Scalable Collaborative Filtering based on Latent Semantic Indexing

Panagiotis D. Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos, Yannis Manolopoulos

Nearest-neighbor collaborative filtering (CF) algorithms are gaining widespread acceptance in recommender systems and e-commerce applications. User ratings are not expected to be independent, as users follow trends of similar rating behavior. In terms of Text Mining, this is analogous to the formation of higher-level concepts from plain terms. In this paper, we propose a novel CF algorithm which uses Latent Semantic Indexing (LSI) to detect rating trends and performs recommendations according to them. We perform an extensive experimental evaluation, with two real data sets, and produce results that indicate its superiority over existing CF algorithms.

Subjects: 1.10 Information Retrieval; 10. Knowledge Acquisition

Submitted: May 15, 2006

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.