Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
Main Track: NLP and Machine Learning
Downloads:
Abstract:
In this paper, we propose a bidimensional attention based recursiveautoencoder (BattRAE) to integrate clues and sourcetargetinteractions at multiple levels of granularity into bilingualphrase representations. We employ recursive autoencodersto generate tree structures of phrases with embeddingsat different levels of granularity (e.g., words, sub-phrases andphrases). Over these embeddings on the source and targetside, we introduce a bidimensional attention network to learntheir interactions encoded in a bidimensional attention matrix,from which we extract two soft attention weight distributionssimultaneously. These weight distributions enableBattRAE to generate compositive phrase representations viaconvolution. Based on the learned phrase representations, wefurther use a bilinear neural model, trained via a max-marginmethod, to measure bilingual semantic similarity. To evaluatethe effectiveness of BattRAE, we incorporate this semanticsimilarity as an additional feature into a state-of-the-art SMTsystem. Extensive experiments on NIST Chinese-English testsets show that our model achieves a substantial improvementof up to 1.63 BLEU points on average over the baseline.
DOI:
10.1609/aaai.v31i1.10969
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31