
Joint and LPA * : COMBINATION OF APPROXIMATION AND SEARCH

Daniel Ratner and Ira Pohl

Computer & Information Sciences
University of California Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

This paper describes two new algorithms, Joint and
LPA*, which can be used to solve difficult combinatorial
problems heuristically. The algorithms find reasonably short
solution paths and are very fast. The algorithms work in
polynomial time in the length of the solution. The algorithms
have been benchmarked on the 15-puzzle, whose
generalization has recently been shown to be NP hard, and
outperform other known methods within this context.

I. INTRODUCTION

In this paper we describe two new algorithms, Joint and
LPA *, which can be used to solve difficult combinatorial
problems heuristically. The algorithms find reasonably short
solution paths and are fast. The main idea behind these
algorithms is to combine a fast approximation algorithm with
a search method. This idea was first suggested by S. Lin
(Lin, 1965; Lin, 1975), when he used it to find an effective
algorithm for the Traveling-Salesman problem (TSP). His
approximation techniques were strongly related to the TSP.
Our goals are to develop a problem independent
approximation method and combine it with search.

An advantage of approximation algorithms is that they
execute in a polynomial time, where many other algorithms
have no such upper bound. Examples where there is no
polynomial upper bound can be found for various models of
error in tree spaces (Pohl 1977); or under worst case
conditions, where the error in the heuristic function is
proportional to the distance between the nodes, the number of
nodes expanded by A * is exponential in the length of the
shortest path (Gasching 1979).

In the following sections we state conditions that assure
that the new algorithms will finish in polynomial time. Later
we describe the algorithms and give some empirical results.
Our test domain is the 15-puzzle and the approximation
algorithm is the Macro-Operator (Korf, 1985a). The need
for an approximation algorithm in the case of the 15-puzzle
has been demonstrated in (Ratner, 1986) by a proof that
finding a shortest path in the (n 2-l)-puzzle is NP-hard.

The empirical results, which come from test on a
standard set of 50 problems (Politowski and Pohl, 1984),
show that the algorithms outperform other published methods
within stated time limits. Empirical results in two recent
reports are related but reflect different goals. The Iterative-
Deepening-A * method found optimal solutions to randomly

generated 15-puzzles, but it generated on average nearly 50
million nodes (Korf 1985b). In (Politowski 1986) excellent
search results are achieved by an improved heuristic found
through a learning algorithm.

II. GENERAL CONCEPTS

Let G,(V,,E,) be a family of undirected graphs, where
n is the length of the description of G,. Suppose there is an
approximation algorithm that finds a path in a graph G,
between an arbitrary x EV, (start node) and an arbitrary y EV,,
(goal node) and runs in a polynomial in n time. Since the
algorithm is polynomial, the length of the path is also
polynomial. Once we have a path, we can make local
searches around segments of the path in order to shorten it. If
each local search is guaranteed to terminate in constant time
(or in the worst case in polynomial time) and the number of
searches are polynomial in n, then the complete algorithm
will run in polynomial time.

In order to bound the effort of local search by a
constant, each local search will have the start and goal nodes
reside on the path, with the distance between them bounded

by&,, a constant independent of n and the nodes. Then
we will apply A * with admissible heuristics to find a shortest
path between the two nodes. The above two conditions
generally guarantee that each A * requires less than some
constant time. More precisely, if the branching degrees of all
the nodes in G, are bounded by a constant c which is
independent of n then A * will generate at most c (c -l)dmX-’
nodes.

Theoretically c (c -l)d”x-l is a constant, but it may be a
very large number. Nevertheless, most heuristics prune most
of the nodes (Pearl 1984). The fact that not many nodes are
generated, is supported by our experiments reported in the
result section.

The goal of the local search is to find a new path
between two nodes which is shorter than the existing subpath
on the original path. Hence, if there is a shorter path its new
length will be at most d max-l. These two paths create a
cycle of length 2*d,,- 1 at most. Thus if the length of the
smallest (non-trivial) cycle in G, is CL, we want
d max 2(CL+1)/2 . This means that CL has to be a constant,
independent of n. Moreover, we expect that cycles of length
CL (or a bit larger) exist throughout the graph. This is the
case for many combinatorial and deductive problems.

Search: AUTOMATED REASONING / 173

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

Once we know that there is such a constant CL, we pick
d max that satisfies the condition d mm 2(CL +1)/2 in G . We
would like to select segments of length d max on the solution
path given by the approximation algorithm and to try to
shorten these segments by the local searches. There are many
of ways to pick the segments. The algorithms that we
suggest, LPA * and Joint, pick a segment in a way that is
based on our experiments and motivated by the following two
facts:

a. Assume that node y is on the path between x and z
nodes. Then if we cannot shorten the path between x and y
and we cannot shorten the path between y and z, it does not
mean that we cannot shorten the path between x and z (see
Figure 1.).

b. Replacing a path by another path
can later yield a shortening (see Figure 1.).

of the same length

X

Y

Z I Kghes
i

Y
replace

Z

Figure 1. Examples of possibilities to shorten the Path(x ,z)_

Assume that the Global-Path consists of the following
three consecutive segments 11 , I2 , I3 and we try to shorten
12. Note that there is no mutual influence among the searches
and the segments. Thus when we replace the segment 12 by a
new one, I,, (shorter or not), the beginning of I, may be
exactly as the end of 11 but in the opposite direction (see
Figure 2.) and the end of I, may be exactly at the beginning
of 2 3 but in the opposite direction. Hence after replacing one
segment by the other, we check whether there are such trivial
cycles and cancel them. The process of erasing these cycles
within the Global.Path is called Squeeze. The Squeeze
nrocess saves some local searches, and was shown, for both
I

algorithms, to be useful in reducing execution time.

Path- 1: A-B-C-D-E-F

Path-2: F-E-D-G-H-I

Figure 2. Two paths that partially cancel each other.

III. The LPA * algorithm

In this section we define the algorithm LPA * (Local
Path A *). First the algorithm finds a path by some
approximation algorithm. Then it starts searching for an
improvement from the global.start.node (x E V,). If the local
search fails to shorten the current subpath, we advance the
start node (anchor.node) along the path by a small increment,
called sancbr. Then we try again to shorten the subpath
starting at anchor.node and repeat this process until we
succeed. The reason we advance the start node by only a
small increment is motivated by fact (a) of the previous
section. Once we succeed in shortening the subpath, we
divide the remaining subpath (between the anchor.node and
the global.goal.node 0) EVA)) into consecutive segments of
length d,, . Then for each segment, we make a local search
and replace it by the result of the search. The result of the
local search is never longer than the original segment. The
replacement is done, whether a shortening occurs or not, to
increase the randomness in attempted improvements. This is
a standard method in search to avoid repeating minima,
which is given in fact (b) of the previous section. Upon
finishing the replacement, the algorithm returns to the
anchor.node as if it is the global.start.node and repeats the
process.

In the following we present the LPA * algorithm, using
the following notations:

d (x ,y ,P) is the distance between the nodes x and y along P ;
G.P = GlobalPath; L.P = LoacalPath;
g.s.n = globalstartnode; g.g.n = global.goal.node;
i.s.n = localstartnode; 1.g.n = local.goal.node;
a.n = anchornode;

The LPA * algorithm.

G.P t Approximation(G , g.s.n , g.g.n) ;
a.n t g.s.n ;
while d (a.n , g.g.n , G.P) 2 d max
begin

L.P t A * (G , a.n , 1.g.n) ;
1.g.n is the node s.t. d (a.n , 1.g.n , G.P) = dmm;
replace the segment from a.n to Z.g.n in G.P by L.P
if length of L.P = d max
then

a.n t the node with distance sanchor from a.n
along G.P ;

else begin
1.s.n t l.g.n ;
while d (Z.g.n , g.g.n , G.P) 2 d,,,
begin

1.g.n is the node s.t.
d (1.s.n , 1.g.n , G.P) = dmax;

L.P t A *(G , 1.s.n , 1.g.n) ;
replace the segment from Z.s.n to f.g.n in G.P

by L.P ;
1.s.n t 1.g.n ;

end;
end;

end;
L.P t A * (G , a.n , g.g.n);
if length of L.P < d max

then replace the segment from a.n to Z.g.n in G.P by L.P ;

174 / SCIENCE

In order to show that LPA * is polynomial time in n, we
have to show that the number of times we use A * is
polynomial in n. Since the length of the approximation’s
solution is polynomial in n, it is enough to show that the
number of times we call A * is polynomial in the length of
solution. Let Lapp be the length of the path generated by the
approximation algorithm and let L,, be the length of a
shortest path between the global start and goal nodes. Then
the number of times LPA * calls A * is not more than

izp, I& 1 + [e 1 (Ratner, 1986), which is

quadratic in L,,, . Practically, for the U-puzzle, the number
of searches is much less than the worst case. According to
our experiments the number of calls is about

+ F, as reported in the result section.
max

IV. The Joint algorithm

In this section we present the Joint algorithm. The main
ideas behind the Joint algorithm are:

Starting with a solution path found by the approximation
algorithm, we divide it into segments of length dm,x. Then
we shorten each segment by a local search and replace the
segment with the path found by the search. As a result, the
new GlobalPath is composed from optimal subpaths. Since
each segment is optimal, the most promising place to look for
shortening is around the nodes that connect these segments.
We name these nodes “joints”. The algorithm always try to
shorten the path around the first joint. The local start and
goal nodes are picked as symmetrically as possible around
the first joint and a new local search takes place. The path
found by the local search replaces the corresponding segment
on the Global.Path, even when no improvement is made.
This is done to increase the randomness in attempted
improvements. We found that it is worthwhile to define a
parameter, called SjoiM, that depends on the problem. The
algorithm will erase all the joints along the segment except
those which are located in the last Si,,, nodes on the
segment. If a shorter path was found the local start and goal
nodes are added as new joints.

In the next column we present the Joint algorithm. We
use the same notations we have used in the LPA * algorithm.

The number of times Joint calls A * is not more than

2((J&p -Lopt) + *
I i

) (Ratner, 1986), which is linear in
max

L qp and therefore polynomial in n. Practically, for the
15-puzzle, the number of searches is much less than the
worst case. According to our experiments the number of

L
calls is about p +

2sjoiti + d max
4)

as reported in the
max

result section.

The Joint algorithm

Initialization: list of joints is empty ;
G.P t Approximation(G , g.s.n , g.g.n) ;
1.s.n t g.s.n ;
while d(Z.s.n , g.g.n , G.P) 2 d,,,
begin

Z.g.n is the node s.t. d(f.s.n , Z.g.n , G.P) = d,,, ;
append Z.g.n to the list of joints;
L.P t A * (G , 1.s.n , 1.g.n) ;
replace the segment from 1.s.n to Z.g.n in G.P by L.P
1.s.n t 1.g.n ;

end;
while there are more joints do
begin

1.s.n is thenode s.t. d(1.s.n , first.joint , G.P) =dmax/2;
2.g.n is thenodes.t.d(f.s.n ,l.g.n ,G.P)=d,,;
remove all the joints that are on G.P and satisfy

d(joint, 1.g.n) > sj,,, ;
L.P t A *(G , 1.s.n , 1.g.n) ;
replace the segment from Z.s.n to Z.g.n in G.P by L.P ;
if length of L.P < d,,,

then prepend 1.s.n and 1.g.n to the list of joints ;
end;

V. Macro -Operator as an approximation algorithm

For our algorithm to be time efficient, we need to choose
a fast approximation algorithm, that gives a “reasonable”
solution path. The Macro -Operator Algorithm is such an
algorithm. It runs in linear time in the length of the path it
produces. The path generated by the Macro-Operator
algorithm is a sequence of segments. In many cases each
segment is optimal, which is the goal of the first loop in the
Joint algorithm.

The idea behind the Macro-Operator is to predefine a
set of subgoals such that any instance of finding a path in the
graph can be viewed as a sequence of some of the predefined
subgoals. For each of the subgoals there is a known macro (a
subpath) that solves it. There is a restriction on each macro,
namely, if a macro was used to solve a subgoal, then it must
leave the previously solved subgoals intact.

Finding a path in a graph induced by permutations on
n-tuples is an example of using a macro-operator. A graph
induced by a permutations on n -tuples is a graph where each
node represents a distinct permutation, and the edges are
defined by some rules that relate the permutations. For
example the 15puzzle can be viewed as graph induced by
permutations on 1Btuple. If we rename the right lower comer
as 0 and give the blank tile the value 0 the standard goal node
in this game is the permutation (0,1,2,.......15) and the start
node will be some other permutation (i o,i l,iz,....,i 15). The
meaning of this permutation is that the tile with value ij is in
location j. An edge between two nodes exists iff by a single
sliding of the blank tile one can move from one permutation
to the other.

Search: AUTOMATED REASONING ! 1’5

In this case the subgoals can be defined as follows:
substartnode: (0,1,2 ,... j-1;s ,... ;x,j;c ,... +x)
sub.goal.node: (0,1,2 ,.... j-1,j ,X ,X.X) where x is don’t care.
Only 119 such macros are required for the B-puzzle,
although about ten trillion different problems (start
configurations) exist.

As explained above, the Macro -Operator can be
chosen as the algorithm that initially approximates the
solution, and then the first loop of Joint is redundant. In the
Joint algorithm, after decomposing the solution to subpaths,
each of them optimal, the Squeeze process is executed. The
Squeeze is linear time in the length of the Global.Path, and
generally the more squeezing the fewer searches will be later
executed. Hence we would like to predefine the macros, a
shortest path that is a solution to the subgoal, with some
mutual influence such that the squeezing will be maximal .
Looking for the most appropriate shortest subpath is a
meaningful target since in general there is more than one
shortest path. Especially, in this case of graphs induced by
permutations where the subpath (macro) is a path between a
set of start nodes and a set of goal nodes there are many
shortest paths. We have no general scheme for how to find
the macros that will guarantee maximum squeezing on the
average. Yet we know how to do it in our test case, the 1%
puzzle. A Macro-Operator with the macros picked
randomly among the candidates give an average solution
length of 149 moves, which is reduced by Squeeze to 139. If
the macros were generated according to maximum squeezing
we can achieve an average solution length of 124 after
squeezing. Naturally after the squeezing process we will
continue with the Joint algorithm for reducing the length of
the resulting path.

VI. Experimental results

In this section, we report the results from using the
LPA * and Joint algorithms with Macro -Operator as an
approximation algorithm. We compare our results with some
of the well known search methods that generate thousands of
nodes.

We selected the 15puzzle as the domain for testing the
methods because of the following three reasons. We wished
to have a domain where, in theory, finding a shortest path is
computationally infeasible. The second reason is that there is
a lot of available data about this puzzle. The third reason is
that the generalization of this puzzle satisfies the condition
that the length of the smallest non-trivial cycles (CL) in the
search graphs is small (< 30). These cycles are spread
uniformly over the graph space.

The average solution length for the test data, using only
Macro -Operator, with the macro designed for maximum
squeeze by itself, is 143 moves before the squeeze. After
applying the squeeze the average solution length is reduced
by 26.2 moves to 116.8 moves.

For the Joint algorithm, with d,, = 24 and GjoiM = 6 ,
the average solution length is 86.7 moves, where 5950
nodes were expanded and 9600 nodes were generated on the
average.

For the LPA * algorithm, that expands and generates
about the same number of nodes as the Joint algorithm, the
average solution length is 86.3 moves. This was achieved
with d max = 24 and ljancbr = 9 , where 6580 nodes were
expanded and 10240 nodes were generated on the average.

We tested both algorithms with the following two well
known admissible heuristics:
h l(a ,b) = the sum of the Manhattan distance of the non-

blank tiles between the start (a) and goal (b) nodes.
hz(a,b)= hl(a,b)+2S(a,b)

R (a ,b) is the number of reversals in a with respect to b. A
reversal means that two tiles exist in the same row (or
column) in a and b , but in an opposite order.

The following four tables correspond to the two
heuristics and two algorithms. They show the reduction
achieved by the local searches, the number of nodes that were
generated and expanded and the number of searches as a
function of d max and SjoiM (or sancbr). All the data is the
average for the 50 problems.

Table 2. LPA * algorithm with heuristics h 2 .

~1
14 I 103.1 I 1370 I 2020 I 13.9 1
4 I 90.1 I 5250 I 7770 1 28.9 1

9 1 93.8 I 3460 I 5350 I 17.7 I

1’6 / SCIENCE

24 1 6 1 86.5 11790 18350 15.5 REFERENCES

From the tables we can verify the following results.

1. Both algorithms generated only thousands of nodes.
2. There is no significant difference between the methods.
3. The bigger d,,, the shorter the solution length.
4. The bigger sjoid the shorter the solution length in the Joint

algorithm
5. The smaller GancbT the shorter the solution length in the

LPA * algorithm.
6. Since h 2 is more informed than h 1 the number of nodes

expanded (or generated) by h2 is about half of the
number of nodes expanded (or generated) by h 1.

In (Politowski and Pohl, 1984) there is a comparison
between the performances of four methods using the same
test data. The methods are:
a. The Heuristic Path Algorithm (HPA) (Pohl, 1971)-

Unidirectional search with weighting.
b. The Heuristic Path Algorithm (HPA) (Pohl, 1971) -

Bidirectional search with weighting.
c. The Bidirectional Heuristic Front to Front Algorithm

(BHFFA) (De Champeux and Sint, 1977).
d. The D-node Algorithm (Politowski and Pohl, 1984).

Comparing the results obtained by the four methods and
the results presented here we can conclude:

1. The other methods using “unsophisticated’ heuristics
cannot find a path at all or a “reasonable path”, in contrast to
our algorithms that always find a “reasonable” path.

2. Keeping running time the same, LPA * and Joint
algorithms yield a shorter solution than the other methods
even when using “sophisticated’ heuristics.

VII. CONCLUSION

The results in this paper demonstrate the effectiveness
of using LPA * or Joint. When applicable, these algorithms
achieve a good solution with small execution time. These
methods require an approximation algorithm as a starting
point. Typically, when one has a heuristic function, one has
adequate knowledge about the problem to be able to construct
an approximation algorithm. Therefore, these methods

should be preferred in most cases to earlier heuristic search
algorithms .

HI

VI

II31

E4 1

PI

PI

[71

PI

PI

De Champeaux, B. and Sint, L., “An improved bi-
directional search algorithm,” JACM, vol. 24, pp. 177-
191,1977.

Gaschnig, J., “Performance measurement and analysis of
certain search algorithms,” Ph.D thesis, Department of
Computer Science, Carnegi-Melon University, May
1979

Korf, R. E., Learning to solve problems by searching for
Macro-Operators. Research Notes in Arti’cial
Intelligence 5, Pitman Advanced Publishing Program,
1985.

Korf, R. E., “Iterative-Deepening-A * : An Optimal
Admissible Tree Search,” Proceedings of the Ninth
International Joint Conference on Artijcial Intelligence,
Vol. 2, pp. 1034-1035, 1985.

Lin, S., “Computer Solutions of the Traveling-Salesman
Problem,” BSTJ, Vol. 44, pp. 2245-2269, December
1965

Lin, S., “Heuristic Programming as an Aid to Network
Design,” J Networks, Vol. 5, pp. 33-43, 1975.

Pearl, J., Heuristics. Intelligent search strategies for
computer problem solving, Addison-Wesley Publishing
Company, 1984.

Pohl, I., “Bi-directional search,” in Bernard Meltzer and
Donald Michie (editors) ,Machine Intelligence 6, pp.
127- 140, American Elsevier, New York, 197 1.

Pohl, I., “Practical and theoretical considerations in
heuristic search algorithms,” in Bernard Meltzer and
Donald Michie (editors), Machine Intelligence 8, pp.
55-72, American Elsevier, New York, 1977.

[lo] Politowski, G., “On Construction of Heuristic
Functions,” Ph.D thesis, University of California Santa
Cruz, June 1986.

[l l] Politowski, G. and Pohl, I., “D-Node Retargeting in
Bidirectional Heuristic Search,” Proc. of the AAAI-84,
pp. 274-277, 1984.

[121 Ratner, D., “Issues in Theoretical and Practical
Complexity for Heuristic Search Algorithms,” Ph.D
thesis, Department of Computer Science, University of
California Santa Cruz, June 1986.

Search: AUTOMATED REASONING / 1”

