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ABSTRACT 

This paper describes two new algorithms, Joint and 
LPA*, which can be used to solve difficult combinatorial 
problems heuristically. The algorithms find reasonably short 
solution paths and are very fast. The algorithms work in 
polynomial time in the length of the solution. The algorithms 
have been benchmarked on the 15-puzzle, whose 
generalization has recently been shown to be NP hard, and 
outperform other known methods within this context. 

I. INTRODUCTION 

In this paper we describe two new algorithms, Joint and 
LPA *, which can be used to solve difficult combinatorial 
problems heuristically. The algorithms find reasonably short 
solution paths and are fast. The main idea behind these 
algorithms is to combine a fast approximation algorithm with 
a search method. This idea was first suggested by S. Lin 
(Lin, 1965; Lin, 1975), when he used it to find an effective 
algorithm for the Traveling-Salesman problem (TSP). His 
approximation techniques were strongly related to the TSP. 
Our goals are to develop a problem independent 
approximation method and combine it with search. 

An advantage of approximation algorithms is that they 
execute in a polynomial time, where many other algorithms 
have no such upper bound. Examples where there is no 
polynomial upper bound can be found for various models of 
error in tree spaces (Pohl 1977); or under worst case 
conditions, where the error in the heuristic function is 
proportional to the distance between the nodes, the number of 
nodes expanded by A * is exponential in the length of the 
shortest path (Gasching 1979). 

In the following sections we state conditions that assure 
that the new algorithms will finish in polynomial time. Later 
we describe the algorithms and give some empirical results. 
Our test domain is the 15-puzzle and the approximation 
algorithm is the Macro-Operator (Korf, 1985a). The need 
for an approximation algorithm in the case of the 15-puzzle 
has been demonstrated in (Ratner, 1986) by a proof that 
finding a shortest path in the (n 2-l)-puzzle is NP-hard. 

The empirical results, which come from test on a 
standard set of 50 problems (Politowski and Pohl, 1984), 
show that the algorithms outperform other published methods 
within stated time limits. Empirical results in two recent 
reports are related but reflect different goals. The Iterative- 
Deepening-A * method found optimal solutions to randomly 

generated 15-puzzles, but it generated on average nearly 50 
million nodes (Korf 1985b). In (Politowski 1986) excellent 
search results are achieved by an improved heuristic found 
through a learning algorithm. 

II. GENERAL CONCEPTS 

Let G,(V,,E,) be a family of undirected graphs, where 
n is the length of the description of G,. Suppose there is an 
approximation algorithm that finds a path in a graph G, 
between an arbitrary x EV, (start node) and an arbitrary y EV,, 
(goal node) and runs in a polynomial in n time. Since the 
algorithm is polynomial, the length of the path is also 
polynomial. Once we have a path, we can make local 
searches around segments of the path in order to shorten it. If 
each local search is guaranteed to terminate in constant time 
(or in the worst case in polynomial time) and the number of 
searches are polynomial in n, then the complete algorithm 
will run in polynomial time. 

In order to bound the effort of local search by a 
constant, each local search will have the start and goal nodes 
reside on the path, with the distance between them bounded 

by&,, a constant independent of n and the nodes. Then 
we will apply A * with admissible heuristics to find a shortest 
path between the two nodes. The above two conditions 
generally guarantee that each A * requires less than some 
constant time. More precisely, if the branching degrees of all 
the nodes in G, are bounded by a constant c which is 
independent of n then A * will generate at most c (c -l)dmX-’ 
nodes. 

Theoretically c (c -l)d”x-l is a constant, but it may be a 
very large number. Nevertheless, most heuristics prune most 
of the nodes (Pearl 1984). The fact that not many nodes are 
generated, is supported by our experiments reported in the 
result section. 

The goal of the local search is to find a new path 
between two nodes which is shorter than the existing subpath 
on the original path. Hence, if there is a shorter path its new 
length will be at most d max-l. These two paths create a 
cycle of length 2*d,,- 1 at most. Thus if the length of the 
smallest (non-trivial) cycle in G, is CL, we want 
d max 2(CL+1)/2 . This means that CL has to be a constant, 
independent of n. Moreover, we expect that cycles of length 
CL (or a bit larger) exist throughout the graph. This is the 
case for many combinatorial and deductive problems. 
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Once we know that there is such a constant CL, we pick 
d max that satisfies the condition d mm 2(CL +1)/2 in G . We 
would like to select segments of length d max on the solution 
path given by the approximation algorithm and to try to 
shorten these segments by the local searches. There are many 
of ways to pick the segments. The algorithms that we 
suggest, LPA * and Joint, pick a segment in a way that is 
based on our experiments and motivated by the following two 
facts: 

a. Assume that node y is on the path between x and z 
nodes. Then if we cannot shorten the path between x and y 
and we cannot shorten the path between y and z, it does not 
mean that we cannot shorten the path between x and z (see 
Figure 1.). 

b. Replacing a path by another path 
can later yield a shortening (see Figure 1.). 

of the same length 

X 

Y 
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i 
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Figure 1. Examples of possibilities to shorten the Path(x ,z )_ 

Assume that the Global-Path consists of the following 
three consecutive segments 11 , I2 , I3 and we try to shorten 
12. Note that there is no mutual influence among the searches 
and the segments. Thus when we replace the segment 12 by a 
new one, I,, (shorter or not), the beginning of I, may be 
exactly as the end of 11 but in the opposite direction (see 
Figure 2.) and the end of I, may be exactly at the beginning 
of 2 3 but in the opposite direction. Hence after replacing one 
segment by the other, we check whether there are such trivial 
cycles and cancel them. The process of erasing these cycles 
within the Global.Path is called Squeeze. The Squeeze 
nrocess saves some local searches, and was shown, for both 
I 

algorithms, to be useful in reducing execution time. 

Path- 1: A-B-C-D-E-F 

Path-2: F-E-D-G-H-I 

Figure 2. Two paths that partially cancel each other. 

III. The LPA * algorithm 

In this section we define the algorithm LPA * (Local 
Path A * ). First the algorithm finds a path by some 
approximation algorithm. Then it starts searching for an 
improvement from the global.start.node (x E V,). If the local 
search fails to shorten the current subpath, we advance the 
start node (anchor.node) along the path by a small increment, 
called sancbr. Then we try again to shorten the subpath 
starting at anchor.node and repeat this process until we 
succeed. The reason we advance the start node by only a 
small increment is motivated by fact (a) of the previous 
section. Once we succeed in shortening the subpath, we 
divide the remaining subpath (between the anchor.node and 
the global.goal.node 0) EVA)) into consecutive segments of 
length d,, . Then for each segment, we make a local search 
and replace it by the result of the search. The result of the 
local search is never longer than the original segment. The 
replacement is done, whether a shortening occurs or not, to 
increase the randomness in attempted improvements. This is 
a standard method in search to avoid repeating minima, 
which is given in fact (b) of the previous section. Upon 
finishing the replacement, the algorithm returns to the 
anchor.node as if it is the global.start.node and repeats the 
process. 

In the following we present the LPA * algorithm, using 
the following notations: 

d (x ,y ,P ) is the distance between the nodes x and y along P ; 
G.P = GlobalPath; L.P = LoacalPath; 
g.s.n = globalstartnode; g.g.n = global.goal.node; 
i.s.n = localstartnode; 1.g.n = local.goal.node; 
a.n = anchornode; 

The LPA * algorithm. 

G.P t Approximation(G , g.s.n , g.g.n) ; 
a.n t g.s.n ; 
while d (a.n , g.g.n , G.P) 2 d max 
begin 

L.P t A * (G , a.n , 1.g.n ) ; 
1.g.n is the node s.t. d (a.n , 1.g.n , G.P) = dmm; 
replace the segment from a.n to Z.g.n in G.P by L.P 
if length of L.P = d max 
then 

a.n t the node with distance sanchor from a.n 
along G.P ; 

else begin 
1.s.n t l.g.n ; 
while d ( Z.g.n , g.g.n , G.P) 2 d,,, 
begin 

1.g.n is the node s.t. 
d (1.s.n , 1.g.n , G.P) = dmax; 

L.P t A *(G , 1.s.n , 1.g.n) ; 
replace the segment from Z.s.n to f.g.n in G.P 

by L.P ; 
1.s.n t 1.g.n ; 

end; 
end; 

end; 
L.P t A * (G , a.n , g.g.n); 
if length of L.P < d max 

then replace the segment from a.n to Z.g.n in G.P by L.P ; 
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In order to show that LPA * is polynomial time in n, we 
have to show that the number of times we use A * is 
polynomial in n. Since the length of the approximation’s 
solution is polynomial in n, it is enough to show that the 
number of times we call A * is polynomial in the length of 
solution. Let Lapp be the length of the path generated by the 
approximation algorithm and let L,, be the length of a 
shortest path between the global start and goal nodes. Then 
the number of times LPA * calls A * is not more than 

izp, I& 1 + [e 1 (Ratner, 1986), which is 

quadratic in L,,, . Practically, for the U-puzzle, the number 
of searches is much less than the worst case. According to 
our experiments the number of calls is about 

+ F, as reported in the result section. 
max 

IV. The Joint algorithm 

In this section we present the Joint algorithm. The main 
ideas behind the Joint algorithm are: 

Starting with a solution path found by the approximation 
algorithm, we divide it into segments of length dm,x. Then 
we shorten each segment by a local search and replace the 
segment with the path found by the search. As a result, the 
new GlobalPath is composed from optimal subpaths. Since 
each segment is optimal, the most promising place to look for 
shortening is around the nodes that connect these segments. 
We name these nodes “joints”. The algorithm always try to 
shorten the path around the first joint. The local start and 
goal nodes are picked as symmetrically as possible around 
the first joint and a new local search takes place. The path 
found by the local search replaces the corresponding segment 
on the Global.Path, even when no improvement is made. 
This is done to increase the randomness in attempted 
improvements. We found that it is worthwhile to define a 
parameter, called SjoiM, that depends on the problem. The 
algorithm will erase all the joints along the segment except 
those which are located in the last Si,,, nodes on the 
segment. If a shorter path was found the local start and goal 
nodes are added as new joints. 

In the next column we present the Joint algorithm. We 
use the same notations we have used in the LPA * algorithm. 

The number of times Joint calls A * is not more than 

2( (J&p -Lopt) + * 
I i 

) (Ratner, 1986), which is linear in 
max 

L qp and therefore polynomial in n. Practically, for the 
15-puzzle, the number of searches is much less than the 
worst case. According to our experiments the number of 

L 
calls is about p + 

2sjoiti + d max 
4 ) 

as reported in the 
max 

result section. 

The Joint algorithm 

Initialization: list of joints is empty ; 
G.P t Approximation(G , g.s.n , g.g.n) ; 
1.s.n t g.s.n ; 
while d(Z.s.n , g.g.n , G.P) 2 d,,, 
begin 

Z.g.n is the node s.t. d(f.s.n , Z.g.n , G.P) = d,,, ; 
append Z.g.n to the list of joints; 
L.P t A * (G , 1.s.n , 1.g.n) ; 
replace the segment from 1.s.n to Z.g.n in G.P by L.P 
1.s.n t 1.g.n ; 

end; 
while there are more joints do 
begin 

1.s.n is thenode s.t. d(1.s.n , first.joint , G.P) =dmax/2; 
2.g.n is thenodes.t.d(f.s.n ,l.g.n ,G.P)=d,,; 
remove all the joints that are on G.P and satisfy 

d(joint, 1.g.n) > sj,,, ; 
L.P t A *(G , 1.s.n , 1.g.n ) ; 
replace the segment from Z.s.n to Z.g.n in G.P by L.P ; 
if length of L.P < d,,, 

then prepend 1.s.n and 1.g.n to the list of joints ; 
end; 

V. Macro -Operator as an approximation algorithm 

For our algorithm to be time efficient, we need to choose 
a fast approximation algorithm, that gives a “reasonable” 
solution path. The Macro -Operator Algorithm is such an 
algorithm. It runs in linear time in the length of the path it 
produces. The path generated by the Macro-Operator 
algorithm is a sequence of segments. In many cases each 
segment is optimal, which is the goal of the first loop in the 
Joint algorithm. 

The idea behind the Macro-Operator is to predefine a 
set of subgoals such that any instance of finding a path in the 
graph can be viewed as a sequence of some of the predefined 
subgoals. For each of the subgoals there is a known macro (a 
subpath) that solves it. There is a restriction on each macro, 
namely, if a macro was used to solve a subgoal, then it must 
leave the previously solved subgoals intact. 

Finding a path in a graph induced by permutations on 
n-tuples is an example of using a macro-operator. A graph 
induced by a permutations on n -tuples is a graph where each 
node represents a distinct permutation, and the edges are 
defined by some rules that relate the permutations. For 
example the 15puzzle can be viewed as graph induced by 
permutations on 1Btuple. If we rename the right lower comer 
as 0 and give the blank tile the value 0 the standard goal node 
in this game is the permutation (0,1,2,.......15) and the start 
node will be some other permutation (i o,i l,iz,....,i 15). The 
meaning of this permutation is that the tile with value ij is in 
location j. An edge between two nodes exists iff by a single 
sliding of the blank tile one can move from one permutation 
to the other. 
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In this case the subgoals can be defined as follows: 
substartnode: (0,1,2 ,... j-1;s ,... ;x,j;c ,... +x) 
sub.goal.node: (0,1,2 ,.... j-1,j ,X ,X.X) where x is don’t care. 
Only 119 such macros are required for the B-puzzle, 
although about ten trillion different problems (start 
configurations) exist. 

As explained above, the Macro -Operator can be 
chosen as the algorithm that initially approximates the 
solution, and then the first loop of Joint is redundant. In the 
Joint algorithm, after decomposing the solution to subpaths, 
each of them optimal, the Squeeze process is executed. The 
Squeeze is linear time in the length of the Global.Path, and 
generally the more squeezing the fewer searches will be later 
executed. Hence we would like to predefine the macros, a 
shortest path that is a solution to the subgoal, with some 
mutual influence such that the squeezing will be maximal . 
Looking for the most appropriate shortest subpath is a 
meaningful target since in general there is more than one 
shortest path. Especially, in this case of graphs induced by 
permutations where the subpath (macro) is a path between a 
set of start nodes and a set of goal nodes there are many 
shortest paths. We have no general scheme for how to find 
the macros that will guarantee maximum squeezing on the 
average. Yet we know how to do it in our test case, the 1% 
puzzle. A Macro-Operator with the macros picked 
randomly among the candidates give an average solution 
length of 149 moves, which is reduced by Squeeze to 139. If 
the macros were generated according to maximum squeezing 
we can achieve an average solution length of 124 after 
squeezing. Naturally after the squeezing process we will 
continue with the Joint algorithm for reducing the length of 
the resulting path. 

VI. Experimental results 

In this section, we report the results from using the 
LPA * and Joint algorithms with Macro -Operator as an 
approximation algorithm. We compare our results with some 
of the well known search methods that generate thousands of 
nodes. 

We selected the 15puzzle as the domain for testing the 
methods because of the following three reasons. We wished 
to have a domain where, in theory, finding a shortest path is 
computationally infeasible. The second reason is that there is 
a lot of available data about this puzzle. The third reason is 
that the generalization of this puzzle satisfies the condition 
that the length of the smallest non-trivial cycles (CL) in the 
search graphs is small ( < 30 ). These cycles are spread 
uniformly over the graph space. 

The average solution length for the test data, using only 
Macro -Operator, with the macro designed for maximum 
squeeze by itself, is 143 moves before the squeeze. After 
applying the squeeze the average solution length is reduced 
by 26.2 moves to 116.8 moves. 

For the Joint algorithm, with d,, = 24 and GjoiM = 6 , 
the average solution length is 86.7 moves, where 5950 
nodes were expanded and 9600 nodes were generated on the 
average. 

For the LPA * algorithm, that expands and generates 
about the same number of nodes as the Joint algorithm, the 
average solution length is 86.3 moves. This was achieved 
with d max = 24 and ljancbr = 9 , where 6580 nodes were 
expanded and 10240 nodes were generated on the average. 

We tested both algorithms with the following two well 
known admissible heuristics: 
h l(a ,b ) = the sum of the Manhattan distance of the non- 

blank tiles between the start (a) and goal (b) nodes. 
hz(a,b)= hl(a,b)+2S(a,b) 

R (a ,b) is the number of reversals in a with respect to b. A 
reversal means that two tiles exist in the same row (or 
column) in a and b , but in an opposite order. 

The following four tables correspond to the two 
heuristics and two algorithms. They show the reduction 
achieved by the local searches, the number of nodes that were 
generated and expanded and the number of searches as a 
function of d max and SjoiM (or sancbr). All the data is the 
average for the 50 problems. 

Table 2. LPA * algorithm with heuristics h 2 . 

~1 
14 I 103.1 I 1370 I 2020 I 13.9 1 
4 I 90.1 I 5250 I 7770 1 28.9 1 

9 1 93.8 I 3460 I 5350 I 17.7 I 
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From the tables we can verify the following results. 

1. Both algorithms generated only thousands of nodes. 
2. There is no significant difference between the methods. 
3. The bigger d,,, the shorter the solution length. 
4. The bigger sjoid the shorter the solution length in the Joint 

algorithm 
5. The smaller GancbT the shorter the solution length in the 

LPA * algorithm. 
6. Since h 2 is more informed than h 1 the number of nodes 

expanded (or generated) by h2 is about half of the 
number of nodes expanded (or generated) by h 1. 

In (Politowski and Pohl, 1984) there is a comparison 
between the performances of four methods using the same 
test data. The methods are: 
a. The Heuristic Path Algorithm (HPA) (Pohl, 1971)- 

Unidirectional search with weighting. 
b. The Heuristic Path Algorithm (HPA) (Pohl, 1971) - 

Bidirectional search with weighting. 
c. The Bidirectional Heuristic Front to Front Algorithm 

(BHFFA) (De Champeux and Sint, 1977). 
d. The D-node Algorithm (Politowski and Pohl, 1984). 

Comparing the results obtained by the four methods and 
the results presented here we can conclude: 

1. The other methods using “unsophisticated’ heuristics 
cannot find a path at all or a “reasonable path”, in contrast to 
our algorithms that always find a “reasonable” path. 

2. Keeping running time the same, LPA * and Joint 
algorithms yield a shorter solution than the other methods 
even when using “sophisticated’ heuristics. 

VII. CONCLUSION 

The results in this paper demonstrate the effectiveness 
of using LPA * or Joint. When applicable, these algorithms 
achieve a good solution with small execution time. These 
methods require an approximation algorithm as a starting 
point. Typically, when one has a heuristic function, one has 
adequate knowledge about the problem to be able to construct 
an approximation algorithm. Therefore, these methods 

should be preferred in most cases to earlier heuristic search 
algorithms . 
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