of one ~IlterllatlVe 

call be proven solcl~ from q~~altlal~ve assertions about the relative ul~l~ttes of 
the oulcornes [24]. Second, since the number of wtwmes that must be 
assessed grows rapidly wl(h the sile of the problem, not ali these ~tssessments 
are actuallq made in problems more complex than the one we consider here. 
Instead, deuision analysts look for independent measures of Utility that Cm be 
combined 111 an addltlve ultlity model, and make assessment of the Parameters 
of that model. 

**Note that these expected UtIlIly values are tlnr cerLlinly factors. 
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Figure 4: The results of a one-way sensitivity analysis Figure 5: The results of a Monte Carlo simulation of 
of the tree shown in Fig. 3. The expected utility of the difference in expected utility between erythromycin 
each decision option (on the vertical axis) is plotted and tetracycline (horizontal axis). The frequency with 
against the likelihood of dental staining due to which each expected utility value occurred is plotted on 
tetracycline. T q  tetracycline, E = erythromycin. the vertical axis. 

case to case, the second choice might be the optimal choice in 
a substantial minority of instances. It is for this reason that 
decision analysts assess the approximate probability 
distributions of all sensitive parameters. For example, the 
expert can be asked to specify a range in which the value can 
be expected to fall half the time. This specifies an 
approximate distribution for the parameter [25]. This 
distribution represents the state of the expert’s knowledge 
about the parameter. 

Once such an assessment has been made, it is 
straightforward to find the probability that the value will fall 
beyond the threshold (by integrating the distribution up to 
that point). According to the assessed distribution of the 
prbbability of dental staining*, a value beyond the threshold 
occurs in less than 1 in 100,000 patients. 

However, this value is only a lower bound on the 
probability of error, since a one-way sensitivity analysis 
assumes that only one variable at a time deviates from its 
mean value. It is possible that interactions between variables 
could cause substantially greater errors that would remain 
undetected by one-way sensitivity analyses. To address these 
concerns, more comprehensive sensitivity analyses have been 
developed, such as multi-way and Monte Carlo sensitivity 
analyses [ 261. The Monte Carlo sensitivity analysis, in 
particular, provides an important metric for the evaluation of 
a heuristic. In Monte Carlo analysis, a value is randomly 
selected from the distribution of each relevant parameter, and 
the expected utility of the decision is computed for that 
random set of parameter values. This process is repeated 
many times to obtain an estimate of the distribution of the 
result. Fig. 5 shows the results of a Monte Carlo simulation 
of the difference between two competing alternatives. From 
this distribution, a number of useful quantities can be 
obtained. Since the figure shows the distribution of the 
difference between erythromqcin and tetracycline, any 
negative value represents a set of parameter values for which 
tetracycline would be optimal (III direct contradiction to the 
original heuristic). The proportion of negative values 
represents the error rate of the heuristic and can serve as a 
useful indicator of the power of the heuristic. 

*The distribution is not shown here. The knowledge was represented by a 
j-distribution with parameters R = 6 and N = 20. There are important 
theoretical reasons for selecting +-dlstrlbulion,, but these WIII no1 be 

presented here. 

VI IMPl,ICATIONS FOR EXPERT SYSTEMS 

Although assessing the quantities for a decision-theoretic 
analysis requires extra effort (in this case, seven quantities 
must be assessed), the required effort yields substantial 
advantages. For example, both the knowledge engineer and 
the domain expert are forced to be explicit about the 
population of cases for which the system is designed. This 
allbws the identification of those cases to which <he heuristic 
may not be useful, and the quantification of expected change 
in system performance. 

We have shown that it might indeed be appropriate in some 
cases to administer tetracycline to a young child. However, 
Clancev’s analysis leaves to intuition the notion that the 
undesiiable bbdily changes caused by tetracycline are 
sufficientlv 
tetracycline. 

severe to outweigh the increased effectiveness of 
He makes expl&it the causal chain of reasoning 

that indicates an undesirable bodily change may take place, 
but does not explicitly represent the tradeoffs between that 
undesirable change -and the possibility of 
consequences of not being treated by tetracycline. 

the poor 

As we discussed in section II, there are several possible 
scenarios in which the chain of rules in Fig. 2 might not 
justify the heuristic. Why, then, was MYCIN so successful? 
For a case similar to the ones addressed by MYCIN, the 
results of the Monte Carlo analysis indicatk it is highly 
unlikely that a given . patient would be better off with 
tetracycline. Furthermore, MYCIN was evaluated by 
comparing it to experts who also may choose to use the 
tetracycline heuristic for decision making, even though it does 
not always lead to the optimal decision. III any case, since 
other drugs are often as effective, any possible error would 
not be serious. These features may not be present in other 
less forgiving problem solving settings (e.g., aminoglycoside 
antibiotics are frequently used to treat for an infectIon with 
the organism pseudomonas, despite a high chance of 
nephrotoxicity). 

VII CONCLUSION 

We have demonstrated a decision-theoretic approach to the 
analysis of heuristics. The informational needs of this 
analysis technique can be provided through a process similar 
to conventional knowledge engineering. The concise fashion 
in which the problem is stated, together with the extra 
information obtained in the knowledge acquisition process, 
supplies tools for analyzing the performance of an individual 
heuristic. This decision-theoretic approach may help to 
augment the capabilities of expert systems. 

We recognize that for complex problems, a decision- 
theoretic analysis may be expensive and difficul t. But when 
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uncertainties and tradeoffs are dominant features of a 
decision problem, they cannot be captured in a single 
heuristic, nor can they be captured explicitly by multiple 
heuristics (with associated measures of certainty). In 
combining evidence from rules as if they are modular entities 
that do not affect the performance of the remaining rules, the 
implicit assumption is made that these rules are 
probabilistically independent [27]. Because decision analysis 
makes explicit the variables on which the success of each 
heuristic depends, it indicates whether assumptions of 
modularity are being met. Violating the modularity 
assumption may have serious implications for system 
performance [28]. 

We envision a system where each situation -> action 
heuristic is justified by decision-theoretic knowledge. This 
will allow the knowledge engineer to estimate the expected 
gain in system performance when a complete decision analysis 
is used in place of a simple heuristic. An informed decision 
can be made between the benefits of the computational 
economy of heuristics and the possible costs of their 
computational inaccuracies. 

Decision theory represents an important tool that should be 
considered by expert system builders. Used in conjunction 
with heuristic techniques, the decision-theoretic approach not 
only provides a sound basis on which to base knowledge 
engineering decisions, but also may enhance the ability of a 
system to explain its reasoning and to solve problems in 
which the explicit consideration of tradeoffs is essential. 
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