Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Doctoral Consortium
Downloads:
Abstract:
Graphical models provide a powerful framework for reasoning under uncertainty, and an influence diagram (ID) is a graphical model of a sequential decision problem that maximizes the total expected utility of a non-forgetting agent. Relaxing the regular modeling assumptions, an ID can be flexibly extended to general decision scenarios involving a limited memory agent or multi-agents. The approach of probabilistic planning with IDs is expected to gain computational leverage by exploiting the local structure as well as representation flexibility of influence diagram frameworks. My research focuses on graphical model inference for IDs and its application to probabilistic planning, targeting online MDP/POMDP planning as testbeds in the evaluation.
DOI:
10.1609/aaai.v32i1.11356
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.