Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: AI and the Web
Downloads:
Abstract:
In this paper, we investigate the impact of spatial variation on the construction of location-sensitive user profiles. We demonstrate evidence of spatial variation over a collection of Twitter Lists, wherein we find that crowdsourced labels are constrained by distance. For example, that energy in San Francisco is more associated with the green movement, whereas in Houston it is more associated with oil and gas. We propose a three-step framework for location-sensitive user profiling: first, it constructs a crowdsourced label similarity graph, where each labeler and labelee are annotated with a geographic coordinate; second, it transforms this similarity graph into a directed weighted tree that imposes a hierarchical structure over these labels; third, it embeds this location-sensitive folksonomy into a user profile ranking algorithm that outputs a ranked list of candidate labels for a partially observed user profile. Through extensive experiments over a Twitter list dataset, we demonstrate the effectiveness of this location-sensitive user profiling.
DOI:
10.1609/aaai.v32i1.11261
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.