Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Knowledge Representation and Reasoning
Downloads:
Abstract:
Embedding has emerged as an important approach to prediction, inference, data mining and information retrieval based on knowledge bases and various embedding models have been presented. Most of these models are "typeless," namely, treating a knowledge base solely as a collection of instances without considering the types of the entities therein. In this paper, we investigate the use of entity type information for knowledge base embedding. We present a framework that augments a generic "typeless" embedding model to a typed one. The framework interprets an entity type as a constraint on the set of all entities and let these type constraints induce isomorphically a set of subsets in the embedding space. Additional cost functions are then introduced to model the fitness between these constraints and the embedding of entities and relations. A concrete example scheme of the framework is proposed. We demonstrate experimentally that this framework offers improved embedding performance over the typeless models and other typed models.
DOI:
10.1609/aaai.v32i1.11548
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.