Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
Main Track: NLP and Machine Learning
Downloads:
Abstract:
Keyphrases that efficiently summarize a documentÕs content are used in various document processing and retrieval tasks. Current state-of-the-art techniques for keyphrase extraction operate at a phrase-level and involve scoring candidate phrases based on features of their component words.In this paper, we learn keyphrase taggers for research papers using token-based features incorporating linguistic, surface-form, and document-structure information through sequence labeling. We experimentally illustrate that using within document features alone, our tagger trained with ConditionalRandom Fields performs on-par with existing state-of-the-art systems that rely on information from Wikipedia and citation networks. In addition, we are also able to harness recent work on feature labeling to seamlessly incorporate expert knowledge and predictions from existing systems to enhance the extraction performance further. We highlight the modeling advantages of our keyphrase taggers and show significant performance improvements on two recently-compiled datasets of keyphrases from Computer Science research papers.
DOI:
10.1609/aaai.v31i1.10986
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31