Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: Machine Learning Applications
Downloads:
Abstract:
Compressed sensing magnetic resonance imaging (CS-MRI) is an active research topic in the field of inverse problems. Conventional CS-MRI algorithms usually exploit the sparse nature of MRI in an iterative manner. These optimization-based CS-MRI methods are often time-consuming at test time, and are based on fixed transform bases or shallow dictionaries, which limits modeling capacity. Recently, deep models have been introduced to the CS-MRI problem. One main challenge for CS-MRI methods based on deep learning is the trade off between model performance and network size. We propose a recursive dilated network (RDN) for CS-MRI that achieves good performance while reducing the number of network parameters. We adopt dilated convolutions in each recursive block to aggregate multi-scale information within the MRI. We also adopt a modified shortcut strategy to help features flow into deeper layers. Experimental results show that the proposed RDN model achieves state-of-the-art performance in CS-MRI while using far fewer parameters than previously required.
DOI:
10.1609/aaai.v32i1.11869
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.