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ABSTRACT 

The Dempster-Shafer (D-S) theory of evidence suggests a 
coherent approach to aggregate evidence bearing on groups of 
mutually exclusive hypotheses; however, the uncertain relation- 
ships between evidence and hypotheses are difficult to represent in 
applications of the theory. In this paper, we extend the mul- 
tivalued mapping in the D-S theory to a probabilistic one that uses 
conditional probabilities to express the uncertain associations. In 
addition, Dempster’s rule is used to combine belief update rather 
than absolute belief to obtain results consistent with Bayes’ 
theorem. The combined belief intervals form probability bounds 
under two conditional independence assumptions. Our model can 
be applied to expert systems that contain sets of mutually 
exclusive and 
hierarchies. 

exhaustive hypotheses, which may or may not form 

I INTRODUCTION 

Evidence in an expert system is sometimes associated with a 
group of mutually exclusive hypotheses but says nothing about its 
constituents. For example, a symptom in CADIAG-2/RHEUh4A 
(Adlassnig, 1985a)(Adlassnig, 1985b) may be a supportive evidence 
for rheumatoid arthritis, which consists of two mutually exclusive 
subclasses: seropositive rheumatoid arthritis and seronegative rheu- 
matoid arthritis. The symptom, however, carries no information 
in diaerentiating between the two subclasses. Therefore, the 
representation of ignorance is important for the aggregation of evi- 
dence bearing on hypothesis groups. 

Two previous approaches to the problem were based on 
Bayesian probability theory (Pearl, 1985) and the Dempster-Shafer 
(D-S) theory of evidence (Gordon and Shortliffe, 1985). While the 
Bayesian approach failed to express the impreciseness of its proba- 
bility judgements, the D-S approach was not fully justified because 
of the difficulty to represent uncertain relationships between evi- 
dence and hypotheses in the D-S theory. As a result, the belief 
functions of the D-S approach are no longer probability bounds. 

In this paper, we propose a reasoning model in which degrees 
of belief not only express ignorance but also forms interval proba- 
bilities. The multi-valued mapping in the D-S theory is first 
extended to a probabilistic one, so the uncertain relationships 
between evidence and hypothesis groups are described by condi- 
tional probabilities. The probability mass distribution induced 
from the mapping are then transformed to the basic certainty 

1 This research was supported by National Science Foundation Grant ECS8209670. 

assignment, which measures belief update. Applying Dempster’s 
rule to combine basic certainty assignments, we obtain the belief 
function that forms probability bounds under two conditional 
independence assumptions. 

II TWO PREVIOUS APPROACHES 

A. The Bayesian Approach 

In a Bayesian approach presented by Judea Pearl (Pearl, 
1986), the belief committed to a hypothesis group is always distri- 
buted to its constituents according to their prior probabilities. A 
point probability distribution of the hypothesis space thus is 
obtained. However, the distribution is much too precise than what 
is really known, and the ranges that the estimated probability 
judgements may vary are lost. 

B. The Dempster-Shafer Approach 

Jean Gordon and Edward Shortliffe have applied the D-S 
theory to manage evidence in a hierarchical hypothesis space (Gor- 
don and Shortliffe, 1985) but several problems still exist. In order 
to define the terminology for our discussions, we describe the basics 
of the D-S theory before we discuss Gordon and Shortliffe’s work. 

l.Basics of the Dempster-Shafer Theory of Evidence 

w For simplicity, we assume thnt r does not map any element of the space E to 

the empty set. 
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In general, the probability distribution of the space 8 is con- 
strained by the bpa. The probability of a subset B of the frame of 
discernment is thus bounded below by the belief of B, denoted by 
Bel(B), and above by the plausibility of B, denoted by Pls(B). 
These two quantities are obtained from the bpa as follows: 

Bel(B) = Em(A), Pls(B) = c m(A). (2.3) 
ACE AflW9 

Hence, the belief interval [Be](B), Pls(B)] is the range of B’s proba- 
bility . 

An important advantage of the D-S theory is its ability to 
express degree of ignorance. In the theory, the commitment of 
belief to a subset does not force the remaining belief to be commit- 
ted to its complement, i.e., Be1(6) + Bel(L3’) < 1. The amount of 
belief committed to neither B nor B’s complement is the degree of 
ignorance. 

If ml and m2 are two bpa’s induced by two independent evi- 
dential sources, the combined bpa is calculated according to 
Dempster’s rule of combination: 

2. Gordon and Shortliffe’s Work 

Gordon and Shortliffe (G-S) applied the D-S theory to com- 
bine evidence in a hierarchical hypothesis space, but they viewed 
MYCIN’s CF as bpa without formal justification (Gordon and 
Shortliffe, 1985). As a result, the belief and plausibility in their 
approach were not probability bounds. Moreover, the applicability 
of Dempster’s rule became questionable because it was not clear 
how one could check t,he independence assumption of Dempster’s 
rule in the G-S approach. 

The G-S approach also proposed an efficient approximation 
technique to reduce the complexity of Dempster’s rule, but Shafer 
and Logan has shown that Dempster’s rule can be implemented 
efficiently in a hierarchical hypothesis space (Shafer and Logan, 
1985). Hence, the G-S’s approximaticn technique is not necessary. 

III A NEW APPROACH 

A. An Extension to the Dempster-Shafer Theory 

One way to apply the D-S theory to reasoning in expert sys- 
tems is to consider the space E as an evidence space and the space 
8 as a hypothesis space. An evidence space is a set of mutually 

exclusive outcomes (possible values) of an evidential source. For 
example, all possible results of a laboratory test form an evidence 
space because they are mutually exclusive. The elements of an 
evidence space are called the evidential elements. A hypothesis 
space is a set of mutually exclusive and exhaustive hypotheses. 
These hypotheses may or may not form a strict hierarchy. 

The multivalued mapping in the D-S theory is a collection of 
conditional probabilities whose values are either one or zero. Sup 
pose that an evidential element e, is mapped to a hypothesis group 
Si. This implies that if ei is known with certainty, the probability 

of Al is one and the probability of AT is zero, i.e., P(AI I el) = 1 
and P(Af I el) = 0. However, the mr.pping fails to express uncer- 
tain relationships such as “the probability of the hypothesis A is 
0.8 given the evidence en. In order to represent this kind of uncer- 
tain knowledge, we extend the multivalued mapping to a proba- 
bilistic multi-set mapping. 

A probabilistic multi-set mapping from an evidence space to 
a hypothesis space is a function that associates each evidential ele- 
ment to a collection of non-empty disjoint hypothesis groups 
accompanied by their conditional probabilities. A formal definition 
is given below. 

DeflnitIon 1: A probabilistic multi-set mapping from a space E to 
a space e is a function P’:E + 2 2expV ‘1. The image of an element 
in E, denoted by I”(ei), is a collection of subset-probability pairs, 
i.e., 

that satisEes the following conditions: 

(1) Aij#Qj, j = 1, . . . , m 

(2) “iJ@ik =@, jfk 

(3) P(Ai, I ei) > 0, j = 1, . . . , m 

(4) FF’(Aij I ei) = 1 

where ei is an element of E, Ai, . . . , Aim are subsets of 8, 

For the convenience of our discussion, we introduce the fol- 
lowing terminology. A granule is a subset of the hypothesis space 
9 that is in the image of some evidential elements under the map 
ping. The granule set of an evidential element, denoted by G, is a 
set of all the granules associated with that element. For example, 
the granule set of e( in the definition is the set of Ai,, . . . ,Ai, i.e., 

G(ei) = {Ai, . . . , Ai,}. The focal element in the D-S theory is 

the union of the granules in a granule set; moreover, because these 
granules are mutually exclusive, they form a partition of the focal 
element. 

Since the mapping in the D-S theory has been extended to a 
probabilistic one, the probability mass of an evidential element ei 
is now distributed among its granules. More precisely, the portion 
of et’s probability mass assigned to its granule A is the product of 
the conditional probability P(A I ei) and the mass P(ci I E’). 
Thus, the basic probability value of the granule A is the total mass 
assigned to it by all the evidential elements whose granule sets 
contain A. 

Deflnition 2: Given a probabilistic multi-set mapping from an 
evidence space E to a hypothesis space 8 and a probability distri- 
bution of the space E, a mass function m is induced: 

m(A IE’) = c P(A I ei)P(ei I E’) (3.1) 

A &(ei) 

where E’ denotes the background evidential source. 

The mass function defined satisfies the properties of bpa described 
in (2.2). In fact, the bpa in the D-S theory (2.1) is a special case of 
our mass distribution with all conditional probabilities being either 
zero’s or one’s. 
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The belief and the plausibility obtained from our mass func- 
tion bound the posterior probability under the conditional indepen- 
dence assumption that given the evidence, knowing its evidential 
source does not affect our belief in the hypotheses, i.e., 
P(A I ei, E’) = P(A I ei). 

Lemma 1: If we assume that P(A I ei, E’) = P(A I e,-) for any 
evidential element ei and its granule A, then for an arbitrary sub- 
set B of the hypothesis space, we have 
BeZ(Z3 I E’) 5 P(B I E’) 5 Pls(B I E’). 
(The proofs have been relegated to Appendix) 

If all the granule sets of all evidential element are identical 
for a mapping, the basic probability value of a granule is not only 
its belief but also its plausibility. In particular, If all the granules 
are singletons, then the mass function determines a Bayesian Belief 
Function (Shafer, 1976). 

Lemma 2: If G(ei) = G(ej) for all ei, ej E E, then for any 
granule A, we have m(A I E’) = Bel(A I E’) = PZs (A I E’) = 
P(A I E’). 

B. Combination of Evidence 

In the Dempster-Shafer Theory, bpa’s are combined using 
Dempster’s rule; nevertheless, using the rule to combine our mass 
distributions will overweigh the prior probability as shown in the 
following example. 

Example 1: El and e2 are two pieces of independent evidence 
bearing on the same hypothesis group A. If both el and e2 are 
known with certainty, each of them will induce a mass distribution 
from Definition 2: 

m(A I el) = P(A I el), m(AC I el) = P(AC I el) and 

m(A I e2) = P(A I e2), m(AC I e2) = P(A” 1 e2). 

The combined belief in A using Dempster’s rule is 

Bel(A I el, e2) = P(A I el)xP(A I e2) 
P(A I el)P(A I e2) + P(AC I el)P(A” I e2) 

P(e1 I A)P(e2 I A)P(A)2 

= P(e1 I A)P(e2 I A)P(A)2 + P(e1 I Ae)P(e2 I A”)P(A”)* 

Because both P(A I el) and P(AIe2) are affected by the prior proba- 
bility of A, the effect of the prior is doubled in the combined belief. 
In fact, the more evidential sources are combined, the bigger is the 
weight of the prior in the combined belief. Even if el and e2 are 
assumed to be conditionally independent on A, the combined belief 
could not be interpreted as lower probability. The D-S theory does 
not have such problem because its bpa does not count prior belief. 

In order to combine our mass distributions, we define a quan- 
tity called basic certainty value, denoted by C, to discount the 
prior belief from the mass distribution. The basic certainty value 
of a hypothesis subset is the normalized ratio of the subset’s mass 
to its prior probability*, i.e., 

(3.29 

Hence, any basic probability assignment can be transformed to a 

I A special case of the 

in (Grosof, 1885). 

basic certainty value is the belief measure 

basic certainty assignment (bca) using the equation abolre. Intui- 
tively, the basic certainty value measures the belief update, while 
both the bpa and the belief function measure absolute belief. Since 
both the CF in MYCIN (Shortliffe and Buchansn, 1975) and the 

likelihood ratio in PROSPECTOR (Duda, 1976) measure belief 
update, we may expect a relationship among them. In fact, as 
shown in the section IV-B, the probabilistic interpretations of CF 
given by Heckerman (Heckerman, 1985) are functions of basic cer- 
tainty values. 

Theorem 1: Consider two evidential spaces E, and E, that bear 
on a hypothesis space 8. Eli and e2j denote elements in E, and 

E2. A, and Bl denote granules of eli and e2j respectively. 
Assuming that 

P(eli I Ak)P(e2j I B,) = P(eh, e2i I A,nB,) AknBl f @ (3.3) 

and 

P(E1’ I elf) P(E; I e2j) = P(El’, Ei I eli, e2j) 

then 

E C(Ak I E,‘) C(Bi I E:) 
AflB,=D 

2’ C(Ak I E,‘)C(Bl I E,‘) 
= C(D I El’, Ez’) (3.5) 

where El’ and Ea’ denote the evidential sources of the space E, 
and the space E2 respectively. 

Proof of Theorem 1 can be found in (Yen, 1985). 

Based on Theorem 1, we apply Dempster’s rule to combine 
basic certainty assignments. The aggregated bca can be further 
combined with other independent bca’s. To obtain the updated 
belief function, the aggregated bca is transformed to the aggre- 
gated bpa through the following equation: 

m(AIE’)= 
C(A I E’)P(A) 

2’ C(A I E’)P(A) 
AC0 

From Lemma 1, the belief and the plausibility of a hypothesis sub- 
set obtained from the updated bpa are lower probability and upper 
probability of the subset given the aggregated evidence. 

In summary, combination of evidence is performed by first 
transforming bpa’s from independent sources of evidence into bca’s 
which are then combined using Dempster’s rule. The Enal com- 
bined bca is transformed to a combined bpa, from which we obtain 
the updated belief function that forms interval probabilities. 

C. Independence Assumptions of the Combining Rule 

The two conditions assumed in Theorem 1 correspond to con- 
ditional independence of evidence and the independence assump 
tion of Dempster’s rule. In fact, the first assumption (3.3) is 
weaker than the strong conditional independence assumption 
employed in MYCIN and PROSPECTOR. The second assumption 
(3.4) is implicitly made in these systems. 

1. The First AssumDt.ion 

The first assumption (3.3) d escribes the conditional indepen- 
dence regarding the two evidence spaces and the hypothesis space. 
Sufficient conditions of the assumption are 

P(eli I Ak) = P(eli I A,nB,), P(e2j I B,) = P(e2j I A,f”jt3[)(3.7) 

and 
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P(eli I AknBl)P(e2j I A,nBt) = P(eli, e2j I AknB,). (34 

The condition (3.7) is the conditional independence assump 
tion 

P(e I A, A,) = P(e IA) A,CA 

stating that if .4 is known with certainty, knowing its subset does 
not change the likelihood of e. A similar assumption is made in 
the Bayesian approach of (Pearl, 1986). The Bayesian approach 
applies the assumption to distribute the subset’s mass to each of 
the subset’s constituents. In our approach, however, the assump 
tion is applied only when two bodies of evidence are aggregated to 
give support to a more specific hypothesis group. The assumption 
(3.7) is a consequence of the aggregation of evidence, not a deli- 
berate effort to obtain a point distribution. 

The equation (3.8) states that elements of different evidential 
sources are conditionally independent on their granules’ non-empty 
intersections. Since the granules of an evidential element are dis- 
joint, the intersections of two granule sets are also disjoint. Hence, 
two evidential elements of different sources are conditionally 
independent on a set of mutually diJolnt hypothesis groups. In 
particular, pieces of evidence are not assumed to be conditionally 
independent on single hypotheses and their negations (comple- 
ments) because generally they are not mutually disjoint. There- 
fore, the equation (3.7) is weaker than PROSPECTOR and 
h4YCIN’s assumption that pieces of evidence bearing on the same 
hypothesis are conditionally independent on the hypothesis and its 
negation. As a result, we solve their inconsistency problems dealing 
with more than two mutually exclusive and exhaustive hypotheses 
(Heckerman, 1985)(Konolige, 1979). 

2. The Second Assumption 

The second assumption (3.4) describes the conditional 
independence regarding the two evidence spaces and their back- 
ground evidential sources. Sufficient conditions of the assumption 
(3.4) are 

1. The probability distribution of the space E2 conditloned on 
the evidence in El is not affected by knowing the evidential 
source of El. 

P(e2j I cl;) = P(e2’ I eli, El’) (3.10) 

2. 

3. 

Similarly , the distribution of the space E, conditioned 
evidence in E2 is not affected by knowing E2’. 

on the 

P(eli I e2j) = P(eli I e2j, E,‘). (3.11) 

The evidential sources E, and E, are conditionally 
dent on the joint probability distribution of E,x E2. 

indepen- 

P(EI’I eli, e2j, E2’) = P(E,‘I eli, e2j) (3.12) 

The assumption (3.4) corresponds to the 
assumption of Dempster’s rule (Dempster, 1967), 

independence 

P(eli I E1’)P(e2i I E,‘) = P(eli, e2j I El’, Ei), 

because (3.4) can be reformulated as 
P(eli 1 El’I?qe*j 1 Ez?~EI?~~Ez? = 

eli E2j) 

The Dempster’s independence assumption differs from (3.14) in 
that it does not contain prior probabilities. This difference is 

understood because in the D-S theory there is no notion of poste- 
rior versus prior probability in the evidence space. Therefore (3.4) 
intuitively replaces the independence of evidential sources assumed 
in Dempster’s rule of combination. 

The assumption is always satisfied when evidence is known 
with certainty. For example, if ell and e2, are known with cer- 
tainty, the equation (3.4) then becomes 

P(ell I el{) P(e2J I e2j) = P(el,, e2s I eli, e2j) 

Both the left hand side and the right hand side of the equation 
above are zeros for all values of i and j except when i=l and j=3 
in which case both sides are one. Therefore, the equality holds. It 
is also straightforward to prove Theorem 1 without (3.4) assuming 
that evidence is known with certainty. 

PROSPECTOR and Heckerman’s CF model made similar 
assumptions in the combining formula: 

P(E1’, Ez’l h) P(E1’I h) P(&‘I h) 

P(E,‘, Ez’ I K) 
=--. 

P(E,‘I h) P(&‘I h) 

Hence, we are not 
TOR and MYCIN. 

adding any assumptions to those of PROSPEC- 

D. An Example 

Suppose h,, h,, hs, and h4 are mutually exclusive and 
exhaustive hypotheses, Thus, they constitute a hypothesis space 8. 
The prior probabilities of the hypotheses are P(h,) = 0.1, P(h,) = 
0.4 ,P(h,) = 0.25, and P(h,) = 0.25. Two pieces of evidence col- 
lected are e, and e2. E, strongly supports the hypothesis group 
{h,, h2}, with the following probability values: 

P({h,, h-2) I el) = 0.9, P((h3, h4} I e,) = 0.1. 

E2 supports h, with the following 
tion gives no information: 

probability values while its nega- 

P(h, I e2) = 0.67, P({h,, ha, h4} I e,) = 0.33, and P(9 I e2 = 1 

Suppose that e, is known with certainty, and e2 is likely to be 
present with probability 0.3 (i.e., P(e, I El’) = 1, P(e2 I El) = 0.3, 
where E,’ and E2’ denote background evidential sources for e, and 
e2 respectively), Although we have not assumed the prior proba- 
bility of e2, it is easy to check that a consistent prior for e2 must 
be less then 0.14925. Therefore, e2 with a posterior probability of 
0.3 is still a piece of supportive evidence for h,. The effect of e, on 
the belief in the hypotheses is represented by the following mass 
distribution: 

m({hI, h2} I E,‘) = 0.9 m({h,! h4) I El’) = 0.1 

and m is zero for all other subsets of 8. The 
certainty assignment (bca) is 

corresponding basic 

C({h,, h,} I El’) = 0.9, C({h,, h4} I E,‘) = 0.1. 

Similarly, the effect of e2 on the belief in the hypotheses is 
represented by the following mass distribution: 

m({hI} I Ez’) = 0.201 m({h,}’ I E2’) = 0.099 

m(0 I E2’) = 0.7 

and m is zero for all other subsets 
transformed to the following bca: 

of 0. The distribution is 

c({h,} I E;) = 0.7128 C({h,}’ 1 E2’) = o-039 

~(9 I Ez’) = 0.2482 
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Using Dempster’s rule to combine the two bca’s, we get the follow- 
ing combined bca: 

C({h,} I E,‘E2’) = 0.6907 C({h,} I El/E;) = 0.0378 

C({h,, h2} I El’&‘) = 0.2406 C({h,, h4} I El’Ei) = 0.0309. 

From the combined bca, we obtain the following combined bpa: 

rn({hl} I E,‘E2’) = 0.314 m ({h,} I El’E2’) = 0.069 

m({h,, h2) I E#*‘) = 0.547 m ({ha, h4} I E1’E2’) = 0 07 

and m is zero for all other subsets of 0. The belief intervals of the 
hypotheses are hi: (0.314, O.SSl], h,: (0.069, 0.6161, h,: (0, 0.071, 
and h,: (0, 0.071. Th ese intervals determine the following partial 

ordering: h, is more likely than h3 and h4, and h2 is incomparable 
with h,, h,, and h,. However, the Bayesian approach (Pearl, 1986) 
yields a different result: Bel(h,) = 0.424, Bel(h,) = 0.506, Bel(h,) 
= 0.035, and Bel(h,) = 0.035. The posterior probability of h, is 
higher than that of h, because majority of the mass assigned to 
the hypothesis group {h,, h2} is allocated to h, for its relatively 
high prior probability. 

IV COMPARISONS 

A. Relationship to Bayes’ Theorem 

The result of our model is consistent with Bayes’ theorem 
under conditional independence assumption. To show this, we con- 
sider n evidential sources E,, E2, . . . , E, bearing on a hypothesis 
space 8 = {h,, h, . . . , h,}. The values of each evidential 
sources are known with certainty to be e,, e2 * * . e, respectively. 
Also, the granules for every evidential sources are all singletons. It 
then follows from Lemma 2 that 

m({hi} I e1,e2, . . * e,) = Bel({hi} I e1,e2,. . . e,) (44 

= P(hi I e1,e2, . . . e,) 

The basic probability assignment due to the evidential source Ej is 

m({hi} I ej) = P(hi I ej), i = 1, . . . , m. 

The corresponding basic certainty assignment is 

P(hi I ej) 

C({hi} I ej) = 
PO P(ej I hi) 

P(hk 1 ej) = ‘CP(ej’ i = ” ’ . ’ ’ m’ 
c- 
k P(hk) 

k 

Combining the basic certainty assignments from n evidential 
sources, we get 

C({hi} I q,e2, . . . e,) = 
P(e, I hi)P(e2 I hi) . . . P(e, I hi) 

xP(e, I hi)P(ez I hi) . . * P(e, I hi) 

Through the transformation (3.6), we obtain the combined basic 
probability assignment: 

m({hi} I el,eQ * * . e,) = 
4el I h,)P(e2 1 4) . . . r(% I hi)4ns) 

LXelI hiPf%I 4) " ' 4e, 1 hi)4ni) 
(44 

From the equations (4.1) and (4.2) we get Bayes’ theorem under 
the assumption that el, e2, . . . 
on each hypothesis in 8. 

, e, are conditionally independent 

B. Mapping Basic Certainty Assignment to CF 

The probabilistic interpretations of certainty factor (CF) 

given by Heckerman (Heckerman, 1985) are functions of basic cer- 
tainty values. One of Heckerman’s formulations for the CF of a 
hypothesis h given a piece of evidence e is 

CF(h,e) = G 

where X is the likelihood ratio defined to be 

x - PC” 1 h_, 

P(e 111) 

In our model, when the frame of discernment contains only two 
hypotheses (i.e., 8 = {h, I?} ), and a piece of evidence e is known 
with certainty, the basic certainty assignment of 0 is: 

C({h} I e) = & C({l} I e) = L. 
x+1 

Therefore, one of Heckerman’s probabilistic interpretations of CF 
is the difference of C( {h } I e) and C( { z} 1 e) in this case. Moreover, 
the relationship can be comprehended as follows: 

(1) If the basic certainty values of the hypothesis h and its nega- 
tion are both 0.5, no belief update occurs. Hence, the cer- 
tainty factor CF(h,e) is zero. 

(2) On the other hand, if basic certainty value of the hypothesis 
is greater than that of its negation, degree of belief in h is 
increased upon the observation of the evidence. Thus the 
certainty factor CF(h,e) is positive. 

In general, the probabilistic interpretations of CF are functions of 

WV4 I4 

A similar mapping between Heckerman’s CF and a “belief 
measure” B to which Dempster’s rule applies was found by Grosof 
(Grosof, 1985). In fact, Grosof’s belief measure B(h,e) is equivalent 
to basic certinty value C({h} le) in this special case. However, the 
distinction between belief update and absolute belief was not made 
in Grosof’s paper. Thus, our approach 
Grosof’s work but also distinguishes basic 
from mass distributions in a clear way. 

not only 
certainty 

generalized 
assignments 

V CONCLUSIONS 

By extending the D-S theory, we have developed a reasoning 
model that is consistent with Bayes’ theorem with conditional 
independence assumptions. The D-S theory is extended to handle 
the uncertainty associated with rules. In addition, the Dempster 
rule is used to combine belief update rather than absolute belief, 
and the combined belief and plausibility are lower probability and 
upper probability respectively under two conditional independence 
assumptions. 

The major advantage of our model over the Bayesian 
approach (Pearl, 1986) is the representation of ignorance. In our 
model, the amount of belief directly committed to a set of 
hypotheses is not distributed among its constituents until further 
evidence is gathered to narrow the hypothesis set. Therefore, 
degree of ignorance can be expressed and updated coherently as 
the degree of belief does. In the Bayesian approach, the amount of 
belief committed to a hypothesis group is always distributed 
among its constituents. 

Directions for future research are mechanism to perform 
chains of reasoning, computational complexity of the model, and 
decision making using belief intervals. In chaining, Definition 2 is 
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no longer valid because the probability distribution of an evidence 
space may not be known exactly. Although the extension of the 
Definition can be straight forward, a justification similar to 
Theorem 1 is difficult to establish. The computational complexity 
of our model is dominated by that of Dempster’s rule, so any 
efficient implementations of the rule greatly reduce the complexity 
of our model. Interval-based decision making has been discussed in 
(Loui, 1985) and elsewhere, yet the problem is not completely 
solved and needs further research. 

from the definition of plausibility and Definition 2, we 

The proposed reasoning model is ideal for the expert system 
applications that (1) contain mutually exclusive and exhaustive 
hypotheses, (2) provide the required probability judgements, and 
(3) satisfy the two conditional independence assumptions. The 
model is currently implemented in a medical expert system that 
diagnoses rheumatic diseases. 
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Appendix 

Lemma 1: If we assume that P(A I ef, E’) = P(A I ei) for any 

evidential element ei and its granule A, then for an arbitrary sub- 
set B of the hypothesis space, we have 
BeZ(B I E’) 5 P(B I E’) < Pla(B I E’). 

Proof: Let us consider the conditional probability of B, an arbi- 
trary subset of the hypothesis space, given the evidence et. The 
conditional probabilities of ei’s granules contribute to P(B I ei) 
depending on their set relationships with B: 

(1) conditional probability If the granule is included 
must be assigned to P(B I 

in B, all its 

ei). 

(2) 

(3) 

If the granule has non-empty intersection with B, but is not 
included in B, its conditional 
assigned to P(B I 4 

probability may or may not be 

If the granule has no intersection with 
bability can not be assigned to P(B I ei 

B, its conditional pro- 

Since ei’s granules are disjoint, the sum of the conditional probabil- 
ities of the first type granules is the lower bound of P(B I ei). 
Similarly, the sum of the conditional probabilities of the first type 

granules and the second type granules is the upper bound of 
P(B 1 ei). Thus, we get 

C P(Aj I ei) 5 P(B I ei) < C P(Ak I ei). 

A,&B 
A&G(e,) 

Ak&#$ 
&=(‘A) 

Since P(ei I E’) is positive and the equation above holds for any 
evidential element ei, we have 

C C P(Aj I ei)P(ei I E’) 5 xP(B I ei)P(ei I E’) 
i . 

A,:B 
i 

A++4 

64.2) 

5 C C P(Ak I ei)P(ei I E’) . 
i 

Ak$ib 
AkEG 

From the definition of belief function and Definition 2, we have 

Bel(BIE’)= Cm(AjlE’) 

Aj:B 

= C C P(Aj I ei)P(ei I E’) 

A&3 A+&) 

(A.3) 

Similarly, 

get 

Pla(Z3 I E’) = C m(AjI E’) 

4&W 

= C C P(A, I ei)P(ei I E’) 

A,&#@ A,&) 

Also, from the assumption that P(A I ei,E’) = P(A I e,-), we get 

P(B I E’) = CP(B I e,-)P(ei I E’) (A4 

It thus follows from (A.2), (A.3), (A.4), and (A.5) that 

BeZ(B I E’) < P(B I E’) 5 Pla(B I E’) . 8 

Lemma 2: If G(ei) = G (ej) f or all ei, ej E E, then for any 
granule A, we have m(A I E’) = Bel(A I E’) = Pla(A I E’) = 
P(A I E’). 

Proof: 

Part 1 

Assume m(A I E’) # Bel(A I E’). (A4 

From the definition of belief function and 
of the basic probability values, we have 

the nonnegativity 

m(A I E’) < BeZ(A I E’). 

Hence, there exists a subset B such that 

B C A,B#A,andm(BIE’)>O. (A? 

From the definition 2, we know B is in a granule set, denoted 
as G(e,). Since A is also a granule, we denote its granule set 
as G(e,). Since G(e,) = G(e,,) according to the assumption 
of this Lemma, A and B are in the same granule set. From 
the Definition 1 it follows that A and B are disjoint, which 
contradicts (A.7). Therefore, the assumption (A.6) fails, and 
we have proved by contradiction that 

m(A I E’) = Bel(A I E’) 

From the definition of plausibility function, we know 

m(A I E’) < Pla(A I E’) 

Hence, there exists a subset C such that 

C n A # Qll C # A, and m(C I E) > 0. (A.9) 

Using the arguments of Part 1, C and A must be in the same 
granule set, therefore they are disjoint, which contradicts 
(A.9). Therefore, the assumption (A.8) fails, and we have 
proved by contradiction that 

m(A I E’) = Pla(A I E’). 
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