The Branching Factor of Regular Search Spaces

Stefan Edelkamp, Richard E. Korf

Many problems, such as the sliding-tile puzzles, generate search trees where dfferent nodes have different numbers of children, in this case depending on the position of the blank. We show how to calculate the asymptotic branching factors of such problems, and how to efficiently compute the exact numbers of nodes at a given depth. This information is important for determining the complexity ofvarious search algorithms on these problems. In addition to the sliding-tile puzzles, we also apply our technique to Rubik’s Cube. While our techniques are fairly straightforward, the literature is full of incorrect branching factors for these problems, and the errors in several incorrect methods are fairly subtle.

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.