Proceedings:
No. 1: Thirty-First AAAI Conference On Artificial Intelligence
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 31
Track:
Special Track on Computational Sustainability
Downloads:
Abstract:
In many fields in computational sustainability, applications of POMDPs are inhibited by the complexity of the optimal solution. One way of delivering simple solutions is to represent the policy with a small number of alpha-vectors. We would like to find the best possible policy that can be expressed using a fixed number N of alpha-vectors. We call this the N-POMDP problem. The existing solver alpha-min approximately solves finite-horizon POMDPs with a controllable number of alpha-vectors. However alpha-min is a greedy algorithm without performance guarantees, and it is rather slow. This paper proposes three new algorithms, based on a general approach that we call alpha-min-2. These three algorithms are able to approximately solve N-POMDPs. Alpha-min-2-fast (heuristic) and alpha-min-2-p (with performance guarantees) are designed to complement an existing POMDP solver, while alpha-min-2-solve (heuristic) is a solver itself. Complexity results are provided for each of the algorithms, and they are tested on well-known benchmarks. These new algorithms will help users to interpret solutions to POMDP problems in computational sustainability.
DOI:
10.1609/aaai.v31i1.11169
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 31