Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Student Abstract Track
Downloads:
Abstract:
Fine-grained entity typing aims to assign entity mentions in the free text with types arranged in a hierarchical structure. It suffers from the label noise in training data generated by distant supervision. Although recent studies use many features to prune wrong label ahead of training, they suffer from error propagation and bring much complexity. In this paper, we propose an end-to-end typing model, called the path-based attention neural model (PAN), to learn a noise-robust performance by leveraging the hierarchical structure of types. Experiments on two data sets demonstrate its effectiveness.
DOI:
10.1609/aaai.v32i1.12162
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.